Applied Linear Statistical S:Instructor's Solutions Manual(5th,2005)
User Manual:
Open the PDF directly: View PDF .
Page Count: 298
Download | |
Open PDF In Browser | View PDF |
Instructor Solutions Manual to accompany Applied Linear Statistical Models Fifth Edition Michael H. Kutner Emory University Christopher J. Nachtsheim University of Minnesota John Neter University of Georgia William Li University of Minnesota 2005 McGraw-Hill/Irwin Chicago, IL Boston, MA PREFACE This Solutions Manual gives intermediate and final numerical results for all end-of-chapter Problems, Exercises, and Projects with computational elements contained in Applied Linear Statistical M odels, 5th edition. This Solutions Manual also contains proofs for all Exercises that require derivations. No solutions are provided for the Case Studies. In presenting calculational results we frequently show, for ease in checking, more digits than are significant for the original data. Students and other users may obtain slightly different answers than those presented here, because of different rounding procedures. When a problem requires a percentile (e.g. of the t or F distributions) not included in the Appendix B Tables, users may either interpolate in the table or employ an available computer program for finding the needed value. Again, slightly different values may be obtained than the ones shown here. We have included many more Problems, Exercises, and Projects at the ends of chapters than can be used in a term, in order to provide choice and flexibility to instructors in assigning problem material. For all major topics, three or more problem settings are presented, and the instructor can select different ones from term to term. Another option is to supply students with a computer printout for one of the problem settings for study and class discussion and to select one or more of the other problem settings for individual computation and solution. By drawing on the basic numerical results in this Manual, the instructor also can easily design additional questions to supplement those given in the text for a given problem setting. The data sets for all Problems, Exercises, Projects and Case Studies are contained in the compact disk provided with the text to facilitate data entry. It is expected that the student will use a computer or have access to computer output for all but the simplest data sets, where use of a basic calculator would be adequate. For most students, hands-on experience in obtaining the computations by computer will be an important part of the educational experience in the course. While we have checked the solutions very carefully, it is possible that some errors are still present. We would be most grateful to have any errors called to our attention. Errata can be reported via the website for the book: http://www.mhhe.com/KutnerALSM5e. We acknowledge with thanks the assistance of Lexin Li and Yingwen Dong in the checking of Chapters 1-14 of this manual. We, of course, are responsible for any errors or omissions that remain. Michael H. Kutner Christopher J. Nachtsheim John Neter William Li i ii Contents 1 LINEAR REGRESSION WITH ONE PREDICTOR VARIABLE 1-1 2 INFERENCES IN REGRESSION AND CORRELATION ANALYSIS 2-1 3 DIAGNOSTICS AND REMEDIAL MEASURES 3-1 4 SIMULTANEOUS INFERENCES AND OTHER TOPICS IN REGRESSION ANALYSIS 4-1 5 MATRIX APPROACH TO SIMPLE LINEAR REGRESSION ANALYSIS 5-1 6 MULTIPLE REGRESSION – I 6-1 7 MULTIPLE REGRESSION – II 7-1 8 MODELS FOR QUANTITATIVE AND QUALITATIVE PREDICTORS 8-1 9 BUILDING THE REGRESSION MODEL I: MODEL SELECTION AND VALIDATION 9-1 10 BUILDING THE REGRESSION MODEL II: DIAGNOSTICS 10-1 11 BUILDING THE REGRESSION MODEL III: REMEDIAL MEASURES11-1 12 AUTOCORRELATION IN TIME SERIES DATA 12-1 13 INTRODUCTION TO NONLINEAR REGRESSION AND NEURAL NETWORKS 13-1 14 LOGISTIC REGRESSION, POISSON REGRESSION,AND GENERALIZED LINEAR MODELS 14-1 15 INTRODUCTION TO THE DESIGN OF EXPERIMENTAL AND OBSERVATIONAL STUDIES 15-1 16 SINGLE-FACTOR STUDIES 16-1 17 ANALYSIS OF FACTOR LEVEL MEANS 17-1 iii 18 ANOVA DIAGNOSTICS AND REMEDIAL MEASURES 18-1 19 TWO-FACTOR ANALYSIS OF VARIANCE WITH EQUAL SAMPLE SIZES 19-1 20 TWO-FACTOR STUDIES – ONE CASE PER TREATMENT 20-1 21 RANDOMIZED COMPLETE BLOCK DESIGNS 21-1 22 ANALYSIS OF COVARIANCE 22-1 23 TWO-FACTOR STUDIES WITH UNEQUAL SAMPLE SIZES 23-1 24 MULTIFACTOR STUDIES 24-1 25 RANDOM AND MIXED EFFECTS MODELS 25-1 26 NESTED DESIGNS, SUBSAMPLING, AND PARTIALLY NESTED DESIGNS 26-1 27 REPEATED MEASURES AND RELATED DESIGNS 27-1 28 BALANCED INCOMPLETE BLOCK, LATIN SQUARE, AND RELATED DESIGNS 28-1 29 EXPLORATORY EXPERIMENTS – TWO-LEVEL FACTORIAL AND FRACTIONAL FACTORIAL DESIGNS 29-1 30 RESPONSE SURFACE METHODOLOGY 30-1 Appendix D: RULES FOR DEVELOPING ANOVA MODELS AND TABLES FOR BALANCED DESIGNS D.1 iv Chapter 1 LINEAR REGRESSION WITH ONE PREDICTOR VARIABLE 1.1. No 1.2. Y = 300 + 2X, functional 1.5. No 1.7. a. No b. Yes, .68 1.8. Yes, no 1.10. No 1.12. a. Observational 1.13. a. Observational 1.18. No 1.19. a. β0 = 2.11405, β1 = 0.03883, Ŷ = 2.11405 + .03883X c. Ŷh = 3.27895 d. β1 = 0.03883 1.20. a. d. 1.21. a. Ŷ = −0.5802 + 15.0352X Ŷh = 74.5958 Ŷ = 10.20 + 4.00X b. Ŷh = 14.2 c. 4.0 d. (X̄, Ȳ ) = (1, 14.2) 1.22. a. Ŷ = 168.600000 + 2.034375X 1-1 b. Ŷh = 249.975 c. β1 = 2.034375 1.23. a. i: 1 2 ei : 0.9676 1.2274 Yes b. 1.24. a. M SE = 0.388, √ ... ... 119 -0.8753 120 -0.2532 M SE = 0.623, grade points i: 1 2 ... ei : -9.4903 0.4392 . . . 44 1.4392 45 2.4039 P 2 ei = 3416.377 P 2 Min Q = b. 1.25. a. b. ei M SE = 79.45063, √ M SE = 8.913508, minutes e1 = 1.8000 P 2 ei = 17.6000, M SE = 2.2000, σ 2 1.26. a. i: 1 ei : -2.150 2 3 3.850 -5.150 i: 7 ei : -2.425 8 9 10 5.575 3.300 .300 i: 13 ei : .025 1.27. a. b. 6 2.575 11 12 1.300 -3.700 14 15 16 -1.975 3.025 -3.975 Yes b. 4 5 -1.150 .575 M SE = 10.459, √ M SE = 3.234, Brinell units Ŷ = 156.35 − 1.19X (1) b1 = −1.19, (2) Ŷh = 84.95, (3) e8 = 4.4433, (4) M SE = 66.8 1.28. a. b. Ŷ = 20517.6 − 170.575X (1) b1 = −170.575, (2) Ŷh = 6871.6, (3) e10 = 1401.566, (4) M SE = 5552112 1.31. No, no 1.32. Solving (1.9a) and (1.9b) for b0 and equating the results: P Yi − b1 n P Xi P = 1-2 X i Yi − b 1 P Xi P Xi2 and then solving for b1 yields: b1 = 1.33. Q = n P P Xi Yi − Xi Yi = P n Xi2 − ( Xi )2 P P P X i Yi X i Yi − P n ( Xi )2 P 2 Xi − n P P P (Yi − β0 )2 X dQ = −2 (Yi − β0 ) dβ0 Setting the derivative equal to zero, simplifying, and substituting the least squares estimator b0 yields: P (Yi − b0 ) = 0 or b0 = Ȳ 1.34. E{b0 } = E{Ȳ } = 1X 1X E{Yi } = β0 = β0 n n 1.35. From the first normal equation (1.9a): P 1.36. Yi = nb0 + b1 P Xi = P (b0 + b1 Xi ) = P Ŷi from (1.13) P P P P P Ŷ e = (b0 + b1 Xi )ei = b0 ei + b1 Xi ei = 0 because ei = 0 from (1.17) and P i i Xi ei = 0 from (1.19). 1.38. (1) 76, yes; (2) 60, yes 1.39. a. Applying (1.10a) and (1.10b) to (5, Ȳ1 ), (10, Ȳ2 ) and (15, Ȳ3 ), we obtain: Ȳ3 − Ȳ1 4Ȳ1 + Ȳ2 − 2Ȳ3 b0 = 10 3 Using (1.10a) and (1.10b) with the six original points yields the same results. b1 = b. Yes 1.40. No 1.41. a. P Q = (Yi − β1 Xi )2 X dQ = −2 (Yi − β1 Xi )Xi dβ1 Setting the derivative equal to zero, simplifying, and substituting the least squares estimator b1 yields: P Yi Xi b1 = P 2 Xi b. L= · 1 1 exp − 2 (Yi − β1 Xi )2 2 1/2 2σ i=1 (2πσ ) n Q 1-3 ¸ It is more convenient to work with loge L : n 1 X loge L = − loge (2πσ 2 ) − 2 (Yi − β1 Xi )2 2 2σ d loge L 1 X = (Yi − β1 Xi )Xi dβ1 σ2 c. 1.42. a. b. Setting the derivative equal to zero, simplifying, and substituting the maximum likelihood estimator b1 yields: P Yi Xi P (Yi − b1 Xi )Xi = 0 or b1 = P 2 Xi Yes (P ) Yi Xi 1 X E{b1 } = E P 2 = P 2 Xi E{Yi } Xi Xi 1 X =P 2 Xi (β1 Xi ) = β1 Xi 1 1 exp[− (Yi − β1 Xi )2 ] 32 i=1 32π −30 L(17) = 9.45 × 10 , L(18) = 2.65 × 10−7 , L(19) = 3.05 × 10−37 L(β1 ) = 6 Q √ β1 = 18 c. b1 = 17.928, yes d. Yes 1.43. a. Total population: Ŷ = −110.635 + 0.0027954X Number of hospital beds: Ŷ = −95.9322 + 0.743116X Total personal income: Ŷ = −48.3948 + .131701X c. Total population: M SE = 372, 203.5 Number of hospital beds: M SE = 310, 191.9 Total personal income: M SE = 324, 539.4 1.44. a. Region 1: Ŷ = −1723.0 + 480.0X Region 2: Ŷ = 916.4 + 299.3X Region 3: Ŷ = 401.56 + 272.22X Region 4: Ŷ = 396.1 + 508.0X c. Region 1: M SE = 64, 444, 465 Region 2: M SE = 141, 479, 673 Region 3: M SE = 50, 242, 464 Region 4: M SE = 514, 289, 367 1.45. a. Infection risk: Ŷ = 6.3368 + .7604X Facilities: Ŷ = 7.7188 + .0447X 1-4 X-ray: Ŷ = 6.5664 + .0378X c. Infection risk: M SE = 2.638 Facilities: M SE = 3.221 X-ray: M SE = 3.147 1.46. a. Region 1: Ŷ = 4.5379 + 1.3478X Region 2: Ŷ = 7.5605 + .4832X Region 3: Ŷ = 7.1293 + .5251X Region 4: Ŷ = 8.0381 + .0173X c. Region 1: M SE = 4.353 Region 2: M SE = 1.038 Region 3: M SE = .940 Region 4: M SE = 1.078 b. 1 1 exp[− (Yi − β0 − β1 Xi )2 ] 32 i=1 32π b0 = 1.5969, b1 = 17.8524 c. Yes 1.47. a. L(β0 , β1 ) = 6 Q √ 1-5 1-6 Chapter 2 INFERENCES IN REGRESSION AND CORRELATION ANALYSIS 2.1. a. Yes, α = .05 2.2. No 2.4. a. t(.995; 118) = 2.61814, .03883 ± 2.61814(.01277), .00540 ≤ β1 ≤ .07226 b. H0 : β1 = 0, Ha : β1 6= 0. t∗ = (.03883 − 0)/.01277 = 3.04072. If |t∗ | ≤ 2.61814, conclude H0 , otherwise Ha . Conclude Ha . c. 0.00291 a. t(.95; 43) = 1.6811, 15.0352 ± 1.6811(.4831), 14.2231 ≤ β1 ≤ 15.8473 b. H0 : β1 = 0, Ha : β1 6= 0. t∗ = (15.0352 − 0)/.4831 = 31.122. If |t∗ | ≤ 1.681 conclude H0 , otherwise Ha . Conclude Ha . P -value= 0+ c. Yes d. H0 : β1 ≤ 14, Ha : β1 > 14. t∗ = (15.0352 − 14)/.4831 = 2.1428. If t∗ ≤ 1.681 conclude H0 , otherwise Ha . Conclude Ha . P -value= .0189 a. t(.975; 8) = 2.306, b1 = 4.0, s{b1 } = .469, 4.0 ± 2.306(.469), 2.5. 2.6. 2.918 ≤ β1 ≤ 5.082 b. H0 : β1 = 0, Ha : β1 6= 0. t∗ = (4.0 − 0)/.469 = 8.529. If |t∗ | ≤ 2.306 conclude H0 , otherwise Ha . Conclude Ha . P -value= .00003 c. b0 = 10.20, s{b0 } = .663, 10.20 ± 2.306(.663), 8.671 ≤ β0 ≤ 11.729 d. H0 : β0 ≤ 9, Ha : β0 > 9. t∗ = (10.20 − 9)/.663 = 1.810. If t∗ ≤ 2.306 conclude H0 , otherwise Ha . Conclude H0 . P -value= .053 e. H0 : β1 = 0: δ = |2 − 0|/.5 = 4, power = .93 H0 : β0 ≤ 9: δ = |11 − 9|/.75 = 2.67, power = .78 2.7. a. t(.995; 14) = 2.977, b1 = 2.0344, s{b1 } = .0904, 2.0344 ± 2.977(.0904), 1.765 ≤ β1 ≤ 2.304 2-1 2.8. b. H0 : β1 = 2, Ha : β1 6= 2. t∗ = (2.0344 − 2)/.0904 = .381. If |t∗ | ≤ 2.977 conclude H0 , otherwise Ha . Conclude H0 . P -value= .71 c. δ = |.3|/.1 = 3, power = .50 a. H0 : β1 = 3.0, Ha : β1 6= 3.0. t∗ = (3.57 − 3.0)/.3470 = 1.643, t(.975; 23) = 2.069. If |t∗ | ≤ 2.069 conclude H0 , otherwise Ha . Conclude H0 . b. 2.10. a. δ = |.5|/.35 = 1.43, power = .30 (by linear interpolation) Prediction b. Mean response c. Prediction 2.12. No, no 2.13. a. Ŷh = 3.2012, s{Ŷh } = .0706, t(.975; 118) = 1.9803, 3.2012 ± 1.9803(.0706), 3.0614 ≤ E{Yh } ≤ 3.3410 b. s{pred} = .6271, 3.2012 ± 1.9803(.6271), 1.9594 ≤ Yh( new) ≤ 4.4430 c. Yes, yes d. W 2 = 2F (.95; 2, 118) = 2(3.0731) = 6.1462, W = 2.4792, 3.2012 ± 2.4792(.0706), 3.0262 ≤ β0 + β1 Xh ≤ 3.3762, yes, yes 2.14. a. Ŷh = 89.6313, s{Ŷh } = 1.3964, t(.95; 43) = 1.6811, 89.6313 ± 1.6811(1.3964), 87.2838 ≤ E{Yh } ≤ 91.9788 b. s{pred} = 9.0222, 89.6313 ± 1.6811(9.0222), 74.4641 ≤ Yh(new) ≤ 104.7985, yes, yes c. 87.2838/6 = 14.5473, 91.9788/6 = 15.3298, 14.5473 ≤ Mean time per machine ≤ 15.3298 d. W 2 = 2F (.90; 2, 43) = 2(2.4304) = 4.8608, W = 2.2047, 89.6313±2.2047(1.3964), 86.5527 ≤ β0 + β1 Xh ≤ 92.7099, yes, yes 2.15. a. Xh = 2: Ŷh = 18.2, s{Ŷh } = .663, t(.995; 8) = 3.355, 18.2 ± 3.355(.663), 15.976 ≤ E{Yh } ≤ 20.424 Xh = 4: Ŷh = 26.2, s{Ŷh } = 1.483, 26.2 ± 3.355(1.483), 21.225 ≤ E{Yh } ≤ 31.175 b. s{pred} = 1.625, 18.2 ± 3.355(1.625), 12.748 ≤ Yh(new) ≤ 23.652 c. s{predmean} = 1.083, 18.2 ± 3.355(1.083), 14.567 ≤ Ȳh(new) ≤ 21.833, 44 = 3(14.567) ≤ Total number of broken ampules ≤ 3(21.833) = 65 d. W 2 = 2F (.99; 2, 8) = 2(8.649) = 17.298, W = 4.159 Xh = 2: 18.2 ± 4.159(.663), 15.443 ≤ β0 + β1 Xh ≤ 20.957 Xh = 4: 26.2 ± 4.159(1.483), 20.032 ≤ β0 + β1 Xh ≤ 32.368 yes, yes 2.16. a. Ŷh = 229.631, s{Ŷh } = .8285, t(.99; 14) = 2.624, 229.631±2.624(.8285), 227.457 ≤ E{Yh } ≤ 231.805 2-2 b. s{pred} = 3.338, 229.631 ± 2.624(3.338), 220.872 ≤ Yh(new) ≤ 238.390 c. s{predmean} = 1.316, 229.631 ± 2.624(1.316), 226.178 ≤ Ȳh(new) ≤ 233.084 d. Yes, yes e. W 2 = 2F (.98; 2, 14) = 2(5.241) = 10.482, W = 3.238, 229.631 ± 3.238(.8285), 226.948 ≤ β0 + β1 Xh ≤ 232.314, yes, yes 2.17. Greater, H0 : β1 = 0 2.20. No 2.21. No 2.22. Yes, yes 2.23. a. Source SS Regression 3.58785 Error 45.8176 Total 49.40545 df 1 118 119 MS 3.58785 0.388285 P b. σ 2 + β12 (Xi − X̄)2 , σ 2 , when β1 = 0 c. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = 3.58785/0.388285 = 9.24, F (.99; 1, 118) = 6.855. If F ∗ ≤ 6.855 conclude H0 , otherwise Ha . Conclude Ha . d. SSR = 3.58785, 7.26% or 0.0726, coefficient of determination e. +0.2695 f. R2 2.24. a. Source Regression Error Total SS df MS 76,960.4 1 76,960.4 3,416.38 43 79.4506 80,376.78 44 Source SS df MS Regression 76,960.4 1 76,960.4 Error 3,416.38 43 79.4506 Total 80,376.78 44 Correction for mean 261,747.2 1 Total, uncorrected 342,124 45 b. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = 76, 960.4/79.4506 = 968.66, F (.90; 1, 43) = 2.826. If F ∗ ≤ 2.826 conclude H0 , otherwise Ha . Conclude Ha . c. 95.75% or 0.9575, coefficient of determination d. +.9785 e. R2 2-3 2.25. a. Source Regression Error Total SS 160.00 17.60 177.60 df 1 8 9 MS 160.00 2.20 b. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = 160.00/2.20 = 72.727, F (.95; 1, 8) = 5.32. If F ∗ ≤ 5.32 conclude H0 , otherwise Ha . Conclude Ha . c. t∗ = (4.00 − 0)/.469 = 8.529, (t∗ )2 = (8.529)2 = 72.7 = F ∗ d. R2 = .9009, r = .9492, 90.09% 2.26. a. Source SS Regression 5,297.5125 Error 146.4250 Total 5,443.9375 b. df MS 1 5,297.5125 14 10.4589 15 H0 : β1 = 0, Ha : β1 6= 0, F ∗ = 5, 297.5125/10.4589 = 506.51, F (.99; 1, 14) = 8.86.If F ∗ ≤ 8.86 conclude H0 , otherwise Ha . Conclude Ha . c. d. 2.27. a. i: Yi − Ŷi : Ŷi − Ȳ : 1 2 3 -2.150 3.850 -5.150 -24.4125 -24.4125 -24.4125 i: Yi − Ŷi : Ŷi − Ȳ : 7 8 -2.425 5.575 -8.1375 -8.1375 i: Yi − Ŷi : Ŷi − Ȳ : 13 14 .025 -1.975 24.4125 24.4125 4 -1.150 -24.4125 9 10 3.300 .300 8.1375 8.1375 15 3.025 24.4125 5 .575 -8.1375 11 1.300 8.1375 6 2.575 -8.1375 12 -3.700 8.1375 16 -3.975 24.4125 R2 = .9731, r = .9865 H0 : β1 ≥ 0, Ha : β1 < 0. s{b1 } = 0.090197, t∗ = (−1.19 − 0)/.090197 = −13.193, t(.05; 58) = −1.67155. If t∗ ≥ −1.67155 conclude H0 , otherwise Ha . Conclude Ha . P -value= 0+ c. 2.28. a. t(.975; 58) = 2.00172, −1.19 ± 2.00172(.090197), −1.3705 ≤ β1 ≤ −1.0095 Ŷh = 84.9468, s{Ŷh } = 1.05515, t(.975; 58) = 2.00172, 84.9468 ± 2.00172(1.05515), 82.835 ≤ E{Yh } ≤ 87.059 b. s{Yh(new) } = 8.24101, 84.9468 ± 2.00172(8.24101), 68.451 ≤ Yh(new) ≤ 101.443 c. W 2 = 2F (.95; 2, 58) = 2(3.15593) = 6.31186, W = 2.512342, 84.9468 ± 2.512342(1.05515), 82.296 ≤ β0 + β1 Xh ≤ 87.598, yes, yes 2.29. a. 2-4 i: 1 2 ... Yi − Ŷi : 0.823243 -1.55675 . . . Ŷi − Ȳ : 20.2101 22.5901 . . . 59 -0.666887 -14.2998 60 8.09309 -19.0598 b. Source SS Regression 11,627.5 Error 3,874.45 Total 15,501.95 df MS 1 11,627.5 58 66.8008 59 c. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = 11, 627.5/66.8008 = 174.0623, F (.90; 1, 58) = 2.79409. If F ∗ ≤ 2.79409 conclude H0 , otherwise Ha . Conclude Ha . d. 24.993% or .24993 e. R2 = 0.750067, r = −0.866064 2.30. a. H0 : β1 = 0, Ha : β1 6= 0. s{b1 } = 41.5743, t∗ = (−170.575 − 0)/41.5743 = −4.1029, t(.995; 82) = 2.63712. If |t∗ | ≤ 2.63712 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0.000096 b. −170.575 ± 2.63712(41.5743), −280.2114 ≤ β1 ≤ −60.9386 2.31. a. Source SS Regression 93,462,942 Error 455,273,165 Total 548,736,107 df MS 1 93,462,942 82 5,552,112 83 b. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = 93, 462, 942/5, 552, 112 = 16.8338, F (.99; 1, 82) = 6.9544. If F ∗ ≤ 6.9544 conclude H0 , otherwise Ha. Conclude Ha . (t∗ )2 = (−4.102895)2 = 16.8338 = F ∗ . [t(.995; 82)]2 = (2.63712)2 = 6.9544 = F (.99; 1, 82). Yes. c. SSR = 93, 462, 942, 17.03% or 0.1703 d. -0.4127 2.32. a. Full: Yi = β0 + β1 Xi + εi , reduced: Yi = β0 + εi b. (1) SSE(F ) = 455, 273, 165, (2) SSE(R) = 548, 736, 107, (3) dfF = 82, (4) dfR = 83, (5) F ∗ = [(548, 736, 107 − 455, 273, 165)/1] ÷[455, 273, 165/82] = 16.83376, (6) If F ∗ ≤ F (.99; 1, 82) = 6.95442 conclude H0 , otherwise Ha . c. 2.33. a. Yes H0 : β0 = 7.5, Ha : β0 6= 7.5 b. Full: Yi = β0 + β1 Xi + εi , reduced: Yi − 7.5 = β1 Xi + εi c. Yes, dfR − dfF = (n − 1) − (n − 2) = 1 2-5 2.36 Regression model 2.38. No 2.39. a. Normal, mean µ1 = 50, standard deviation σ1 = 3 b. Normal, mean E{Y2 |Y1 = 55} = 105.33, standard deviation σ2|1 = 2.40 c. Normal, mean E{Y1 |Y2 = 95} = 47, standard deviation σ1|2 = 1.80 2.40. (1) No, (2) no, (3) yes 2.41. No 2.42. b. .95285, ρ12 c. q √ H0 : ρ12 = 0, Ha : ρ12 6= 0. t∗ = (.95285 13)/ 1 − (.95285)2 = 11.32194, t(.995; 13) = 3.012. If |t∗ | ≤ 3.012 conclude H0 , otherwise Ha . Conclude Ha . d. No 2.43. a. q √ H0 : ρ12 = 0, Ha : ρ12 6= 0. t∗ = (.61 82)/ 1 − (.61)2 = 6.9709, t(.975; 82) = 1.993. If |t∗ | ≤ 1.993 conclude H0 , otherwise Ha . Conclude Ha . b. z 0 = .70892, σ{z 0 } = .1111, z(.975) = 1.960, .70892 ± 1.960(.1111), .49116 ≤ ζ ≤ .92668, .455 ≤ ρ12 ≤ .729 c. .207 ≤ ρ212 ≤ .531 2.44. a. q √ H0 : ρ12 = 0, Ha : ρ12 6= 0. t∗ = (.87 101)/ 1 − (.87)2 = 17.73321, t(.95; 101) = 1.663. If |t∗ | ≤ 1.663 conclude H0 , otherwise Ha . Conclude Ha . b. z 0 = 1.33308, σ{z 0 } = .1, z(.95) = 1.645, 1.33308 ± 1.645(.1), 1.16858 ≤ ζ ≤ 1.49758, .824 ≤ ρ12 ≤ .905 c. .679 ≤ ρ212 ≤ .819 2.45. a. z 0 = 1.18814, σ{z 0 } = .0833, z(.995) = 2.576, 1.18814 ± 2.576(.0833), .97356 ≤ ζ ≤ 1.40272, .750 ≤ ρ12 ≤ .886. b. 2.46. a. b. 2.47. a. b. .563 ≤ ρ212 ≤ .785 0.9454874 H0 : There is no association between Y1 and Y2 Ha : There is an association between Y1 and Y2 √ 0.9454874 13 = 10.46803. t(0.995, 13) = 3.012276. If |t∗ | ≤ 3.012276, t∗ = q 2 1 − (0.9454874) conclude H0 , otherwise, conclude Ha . Conclude Ha . -0.866064, q √ H0 : ρ12 = 0, Ha : ρ12 6= 0. t∗ = (−0.866064 58)/ 1 − (−0.866064)2 = −13.19326, t(.975; 58) = 2.00172. If |t∗ | ≤ 2.00172 conclude H0 , otherwise Ha . Conclude Ha . 2-6 c. -0.8657217 d. H0 : There is no association between X and Y Ha : There is an association between X and Y √ −0.8657217 58 t∗ = q = −13.17243. t(0.975, 58) = 2.001717. If |t∗ | ≤ 2 1 − (−0.8657217) 2.001717, conclude H0 , otherwise, conclude Ha . Conclude Ha . 2.48. a. b. 2.49. a. b. 2.50. −0.4127033 q √ H0 : ρ12 = 0, Ha : ρ12 6= 0. t∗ = (−0.4127033 82)/ 1 − (−0.4127033)2 = −4.102897, t(.995; 82) = 2.637123. If |t∗ | ≤ 2.637123 conclude H0 , otherwise Ha . Conclude Ha . -0.4259324 H0 : There is no association between X and Y Ha : There is an association between X and Y √ −0.4259324 58 t∗ = q = −4.263013. t(0.995, 80) = 2.637123. If |t∗ | ≤ 1 − (−0.4259324)2 2.637123, conclude H0 , otherwise, conclude Ha . Conclude Ha . P ki Xi = = X à ! Xi − X̄ Xi P (Xi − X̄)2 X (Xi − X̄)(Xi − X̄) P 2 P =P (Xi − X̄) because X (Xi − X̄)X̄ =0 P 2 (Xi − X̄) 2 (Xi − X̄) =1 (Xi − X̄)2 2.51. E{b0 } = E{Ȳ − b1 X̄} = 1X E{Yi } − X̄E{b1 } n = 1X (β0 + β1 Xi ) − X̄β1 n = β0 + β1 X̄ − X̄β1 = β0 2.52. σ 2 {b0 } = σ 2 {Ȳ − b1 X̄} = σ 2 {Ȳ } + X̄ 2 σ 2 {b1 } − 2X̄σ{Ȳ , b1 } = σ2 σ2 −0 + X̄ 2 P (Xi − X̄)2 n " = σ2 2.53. a. 1 X̄ 2 +P n (Xi − X̄)2 n Y # ¸ · 1 1 √ L= exp − 2 (Yi − β0 − β1 Xi )2 g(Xi ) 2 2σ 2πσ i=1 2-7 b. Maximum likelihood estimators can be found more easily by working with loge L: X n 1 X loge L = − loge (2πσ 2 ) − 2 (Yi − β0 − β1 Xi )2 + loge g(Xi ) 2 2σ ∂ loge L 1 X = 2 (Yi − β0 − β1 Xi ) ∂β0 σ ∂ loge L 1 X = 2 (Yi − β0 − β1 Xi )(Xi ) ∂β1 σ µ ¶ µ ¶ ∂ loge L n 1 1X 1 2 (Yi − β0 − β1 Xi ) =− + 2 2 ∂σ 2 σ 2 σ4 Setting each derivative equal to zero, simplifying, and substituting the maximum likelihood estimators b0 , b1 , and σ̂ 2 yields: (1) (2) P P P Yi − nb0 − b1 Yi Xi − b0 P P Xi = 0 Xi − b1 P Xi2 = 0 (Yi − b0 − b1 Xi )2 = σ̂ 2 n Equations (1) and (2) are the same as the least squares normal equations (1.9), hence the maximum likelihood estimators b0 and b1 are the same as those in (1.27). (3) 2.54. Yes, no P P 2.55. SSR = (Ŷi − Ȳ )2 = [(b0 + b1 Xi ) − Ȳ ]2 P = [(Ȳ − b1 X̄) + b1 Xi − Ȳ ]2 P = b21 (Xi − X̄)2 2.56. a. b. 2.57. a. b. E{M SR} = 1, 026.36, E{M SE} = .36 E{M SR} = 90.36, E{M SE} = .36 Yi − 5Xi = β0 + εi , n − 1 Yi − 2 − 5Xi = εi , n 2.58. If ρ12 = 0, (2.74) becomes: ( 1 1 f (Y1 , Y2 ) = exp − 2πσ1 σ2 2 " µ 1 1 Y 1 − µ1 =√ exp − 2 σ1 2πσ1 "µ ¶2 # Y 1 − µ1 σ1 ¶2 µ Y2 − µ 2 + σ2 " ¶2 #) µ 1 1 Y 2 − µ2 ·√ exp − 2 σ2 2πσ2 ¶2 # = f1 (Y1 ) · f2 (Y2 ) 2.59. a. L= n Y i=1 1 q 2πσ1 σ2 1 − ρ212 × exp{− Yi1 − µ1 2 1 [( ) 2(1 − ρ212 ) σ1 Yi1 − µ1 Yi2 − µ2 Yi2 − µ2 2 )( )+( ) ]} σ1 σ2 σ2 Maximum likelihood estimators can be found more easily by working with loge L: −2ρ12 ( 2-8 n loge (1 − ρ212 ) 2 n X 1 Yi1 − µ1 2 Yi1 − µ1 Yi2 − µ2 [( − ) − 2ρ12 ( )( ) 2 2(1 − ρ12 ) i=1 σ1 σ1 σ2 loge L = −n loge 2π − n loge σ1 − n loge σ2 − Yi2 − µ2 2 )] σ2 X X ρ12 ∂ loge L 1 = 2 (Y − µ ) − (Yi2 − µ2 ) i1 1 ∂µ1 σ1 (1 − ρ212 ) σ1 σ2 (1 − ρ212 ) X X ρ12 ∂ loge L 1 (Y − µ ) − = 2 (Yi1 − µ1 ) i2 2 ∂µ2 σ2 (1 − ρ212 ) σ1 σ2 (1 − ρ212 ) +( ∂ loge L n 1 =− + ∂σ1 σ1 (1 − ρ12 )2 "P (Yi1 − µ1 )2 − ρ12 σ13 "P P (Yi1 − µ1 )(Yi2 − µ2 ) σ12 σ2 P # n 1 (Yi1 − µ1 )(Yi2 − µ2 ) ∂ loge L (Yi2 − µ2 )2 =− + − ρ12 3 2 ∂σ2 σ2 (1 − ρ12 ) σ2 σ1 σ22 X µ Yi1 − µ1 ¶ µ Yi2 − µ2 ¶ ∂ loge L nρ12 1 ρ12 = + − 2 2 ∂ρ12 1 − ρ12 1 − ρ12 σ1 σ2 (1 − ρ212 )2 "µ ¶ µ ¶µ ¶ µ # ¶ # Yi1 − µ1 2 Yi2 − µ2 2 Yi1 − µ1 Yi2 − µ2 × − 2ρ12 + σ1 σ1 σ2 σ2 Setting the derivatives equal to zero, simplifying, and substituting the maximum likelihood estimators µ̂1 , µ̂2 , σ̂ 1 , σ̂ 2 , and ρ̂12 yields: 1 X ρ̂ X (1) (Yi1 − µ̂1 ) − 12 (Yi2 − µ̂2 ) = 0 σ̂ 1 σ̂ 2 1 X ρ̂ X (2) (Yi2 − µ̂2 ) − 12 (Yi1 − µ̂1 ) = 0 σ̂ 2 σ̂ 1 P P (Yi1 − µ̂1 )2 (Yi1 − µ̂1 )(Yi2 − µ̂2 ) (3) − n(1 − ρ̂212 ) = 0 − ρ̂12 2 σ̂ 1 σ̂ 2 σ̂ 1 P P (4) (Yi2 − µ̂2 )2 − ρ̂12 σ̂ 22 (5) ρ̂212 ) nρ̂12 (1 − −ρ̂12 P P + (1 + (Yi1 − µ̂1 )(Yi2 − µ̂2 ) − n(1 − ρ̂212 ) = 0 σ̂ 1 σ̂ 2 P ρ̂212 ) à Yi1 − µ̂1 σ̂ 1 !à Yi2 − µ̂2 σ̂ 2 ! à !2 à !2 Y − µ̂ Y − µ̂ i1 i2 1 2 =0 + σ̂ 1 σ̂ 2 Solving equations (1) and (2) yields: µ̂1 = Ȳ1 µ̂2 = Ȳ2 Using these results in equations (3), (4), and (5), it will be found that the maximum likelihood estimators are: sP µ̂1 = Ȳ1 sP σ̂ 2 = (Yi1 − Ȳ1 )2 n P (Yi1 − Ȳ1 )(Yi2 − Ȳ2 ) µ̂2 = Ȳ2 (Yi2 − Ȳ2 )2 n σ̂ 1 = ρ̂12 = P 1 P 1 [ (Yi1 − Ȳ1 )2 ] 2 [ (Yi2 − Ȳ2 )2 ] 2 2-9 b. α̂1|2 = µ̂1 − µ̂2 ρ̂12 σ̂ 1 σ̂ 2 # qP (Yi1 − Ȳ1 )2 /n (Yi1 − Ȳ1 )(Yi2 − Ȳ2 ) q = Ȳ1 − Ȳ2 P 1 P 1 P 2 [ (Yi1 − Ȳ1 )2 ] 2 [ (Yi2 − Ȳ2 )2 ] 2 (Yi2 − Ȳ2 ) /n # "P " P (Yi1 − Ȳ1 )(Yi2 − Ȳ2 ) P (Yi2 − Ȳ2 )2 = Ȳ1 − Ȳ2 β̂ 12 = ρ̂12 σ̂ 1 σ̂ 2 # qP (Yi1 − Ȳ1 )2 /n q = P 1 P 1 P 2 2 2 2 2 [ (Yi1 − Ȳ1 ) ] [ (Yi2 − Ȳ2 ) ] (Yi2 − Ȳ2 ) /n P " = P (Yi1 − Ȳ1 )(Yi2 − Ȳ2 ) (Yi1 − Ȳ1 )(Yi2 − Ȳ2 ) P (Yi2 − Ȳ2 )2 σ̂ 21|2 = σ̂ 21 (1 − ρ̂212 ) " P c. # P (Yi1 − Ȳ1 )2 [ (Yi1 − Ȳ1 )(Yi2 − Ȳ2 )]2 = 1− P P n (Yi1 − Ȳ1 )2 (Yi2 − Ȳ2 )2 P P (Yi1 − Ȳ1 )2 [ (Yi1 − Ȳ1 )(Yi2 − Ȳ2 )]2 = − P n n (Yi2 − Ȳ2 )2 The equivalence is shown by letting Yi1 and Yi2 in part (b) be Yi and Xi , respectively. 2.60. Using regression notation and letting X (Xi − X̄)2 = (n − 1)s2X and X (Yi − Ȳ )2 = (n − 1)s2Y , we have from (2.84) with Yi1 = Yi and Yi2 = Xi "P (Yi − Ȳ )2 sY b1 = r12 since b1 = P sX (Xi − X̄)2 SSE = #1 2 r12 P [ (Xi − X̄)(Yi − Ȳ )]2 (Yi − Ȳ ) − P (Xi − X̄)2 P 2 2 2 ) (n − 1)s2Y = (n − 1)s2Y (1 − r12 = (n − 1)s2Y − r12 s2 {b1 } = Hence: 2 2 ) ) s2 (1 − r12 (n − 1)s2Y (1 − r12 ÷ (n − 1)s2X = Y 2 n−2 (n − 2)sX q 2 sY 1 − r12 b1 sY ´ = r12 ÷ ³√ = s{b1 } sX n − 2 sX 2-10 ³√ ´ n − 2 r12 q 1− 2 r12 = t∗ " #2 i Σ(Yi1 − Ȳ1 )(Yi2 − Ȳ2 ) h 2 Σ(Y − Ȳ ) i1 1 Σ(Yi1 − Ȳ1 )2 SSR(Y1 ) = SST O Σ(Yi2 − Ȳ2 )2 2.61. P [ (Yi1 − Ȳ1 )(Yi2 − Ȳ2 )]2 =P P (Yi1 − Ȳ1 )2 (Yi2 − Ȳ2 )2 "P SSR(Y2 ) = SST O P #2 i (Yi2 − Ȳ2 )(Yi1 − Ȳ1 ) hP 2 (Y − Ȳ ) P i2 2 (Yi2 − Ȳ2 )2 P (Yi1 − Ȳ1 )2 [ (Yi2 − Ȳ2 )(Yi1 − Ȳ1 )]2 =P P (Yi1 − Ȳ1 )2 (Yi2 − Ȳ2 )2 Total population: R2 = 0.884067 2.62. Number of hospital beds: R2 = 0.903383 Total personal income: R2 = 0.898914 2.63. Region 1: 480.0 ± 1.66008(110.1), 297.2252 ≤ β1 ≤ 662.7748 Region 2: 299.3 ± 1.65936(154.2), 43.42669 ≤ β1 ≤ 555.1733 Region 3: 272.22 ± 1.65508(70.34), 155.8017 ≤ β1 ≤ 388.6383 Region 4: 508.0 ± 1.66543(359.0), −89.88937 ≤ β1 ≤ 1105.889 Infection rate: R2 = .2846 2.64. Facilities: R2 = .1264 X-ray: R2 = .1463 2.65. Region 1: 1.3478 ± 2.056(.316), .6981 ≤ β1 ≤ 1.9975 Region 2: .4832 ± 2.042(.137), .2034 ≤ β1 ≤ .7630 Region 3: .5251 ± 2.031(.111), .2997 ≤ β1 ≤ .7505 Region 4: .0173 ± 2.145(.306), −.6391 ≤ β1 ≤ .6737 2.66. a. E{Yh } = 36 when Xh = 4, E{Yh } = 52 when Xh = 8, E{Yh } = 68 when Xh = 12, E{Yh } = 84 when Xh = 16, E{Yh } = 100 when Xh = 20 s c. d. 25 = .3953 160 Expected proportion is .95 E{b1 } = 4, σ{b1 } = 2-11 Chapter 3 DIAGNOSTICS AND REMEDIAL MEASURES 3.3.b.and c. i: Ŷi : ei : 1 2 3 ... 2.92942 2.65763 3.20121 . . . 0.967581 1.22737 0.57679 . . . 118 119 120 3.20121 2.73528 3.20121 0.71279 -0.87528 -0.25321 d. Ascending order: 1 2 3 ... Ordered residual: -2.74004 -1.83169 -1.24373 . . . Expected value: -1.59670 -1.37781 -1.25706 . . . e. 119 120 0.99441 1.22737 1.37781 1.59670 H0 : Normal, Ha : not normal. r = 0.97373. If r ≥ .987 concludeH0 , otherwise Ha . Conclude Ha . n1 = 65, d¯1 = 0.43796, n2 = 55, d¯2 = 0.50652, s = 0.417275, t∗BF = (0.43796 − q 0.50652)/0.417275 (1/65) + (1/55) = −0.89674, t(.995; 18) = 2.61814. If |t∗BF | ≤ 2.61814 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. 3.4.c and d. i: Ŷi : ei : 1 29.49034 -9.49034 2 ... 59.56084 . . . 0.43916 . . . 44 45 59.56084 74.59608 1.43916 2.40392 e. Ascending order: 1 2 ... Ordered residual: -22.77232 -19.70183 . . . Expected value: -19.63272 -16.04643 . . . 44 45 14.40392 15.40392 16.04643 19.63272 H0 : Normal, Ha : not normal. r = 0.9891. If r ≥ .9785 conclude H0 , otherwise Ha . Conclude H0 . g. 3.5. 2 = (15, 155/2) ÷ (3416.38/45)2 = 1.314676, SSR∗ = 15, 155, SSE = 3416.38, XBP 2 ≤ 3.84 conclude error variance constant, otherwise error χ2 (.95; 1) = 3.84. If XBP variance not constant. Conclude error variance constant. c. 3-1 i: 1 ei : 1.8 2 -1.2 3 4 5 6 7 -1.2 1.8 -.2 -1.2 -2.2 8 .8 9 .8 10 .8 e. Ascending Order: 1 2 Ordered residual: -2.2 -1.2 Expected value: -2.3 -1.5 H0 : Normal, Ha : not normal. r Conclude H0 . g. 3 4 5 6 -1.2 -1.2 -.2 .8 -1.0 -.6 -.2 .2 = .961. If r ≥ .879 7 8 .8 .8 .6 1.0 conclude 9 1.8 1.5 H0 , 10 1.8 2.3 otherwise Ha . 2 SSR∗ = 6.4, SSE = 17.6, XBP = (6.4/2) ÷ (17.6/10)2 = 1.03, χ2 (.90; 1) = 2.71. 2 If XBP ≤ 2.71 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. Yes. 3.6.a and b. i: ei : Ŷi : 1 2 3 4 -2.150 3.850 -5.150 -1.150 201.150 201.150 201.150 201.150 5 .575 217.425 6 2.575 217.425 i: ei : Ŷi : 7 8 9 10 11 -2.425 5.575 3.300 .300 1.300 217.425 217.425 233.700 233.700 233.700 12 -3.700 233.700 i: ei : Ŷi : 13 14 15 16 .025 -1.975 3.025 -3.975 249.975 249.975 249.975 249.975 c. and d. Ascending order: 1 2 3 4 5 6 Ordered residual: -5.150 -3.975 -3.700 -2.425 -2.150 -1.975 Expected value -5.720 -4.145 -3.196 -2.464 -1.841 -1.280 e∗i : -1.592 -1.229 -1.144 -.750 -.665 -.611 Ascending order: 7 8 9 10 11 12 Ordered residual: -1.150 .025 .300 .575 1.300 2.575 Expected value: -.755 -.250 .250 .755 1.280 1.841 e∗i : -.356 .008 .093 .178 .402 .796 Ascending order: 13 14 15 16 Ordered residual: 3.025 3.300 3.850 5.575 Expected value: 2.464 3.196 4.145 5.720 e∗i : .935 1.020 1.190 1.724 H0 : Normal, Ha : not normal. r = .992. If r ≥ .941 conclude H0 , otherwise Ha . Conclude H0 . t(.25; 14) = −.692, t(.50; 14) = 0, t(.75; 14) = .692 Actual: e. 4/16 7/16 11/16 ¯ ¯ n1 = 8, d1 = 2.931, n2 = 8, dq 2 = 2.194, s = 1.724, ∗ tBF = (2.931 − 2.194)/1.724 (1/8) + (1/8) = .86, t(.975; 14) = 2.145. If |t∗BF | ≤ 2.145 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. 3-2 3.7.b and c. i: ei : Ŷi : 1 2 ... 0.82324 -1.55675 . . . 105.17676 107.55675 . . . 59 -0.66689 70.66689 60 8.09309 65.90691 d. Ascending order: 1 2 ... Ordered residual: -16.13683 -13.80686 . . . Expected value: -18.90095 -15.75218 . . . 59 60 13.95312 23.47309 15.75218 18.90095 H0 : Normal, Ha : not normal. r = 0.9897. If r ≥ 0.984 conclude H0 , otherwise Ha . Conclude H0 . e. SSR∗ = 31, 833.4, SSE = 3, 874.45, 2 2 ≤ = (31, 833.4/2) ÷ (3, 874.45/60)2 = 3.817116, χ2 (.99; 1) = 6.63. If XBP XBP 6.63 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. Yes. 3.8.b and c. i: ei : Ŷi : 1 2 ... 591.964 1648.566 . . . 7895.036 6530.434 . . . 83 621.141 6359.859 84 28.114 7553.886 d. Ascending order: 1 2 ... Ordered residual: -5278.310 -3285.062 . . . Expected value: -5740.725 -4874.426 . . . e. 83 84 4623.566 6803.265 4874.426 5740.725 H0 : Normal, Ha : not normal. r = 0.98876. If r ≥ 0.9854 conclude H0 , otherwise Ha . Conclude H0 . n1 = 8, d¯1 = 1751.872, n2 = 76, d¯2 = 1927.083, s = 1327.772, q t∗BF = (1751.872 − 1927.083)/1327.772 (1/8) + (1/76) = −0.35502, t(.975; 82) = 1.98932. If |t∗BF | ≤ 1.98932 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. 3.10. b. 4, 4 3.11. b. 2 SSR∗ = 330.042, SSE = 59.960, XBP = (330.042/2) ÷ (59.960/9)2 = 3.72, 2 2 χ (.95; 1) = 3.84. If XBP ≤ 3.84 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. 3.13. a. H0 : E{Y } = β0 + β1 X, Ha : E{Y } 6= β0 + β1 X b. 3.14. a. SSP E = 2797.66, SSLF = 618.719, F ∗ = (618.719/8)÷(2797.66/35) = 0.967557, F (.95; 8, 35) = 2.21668. If F ∗ ≤ 2.21668 conclude H0 , otherwise Ha . Conclude H0 . H0 : E{Y } = β0 + β1 X, Ha : E{Y } 6= β0 + β1 X. SSP E = 128.750, SSLF = 17.675, F ∗ = (17.675/2) ÷ (128.750/12) = .824, F (.99; 2, 12) = 6.93. If F ∗ ≤ 6.93 conclude H0 , otherwise Ha . Conclude H0 . 3-3 3.15. a. b. Ŷ = 2.57533 − 0.32400X H0 : E{Y } = β0 + β1 X, Ha : E{Y } 6= β0 + β1 X. SSP E = .1575, SSLF = 2.7675, F ∗ = (2.7675/3) ÷ (.1575/10) = 58.5714, F (.975; 3, 10) = 4.83. If F ∗ ≤ 4.83 conclude H0 , otherwise Ha . Conclude Ha . 3.16. b. λ: -.2 -.1 SSE: .1235 .0651 c. 0 .1 .0390 .0440 .2 .0813 Ŷ 0 = .65488 − .19540X e. i: 1 2 3 4 5 6 7 8 ei : -.051 .058 .007 -.083 -.057 .035 .012 .086 0 Ŷi : -1.104 -1.104 -1.104 -.713 -.713 -.713 -.322 -.322 Expected value: -.047 .062 .000 -.086 -.062 .035 .008 .086 i: 9 10 11 12 13 14 15 ei : .046 .018 -.008 -.039 -.006 -.050 .032 0 Ŷi : -.322 .069 .069 .069 .459 .459 .459 Expected value: .047 .017 -.017 -.026 -.008 -.035 .026 f. Ŷ =antilog10 (.65488 − .19540X) = 4.51731(.63768)X 3.17. b. λ: .3 .4 .5 SSE: 1099.7 967.9 916.4 c. .6 942.4 .7 1044.2 Ŷ 0 = 10.26093 + 1.07629X e. f. 3.18. b. i: 1 2 3 ei : -.36 .28 .31 0 Ŷi : 10.26 11.34 12.41 Expected value: -.24 .14 .36 4 -.15 13.49 -.14 5 .30 14.57 .24 i: 6 7 8 ei : -.41 .10 -.47 0 Ŷi : 15.64 16.72 17.79 Expected value: -.36 .04 -.56 9 .47 18.87 .56 10 -.07 19.95 -.04 Ŷ = (10.26093 + 1.07629X)2 Ŷ = 1.25470 − 3.62352X 0 d. e. i: 1 ei : -1.00853 Ŷi : 15.28853 Expected value: -0.97979 √ Ŷ = 1.25470 − 3.62352 X 2 3 ... -3.32526 1.64837 . . . 12.12526 10.84163 . . . -3.10159 1.58857 . . . 3-4 110 -0.67526 12.12526 -0.59149 111 0.49147 15.28853 0.36067 3.21. PP = (Yij − Ŷij )2 = PP PPh (Yij − Ȳj )2 + i2 (Yij − Ȳj ) + (Ȳj − Ŷij ) PP (Ȳj − Ŷij )2 + 2 PP (Yij − Ȳj )(Ȳj − Ŷij ) PP Now, (Yij − Ȳj )(Ȳj − Ŷij ) PP PP 2 PP PP = Yij Ȳj − Ȳj − Yij Ŷij + Ȳj Ŷij P P P P = nj Ȳj2 − nj Ȳj2 − Ŷij nj Ȳj + nj Ȳj Ŷij = 0 j j j j since Ŷij = b0 + b1 Xj is independent of i. (P P ) (Yij − Ȳj )2 1 X 3.22. E{M SP E} = E = E{(nj − 1)s2j } n−c n−c 1 X σ2 X = E{σ 2 χ2 (nj − 1)} = (nj − 1) = σ 2 n−c n−c 3.23. Full: Yij = µj + εij , reduced: Yij = β1 Xj + εij dfF = 20 − 10 = 10, dfR = 20 − 1 = 19 3.24. a. Ŷ = 48.66667 + 2.33333X i: 1 2 3 4 ei : 2.6667 -.3333 -.3333 -1.0000 5 -4.0000 6 -7.6667 7 13.3333 8 -2.6667 b. Ŷ = 53.06796 + 1.62136X c. Ŷh = 72.52428, s{pred} = 3.0286, t(.995; 5) = 4.032, 72.52428 ± 4.032(3.0286), 60.31296 ≤ Yh(new) ≤ 84.73560, yes 3.27. b. Ŷ = 6.84922 + .60975X Xh = 6.5: Ŷh = 10.81260, s{pred} = 1.2583, t(.975; 109) = 1.982, 10.81260 ± 1.982(1.2583), 8.31865 ≤ Yh(new) ≤ 13.30655 Xh = 5.9: Ŷh = 10.44675, s{pred} = 1.2512, 10.44675 ± 1.982(1.2512), 7.96687 ≤ Yh(new) ≤ 12.92663 Yes 3.29. a. Band 1 2 3 4 b. Median X Y 2 23.5 4 57 5 81.5 7 111 F (.90; 2, 43) = 2.43041, W = 2.204727 Xh = 2: 29.4903 ± 2.204727(2.00609), 25.067 ≤ E{Yh } ≤ 33.913 Xh = 4: 59.5608 ± 2.204727(1.43307), 56.401 ≤ E{Yh } ≤ 62.720 Xh = 5: 74.5961 ± 2.204727(1.32983), 71.664 ≤ E{Yh } ≤ 77.528 3-5 Xh = 7: 104.667 ± 2.204727(1.6119), 101.113 ≤ E{Yh } ≤ 108.221 No c. Neighborhood 1 2 3 4 5 6 Xc 2 3 4 5 6 7 Ŷc 27.000 43.969 60.298 77.905 93.285 107.411 3.30. a. Band 1 2 3 4 5 Median X Y 0.5 116.5 2.5 170.0 4.5 226.5 6.5 291.5 8.5 384.5 b. Neighborhood 1 2 3 4 5 6 7 c. Xc 1 2 3 4 5 6 7 Ŷc 131.67 158.33 187.00 210.33 245.33 271.67 319.00 F (.95; 2, 8) = 4.46, W = 2.987 Xh = 1: 124.061 ± 2.987(7.4756), 101.731 ≤ E{Yh } ≤ 146.391 Xh = 2: 156.558 ± 2.987(6.2872), 137.778 ≤ E{Yh } ≤ 175.338 Xh = 3: 189.055 ± 2.987(5.3501), 173.074 ≤ E{Yh } ≤ 205.036 Xh = 4: 221.552 ± 2.987(4.8137), 207.174 ≤ E{Yh } ≤ 235.931 Xh = 5: 254.049 ± 2.987(4.8137), 239.671 ≤ E{Yh } ≤ 268.428 Xh = 6: 286.546 ± 2.987(5.3501), 270.565 ≤ E{Yh } ≤ 302.527 Xh = 7: 319.043 ± 2.987(6.2872), 300.263 ≤ E{Yh } ≤ 337.823 Yes 3-6 Chapter 4 SIMULTANEOUS INFERENCES AND OTHER TOPICS IN REGRESSION ANALYSIS 4.1. No, no 4.2. 90 percent 4.3. a. Opposite directions, negative tilt b. B = t(.9875; 43) = 2.32262, b0 = −0.580157, s{b0 } = 2.80394, b1 = 15.0352, s{b1 } = 0.483087 4.4. 4.5. 4.6. −0.580157 ± 2.32262(2.80394) −7.093 ≤ β0 ≤ 5.932 15.0352 ± 2.32262(0.483087) 13.913 ≤ β1 ≤ 16.157 c. Yes a. Opposite directions, negative tilt b. B = t(.9975; 8) = 3.833, b0 = 10.2000, s{b0 } = .6633, b1 = 4.0000, s{b1 } = .4690 a. 10.2000 ± 3.833(.6633) 7.658 ≤ β0 ≤ 12.742 4.0000 ± 3.833(.4690) 2.202 ≤ β1 ≤ 5.798 B = t(.975; 14) = 2.145, b0 = 168.6000, s{b0 } = 2.6570, b1 = 2.0344, s{b1 } = .0904 168.6000 ± 2.145(2.6570) 162.901 ≤ β0 ≤ 174.299 2.0344 ± 2.145(.0904) 1.840 ≤ β1 ≤ 2.228 b. Negatively, no a. B = t(.9975; 14) = 2.91839, b0 = 156.347, s{b0 } = 5.51226, b1 = −1.190,s{b1 } = 0.0901973 156.347 ± 2.91839(5.51226) −1.190 ± 2.91839(0.0901973) b. 140.260 ≤ β0 ≤ 172.434 − 1.453 ≤ β1 ≤ −0.927 Opposite directions 4-1 4.7. c. No a. F (.90; 2, 43) = 2.43041, W = 2.204727 Xh = 3: 44.5256 ± 2.204727(1.67501) 40.833 ≤ E{Yh } ≤ 48.219 Xh = 5: 74.5961 ± 2.204727(1.32983) 71.664 ≤ E{Yh } ≤ 77.528 Xh = 7: 104.667 ± 2.204727(1.6119) 101.113 ≤ E{Yh } ≤ 108.221 b. F (.90; 2, 43) = 2.43041, S = 2.204727; B = t(.975; 43) = 2.01669; Bonferroni c. Xh = 4: 59.5608 ± 2.01669(9.02797) 41.354 ≤ Yh(new) ≤ 77.767 Xh = 7: 104.667 ± 2.01669(9.05808) 86.3997 ≤ Yh(new) ≤ 122.934 4.8. a. F (.95; 2, 8) = 4.46, W = 2.987 Xh = 0: 10.2000 ± 2.987(.6633) 8.219 ≤ E{Yh } ≤ 12.181 Xh = 1: 14.2000 ± 2.987(.4690) 12.799 ≤ E{Yh } ≤ 15.601 Xh = 2: 18.2000 ± 2.987(.6633) 16.219 ≤ E{Yh } ≤ 20.181 b. B = t(.99167; 8) = 3.016, yes c. F (.95; 3, 8) = 4.07, S = 3.494 Xh = 0: 10.2000 ± 3.494(1.6248) 4.523 ≤ Yh(new) ≤ 15.877 Xh = 1: 14.2000 ± 3.494(1.5556) 8.765 ≤ Yh(new) ≤ 19.635 Xh = 2: 18.2000 ± 3.494(1.6248) 12.523 ≤ Yh(new) ≤ 23.877 4.9. d. B = 3.016, yes a. B = t(.9833; 14) = 2.360 Xh = 20: 209.2875 ± 2.360(1.0847) 206.727 ≤ E{Yh } ≤ 211.847 Xh = 30: 229.6312 ± 2.360(0.8285) 227.676 ≤ E{Yh } ≤ 231.586 Xh = 40: 249.9750 ± 2.360(1.3529) 246.782 ≤ E{Yh } ≤ 253.168 b. F (.90; 2, 14) = 2.737, W = 2.340, no c. F (.90; 2, 14) = 2.737, S = 2.340, B = t(.975; 14) = 2.145 Xh = 30: 229.6312 ± 2.145(3.3385) 222.470 ≤ Yh(new) ≤ 236.792 Xh = 40: 249.9750 ± 2.145(3.5056) 242.455 ≤ Yh(new) ≤ 257.495 4.10. a. F (.95; 2, 58) = 3.15593, W = 2.512342 Xh = 45: 102.797 ± 2.512342(1.71458) 98.489 ≤ E{Yh } ≤ 107.105 Xh = 55: 90.8968 ± 2.512342(1.1469) 88.015 ≤ E{Yh } ≤ 93.778 Xh = 65: 78.9969 ± 2.512342(1.14808) 76.113 ≤ E{Yh } ≤ 81.881 b. B = t(.99167; 58) = 2.46556, no c. B = 2.46556 Xh = 48: 99.2268 ± 2.46556(8.31158) 78.734 ≤ Yh(new) ≤ 119.720 Xh = 59: 86.1368 ± 2.46556(8.24148) 65.817 ≤ Yh(new) ≤ 106.457 4-2 Xh = 74: 68.2869 ± 2.46556(8.33742) 47.730 ≤ Yh(new) ≤ 88.843 d. 4.12. a. Yes, yes Ŷ = 18.0283X c. H0 : β1 = 17.50, Ha : β1 6= 17.50. M SE = 20.3113, s{b1 } = .07948, t∗ = (18.0283− 17.50)/.07948 = 6.65, t(.99; 11) = 2.718. If |t∗ | ≤ 2.718 conclude H0 , otherwise Ha . Conclude Ha . d. Ŷh = 180.283, s{pred} = 4.576, 180.283 ± 2.718(4.576), 167.845 ≤ Yh(new) ≤ 192.721 4.13. a. i: 1 ei : 1.802 2 3 -3.340 10.717 i: 7 8 9 ei : -.849 6.292 -.510 4 -2.283 5 -2.396 10 11 -3.283 2.887 6 -4.708 12 -1.170 No b. 4.14. a. H0 : E{Y } = β1 X, Ha : E{Y } 6= β1 X. SSLF = 40.924, SSP E = 182.500, F ∗ = (40.924/8) ÷ (182.500/3) = .084, F (.99; 8, 3) = 27.5. If F ∗ ≤ 27.5 conclude H0 , otherwise Ha . Conclude H0 . P -value = .997 Ŷ = 0.121643X b. s{b1 } = 0.00263691, t(.975; 19) = 1.9801, 0.121643 ± 1.9801(0.00263691), 0.116 ≤ β1 ≤ 0.127 c. Ŷh = 3.64929, s{Ŷh } = 0.0791074, 3.64929 ± 1.9801(0.0791074), 3.493 ≤ E{Yh } ≤ 3.806 4.15. b. i: 1 ei : 1.3425 2 2.1820 ... ... 119 -0.0863 120 -0.4580 No c. 4.16. a. H0 : E{Y } = β1 X, Ha : E{Y } 6= β1 X. SSLF = 23.3378, SSP E = 39.3319, F ∗ = (23.3378/20) ÷ (39.3319/99) = 2.93711, F (.995; 20, 99) = 2.22939. If F ∗ ≤ 2.22939 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0.0002 Ŷ = 14.9472X b. s{b1 } = 0.226424, t(.95; 44) = 1.68023, 14.9472 ± 1.68023(0.226424), 14.567 ≤ β1 ≤ 15.328 c. Ŷh = 89.6834, s{pred} = 8.92008, 89.6834 ± 1.68023(8.92008), 74.696 ≤ Yh(new) ≤ 104.671 4.17. b. i: 1 ei : -9.89445 2 ... 0.21108 . . . 44 1.2111 No 4-3 45 2.2639 c. H0 : E{Y } = β1 X, Ha : E{Y } 6= β1 X. SSLF = 622.12, SSP E = 2797.66, F ∗ = (622.12/9) ÷ (2797.66/35) = 0.8647783, F (.99; 9, 35) = 2.96301. If F ∗ ≤ 2.96301 conclude H0 , otherwise Ha . Conclude H0 . P -value = 0.564 4.18. No 4.19. a. X̂h(new) = 33.11991, t(.95; 118) = 1.657870, s{predX} = 16.35037, 33.11991 ± 1.657870(16.35037), 6.013 ≤ Xh(new) ) ≤ 60.227 b. 4.20. a. No, 0.297453 > .1 X̂h(new) = 34.1137, t(.995; 14) = 2.977, s{predX} = 1.6610, 34.1137 ± 2.977(1.6610), 29.169 ≤ Xh(new) ≤ 39.058 b. Yes, .0175 < .1 4.21. Yes, no 4.22. Let Ā3 denote the event that statement 3 is correct and B̄ the event Ā1 ∩ Ā2 . Then by (4.2a): P (B̄ ∩ Ā3 ) = P (Ā1 ∩ Ā2 ∩ Ā3 ) ≥ 1 − 2α − α = 1 − 3α 4.23. From (4.13) it follows at once that: P Xi (Yi − b1 Xi ) = P Xi ei = 0 4.24. From Exercise 1.41c, we have that E{b1 } = β1 . Hence: E{Ŷ } = E{b1 X} = XE{b1 } = β1 X = E{Y }. 4.25. σ 2 {Ŷh } = σ 2 {b1 Xh } = Xh2 σ 2 {b1 } = Xh2 (σ 2 / P s2 {Ŷh } = Xh2 (M SE/ Xi2 ). 4.26. a. P Xi2 ); hence, B = t(.9875; 438) = 2.24913, b0 = −110.635, s{b0 } = 34.7460, b1 = 0.00279542, s{b1 } = 0.0000483694 −110.635 ± 2.24913(34.7460) − 188.783 ≤ β0 ≤ −32.487 0.00279542 ± 2.24913(0.00004837) 0.00269 ≤ β1 ≤ 0.0029 b. Yes c. F (.90; 2, 438) = 2.31473, W = 2.151618; B = t(.9833; 438) = 2.13397; Bonferroni d. Xh = 500: −109.237 ± 2.13397(34.7328) − 183.356 ≤ E{Yh } ≤ −35.118 4.27. a. Xh = 1, 000: −107.839 ± 2.13397(34.7196) − 181.930 ≤ E{Yh } ≤ −33.748 Xh = 5, 000: −96.6577 ± 2.13397(34.6143) − 170.524 ≤ E{Yh } ≤ −22.792 B = t(.975; 111) = 1.982, b0 = 6.3368, s{b0 } = .5213, b1 = .7604, s{b1 } = .1144 4-4 6.3368 ± 1.982(.5213) 5.304 ≤ β0 ≤ 7.370 0.7604 ± 1.982(.1144) 0.534 ≤ β1 ≤ 0.987 b. No c. F (.95; 2, 111) = 3.08, W = 2.482; B = t(.99375; 111) = 2.539; Working-Hotelling d. Xh = 2: 7.858 ± 2.482(.3098) 7.089 ≤ E{Yh } ≤ 8.627 Xh = 3: 8.618 ± 2.482(.2177) 8.078 ≤ E{Yh } ≤ 9.158 Xh = 4: 9.378 ± 2.482(.1581) 8.986 ≤ E{Yh } ≤ 9.770 Xh = 5: 10.139 ± 2.482(.1697) 9.718 ≤ E{Yh } ≤ 10.560 4-5 Chapter 5 MATRIX APPROACH TO SIMPLE LINEAR REGRESSION ANALYSIS 5.1. " (5) 5.2. (1) (4) 5.3. (1) (2) h 9 26 26 76 5 9 11 11 10 8 6 12 14 49 71 76 Y1 Y2 Y3 Y4 22 54 82 80 − Ŷ1 Ŷ2 Ŷ3 Ŷ4 (2) (1) 1,259 (2) (1) 2,194 (2) " (5) = e1 e2 e3 e4 X1 X2 X3 X4 (1) 503.77 (3) h 58 80 11 8 20 26 32 38 28 40 " 5.6. −1 −7 −5 −1 0 6 2 4 (2) " 5.5. # " 5.4. 2 7 0 1 23 24 1 13 17 22 (1) 3 10 (2) 1 2 (3) 36 40 2 (4) 20 26 34 5 13 1 3 49 56 3 27 35 46 i 5 0 0 160 6 17 17 55 10 10 10 20 63 94 55 73 # e1 e2 e3 e4 h i = 0 # " (3) # " (3) # " (3) 49.7 −39.2 81 261 142 182 # # 5-1 # i " 5.7. (1) 819,499 5.8. a. Yes b. 2 c. 0 a. Yes b. Yes c. 2 d. 0 5.9. " 5.10. A−1 = 16 448 448 13, 824 (2) " (3) # −.1 .4 .3 −.2 # B−1 .33088 −.15441 −.03676 .09559 .13971 −.19853 −.26471 .32353 .02941 " 5.12. " 5.13. " 5.14. a. " b. " 5.15. a. " b. 5.16. 5.17. a. .2 0 0 .00625 # 1.34146 −.41463 −.41463 .14634 4 7 2 3 y1 y2 #" # " Ŷ1 Ŷ2 Ŷ3 Ŷ4 Ŷ5 #" # " = " = y1 y2 0 4 = Ȳ # # 25 12 # # 4.5 1 = 5 2 23 7 y1 y2 y1 y2 # " = 8 28 # # 1 1 1 1 1 + b1 # .10870 −.08696 .10870 .02174 −.15217 = .34783 −.23913 .14130 .01087 5.11. 3, 609 103, 656 X1 − X̄ X2 − X̄ X3 − X̄ X4 − X̄ X5 − X̄ 1 1 1 Y1 W1 0 Y2 W2 = 1 −1 Y3 W3 1 −1 −1 5-2 b. 1 1 W1 E W2 = 1 −1 W3 c. 1 E{Y1 } E{Y1 } + E{Y2 } + E{Y3 } 0 E{Y2 } = E{Y1 } − E{Y2 } 1 −1 −1 E{Y3 } E{Y1 } − E{Y2 } − E{Y3 } 1 1 1 σ 2 {Y1 } σ{Y1 , Y2 } σ{Y1 , Y3 } 2 0 σ{Y2 , Y1 } σ 2 {Y2 } σ{Y2 , Y3 } σ {W} = 1 −1 1 −1 −1 σ{Y3 , Y1 } σ{Y3 , Y2 } σ 2 {Y3 } 1 1 1 × 1 −1 −1 1 0 −1 Using the notation σ12 for σ 2 {Y1 }, σ12 for σ{Y1 , Y2 }, etc., we obtain: σ 2 {W1 } = σ12 + σ22 + σ32 + 2σ12 + 2σ13 + 2σ23 σ 2 {W2 } = σ12 + σ22 − 2σ12 σ 2 {W3 } = σ12 + σ22 + σ32 − 2σ12 − 2σ13 + 2σ23 σ{W1 , W2 } = σ12 − σ22 + σ13 − σ23 σ{W1 , W3 } = σ12 − σ22 − σ32 − 2σ23 σ{W2 , W3 } = σ12 + σ22 − 2σ12 − σ13 + σ23 " 5.18. a. W1 W2 (" b. E # " = W1 W2 #) 1 4 1 2 " = " c. 1 4 1 2 σ 2 {W} = 1 4 1 2 1 4 1 2 1 4 − 12 1 4 − 12 1 [E{Y1 } 4 1 [E{Y1 } 2 1 4 − 12 1 4 Y1 Y2 Y3 Y4 + E{Y2 } + E{Y3 } + E{Y4 }] + E{Y2 } − E{Y3 } − E{Y4 }] 1 4 − 12 1 4 1 4 × 1 4 # # 1 2 1 2 − 21 − 21 2 # σ 2 {Y1 } σ{Y1 , Y2 } σ{Y1 , Y3 } σ{Y1 , Y4 } σ{Y2 , Y1 } σ 2 {Y2 } σ{Y2 , Y3 } σ{Y2 , Y4 } σ{Y3 , Y1 } σ{Y3 , Y2 } σ 2 {Y3 } σ{Y3 , Y4 } σ{Y4 , Y1 } σ{Y4 , Y2 } σ{Y4 , Y3 } σ 2 {Y4 } Using the notation σ12 for σ {Y1 }, σ12 for σ{Y1 , Y2 }, etc., we obtain: 1 (σ12 + +σ22 + σ32 + σ42 + 2σ12 + 2σ13 + 2σ14 + 2σ23 + 2σ24 + 2σ34 ) 16 σ 2 {W2 } = 14 (σ12 + σ22 + σ32 + σ42 + 2σ12 − 2σ13 − 2σ14 − 2σ23 − 2σ24 + 2σ34 ) σ{W1 , W2 } = 81 (σ12 + σ22 − σ32 − σ42 + 2σ12 − 2σ34 ) σ 2 {W1 } = " 5.19. " 5.20. 3 5 5 17 # 7 −4 −4 8 # 5-3 5.21. 5Y12 + 4Y1 Y2 + Y22 5.22. Y12 + 3Y22 + 9Y32 + 8Y1 Y3 " 5.23. a. (1) " (5) c. d. (2) # 9.940 −.245 .00987 0 0 .000308 .6 .4 .2 0 −.2 .4 .3 .2 .1 0 (1) " (5) c. d. (3) 9.604 (6) 11.41 (7) .02097 .43902 4.60976 (4) .148 .2 .2 .2 .2 .2 0 −.2 .1 0 .2 .2 .3 .4 .4 .6 # (2) 6.8055 −2.1035 −2.1035 .7424 (1) −2.1035 .01973 −.01973 −.00987 .00000 .00987 −.01973 .03453 −.00987 −.00493 .00000 −.00987 −.00987 .03947 −.00987 −.00987 .00000 −.00493 −.00987 .03453 −.01973 .00987 .00000 −.00987 −.01973 .01973 " b. # 5.24. a. −.18 .04 .26 .08 −.20 −2.8781 −.0488 .3415 .7317 −1.2683 3.1219 (3) 145.2073 # (2) 6.8055 (6) 18.878 (7) 6.9290 (3) .8616 .366 −.146 .024 .195 .195 .366 −.146 .658 .390 .122 .122 −.146 .024 .390 .268 .146 .146 .024 .195 .122 .146 .171 .171 .195 .195 .122 .146 .171 .171 .195 .366 −.146 .024 .195 .195 .366 3.217 .742 −.124 −.990 −.990 −1.856 .742 1.732 −1.980 −.619 −.619 .742 −.124 −1.980 3.712 −.742 −.742 −.124 −.990 −.619 −.742 4.207 −.866 −.990 −.990 −.619 −.742 −.866 4.207 −.990 −1.856 .742 −.124 −.990 −.990 3.127 5-4 (4) 20.2927 " 5.25. a. (1) (4) .2 −.1 −.1 .1 # " (2) (1) .22 c. 5.26. a. (6) .44 −.22 −.22 .22 (2) −.22 # (7) 18.2 (1) .675000 −.021875 −.021875 .00078125 (8) .44 (3) .663 0 0 0 0 0 0 0 0 0 .1 −.1 .1 −.2 0 .1 0 0 −.1 .1 −.1 .2 0 −.1 0 0 .1 −.1 .1 −.2 0 .1 0 0 −.2 .2 −.2 .4 0 −.2 0 0 0 0 0 0 0 0 0 0 .1 −.1 .1 −.2 0 .1 0 0 0 0 0 0 0 0 0 0 −.1 .1 −.1 .2 0 −.1 0 0 .1 −.1 .1 −.2 0 .1 0 " (5) 17.60 # .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 0 .2 −.1 .1 .2 .1 0 .2 .1 0 .2 0 .3 .1 0 .1 .2 0 .1 .2 0 .2 −.1 .1 .2 .1 0 .2 .1 −.1 .3 −.1 .5 .1 −.1 .1 .3 −.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 0 .2 −.1 .1 .2 .1 0 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .0 .2 0 .3 .1 0 .1 .2 0 .1 .2 0 .2 −.1 .1 .2 .1 .0 .2 " b. 10.2 4.0 (3) 1.8 −1.2 −1.2 1.8 −.2 −1.2 −2.2 .8 .8 .8 # " (2) 5-5 0 0 −.1 .1 .1 −.1 −.1 .1 .2 −.2 0 0 −.1 .1 0 0 .1 −.1 −.1 .1 168.600000 2.034375 # (3) (4) 201.150 201.150 201.150 201.150 217.425 217.425 217.425 217.425 233.700 233.700 233.700 233.700 249.975 249.975 249.975 249.975 .175 .175 .175 .. . .175 · · · −.050 −.050 −.050 .175 · · · −.050 −.050 −.050 .175 · · · −.050 −.050 −.050 .. .. .. .. . . . . −.050 −.050 −.050 · · · .175 .175 .175 −.050 −.050 −.050 · · · .175 .175 .175 −.050 −.050 −.050 · · · .175 .175 .175 " (5) 146.425 b. (1) 7.0598 c. 5.27. .175 .175 .175 .. . (6) 7.0598 −.2288 −.2288 .008171 (2) −.2288 # (7) 11.1453 (3) .0904 .825 −.175 −.175 · · · .050 .050 .050 −.175 .825 −.175 · · · .050 .050 .050 −.175 −.175 .825 · · · .050 .050 .050 .. .. .. .. .. .. . . . . . . .050 .050 .050 · · · .825 −.175 −.175 .050 .050 .050 · · · −.175 .825 −.175 .050 .050 .050 · · · −.175 −.175 .825 ε1 0 ε 0 2 E = =0 ε 0 3 ε4 0 5.28. Let X= X1 X2 .. . Xn 5-6 Then by (5.60) b = (X0 X)−1 X0 Y = 5.29 P Xi Yi / P Xi2 . E{b} = E{(X0 X)−1 X0 Y} = (X0 X)−1 X0 E{Y} = (X0 X)−1 X0 Xβ = β 5.30. Ŷh = X0h b is a scalar, hence it equals its transpose. By (5.32) then, X0h b = (X0h b)0 = b0 Xh . 5.31. σ 2 {Ŷ} = Hσ 2 {Y}H0 = Hσ 2 IH = σ2H [by (5.46)] (since H is symmetric) (since HH = H) 5-7 5-8 Chapter 6 MULTIPLE REGRESSION – I 6.1. a. X= b. X= 6.2. a. X= b. 6.5. a. X= 1 1 1 1 X11 X21 X31 X41 X11 X12 X21 X22 X31 X32 X41 X42 1 1 1 1 X11 X21 X31 X41 X12 X22 X32 X42 X11 X21 X31 X41 X51 1 1 1 1 1 X12 X22 X32 X42 X52 X11 X21 X31 X41 X51 β0 β = β1 β2 2 X11 2 X21 2 X31 2 X41 2 X51 β0 β = β1 β2 log10 X12 log10 X22 log10 X32 log10 X42 log10 X52 β1 β = β2 β3 β0 β = β1 β2 Y 1.000 .892 .395 1.000 .000 X1 1.000 X2 b. b0 = 37.650, b1 = 4.425, b2 = 4.375, Ŷ = 37.650 + 4.425X1 + 4.375X2 c&d. i: 1 2 ei : −.10 .15 Expected Val.: −.208 .208 3 4 −3.10 3.15 −3.452 2.661 5 6 −.95 −1.70 −.629 −1.533 i: 9 10 11 12 13 ei : 1.20 −1.55 4.20 2.45 −2.65 Expected Val.: 1.066 −1.066 4.764 2.052 −2.661 6-1 7 8 −1.95 1.30 −2.052 1.533 14 15 −4.40 3.35 −4.764 3.452 16 .60 .629 6.6. 6.7. 6.8. e. 2 SSR∗ = 72.41, SSE = 94.30, XBP = (72.41/2) ÷ (94.30/16)2 = 1.04, χ2 (.99; 2) = 2 9.21. If XBP ≤ 9.21 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. f. H0 : E{Y } = β0 + β1 X1 + β2 X2 , Ha : E{Y } 6= β0 + β1 X1 + β2 X2 . M SLF = 7.46, M SP E = 7.125, F ∗ = 7.46/7.125 = 1.047, F (.99; 5, 8) = 6.63. If F ∗ ≤ 6.63 conclude H0 , otherwise Ha . Conclude H0 . a. H0 : β1 = β2 = 0, Ha : not all βk = 0 (k = 1, 2). M SR = 936.350, M SE = 7.254, F ∗ = 936.350/7.254 = 129.083, F (.99; 2, 13) = 6.70. If F ∗ ≤ 6.70 conclude H0 , otherwise Ha . Conclude Ha . b. P -value = 0+ c. s{b1 } = .301, s{b2 } = .673, B = t(.9975; 13) = 3.372 4.425 ± 3.372(.301) 3.410 ≤ β1 ≤ 5.440 4.375 ± 3.372(.673) 2.106 ≤ β2 ≤ 6.644 a. SSR = 1, 872.7, SST O = 1, 967.0, R2 = .952 b. .952, yes. a. Ŷh = 77.275, s{Ŷh } = 1.127, t(.995; 13) = 3.012, 77.275 ± 3.012(1.127), 73.880 ≤ E{Yh } ≤ 80.670 b. 6.9. c. 6.10. a. s{pred} = 2.919, 77.275 ± 3.012(2.919), 68.483 ≤ Yh(new) ≤ 86.067 Y X1 X2 X3 1.0000 .2077 1.0000 .0600 .0849 1.0000 .8106 .0457 .1134 1.0000 Ŷ = 4149.89 + 0.000787X1 − 13.166X2 + 623.554X3 b&c. e. i: 1 2 ei : −32.0635 169.2051 Expected Val.: −24.1737 151.0325 n1 = 26, d¯1 = 145.0, n2 = 26, d¯2 = 77.4, b. 51 −184.8776 −212.1315 52 64.5168 75.5358 s = 81.7, 77.4)/[81.7 (1/26) + (1/26)] = 2.99, t(.995; 50) = 2.67779. If conclude error variance constant, otherwise error variance not constant. Conclude error variance not constant. t∗BF = (145.0 − |t∗BF | ≤ 2.67779 6.11. a. ... ... ... q H0 : β1 = β2 = β3 = 0, Ha : not all βk = 0 (k = 1, 2,3). M SR = 725, 535, M SE = 20, 531.9, F ∗ = 725, 535/20, 531.9 = 35.337, F (.95; 3, 48) = 2.79806. If F ∗ ≤ 2.79806 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+. s{b1 } = .000365, s{b3 } = 62.6409, B = t(.9875; 48) = 2.3139 0.000787 ± 2.3139(.000365) − .000058 ≤ β1 ≤ 0.00163 623.554 ± 2.3139(62.6409) 478.6092 ≤ β3 ≤ 768.4988 6-2 c. 6.12. a. SSR = 2, 176, 606, SST O = 3, 162, 136, R2 = .6883 F (.95; 4, 48) = 2.56524, W = 3.2033; B = t(.995; 48) = 2.6822 Xh1 302, 000 245, 000 280, 000 350, 000 295, 000 Xh2 7.2 7.4 6.9 7.0 6.7 Xh3 0: 0: 0: 0: 1: 4292.79 ± 2.6822(21.3567) 4245.29 ± 2.6822(29.7021) 4279.42 ± 2.6822(24.4444) 4333.20 ± 2.6822(28.9293) 4917.42 ± 2.6822(62.4998) 4235.507 ≤ E{Yh } ≤ 4350.073 4165.623 ≤ E{Yh } ≤ 4324.957 4213.855 ≤ E{Yh } ≤ 4344.985 4255.606 ≤ E{Yh } ≤ 4410.794 4749.783 ≤ E{Yh } ≤ 5085.057 b.Yes, no 6.13. F (.95; 4, 48) = 2.5652, S = 3.2033; B = t(.99375; 48) = 2.5953 Xh1 230, 000 250, 000 280, 000 340, 000 6.14. a. Xh2 7.5 7.3 7.1 6.9 Xh3 0: 0: 0: 0: 4232.17 ± 2.5953(147.288) 4250.55 ± 2.5953(146.058) 4276.79 ± 2.5953(145.134) 4326.65 ± 2.5953(145.930) 3849.913 ≤ Yh(new) 3871.486 ≤ Yh(new) 3900.124 ≤ Yh(new) 3947.918 ≤ Yh(new) ≤ 4614.427 ≤ 4629.614 ≤ 4653.456 ≤ 4705.382 Ŷh = 4278.37, s{predmean} = 85.82262, t(.975; 48) = 2.01063, 4278.37 ± 2.01063(85.82262), 4105.812 ≤ Ȳh(new) ≤ 4450.928 b. 12317.44 ≤ Total labor hours≤ 13352.78 Y X1 X2 X3 6.15. b. c. 1.000 −.7868 −.6029 −.6446 1.000 .5680 .5697 1.000 .6705 1.000 Ŷ = 158.491 − 1.1416X1 − 0.4420X2 − 13.4702X3 d&e. i: 1 2 ... ei : .1129 −9.0797 . . . Expected Val.: −0.8186 −8.1772 . . . 45 −5.5380 −5.4314 46 10.0524 8.1772 f. No g. 2 SSR∗ = 21, 355.5, SSE = 4, 248.8, XBP = (21, 355.5/2) ÷ (4, 248.8 /46)2 = 2 2 1.2516, χ (.99; 3) = 11.3449. If XBP ≤ 11.3449 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. 6.16. a. H0 : β1 = β2 = β3 = 0, Ha : not all βk = 0 (k = 1, 2, 3). M SR = 3, 040.2, M SE = 101.2, F ∗ = 3, 040.2/101.2 = 30.05, F (.90; 3, 42) = 2.2191. If F ∗ ≤ 2.2191 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0.4878 b. s{b1 } = .2148, s{b2 } = .4920, s{b3 } = 7.0997, B = t(.9833; 42) = 2.1995 −1.1416 ± 2.1995(.2148) − 1.6141 ≤ β1 ≤ −0.6691 −.4420 ± 2.1995(.4920) − 1.5242 ≤ β2 ≤ 0.6402 −13.4702 ± 2.1995(7.0997) − 29.0860 ≤ β3 ≤ 2.1456 6-3 c. 6.17. a. b. SSR = 9, 120.46, SST O = 13, 369.3, R = .8260 Ŷh = 69.0103, s{Ŷh } = 2.6646, t(.95; 42) = 1.6820, 69.0103 ± 1.6820(2.6646), 64.5284 ≤ E{Yh } ≤ 73.4922 s{pred} = 10.405, 69.0103 ± 1.6820(10.405), 51.5091 ≤ Yh(new) ≤ 86.5115 6.18. b. Y X1 X2 X3 X4 1.0000 −.2503 1.0000 .4138 .0665 .3888 −.2527 1.0000 −.3798 1.0000 .5353 .2886 .4407 .0806 1.0000 c. Ŷ = 12.2006 − .1420X1 + .2820X2 + 0.6193X3 + 0.0000079X4 i: 1 2 ... 80 81 d&e. ei : −1.0357 −1.5138 . . . −2.0302 −.9068 Expected Val.: −1.1524 −1.5857 . . . −1.9321 −1.0407 f. No g. n1 = 40, d¯1 =q0.8696, n2 = 41, d¯2 = 0.7793, s = 0.7357, t∗BF = (0.8696 − 0.7793)/0.7357 (1/40) + (1/41) = 0.5523, t(.975; 79) = 1.9905. If |t∗BF | ≤ 1.9905 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. 6.19. a. H0 : β1 = β2 = β3 = β4 = 0, Ha : not all βk = 0 (k = 1, 2, 3, 4). M SR = 34.5817 M SE = 1.2925, F ∗ = 34.5817/1.2925 = 26.7557, F (.95; 4, 76) = 2.4920. If F ∗ ≤ 2.4920 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ b. s{b1 } = .02134, s{b2 } = .06317, s{b3 } = 1.08681, s{b4 } = .00000138, B = t(.99375; 76) = 2.5585 −.1420 ± 2.5585(.02134) −.1966 ≤ β1 ≤ −.0874 .2820 ± 2.5585(.06317) .1204 ≤ β2 ≤ .4436 .6193 ± 2.5585(1.08681) −2.1613 ≤ β3 ≤ 3.3999 .0000079 ± 2.5585(.00000138) c. .0000044 ≤ β1 ≤ .0000114 SSR = 138.327, SST O = 236.5576, R2 = .5847 6.20. F (.95; 5, 76) = 2.3349, W = 3.4168; B = t(.99375; 76) = 2.5585 Xh1 5 6 14 12 Xh2 8.25 8.50 11.50 10.25 Xh3 0 .23 .11 0 Xh4 250, 000: 270, 000: 300, 000: 310, 000: 15.7981 ± 2.5585(.2781) 16.0275 ± 2.5585(.2359) 15.9007 ± 2.5585(.2222) 15.8434 ± 2.5585(.2591) 15.087 ≤ E{Yh } ≤ 16.510 15.424 ≤ E{Yh } ≤ 16.631 15.332 ≤ E{Yh } ≤ 16.469 15.180 ≤ E{Yh } ≤ 16.506 15.1485 ± 1.9917(1.1528) 15.5425 ± 1.9917(1.1535) 16.9138 ± 1.9917(1.1946) 12.852 ≤ Yh(new) ≤ 17.445 13.245 ≤ Yh(new) ≤ 17.840 14.535 ≤ Yh(new) ≤ 19.293 6.21. t(.975; 76) = 1.9917 Xh1 4 6 12 Xh2 10.0 11.5 12.5 Xh3 0.10 0 .32 Xh4 80, 000: 120, 000: 340, 000: 6-4 85 percent 6.22. a. Yes b. 2 No, yes, Yi0 = loge Yi = β0 + β1 Xi1 + β2 Xi2 + ε0i , where ε0i = loge εi c. Yes d. No, no e. No, yes, Yi0 = loge (Yi−1 − 1) = β0 + β1 Xi1 + εi 6.23. a. P Q = (Yi − β1 Xi1 − β2 Xi2 )2 X ∂Q = −2 (Yi − β1 Xi1 − β2 Xi2 )Xi1 ∂β1 X ∂Q = −2 (Yi − β1 Xi1 − β2 Xi2 )Xi2 ∂β2 Setting the derivatives equal to zero, simplifying, and substituting the least squares estimators b1 and b2 yields: P P Yi Xi1 − b1 Yi Xi2 − b1 and: P b1 = P b. 6.24. a. P P 2 − b2 Xi1 P Xi1 Xi2 = 0 Xi1 Xi2 − b2 P 2 Xi2 =0 P P P P P P 2 Yi Xi2 Xi1 Xi2 − Yi Xi1 Xi2 P P P 2 2 ( Xi1 Xi2 )2 − Xi1 Xi2 2 Yi Xi1 Xi1 Xi2 − Yi Xi2 Xi1 b2 = P P P 2 2 ( Xi1 Xi2 )2 − Xi1 Xi2 · ¸ n 1 1 Q √ L= exp − 2 (Yi − β1 Xi1 − β2 Xi2 )2 2σ i=1 2πσ 2 It is more convenient to work with loge L: n 1 X loge L = − loge (2πσ 2 ) − 2 (Yi − β1 Xi1 − β2 Xi2 )2 2 2σ ∂ loge L 1 X = 2 (Yi − β1 Xi1 − β2 Xi2 )Xi1 ∂β1 σ ∂ loge L 1 X = 2 (Yi − β1 Xi1 − β2 Xi2 )Xi2 ∂β2 σ Setting the derivatives equal to zero, simplifying, and substituting the maximum likelihood estimators b1 and b2 yields the same normal equations as in part (a), and hence the same estimators. P 2 − β3 Xi2 )2 Q = (Yi − β0 − β1 Xi1 − β2 Xi1 X ∂Q 2 − β3 Xi2 ) = −2 (Yi − β0 − β1 Xi1 − β2 Xi1 ∂β0 X ∂Q 2 = −2 (Yi − β0 − β1 Xi1 − β2 Xi1 − β3 Xi2 )Xi1 ∂β1 X ∂Q 2 2 = −2 (Yi − β0 − β1 Xi1 − β2 Xi1 − β3 Xi2 )Xi1 ∂β2 6-5 X ∂Q 2 = −2 (Yi − β0 − β1 Xi1 − β2 Xi1 − β3 Xi2 )Xi2 ∂β3 Setting the derivatives equal to zero, simplifying, and substituting the least squares estimators b0 , b1 , b2 , and b3 yields the normal equations: P P P P b. Yi − nb0 − b1 Yi Xi1 − b0 2 Yi Xi1 − b0 P P Xi1 − b2 Xi1 − b1 P 2 Xi1 − b1 P P P P P 2 − b3 Xi1 2 Xi1 − b2 3 Xi1 − b2 P P P Xi2 = 0 3 Xi1 − b3 4 Xi1 − b3 P P P Xi1 Xi2 = 0 2 Xi1 Xi2 = 0 P 2 2 Yi Xi2 − b0 Xi2 − b1 Xi1 Xi2 − b2 Xi1 Xi2 − b3 Xi2 =0 n 1 1 Q 2 √ L= exp[− 2 (Yi − β0 − β1 Xi1 − β2 Xi1 − β3 Xi2 )2 ] 2 2σ i=1 2πσ or n 1 X 2 loge L = − loge (2πσ 2 ) − 2 (Yi − β0 − β1 Xi1 − β2 Xi1 − β3 Xi2 )2 2 2σ 6.25. Fit Yi0 = β0 + β1 Xi1 + β3 Xi3 + εi , where Yi0 = Yi − 4Xi2 6.26. For regression model (6.1), R2 = 1 − SSE(X1 , X2 ) SST O When regressing Yi on Ŷi , SST O remains unchanged and the fitted regression equation: Ŷi∗ = b∗0 + b∗1 Ŷi has coefficients b∗0 = 0, b∗1 = 1 because: P b∗1 = P = since P ei Ŷi = 0 and (Ŷi − Ȳ )(Yi − Ȳ ) = P (Ŷi − Ȳ )2 P (Ŷi − Ȳ )[(Yi − Ŷi ) + (Ŷi − Ȳ )] P (Ŷi − Ȳ )2 (Ŷi − Ȳ )[ei + (Ŷi − Ȳ )] =1 P (Ŷi − Ȳ )2 P ei Ȳ = 0 by (1.20) and (1.17). b∗0 = Ȳ − b∗1 Ȳ = 0 Hence Ŷi∗ = Ŷi and SSE(Ŷ ) = r2 = 1 − 6.27. a. P (Yi − Ŷi∗ )2 = P (Yi − Ŷi )2 = SSE(X1 , X2 ), and: SSE(Ŷ ) SSE(X1 , X2 ) =1− = R2 SST O SST O 33.93210 2.78476 −.26442 6-6 b. c. d. e. f. g. 6.28. b. c. d. 6.29. a. −2.6996 −1.2300 −1.6374 −1.3299 −.0900 6.9868 .2314 .2517 .2118 .1489 −.0548 .2110 .3124 .0944 .2663 −.1479 .2231 .2517 .2118 .0944 .7044 −.3192 .1045 .2041 .1489 .2663 −.3192 .6143 .1414 .1483 −.0548 −.1479 .1045 .1414 .9404 .0163 .2110 .2231 .2041 .1483 .0163 .1971 3,009.926 715.4711 −34.1589 −13.5949 1.6617 .6441 −34.1589 −13.5949 .6441 .2625 53.8471 5.4247 Model I: Y 1.0000 0.9402 0.0781 0.9481 X1 1.0000 0.1731 0.9867 X2 1.0000 0.1271 X3 1.0000 Model II: Y 1.0000 0.4064 −0.0031 0.9481 X1 1.0000 0.0292 0.3162 X2 1.0000 −0.0227 X3 1.0000 Model Model Model Model I: Ŷ = −13.3162 + 0.000836618X1 − 0.065523X2 + 0.094132X3 II: Ŷ = −170.574 + 0.0961589X1 + 6.33984X2 + 0.126566X3 I: 0.902643 II: 0.911749 Region 1: Region 2: Region 3: Region 4: Ŷ Ŷ Ŷ Ŷ = −26, 140 + 16.34X1 + 0.3834X2 + 291.1X3 = 63, 104.1209 + 2.5883X1 + 3.6022X2 − 854.5493X3 = 56, 929.3851 + 0.3065X1 + 4.8955X2 − 800.3958X3 = 37, 720 − 0.9915X1 + 3.627X2 − 489.0X3 c. Region Region Region Region 1: 2: 3: 4: M SE 8.0728 × 108 1.4017 × 108 1.9707 × 108 2.1042 × 108 R2 0.831 0.9392 0.8692 0.9713 6-7 6.30. b. Model I: Y 1.000 .189 .533 .356 X1 1.000 .001 −.040 X2 1.000 .413 1.000 X3 Model II: Y 1.000 .409 .533 .356 X1 1.000 .360 .795 X2 1.000 .413 X3 1.000 c. Model I: Ŷ = 1.38646 + .08371X1 + .65845X2 + .02174X3 Model II: Ŷ = 6.46738 + .00302X1 + .64771X2 − .00929X3 d. Model I: .3448 Model II: .3407 6.31. a. Region 1: Ŷ = −3.34958 + .11695X1 + .05824X2 + .00151X3 + .00661X4 Region 2: Ŷ = 2.29154 + .00474X1 + .05803X2 + .00117X3 + .01502X4 Region 3: Ŷ = −.14386 + .03085X1 + .10228X2 + .00411X3 + .00804X4 Region 4: Ŷ = 1.56655 + .03524X1 + .04033X2 − .00066X3 + .01279X4 Region Region Region Region 1: 2: 3: 4: M SE 1.022 1.212 .937 .954 R2 .4613 .4115 .6088 .0896 6-8 Chapter 7 MULTIPLE REGRESSION – II 7.1. (1) 1 (2) 1 (3) 2 (4) 3 7.3. a. SSR(X1 ) = 1, 566.45, SSR(X2 |X1 ) = 306.25, SSE(X1 , X2 ) = 94.30, df : 1, 1, 13. b. H0 : β2 = 0, Ha : β2 6= 0. SSR(X2 |X1 ) = 306.25, SSE(X1 , X2 ) = 94.30, F ∗ = (306.25/1) ÷ (94.30/13) = 42.219, F (.99; 1, 13) = 9.07. If F ∗ ≤ 9.07 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+. a. SSR(X1 ) = 136, 366, SSR(X3 |X1 ) = 2, 033, 566, SSR(X2 |X1 , X3 ) = 6, 674, SSE(X1 , X2 , X3 ) = 985, 530, df : 1, 1, 1,48. b. H0 : β2 = 0, Ha : β2 6= 0. SSR(X2 |X1 , X3 ) = 6, 674, SSE(X1 , X2 , X3 ) = 985, 530, F ∗ = (6, 674/1) ÷ (985, 530/48) = 0.32491, F (.95; 1, 17) = 4.04265. If F ∗ ≤ 4.04265 conclude H0 , otherwise Ha . Conclude H0 . P -value = 0.5713. c. Yes, SSR(X1 )+SSR(X2 |X1 ) = 136, 366+5, 726 = 142, 092, SSR(X2 )+SSR(X1 |X2 ) = 11, 394.9 + 130, 697.1 = 142, 092. 7.4. Yes. 7.5. a. SSR(X2 ) = 4, 860.26, SSR(X1 |X2 ) = 3, 896.04, SSR(X3 |X2 , X1 ) = 364.16, SSE(X1 , X2 , X3 ) = 4, 248.84, df : 1, 1, 1, 42 b. H0 : β3 = 0, Ha : β3 6= 0. SSR(X3 |X1 , X2 ) = 364.16, SSE(X1 , X2 , X3 ) =4, 248.84, F ∗ = (364.16/1)÷(4, 248.84/42) = 3.5997, F (.975; 1, 42) = 5.4039. If F ∗ ≤ 5.4039 conclude H0 , otherwise Ha . Conclude H0 . P -value = 0.065. 7.6. H0 : β2 = β3 = 0, Ha : not both β2 and β3 = 0. SSR(X2 , X3 |X1 ) = 845.07, SSE(X1 , X2 , X3 ) = 4, 248.84, F ∗ = (845.07/2)÷(4, 248.84/42) = 4.1768, F (.975; 2, 42) = 4.0327. If F ∗ ≤ 4.0327 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0.022. 7.7. a. SSR(X4 ) = 40.5033, SSR(X1 |X4 ) = 42.2746, SSR(X2 |X1 , X4 ) = 27.8575, SSR(X3 |X1 , X2 , X4 ) = 0.4195, SSE(X1 , X2 , X3 , X4 ) = 98.2306, df : 1, 1, 1, 1, 76. b. H0 : β3 = 0, Ha : β3 6= 0. F ∗ = (0.42/1) ÷ (98.2306/76) = 0.3249, F (.99; 1, 76) = 6.9806. If F ∗ ≤ 6.9806 conclude H0 , otherwise Ha . Conclude H0 . P -value = .5704. 7-1 7.8. H0 : β2 = β3 = 0, Ha : not both β2 and β3 = 0. SSR(X2 , X3 |X1 , X4 ) = 28.277, SSE(X1 , X2 , X3 , X4 ) = 98.2306, F ∗ = (28.277/2)÷(98.2306/76) = 10.9388, F (.99; 2, 20) = 4.8958. If F ∗ ≤ 4.8958 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+. 7.9. H0 : β1 = −1.0, β2 = 0; Ha : not both equalities hold. Full model: Yi = β0 + β1 Xi1 + β2 Xi2 + β3 Xi3 + εi , reduced model: Yi + Xi1 = β0 + β3 Xi3 + εi . SSE(F ) = 4, 248.84, dfF = 42, SSE(R) = 4, 427.7, dfR = 44, F ∗ = [(4427.7−4248.84)/2]÷(4, 248.84/42) = .8840, F (.975; 2, 42) = 4.0327. If F ∗ ≤ 4.0327 conclude H0 , otherwise Ha . Conclude H0 . 7.10. H0 : β1 = −.1, β2 = .4; Ha : not both equalities hold. Full model: Yi = β0 + β1 Xi1 + β2 Xi2 + β3 Xi3 + β4 Xi4 + εi , reduced model: Yi + .1Xi1 − .4Xi2 = β0 + β3 Xi3 + β4 Xi4 + εi . SSE(F ) = 98.2306, dfF = 76, SSE(R) = 110.141, dfR = 78, F ∗ = [(110.141 − 98.2306)/2] ÷ (98.2306/76) = 4.607, F (.99; 2, 76) = 4.89584. If F ∗ ≤ 4.89584 conclude H0 , otherwise Ha . Conclude H0 . 2 7.11. a. RY2 1 = .550, RY2 2 = .408, R12 = 0, RY2 1|2 = .929, RY2 2|1 = .907, R2 = .958 2 7.12. RY2 1 = .796, RY2 2 = .156, R12 = 0, RY2 1|2 = .943, RY2 2|1 = .765, R2 = .952 2 = .0072, RY2 1|2 = 0.0415, RY2 2|1 = 0.0019, RY2 2|13 = 7.13. RY2 1 = .0431, RY2 2 = .0036, R12 2 .0067 R = .6883 7.14. a. RY2 1 = .6190, RY2 1|2 = .4579, RY2 1|23 = .4021 b. RY2 2 = .3635, RY2 2|1 = .0944, RY2 2|13 = .0189 2 7.15. RY2 4 = .2865, RY2 1 = .0626, RY2 1|4 = .2505, R14 = .4652, RY2 2|14 = .2202, RY2 3|124 = .0043, R2 = .5848 7.16. a. c. 7.17. a. b. c. Ŷ ∗ = .89239X1∗ + .39458X2∗ 11.45135 sY = 11.45135, s1 = 2.30940, s2 = 1.03280, b1 = (.89239) = 4.425, 2.30940 11.45135 b2 = (.39458) = 4.375, b0 = 81.7500 − 4.425(7) − 4.375(3) = 37.650. 1.03280 Ŷ ∗ = .17472X1∗ − .04639X2∗ + .80786X3∗ 2 2 2 R12 = .0072, R13 = .0021,R23 = .0129 249.003 sY = 249.003, s1 = 55274.6, s2 = .87738, s3 = .32260 b1 = (.17472) = 55274.6 249.003 249.003 (−.04639) = −13.16562, b3 = (.80786) = 623.5572, .00079, b2 = .87738 5.32260 b0 = 4363.04−.00079(302, 693) +13.16562(7.37058)−623.5572(0.115385) = 4149.002. 7.18. a. Ŷ ∗ = −.59067X1∗ − .11062X2∗ − .23393X3∗ b. 2 2 2 = .44957 = .32456, R23 = .32262, R13 R12 c. 17.2365 sY = 17.2365, s1 = 8.91809, s2 = 4.31356, s3 = .29934, b1 = (−.59067) = 8.91809 17.2365 17.2365 −1.14162, b2 = (−.11062) = −.44203, b3 = (−.23393) = −13.47008, 4.31356 .29934 b0 = 61.5652+1.14162(38.3913) +.44203(50.4348)+13.47008(2.28696) = 158.4927 7-2 7.19. a. c. Ŷ ∗ = −.547853X1∗ + .423647X2∗ + .0484614X3∗ + .502757X4∗ sY = 1.71958, s1 = 6.63278, s2 = 2.58317, s3 = .13455,s4 = 109099, b1 = 1.71958 1.71958 (−.547853) = −.14203, b2 = (.423647) = .28202, 6.63278 2.58317 1.71958 1.71958 b3 = (.0484614) = .61934, b4 = (.502757) = 7.9243 × 10−6 , .13455 109099 b0 = 15.1389 + .14203(7.8642) − .28202(9.68815) − .61934(.08099) − 7.9243 × 10−6 (160633) = 12.20054. 7.21. b. The line of fitted values when .5X1 − X2 = −5. 7.24. a. Ŷ = 50.775 + 4.425X1 c. Yes, SSR(X1 ) = 1, 566.45, SSR(X1 |X2 ) = 1, 566.45 d. r12 = 0 7.25. a. Ŷ = 4079.87 + 0.000935X2 c. No, SSR(X1 ) = 136, 366, SSR(X1 |X2 ) = 130, 697 d. r12 = .0849 7.26. a. c. Ŷ = 156.672 − 1.26765X1 − 0.920788X2 No, SSR(X1 ) = 8, 275.3, SSR(X1 |X3 ) = 3, 483.89 No, SSR(X2 ) = 4, 860.26, SSR(X2 |X3 ) = 708 d. r12 = .5680, r13 = .5697, r23 = .6705 7.27. a. Ŷ = 14.3613 − .11447X1 + .00001X4 c. No, SSR(X4 ) = 67.7751, SSR(X4 |X3 ) = 66.8582 No, SSR(X1 ) = 14.8185, SSR(X1 |X3 ) = 13.7744 d. 7.28. a. r12 = .4670, r13 = .3228, r23 = .2538 (1) SSR(X1 , X5 ) − SSR(X1 ) or SSE(X1 ) − SSE(X1 , X5 ) (2) SSR(X1 , X3 , X4 ) − SSR(X1 ) or SSE(X1 ) − SSE(X1 , X3 , X4 ) (3) SSR(X1 , X2 , X3 , X4 ) − SSR(X1 , X2 , X3 ) or SSE(X1 , X2 , X3 ) − SSE(X1 , X2 , X3 , X4 ) b. 7.29. a. SSR(X5 |X1 , X2 , X3 , X4 ), SSR(X2 , X4 |X1 , X3 , X5 ) SSR(X1 ) + SSR(X2 , X3 |X1 ) + SSR(X4 |X1 , X2 , X3 ) = SSR(X1 ) + [SSR(X1 , X2 , X3 ) − SSR(X1 )] +[SSR(X1 , X2 , X3 , X4 ) − SSR(X1 , X2 , X3 )] = SSR(X1 , X2 , X3 , X4 ) b. SSR(X2 , X3 ) + SSR(X1 |X2 , X3 ) + SSR(X4 |X1 , X2 , X3 ) = SSR(X2 , X3 ) + [SSR(X1 , X2 , X3 ) − SSR(X2 , X3 )] +[SSR(X1 , X2 , X3 , X4 ) − SSR(X1 , X2 , X3 )] = SSR(X1 , X2 , X3 , X4 ) 7-3 7.30. a. b. c. Ŷ = 68.625 + 4.375X2 i: 1 2 3 ei : -13.3750 -13.1250 -16.3750 4 -10.1250 5 -5.3750 i: 7 ei : -6.3750 8 9 10 11 -3.1250 5.6250 2.8750 8.6250 i: 13 ei : 10.6250 14 8.8750 X̂1 = 7 i: 1 2 ei : -3 -3 6 -6.1250 12 6.8750 15 16 16.6250 13.8750 3 4 5 6 -3 -3 -1 -1 i: 9 10 11 12 13 ei : 1 1 1 1 3 r = .971 = rY 1|2 7 -1 14 3 8 -1 15 16 3 3 7.31. (1) Yi = β0 + β1 Xi1 + β2 Xi2 + εi √ (2) Yi = β0 + β1 Xi1 + β2 Xi2 + β4 Xi3 + εi √ (3) Yi0 = Yi − 5(Xi1 + Xi2 ) = β0 + β3 Xi1 Xi2 + β4 Xi3 + εi √ (4) Yi0 = Yi − 7 Xi3 = β0 + β1 Xi1 + β2 Xi2 + β3 Xi1 Xi2 + εi 7.32. (1) Yi = β0 + β2 Xi2 + εi 2 (2) Yi = β1 Xi1 + β2 Xi2 + β3 Xi1 + εi 2 (3) Yi0 = Yi − 5Xi1 = β0 + β1 Xi1 + β2 Xi2 + εi 2 + εi (4) Yi0 = Yi − 10 = β1 Xi1 + β2 Xi2 + β3 Xi1 2 + εi , where βc = β1 = β2 (5) Yi = β0 + βc (Xi1 + Xi2 ) + β3 Xi1 7.33. Let: yi = Yi − Ȳ xi1 = Xi1 − X̄1 xi2 = Xi2 − X̄2 P Then: SSR(X1 ) = ( xi1 yi )2 P 2 x = i1 X yi2 rY2 1 by (1.10a), (2.51) and (2.84) P ( xi1 yi )2 X 2 P 2 = yi (1 − rY2 1 ) SSE(X1 ) = yi − P 2 xi1 P P SSR(X1 , X2 ) = b1 xi1 yi + b2 xi2 yi by (2.43) and Further: P "P yi2 xi1 yi P 2 − P 2 xi1 xi1 b1 = 2 1 − r12 #1/2 rY 2 r12 by (7.56) 7-4 P yi = 0 and similarly: "P P xi2 yi yi2 P 2 − P 2 xi2 xi2 b2 = 2 1 − r12 #1/2 rY 1 r12 Substituting these expressions for b1 and b2 into SSR(X1 , X2 ), we obtain after some simplification: SSR(X1 , X2 ) = i X X 1 hX 2 2 2 2 2 y r + y r − 2 y r r r i Y1 i Y2 i Y 1 Y 2 12 2 1 − r12 Now by (7.36) and (7.2b), we have: rY2 2|1 = SSR(X1 , X2 ) − SSR(X1 ) SSE(X1 ) Substituting the earlier expressions into the above, we obtain after some simplifying: rY2 2|1 = P X 1 2 yi2 (1 − rY2 1 )(1 − r12 ) [ yi2 rY2 1 + 2 − (1 − r12 ) X yi2 rY2 2 − 2 X yi2 rY 1 rY 2 r12 P 2 2 yi rY 1 ] After some further simplifying, we obtain: rY2 2|1 = " 7.34. a. (1) " (3) b. (rY 2 − r12 rY 1 )2 2 (1 − rY2 1 )(1 − r12 ) 1 0 0 1 # " (2) .7420 .6385 # " (4) .7420 .6385 # .0083 0 0 .0083 # 1.069 (5.375) = .742 7.745 .5345 b∗2 = (9.250) = .638 7.745 From (7.53), b∗1 = 7.35. From (7.45), we have: ∗ ∗ + ε∗i + β2∗ Xi2 Yi∗ = β1∗ Xi1 1 √ n−1 à Yi − Ȳ sY ! = β1∗ √ 1 n−1 à Xi1 − X̄1 s1 ! + β2∗ √ 1 n−1 à Xi2 − X̄2 s2 Simplifying, we obtain: Yi = (Ȳ − β1∗ √ sY sY sY sY X̄1 − β2∗ X̄2 ) + β1∗ Xi1 + β2∗ Xi2 + n − 1sY ε∗i s1 s2 s1 s2 7-5 ! + ε∗i Hence: sY β1∗ = β1 s1 β2∗ sY = β2 s2 " ∗ 7.36. X Y= 7.37. a. ∗ ∗ ΣXi1 Yi ∗ ∗ ΣXi2 Yi # = Σ(Xi1 − X̄1 )(Yi − Ȳ ) (n − 1)s1 sY Σ(Xi2 − X̄2 )(Yi − Ȳ ) (n − 1)s2 sY = " rY 1 rY 2 # RY2 3|12 = .02883, RY2 4|12 = .00384, RY2 5|12 = .55382, RY2 6|12 = .00732 b. X5 , yes. c. Full model: Yi = β0 + β1 Xi1 + β2 Xi2 + β5 Xi5 + εi . H0 : β5 = 0, Ha : β5 6= 0. SSR(X5 |X1 , X2 ) = 78, 070, 132, SSE(X1 , X2 , X5 ) = 62, 896, 949, F ∗ = (78, 070, 132/1) ÷ (62, 896, 949/436) = 541.1801, F (.99; 1, 137) = 6.69336. If F ∗ ≤ 6.69336 conclude H0 , otherwise Ha . Conclude Ha . No. 7.38. a. RY2 3|12 = .01167, RY2 4|12 = .13620, RY2 5|12 = .03737, RY2 6|12 = .03639 b. X4 , yes. c. Full model: Yi = β0 + β1 Xi1 + β2 Xi2 + β4 Xi4 + εi . H0 : β4 = 0, Ha : β4 6= 0. SSR(X4 |X1 , X2 ) = 37.89858, SSE(X1 , X2 , X4 ) = 240.35163, F ∗ = (37.89858/1)÷ (240.35163/109) = 17.187, F (.95; 1, 109) = 3.93. If F ∗ ≤ 3.93 conclude H0 , otherwise Ha . Conclude Ha . No. 7-6 Chapter 8 MODELS FOR QUANTITATIVE AND QUALITATIVE PREDICTORS 8.4. 8.5. a. Ŷ = 82.9357 − 1.18396x + .0148405x2 , R2 = .76317 b. H0 : β1 = β11 = 0, Ha : not both β1 and β11 = 0. M SR = 5915.31, M SE = 64.409, F ∗ = 5915.31/64.409 = 91.8398, F (.95; 2, 57) = 3.15884. If F ∗ ≤ 3.15884 conclude H0 , otherwise Ha . Conclude Ha . c. Ŷh = 99.2546, s{Ŷh } = 1.4833, t(.975; 57) = 2.00247, 99.2546 ± 2.00247(1.4833), 96.2843 ≤ E{Yh } ≤ 102.2249 d. s{pred} = 8.16144, 99.2546 ± 2.00247(8.16144), 82.91156 ≤ Yh(new) ≤ 115.5976 e. H0 : β11 = 0, Ha : β11 6= 0. s{b11 } = .00836, t∗ = .0148405/.00836 = 1.7759, t(.975; 57) = 2.00247. If |t∗ | ≤ 2.00247 conclude H0 , otherwise Ha . Conclude H0 . Alternatively, SSR(x2 |x) = 203.1, SSE(x, x2 ) = 3671.31, F ∗ = (203.1/1) ÷ (3671.31/57) = 3.15329, F (.95; 1, 57) = 4.00987. If F ∗ ≤ 4.00987 conclude H0 , otherwise Ha . Conclude H0 . f. Ŷ = 207.350 − 2.96432X + .0148405X 2 g. rX,X 2 = .9961, rx,x2 = −.0384 a. i: 1 2 3 ... ei : -1.3238 -4.7592 -3.8091 . . . 58 -11.7798 59 -.8515 60 6.22023 b. H0 : E{Y } = β0 + β1 x + β11 x2 , Ha : E{Y } 6= β0 + β1 x + β11 x2 . M SLF = 62.8154, M SP E = 66.0595, F ∗ = 62.8154/66.0595 = 0.95, F (.95; 29, 28) = 1.87519. If F ∗ ≤ 1.87519 conclude H0 , otherwise Ha . Conclude H0 . c. Ŷ = 82.92730 − 1.26789x + .01504x2 + .000337x3 H0 : β111 = 0, Ha : β111 6= 0. s{b111 } = .000933, t∗ = .000337/.000933 = .3612, t(.975; 56) = 2.00324. If |t∗ | ≤ 2.00324 conclude H0 , otherwise Ha . Conclude H0 . Yes. Alternatively, SSR(x3 |x, x2 ) = 8.6, SSE(x, x2 , x3 ) = 3662.78, F ∗ = (8.6/1) ÷ (3662.78/56) = .13148, F (.95; 1, 56) = 4.01297. If F ∗ ≤ 4.01297 conclude H0 , otherwise Ha . Conclude H0 . Yes. 8.6. a. Ŷ = 21.0942 + 1.13736x − .118401x2 , R2 = .81434 8-1 b. H0 : β1 = β11 = 0, Ha : not all βk = 0 (k = 1, 11). M SR = 523.133, M SE = 9.9392, F ∗ = 523.133/9.9392 = 52.6333,F (.99; 2, 24) = 5.6136. If F ∗ ≤ 5.6136 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. F (.99; 3, 24) = 5.04, W = 3.7622; B = t(.99833; 24) = 3.25756 X 10: 20.6276 ± 3.25756(1.8945) 8.7. 8.8. 8.9. 14.45615 ≤ E{Yh } ≤ 26.79905 15: 11.5142 ± 3.25756(4.56694) − 3.36288 ≤ E{Yh } ≤ 26.39128 20: −3.5192 ± 3.25756(8.50084) − 31.2112 ≤ E{Yh } ≤ 24.1728 d. s{pred} = 5.54942, t(.995; 24) = 2.79694, 11.5142 ± 2.79694(5.54942), −4.0072 ≤ Yh(new) ≤ 27.0356 e. H0 : β11 = 0, Ha : β11 6= 0. s{b11 } = .02347, t∗ = −.118401/.02347 = −5.04478, t(.995; 24) = 2.79694. If |t∗ | ≤ 2.79694 conclude H0 , otherwise Ha . Conclude Ha . Alternatively, SSR(x2 |x) = 252.989, SSE(x, x2 ) = 238.541, F ∗ = (252.989/1) ÷ (238.541/24) = 25.4536, F (.99; 1, 24) = 7.82287. If F ∗ ≤ 7.82287 conclude H0 , otherwise Ha . Conclude Ha . f. Ŷ = −26.3254 + 4.87357X − .118401X 2 a. i: 1 2 ei : 3.96746 -1.42965 ... ... 26 2.10202 27 -2.43692 b. H0 : E{Y } = β0 + β1 x + β11 x2 , Ha : E{Y } 6= β0 + β1 x + β11 x2 . M SLF = 6.65396, M SP E = 13.2244, F ∗ = 6.65396/13.2244 = 0.50316, F (.99; 12, 12) = 4.15526. If F ∗ ≤ 4.15526 conclude H0 , otherwise Ha . Conclude H0 . a. Ŷ = 10.1893 − .181775x1 + .0141477x21 + .314031X2 + .000008X4 b. .5927 c. H0 : β11 = 0, Ha : β11 = 6 0. s{b11 } = .005821, t∗ = .0141477/.005821 = 2.43046, t(.975; 76) = 1.99167. If |t∗ | ≤ 1.99167 conclude H0 , otherwise Ha . Conclude Ha . d. Ŷh = 17.2009, s{Ŷh } = .37345, t(.975; 76) = 1.99167, 17.2009 ± 1.99167(.37345), 16.45711 ≤ E{Yh } ≤ 17.94469 e. Ŷ = 12.4938 − .404296x1 + .0141477x21 + .314031X2 + .000008X4 a. X2 = 3: E{Y } = 37 + 7.5X1 X2 = 6: E{Y } = 49 + 12X1 8.10. a. X1 = 1: E{Y } = 21 + X2 X1 = 4: E{Y } = 42 − 11X2 8.11. a. b. Ŷ = 27.150 + 5.925X1 + 7.875X2 − .500X1 X2 H0 : β3 = 0, Ha : β3 6= 0. M SR(X1 X2 |X1 , X2 ) = 20.0000, M SE = 6.1917, F ∗ = 20.0000/6.1917 = 3.23, F (.95; 1, 12) = 4.75. If F ∗ ≤ 4.75 conclude H0 , otherwise Ha . Conclude H0 . 8.13. E{Y } = 25.3 + .20X1 for mutual firms, 8-2 E{Y } = 13.2 + .20X1 for stock firms. 8.15. b. c. Ŷ = −0.92247 + 15.0461X1 + .75872X2 s{b2 } = 2.77986, t(.975; 42) = 2.01808, .75872 ± 2.01808(2.77986), −4.85126 ≤ β2 ≤ 6.3687 e. i: 1 2 ... Xi1 Xi2 : 2 0 ... ei : -9.92854 .73790 . . . 8.16. b. c. 44 0 1.73790 45 0 2.69176 Ŷ = 2.19842 + .03789X1 − .09430X2 H0 : β2 = 0, Ha : β2 6= 0. s{b2 } = .11997, t∗ = −.09430/.11997 = −.786, t(.995; 117) = 2.6185. If |t∗ | ≤ 2.6185 conclude H0 , otherwise Ha . Conclude H0 . d. i: 1 2 ... Xi1 Xi2 : 0 14 ... ei : .90281 1.25037 . . . 119 16 -.85042 120 0 -.31145 8.17. No 8.18. E{Y } = 25 + .30X1 for mutual firms, E{Y } = 12.5 + .35X1 for stock firms. 8.19. a. b. 8.20. a. b. 8.21. a. Ŷ = 2.81311 + 14.3394X1 − 8.14120X2 + 1.77739X1 X2 H0 : β3 = 0, Ha : β3 6= 0. s{b3 } = .97459, t∗ = 1.77739/.97459 = 1.8237, t(.95; 41) = 1.68288. If |t∗ | ≤ 1.68288 conclude H0 , otherwise Ha . Conclude Ha . Alternatively, SSR(X1 X2 |X1 , X2 ) = 255.9, SSE(X1 , X2 , X1 X2 ) = 3154.44, F ∗ = (255.9/1)÷ (3154.44/ 41) = 3.32607, F (.90; 1, 41) = 2.83208. If F ∗ ≤ 2.83208 conclude H0 , otherwise Ha . Conclude Ha . Ŷ = 3.22632 − .00276X1 − 1.64958X2 + .06224X1 X2 H0 : β3 = 0, Ha : β3 6= 0. s{b3 } = .02649, t∗ = .06224/.02649 = 2.3496, t(.975; 116) = 1.9806. If |t∗ | ≤ 1.9806 conclude H0 , otherwise Ha . Conclude Ha . Alternatively, SSR(X1 X2 |X1 , X2 ) = 2.07126, SSE(X1 , X2 , X1 X2 ) = 45.5769, F ∗ = (2.07126/1) ÷ (45.5769/116) = 5.271665, F (.95; 1, 116) = 3.9229. If F ∗ ≤ 3.9229 conclude H0 , otherwise Ha . Conclude Ha . Hard hat: E{Y } = (β0 + β2 ) + β1 X1 Bump cap: E{Y } = (β0 + β3 ) + β1 X1 None: E{Y } = β0 + β1 X1 b. (1) H0 : β3 ≥ 0, Ha : β3 < 0; (2) H0 : β2 = β3 , Ha : β2 6= β3 8.22. E{Y } = β0 + β1 X1 Tool models M1 E{Y } = (β0 + β2 ) + (β1 + β5 )X1 Tool models M2 8-3 E{Y } = (β0 + β3 ) + (β1 + β6 )X1 Tool models M3 E{Y } = (β0 + β4 ) + (β1 + β7 )X1 Tool models M4 8.24. b. Ŷ = −126.905 + 2.7759X1 + 76.0215X2 − 1.10748X1 X2 , H0 : β2 = β3 = 0, Ha : not both β2 = 0 and β3 = 0. SSR(X2 , X1 X2 | X1 ) = 566.15, SSE(X1 , X2 , X1 X2 ) = 909.105, F ∗ = (369.85/2) ÷ (909.105/60) = 12.2049, F (.95; 2, 60) = 3.15041. If F ∗ ≤ 3.15041 conclude H0 , otherwise Ha . Conclude Ha . c. Ŷ = −126.9052 + 2.7759X1 for noncorner lots Ŷ = −50.8836 + 1.6684X1 for corner lots 8.25. a. Ŷ = 4295.72+.000903x1 −(1.5767×10−9 )x21 +614.393X3 −.000188x1 X3 +(1.8076× 10−9 )x21 X3 b. H0 : β2 = β4 = β5 = 0, Ha : not all β2 = 0,β4 = 0 and β5 = 0. SSR(x21 , x1 X3 , x21 X3 |x1 , X3 ) = 1442, SSE(x1 , x21 , X3 , x1 X3 , x21 X3 ) = 990762, F ∗ = (1442/3) ÷ (990762/46) = .02232, F (.95; 3, 46) = 2.8068. If F ∗ ≤ 2.80681 conclude H0 , otherwise Ha . Conclude H0 . Set 1 8.29. X 1 .990 .966 2 X 1 − X3 1 x 1 .379 .904 2 x 1 − x3 1 Set 2 X 1 .970 .929 X2 1 − 3 X 1 8.30. dE{Y } = β1 + 2β11 x dx d2 E{Y } = 2β11 dx2 8.31. a. x 1 .846 .89 x2 1 − 3 x 1 Ŷ = b0 + b1 x + b11 x2 = b0 + b1 (X − X̄) + b11 (X − X̄)2 = b0 + b1 X − b1 X̄ + b11 X 2 + b11 X̄ 2 − 2b11 X X̄ = (b0 − b1 X̄ + b11 X̄ 2 ) + (b1 − 2b11 X̄)X + b11 X 2 Hence: b00 = b0 − b1 X̄ + b11 X̄ 2 b01 = b1 − 2b11 X̄ b011 = b11 8-4 σ02 σ01 σ02 σ 2 {b} = σ01 σ12 σ12 σ02 σ12 σ22 1 −X̄ X̄ 2 1 −2X̄ b. A = 0 0 0 1 where σ02 = σ 2 {b0 }, σ01 = σ{b0 , b1 }, etc. for the regression coefficients in the transformed x variables. The variance-covariance matrix of the regression coefficients in the original X variables, A [σ 2 {b}] A0 , then yields: σ 2 {b00 } = σ02 − 2X̄σ01 + 2X̄ 2 σ02 + X̄ 2 σ12 − 2X̄ 3 σ12 + X̄ 4 σ22 σ 2 {b01 } = σ12 − 4X̄σ12 + 4X̄ 2 σ22 σ 2 {b02 } = σ22 σ{b00 , b01 } = σ01 − 2X̄σ02 + 3X̄ 2 σ12 − X̄σ12 − 2X̄ 3 σ22 σ{b00 , b02 } = σ02 − X̄σ12 + X̄ 2 σ22 σ{b01 , b02 } = σ12 − 2X̄σ22 8.32. When Xi are equally spaced, P P Yi = nb0 + b11 P 3 xi = 0; hence (8.4) becomes: P 2 x i P xi Yi = b1 x2i P 2 P P xi Yi = b0 x2i + b11 x4i 8.33. a. b. Yi = β0 +β1 xi1 +β2 x2i1 +β3 Xi2 +β4 xi1 Xi2 +β5 x2i1 Xi2 +β6 Xi3 +β7 xi1 Xi3 +β8 x2i1 Xi3 +εi (1) H0 : β3 = β4 = β5 = β6 = β7 = β8 = 0 Ha : not all βk = 0 (k = 3, ..., 8) SSE(R) = SSE(x1 , x21 ) SSE(R) − SSE(F ) SSE(F ) F∗ = ÷ 6 n−9 If F ∗ ≤ F (.99; 6, n − 9) conclude H0 , otherwise Ha . (2) H0 : β3 = β6 = 0, Ha : not both β3 = 0 and β6 = 0 SSE(R) = SSE(x1 , x21 , x1 X2 , x21 X2 , x1 X3 , x21 X3 ) SSE(R) − SSE(F ) SSE(F ) F∗ = ÷ 2 n−9 ∗ If F ≤ F (.99; 2, n − 9) conclude H0 , otherwise Ha . (3) H0 : β4 = β5 = β7 = β8 = 0, Ha : not all βk = 0 (k = 4, 5, 7, 8) SSE(R) = SSE(x1 , x21 , X2 , X3 ) SSE(R) − SSE(F ) SSE(F ) F∗ = ÷ 4 n−9 If F ∗ ≤ F (.99; 4, n − 9) conclude H0 , otherwise Ha . 8.34. a. b. Yi = β0 + β1 Xi1 + β2 Xi2 + β3 Xi3 + εi Commercial: E{Y } = (β0 + β2 ) + β1 X1 8-5 Mutual savings: E{Y } = (β0 + β3 ) + β1 X1 Savings and loan: E{Y } = (β0 − β2 − β3 ) + β1 X1 8.35. a. Let n2 = n − n1 and define: 1 0 . . .. .. ← n1 1 0 X= 1 1 . . . . . . ← n2 1 1 P P Yi1 Yi2 Ȳ1 = Ȳ2 = n1 n2 Then: " X0 X = n n2 n2 n2 " 0 −1 (X X) " Ȳ1 Ȳ2 − Ȳ1 = # 1 n1 − n11 b= c. SSR = n1 Ȳ12 + n2 Ȳ22 − nȲ 2 8.36. a. PP Yn 1 1 Y= Y12 . . . Yn 2 2 PP Ȳ = " X0 Y = − n11 1 + n12 n1 Y11 . .. # b. SSE = # Yij n1 + n2 nȲ n2 Ȳ2 # Yij2 − n1 Ȳ12 − n2 Ȳ22 Ŷ = 999.912 + .00296x − 3.29518 × 10−11 x2 b. R2 = .8855 for second-order model; R2 = .6711 for first-order model. c. H0 : β11 = 0, Ha : β11 6= 0. s{b11 } = 1.400396 × 10−11 , t∗ = −3.29518 × 10−11 /1.400396 × 10−11 = −2.353, t(.975; 437) = 1.9654. If |t∗ | ≤ 1.9654 conclude H0 , otherwise Ha . Conclude Ha . Alternatively, SSR(x2 |x) = 2, 039, 681, SSE(x, x2 ) = 160, 985, 454, F ∗ = (2, 039, 681/1) ÷ (160, 985, 454/437) = 5.5368, F (.95; 1, 437) = 3.8628. If F ∗ ≤ 3.8628 conclude H0 , otherwise Ha . Conclude Ha . 8.37. a. Ŷ = .056288 + 0.000004585x1 − .000088x3 + 2.6982 × 10−12 x21 + .00016293x23 + 8.3337 × 10−7 x1 x3 , R2 =.2485 b. H0 : β11 = β33 = β13 = 0, Ha : not all βk = 0 (k = 11, 33, 13). SSR(x21 , x23 , x1 x3 |x1 , x3 ) = .005477, SSE(x1 , x3 , x21 , x23 , x1 x3 ) = .246385, F ∗ = (.005477/3) ÷ (.246385/437) = 3.2381, F (.99; 1, 437) = 3.8267. If F ∗ ≤ 3.8267 conclude H0 , otherwise Ha . Conclude H0 . c. Ŷ = .0584998+2.9419×10−8 x1 −5.5765×10−7 x2 +.00068244x3 −3.3559×10−15 x21 , R2 = .1444 8.38. a. b. Ŷ = 150.07921 + 7.06617x + .10116x2 R2 = .6569 for second-order model; R2 = .6139 for first-order model. 8-6 c. 8.39. a. H0 : β11 = 0, Ha : β11 6= 0. s{b11 } = .02722, t∗ = .10116/.02722 = 3.716, t(.995; 110) = 2.621. If |t∗ | ≤ 2.621 conclude H0 , otherwise Ha . Conclude Ha . Alternatively, SSR(x2 |x) = 93, 533.252, SSE(x, x2 ) = 745, 203.642, F ∗ = (93, 533.252/1) ÷ (745, 203.642/ 110) = 13.807, F (.99; 1, 110) = 6.871. If F ∗ ≤ 6.871 conclude H0 , otherwise Ha . Conclude Ha . Ŷ = −207.5 + .0005515X1 + .107X2 + 149.0X3 + 145.5X4 + 191.2X5 b. b3 −b4 = 3.5, s{b3 −b4 } = 1.68, t(.95; 434) = 1.6484, 3.5±1.6484(1.68), 0.730688 ≤ β3 − β4 ≤ 6.2693 c. H0 : β3 = β4 = β5 = 0, Ha : not all βk = 0 (k = 3, 4, 5). SSR(X3 , X4 , X5 |X1 , X2 ) = 1, 873, 626, SSE(X1 , X2 , X3 , X4 , X5 ) = 139, 093, 455, F ∗ = (1, 873, 626/3) ÷ (139, 093, 455/434) = 1.9487, F (.90; 3, 434) = 2.09645. If F ∗ ≤ 2.09645 conclude H0 , otherwise Ha . Conclude H0 . P −value=.121. 8.40. a. Ŷ = .85738 + .28882X1 − .01805X2 + .01995X3 + .28782X4 b. s{b4 } = .30668, t(.99; 108) = 2.361, .28782 ± 2.361(.30668), −.476 ≤ β4 ≤ 1.012 c. Ŷ = .99413 + .26414X1 − .02283X2 + .02429X3 − 5.69520X4 + .15576X2 X4 − .02406X3 X4 H0 : β5 = β6 = 0, Ha : not both β5 = 0 and β6 = 0. SSR(X2 X4 , X3 X4 |X1 , X2 , X3 , X4 ) = 5.1964, SSE(X1 , X2 , X3 , X4 , X2 X4 , X3 X4 ) = 122.0468, F ∗ = (5.1964/2) ÷ (122.0468/106) = 2.257, F (.90; 2, 106) = 2.353. If F ∗ ≤ 2.353 conclude H0 , otherwise Ha . Conclude H0 . 8.41. a. Ŷ = 2.0478+.10369X1 +.04030X2 +.00660X3 −.020761X4 +2.14999X5 +1.19033X6 + .63348X7 b. H0 : β2 = 0, Ha : β2 6= 0. s{b2 } = .01430, t∗ = .04030/.01430 = 2.818, t(.975; 105) = 1.983. If |t∗ | ≤ 1.983 conclude H0 , otherwise Ha . Conclude Ha . Alternatively, SSR(X2 |X1 , X3 , X4 , X5 , X6 , X7 ) = 15.52782, SSE(X1 , X2 , X3 , X4 , X5 , X6 , X7 ) = 205.3634, F ∗ = (15.52782/1)÷(205.3634/105) = 7.9392, F (.95; 1, 105) = 3.932. If F ∗ ≤ 3.932 conclude H0 , otherwise Ha . Conclude Ha . c. s{b5 } = .46152, s{b6 } = .43706, s{b7 } = .42755, B = t(.99167; 105) = 2.433 8.42. a. b. 2.14999 ± 2.443(.46152) 1.0225 ≤ β5 ≤ 3.2775 1.19033 ± 2.443(.43706) .1226 ≤ β6 ≤ 2.2581 .63348 ± 2.443(.42755) − .4110 ≤ β7 ≤ 1.6780 Ŷ = 3.0211−.247X1 −.000097X2 +.4093X3 +.124X4 −.01324X5 {1999} −.1088X5 {2001}− .08306X5 {2002} Ŷ = 2.38 − 0.453x1 − 0.000144x2 + 0.00016x1 x2 + 0.92x21 + 0.000001x22 + 0.394X3 + 0.115X4 + 0.012X5 {1999} − 0.101X5 {2001} − 0.0581X5 {2002} H0 : β3 = β4 = β5 = 0, Ha : not all βk = 0 (k = 3, 4, 5). SSE(R) = .65424, dfR = 28, SSE(F ) = .62614, dfF = 25, M SE(F ) = .02505 F ∗ = .37392, F (.95; 3, 30) = 2.9223. If F ∗ ≤ 2.9223 conclude H0 , otherwise Ha . Conclude H0 . 8-7 c. H0 : β2 = β5 = β6 = β7 = 0, Ha : not all βk = 0 (k = 2, 5, 6, 7). SSE(R) = .71795, dfR = 32, SSE(F ) = .65424, dfF = 28, M SE(F ) = .02337, F ∗ = .68154, F (.95; 4, 28) = 2.71408. If F ∗ ≤ 2.71408 conclude H0 , otherwise Ha . Conclude H0 . 8-8 Chapter 9 BUILDING THE REGRESSION MODEL I: MODEL SELECTION AND VALIDATION Variables in Model None X1 X2 X3 X1 , X2 X1 , X3 X2 , X3 X1 , X2 , X3 9.9. 9.10. b. X1 X2 X3 X4 c. Rp2 0 .6190 .3635 .4155 .6550 .6761 .4685 .6822 AICp 262.916 220.529 244.131 240.214 217.968 215.061 237.845 216.185 Cp P RESSp 88.16 13,970.10 8.35 5,569.56 42.11 9,254.49 35.25 8,451.43 5.60 5,235.19 2.81 4,902.75 30.25 8,115.91 4.00 5,057.886 1 .102 .181 .327 1 .519 .397 1 .782 1 Ŷ = −124.3820 + .2957X1 + .0483X2 + 1.3060X3 + .5198X4 9.11. a. Subset X1 , X3 , X4 X1 , X2 , X3 , X4 X1 , X3 X1 , X2 , X3 9.12. 2 Ra,p .9560 .9555 .9269 .9247 Subset X3 , X5 , X6 X5 X3 , X5 , X6 , X8 = 2001 SBCp −126.601 −124.970 −124.969 Note: Variable numbers for predictors are those in the appendix. 9-1 9.13. b. X1 1 .653 −.046 X2 1 −.423 X3 1 c. Ŷ = 87.1875 − .5645X1 − .5132X2 − .0720X3 9.14. a. Subset x1 , x2 , x21 , x22 x1 , x 2 , x 1 x2 x1 , x2 , x1 x2 , x22 9.15. b. 2 Ra,p .75067 .75066 .74156 X1 1 .468 −.089 X2 1 .068 X3 1 c. Ŷ = 120.0473 − 39.9393X1 − .7368X2 + .7764X3 9.16. a. Subset x1 , x2 , x3 , x23 , x1 x2 x1 , x2 , x3 , x22, x23, x1 x2 x1 , x2 , x3, x23 , x1 x2 , x1 x3 9.17. a. 2 Ra,p .8668 .8652 .8638 X1 , X3 b. .10 c. X1 , X3 d. X1 , X3 9.18. a. X1 , X3 , X4 9.19 a. x1 , x2 , x3 , x1 x2 b. 2 Ra,p = .8615 9.20. X3 , X5 , X6 in appendix. 9.21. P RESS = 760.974, SSE = 660.657 9.22. a. X1 X2 X3 X4 1 .011 .177 .320 1 .344 .221 1 .871 1 b. 9-2 Model-building data set −127.596 12.685 .348 .054 1.823 .123 27.575 .933 b0 : s{b0 }: b1 : s{b1 }: b3 : s{b3 }: M SE: R2 : Validation data set −130.652 12.189 .347 .048 1.848 .122 21.446 .937 c. M SP R = 486.519/25 = 19.461 d. Ŷ = −129.664 + .349X1 + 1.840X3 , s{b0 } = 8.445, s{b1 } = .035, s{b3 } = .084 9.23. a. P RESS = 5, 102.494, SSE = 1, 680.465 9.24. Xi = 10: [E{Ŷ } − E{Y }]2 = (−55)2 , [Ŷ − E{Ŷ }]2 = (−47)2 Xi = 20: [E{Ŷ } − E{Y }]2 = (−705)2 , [Ŷ − E{Ŷ }]2 = (−97)2 9.25. b. X3 X4 X5 X6 X7 X10 X11 X12 1 .025 −.101 .161 −.198 −.172 −.236 −.164 1 .448 .334 .490 .501 .530 .453 1 .195 .168 .204 .239 .240 1 .067 .086 .060 .128 1 .990 .909 .764 1 .904 .729 1 .707 1 Note: Variable numbers for predictor variables are those in the data set description. Subset X3 , X6 , X10 X3 , X6 , X10 , X11 X3 , X6 , X7 , X10 c. 9.26. b. X4 X6 X7 X8 X9 X11 X12 X13 X14 X15 X16 1 −.063 1 .016 −.599 1 .040 .174 −.023 1 Cp 3.81 3.86 4.27 .021 .113 .054 .921 1 −.113 .245 −.240 .056 −.100 1 −.145 .486 −.359 .264 .059 .722 1 .169 −.025 −.003 .033 .173 −.753 −.466 1 .181 −.222 .189 −.056 .034 −.671 −.551 .513 1 −.190 .078 −.028 .312 .145 .585 .748 −.649 −.379 1 .078 .116 −.023 .934 .891 .087 .238 −.052 −.023 .347 1 Note: Variable numbers for predictor variables are those in the data set description. 9-3 Subset X6 , X9 , X13 , X14 X6 , X8 , X9 , X13 , X14 , X15 X6 , X9 , X13 , X14 , X15 c. SBCp 3407.16 3407.41 3408.09 9.27. a. b0 : s{b0 }: b3 : s{b3 }: b6 : s{b6 }: b10 : s{b10 }: M SE: R2 : Model-building data set .6104 .0888 .00388 .00163 .00117 .000419 .000293 .0000456 .00305 .519 Validation data set .6189 .1248 .00399 .00211 .00152 .000437 .000157 .0000622 .00423 .293 b. M SP R = .258271/56 = .00461 c. Ŷ 0 = .6272 + .00353X3 + .00143X6 + .000236X10 , s{b0 } = .0738, s{b3 } = .00129, s{b6 } = .000297, s{b10 } = .0000374, where Y 0 = log10 Y. 9.28. a. b0 : s{b0 }: b6 : s{b6 }: b9 : s{b9 }: b13 : s{b13 }: b14 : s{b14 }: M SE: R2 : b. M SP R = Model-building Validation data set data set 243.680 3015.63 1322.82 1189.63 122.507 34.3137 41.1906 34.2984 .578662 .221509 .075844 .057344 296.117 269.557 34.3417 39.0049 -224.020 -128.343 77.1406 70.4556 4,816,124 4,484,316 .463 .284 2, 259, 424, 814 = 10, 270, 113 220 9-4 Chapter 10 BUILDING THE REGRESSION MODEL II: DIAGNOSTICS 10.5. a. i: e(Y | X1 ): e(X2 | X1 ): e(Y | X2 ): e(X1 | X2y ): e(Y e(X2 e(Y e(X1 c. i: | X1 ): | X1 ): | X2 ): | X2 ): 1 −4.475 −1 −13.38 −3 9 −3.175 −1 5.625 1 2 4.525 1 −13.13 −3 10 2.825 1 2.875 1 3 −7.475 −1 −16.38 −3 11 −.175 −1 8.625 1 ... ... ... ... ... ... ... ... ... ... 6 2.675 1 −6.125 −1 14 −.025 1 8.875 3 7 −6.325 −1 −6.375 −1 15 −1.025 −1 16.625 3 8 5.675 1 −3.125 −1 16 4.975 1 13.875 3 Ŷ (X1 ) = 50.775 + 4.425X1 , X̂2 (X1 ) = 3 [Y − Ŷ (X1 )] = 4.375[X2 − X̂2 (X1 )], Ŷ = 37.650 + 4.425X1 + 4.375X2 10.6. a. b. d. Ŷ = 3995.48 + .00091916X1 + 12.1205X2 e(Y e(X2 e(Y e(X1 i: | X1 ): | X1 ): | X2 ): | X2 ): 1 2 −101.811 108.842 −.205 −1.205 −95.621 152.904 4, 036.66 32, 043.7 ... ... ... ... ... 51 −279.061 .312 −184.865 106, 600 52 −11.1165 .414 −27.843 −12, 742.4 Ŷ (X1 ) = 4079.87 + .000935X1 , X̂2 (X1 ) = 6.96268 + .00000135X1 [Y − Ŷ (X1 )] = 12.1205[X2 − X̂2 (X1 )], Ŷ = 3995.48 + .000919X1 + 12.1205X2 10.7. a. e(Y e(X3 e(Y e(X2 e(Y e(X1 i: 1 | X1 , X2 ): 1.671 | X1 , X2 ): −.116 | X1 , X3 ): .589 | X1 , X3 ): −1.077 | X2 , X3 ): −12.537 | X2 , X3 ): 11.081 2 −11.680 .193 −7.218 −4.213 −9.734 .573 10-1 ... ... ... ... ... ... ... 45 −1.967 −.265 −7.365 4.134 −4.086 −1.272 46 13.179 −.232 9.808 .554 12.696 −2.316 10.8. a. e(Y e(X3 e(Y e(X2 e(Y e(X1 i: 1 | X1 , X2 ): −.630 | X1 , X2 ): −.039 | X1 , X3 ): −2.085 | X1 , X3 ): −3.491 | X2 , X3 ): −.242 | X2 , X3 ): −2.405 2 −1.768 .179 −2.75065 −1.155 −3.259 8.596 ... ... ... ... ... ... ... 80 81 −.129 −1.068 −.016 .016 .316 −.240 .905 1.950 −.259 −1.490 1.437 3.198 10.9. a&g. i: 1 2 ti : −.041 .061 Di : .0002 .0004 3 4 5 −1.361 1.386 −.367 .1804 .1863 .0077 i: 7 8 ti : −.767 .505 Di : .0323 .0144 9 .465 .0122 i: 13 14 ti : −1.140 −2.103 Di : .1318 .3634 10 11 −.604 1.823 .0204 .1498 15 1.490 .2107 6 −.665 .0245 12 .978 .0510 16 .246 .0068 t(.9969; 12) = 3.31. If |ti | ≤ 3.31 conclude no outliers, otherwise outliers. Conclude no outliers. c. 2p/n = 2(3)/16 = .375, no d. X0new = h 1 10 3 i (X0 X)−1 1.2375 −.0875 −.1875 .0125 0 = 0 .0625 hnew,new = .175, no extrapolation e. Case 14: f. DF F IT S −1.174 DF BET AS b0 b1 b2 D .839 −.808 −.602 .3634 .68% 10.10. a&f. i: 1 2 ... ti : −.224 1.225 . . . Di : .0003 .0245 . . . 51 52 −1.375 .453 .0531 .0015 t(.9995192; 47) = 3.523. If |ti | ≤ 3.523 conclude no outliers, otherwise outliers. Conclude no outliers. b. 2p/n = 2(4)/52 = .15385. Cases 3, 5, 16, 21, 22, 43, 44, and 48. c. X0new = [ 1 300, 000 7.2 0 ] 10-2 (X0 X)−1 1.8628 −.0000 −.1806 .0473 .0000 −.0000 −.0000 = .0260 −.0078 .1911 hnew, new = .01829, no extrapolation d. Case Case Case Case Case Case Case Case e. DF F IT S −.554 .055 .562 −.147 .459 −.651 .386 .397 16: 22: 43: 48: 10: 32: 38: 40: b0 −.2477 .0304 −.3578 .0450 .3641 .4095 −.0996 .0738 DF BET AS b1 b2 −.0598 .3248 −.0253 −.0107 .1338 .3262 −.0938 .0090 −.1044 −.3142 .0913 −.5708 −.0827 .2084 −.2121 .0933 b3 −.4521 .0446 .3566 −.1022 −.0633 .1652 −.1270 −.1110 D .0769 .0008 .0792 .0055 .0494 .0998 .0346 .0365 Case 16: .161%, case 22: .015%, case 43: .164%, case 48: .042%, case 10: .167%, case 32: .227%, case 38: .152%, case 40: .157%. 10.11. a&f. i: 1 ti : .0116 Di : .000003 2 ... −.9332 . . . .015699 . . . 45 −.5671 .006400 46 1.0449 .024702 t(.998913; 41) = 3.27. If |ti | ≤ 3.27 conclude no outliers, otherwise outliers. Conclude no outliers. b. 2p/n = 2(4)/46 = .1739. Cases 9, 28, and 39. c. X0new = [ 1 30 58 2.0 ] (X0 X)−1 3.24771 .00922 −.06793 −.06730 .00046 −.00032 −.00466 = .00239 −.01771 .49826 hnew, new = .3267, extrapolation d. Case 11: Case 17: Case 27: e. 10.12. a&f. DF F IT S b0 .5688 .0991 .6657 −.4491 −.6087 −.0172 DF BET AS b1 b2 b3 D −.3631 −.1900 .3900 .0766 −.4711 .4432 .0893 .1051 .4172 −.2499 .1614 .0867 Case 11: 1.10%, case 17: 1.32% , case 27: 1.12%. i: 1 ti : −.9399 Di : .0117 2 ... −1.3926 . . . .0308 . . . 80 81 −1.9232 −.8095 .0858 .0046 t(.999938; 75) = 4.05. If |ti | ≤ 4.05 conclude no outliers, otherwise outliers. Conclude no outliers. 10-3 b. 2p/n = 2(5)/81 = .1235. Cases 3, 8, 53, 61, and 65. c. X0new = [ 1 10 12 .05 350, 000 ] (X0 X)−1 .2584 −.0003 −.0251 −.2508 .0000 .0004 −.0002 .0031 −.0000 .0031 .0219 −.0000 = .9139 −.0000 .0000 hnew, new = .0402, no extrapolation d. Case 61: Case 8: Case 3: Case 53: Case 6: Case 62: e. DF F IT S .639 .116 −.284 .525 −.873 .690 b0 −.0554 −.0142 −.2318 −.0196 .1951 .2758 DF BET AS b1 b2 b3 .0242 −.0076 .5457 −.0072 .0030 .0955 −.1553 .2364 .1008 −.0240 −.0243 .4180 −.5649 −.1767 −.6182 −.3335 −.2595 .0627 b4 .0038 .0126 −.0115 .0490 .4482 .4051 D .082 .003 .016 .055 .137 .088 Case 61: .300%, case 8: .054%, case 3: .192%, case 53: .235%, case 6: .556%, case 62: .417%. 10.13. a. Ŷ = 1.02325 + .96569X1 + .62916X2 + .67603X3 b. H0 : β1 = β2 = β3 = 0, Ha : not all βk = 0 (k = 1, 2, 3). M SR = 127.553, M SE = 3.33216, F ∗ = 127.553/3.33216 = 38.28, F (.95; 3, 10) = 2.84. If F ∗ ≤ 2.84 conclude H0 , otherwise Ha . Conclude Ha . c. H0 : βk = 0, Ha : βk 6= 0. t(.975; 10) = 2.021. If |t∗ | ≤ 2.021 conclude H0 , otherwise Ha . b1 = .96569, s{b1 } = .70922, t∗1 = 1.362, conclude H0 b2 = .62916, s{b2 } = .77830, t∗2 = .808, conclude H0 b3 = .67603, s{b3 } = .35574, t∗3 = 1.900, conclude H0 No d. X1 1 .9744 .3760 X2 1 .4099 X3 1 10.14. a. (V IF )1 = (1 − .950179)−1 = 20.072 (V IF )2 = (1 − .951728)−1 = 20.716 (V IF )3 = (1 − .178964)−1 = 1.218 b. Ŷ = 3.16277 + 1.65806X1 10.15. b. (V IF )1 = 1, (V IF )2 = 1 10.16. b. (V IF )1 = 1.0086, (V IF )2 = 1.0196, (V IF )3 = 1.0144. 10-4 10.17. b. (V IF )1 = 1.6323, (V IF )2 = 2.0032, (V IF )3 = 2.0091 10.18. b. (V IF )1 = (1 − .193775)−1 = 1.2403 (V IF )2 = (1 − .393287)−1 = 1.6482 (V IF )3 = (1 − .244458)−1 = 1.3236 (V IF )4 = (1 − .292147)−1 = 1.4127 10.19.a,b&c. i: 1 2 ei : 3.308 5.494 e(Y | X1 ): 4.35 8.16 e(X3 | X1 ): .57 1.46 e(Y | X3 ): −2.63 −8.66 e(X1 | X3 ): −17.03 −40.61 Exp. value: 4.744 5.590 3 −2.525 .53 1.68 −.53 5.73 −2.724 ··· 23 24 · · · −.202 .172 · · · −14.52 27.41 · · · −7.85 14.94 ··· 1.15 −5.14 ··· 3.87 −15.24 ··· .522 1.050 25 2.035 −3.12 −2.83 −1.72 −10.79 2.724 H0 : normal, Ha : not normal. r = .983. If r ≥ .939 conclude H0 , otherwise Ha . Conclude H0 . d and e. i: hii : ti : 1 2 .071 .214 .645 1.191 3 ··· 23 24 .046 · · · .074 .171 −.484 · · · −.039 .035 25 .060 .392 t(.999; 21) = 3.53. If |ti | ≤ 3.53 conclude no outliers, otherwise outliers. Conclude no outliers. f. Case 7 16 18 g. DF F IT S −.340 .603 1.000 DF BET AS b0 b1 b3 D −.240 −.151 .303 .040 −.069 .152 .051 .092 −.464 .878 .115 .308 (V IF )1 = (V IF )2 = 1.034 10.20.a&b. Ŷ = 134.400 − 2.133X1 − 1.699X2 + .0333X1 X2 i: 1 2 3 ··· 17 ei : 17.740 4.161 −4.616 · · · −7.061 Exp. value: 14.564 5.789 −2.788 · · · −7.467 18 −.582 .000 r = .963 c. (V IF )1 = 5.431, (V IF )2 = 11.640, (V IF )3 = 22.474 d&e. i: 1 2 hii : .276 .083 ti : 2.210 .399 3 .539 −.629 ··· ··· ··· 17 .144 −.709 10-5 18 19 .139 .077 −.057 −.802 19 −8.256 −11.609 t(.9987; 14) = 3.65. If |ti | ≤ 3.65 conclude no outliers, otherwise outliers. Conclude no outliers. f. Case DF F IT S 3 −.680 7 1.749 8 −4.780 15 .175 10.21. a. DF BET AS b1 b2 .592 .433 −1.278 −.742 1.187 3.162 −.035 .077 b0 −.652 1.454 −1.547 −.016 b3 D −.482 .121 .848 .459 −3.286 4.991 −.016 .008 (V IF )1 = 1.305, (V IF )2 = 1.300, (V IF )3 = 1.024 b&c. i: 1 ei : 13.181 e(Y | X2 , X3 ): 26.368 e(X1 | X2 , X3 ): −.330 e(Y | X1 , X3 ): 18.734 e(X2 | X1 , X3 ): −7.537 e(Y | X1 , X2 ): 11.542 e(X3 | X1 , X2 ): −2.111 Exp. value: 11.926 10.22. a. 2 3 −4.042 3.060 −2.038 −31.111 −.050 .856 −17.470 8.212 18.226 −6.993 −7.756 15.022 −4.784 15.406 −4.812 1.886 ··· 32 · · · 14.335 ··· 6.310 ··· .201 · · · 12.566 ··· 2.401 ··· 6.732 · · · −9.793 · · · 17.591 33 1.396 5.845 .111 −8.099 12.888 −15.100 −21.247 −.940 Ŷ 0 = −2.0427 − .7120X10 + .7474X20 + .7574X30 , where Y 0 = loge Y , X10 = loge X1 , X20 = loge (140 − X2 ), X30 = loge X3 b. i: ei : Exp. value: c. 1 −.0036 .0238 2 .0005 .0358 3 ··· 31 32 −.0316 · · · −.1487 .2863 −.0481 · · · −.1703 .2601 33 .1208 .1164 (V IF )1 = 1.339, (V IF )2 = 1.330, (V IF )3 = 1.016 d&e. i: 1 hii : .101 ti : −.024 2 3 .092 .176 .003 −.218 ··· ··· ··· 31 32 33 .058 .069 .149 −.975 1.983 .829 t(.9985; 28) = 3.25. If |ti | ≤ 3.25 conclude no outliers, otherwise outliers. Conclude no outliers. f. Case 28 29 DF F IT S .739 −.719 b0 .530 −.197 DF BET AS b1 b2 −.151 −.577 −.310 −.133 b3 −.187 .420 D .120 .109 10.23. Ŷ = Xb, Ŷ(i) = Xb(i) . From (10.33a), we obtain: Di = (Xb − Xb(i) )0 (Xb − Xb(i) ) (b − b(i) )0 X0 X(b − b(i) ) = pM SE pM SE 10-6 10.24. H = X(X0 X)−1 X0 = XX−1 (X0 )−1 X0 = II = I hii = 1, Ŷi = Yi " 10.25. M SE(i) = (n − p)SSE e2i − n−p 1 − hii # ÷ (n − p − 1) from (10.25) Substitution into (10.24a) yields (10.26): " ti = ei n−p−1 SSE(1 − hii ) − e2i # 1/2 10.26. From Exercise 5.31, σ 2 {Ŷ} = Hσ 2 or σ 2 {Ŷi } = σ 2 hii ; hence P 2 P σ {Ŷi } = σ 2 hii = σ 2 p by (10.27) 10.27.a&b. i: ei : Exp. value: 57 −.086 −.077 58 59 −.064 −.004 −.057 −.005 ··· 111 112 · · · −.049 .086 · · · −.043 .084 113 .019 .010 H0 : normal, Ha : not normal. r = .990. If r ≥ .980 conclude H0 , otherwise Ha . Conclude H0 . c. (V IF )3 = 1.065, (V IF )6 = 1.041, (V IF )10 = 1.045 X3 1 .161 −.172 X6 1 .086 X10 1 Note: Variable numbers for predictor variables are those in the data set description. d&e. i: 57 hii : .055 ti : −1.617 58 59 ··· 111 112 .055 .069 · · · .042 .288 −1.201 −.079 · · · −.911 1.889 113 .067 .348 t(.9999; 52) = 4.00. If |ti | ≤ 4.00 conclude no outliers, otherwise outliers. Conclude no outliers. f. Case DF F IT S 62 .116 75 .254 87 −.411 106 .757 112 1.200 b0 .010 .222 .025 −.437 −.464 DF BET AS b3 b6 .007 −.061 −.242 .069 −.031 .022 .626 −.400 .372 .051 10.28.a&b. 10-7 b10 .094 −.066 −.291 −.032 1.132 D .003 .016 .040 .138 .343 i: ei : Exp. value: 2 4 6 −.794 .323 4.615 −1.011 .644 1.011 ··· ··· ··· 436 .078 .249 438 .007 .052 440 −.008 −.010 H0 : normal, Ha : not normal. r = .636. If r ≥ .982 conclude H0 , otherwise Ha . Conclude Ha . c. (V IF )6 = 1.0093, (V IF )8 = 4.5906,(V IF )9 = 4.2859, (V IF )13 = 1.4728,(V IF )14 = 1.1056, (V IF )15 = 1.4357, X6 X8 X9 X13 X14 X15 1 .174 .113 −.025 −.222 .078 1 .921 .033 −.056 .312 1 .173 .034 .145 1 .513 −.649 1 −.379 Note: Variable numbers for predictor variables are those in the data set description. d&e. i: 2 hii : .514 ti : −3.182 4 6 ··· .090 .095 · · · .926 31.797 · · · 436 .063 .219 438 440 .041 .007 .020 −.021 t(.99989; 212) = 3.759. If |ti | ≤ 3.759 conclude no outliers, otherwise outliers. Conclude case 6 is an outlier. f. Case 2 8 48 128 206 404 6 DF F IT S −3.27 −.60 .31 −.10 .20 −.12 10.29 DF BET AS b0 b6 b8 −2745.72 .403 −.479 595.06 −.052 .456 134.34 −.079 .290 170.25 −.003 −.014 −399.49 −.056 .030 220.73 −.019 −.011 −8536.94 .274 −4.236 10-8 b9 −.815 −.548 −.271 .023 .0005 .018 6.678 b13 1.184 .006 .088 −.093 .157 −.001 2.729 b14 −.825 −.488 −.215 −.222 −.142 −.654 5.196 b15 1.188 −.178 .030 −.038 −.275 −.028 2.110 D 1.467 .052 .014 .001 .006 .002 2.634 Chapter 11 BUILDING THE REGRESSION MODEL III: REMEDIAL MEASURES 11.6. a. b. Ŷ = 19.4727 + 3.2689X i: 1 ei : 5.225 2 3 4.763 -6.389 i: 7 ei : 2.838 8 9 1.032 6.418 4 5 -2.162 -3.237 10 11 -1.700 2.687 6 -5.044 12 -4.431 n1 = 6, d¯1 = 2.821, n2 = 6, d¯2 = 4.833, s = 1.572, ³ q ´ t∗BF = (2.821 − 4.833)/ 1.572 1/6 + 1/6 = −2.218, t(.975; 10) = 2.228. If |t∗BF | ≤ 2.228 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. d. ŝ = −.905 + .3226X; smallest weight = .02607, case 3; largest weight = .18556, cases 4 and 7. e. Ŷ = 17.3006 + 3.4211X f. s{b0 }: s{b1 }: g. 11.7. a. Unweighted Weighted 5.5162 4.8277 .3651 .3703 Ŷ = 17.2697 + 3.4234X Ŷ = −5.750 + .1875X i: 1 2 ei : -3.75 5.75 i: 7 ei : -10.50 b. 3 -13.50 4 5 6 -16.25 -9.75 7.50 8 9 10 11 26.75 14.25 -17.25 -1.75 SSR∗ = 123, 753.125, SSE = 2, 316.500, 11-1 12 18.50 2 2 XBP = (123, 753.125/2)/(2, 316.500/12)2 = 1.66, χ2 (.90; 1) = 2.71. If XBP ≤ 2.71 conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. d. v̂ = −180.1 + 1.2437X i: 1 2 weight: .01456 .00315 i: 7 weight: .00518 e. 8 .00315 3 .00518 4 .00315 5 .01456 6 .00518 9 .01456 10 .00315 11 .01456 12 .00518 Ŷ = −6.2332 + .1891X f. s{b0 }: s{b1 }: g. 11.8. b. c. Unweighted Weighted 16.7305 13.1672 .0538 .0506 Ŷ = −6.2335 + .1891X Ŷ = 31.4714 + 10.8120X1 + 22.6307X2 + 1.2581X3 + 1.8523X4 i: 1 2 3 ··· 63 64 65 ei : -3.2892 -3.2812 -.3274 · · · 36.9093 -18.6811 -5.3643 n1 = 33, d¯1 = 2.7595, n2 = 32, d¯2 = 10.1166, s = 6.3643, q ³ ´ t∗BF = (2.7595 − 10.1166)/ 6.3643 1/33 + 1/32 = −4.659, t(.995; 63) = 2.656. If |t∗BF | ≤ 2.656 conclude error variance constant, otherwise error variance not constant. Conclude error variance not constant. e. ŝ = 2.420 + .3996X3 + .2695X4 i: 1 2 3 weight: .0563 .0777 .0015 f. ··· ··· 63 .1484 64 .0941 65 .0035 Ŷ = 29.4255 + 10.8996X1 + 26.6849X2 + 1.4253X3 + 1.7239X4 g. s{b0 }: s{b1 }: s{b2 }: s{b3 }: s{b4 }: h. 11.9. b. c. Unweighted Weighted 2.8691 1.3617 3.2183 1.4918 3.4846 1.6686 .2273 .2002 .2276 .3206 Ŷ = 29.0832 + 11.0075X1 + 26.8142X2 + 1.4904X3 + 1.6922X4 c = .06 Yˆ∗ = .410X1∗ + .354X2∗ + .165X3∗ Ŷ = 21.7290 + 1.7380X1 + .1727X2 + .6929X3 11.10. a. Ŷ = 3.32429 + 3.76811X1 + 5.07959X2 11-2 d. c = .07 e. Ŷ = 6.06599 + 3.84335X1 + 4.68044X2 11.11. a. Ŷ = 1.88602 + 15.1094X (47 cases) Ŷ = −.58016 + 15.0352X (45 cases) i: 1 2 ... 46 47 ui : -1.4123 -.2711 . . . 4.6045 10.3331 smallest weights: .13016 (case 47), .29217 (case 46) b. c. Ŷ = −.9235 + 15.13552X d. 2nd iteration: Ŷ = −1.535 + 15.425X 3rd iteration: Ŷ = −1.678 + 15.444X smallest weights: .12629 (case 47), .27858 (case 46) 11.12. a. Ŷ = −193.924 + 5.248X b. smallest weight: .5582 (case 2) c. Ŷ = −236.259 + 5.838X d. 2nd iteration: Ŷ = −241.577 + 5.914X 3rd iteration: Ŷ = −242.606 + 5.928X smallest weight: .5025 (case 2) P 11.13. Qw = 1 (Yi − β0 − β1 Xi )2 kXi X 1 ∂Qw = −2 (Yi − β0 − β1 Xi ) ∂β0 kXi X1 ∂Qw = −2 (Yi − β0 − β1 Xi ) ∂β1 k Setting the derivatives equal to zero, simplifying, and substituting the least squares estimators b0 and b1 yields: P Yi Xi P − b0 X 1 Xi Yi − nb0 − b1 P 11.14. bw1 = since P − nb1 = 0 P Xi = 0 wi (Xi − X̄w )(Yi − Ȳw ) P wi (Xi − X̄w )2 wi (Xi − X̄w )(Yi − Ȳw ) = = and P wi (Xi − X̄w )2 = P P P wi Xi Yi − ( P P wi Xi Yi − P wi Xi2 − ( wi )X̄w2 11-3 wi )X̄w Ȳw wi Xi P P wi w i Yi = 11.17. P P wi Xi2 − ( wi Xi )2 wi P X1 /.3 0 0 0 0 X2 /.3 0 0 0 0 X3 /.3 0 0 0 0 X4 /.3 bw = (X0 WX)−1 X0 WY 11.18. σ 2 {bw } = [(X0 WX)−1 X0 W](kW−1 )[(X0 WX)−1 X0 W]0 = k(X0 WX)−1 X0 WW−1 [W0 X(X0 WX)−1 ] (since (X0 WX)−1 is symmetric) = k(X0 WX)−1 X0 IWX(X0 WX)−1 (since W is symmetric) = k(X0 WX)−1 11.19. E{bR − β}2 = E{bR − E{bR } + E{bR } − β}2 = E{bR − E{bR }}2 + 2E{bR − E{bR }}[E{bR } − β] + E{E{bR } − β}2 = σ 2 {bR } + 0 + [E{bR } − β]2 11.20. a. b. 11.21. a. c. 38.3666 38.5822, yes. Xh : 10 20 E{Yh }: 120 220 30 320 40 420 50 520 Ordinary least squares: E{b1 } = 10, σ 2 {b1 } = .024 Weighted least squares: E{b1 } = 10, σ 2 {b1 } = .01975 11.22. a. c .000 .005 .010 .020 .030 .040 .050 (V IF )1 1.6323 1.6000 1.5687 1.5089 1.4527 1.3997 1.3497 (V IF )2 2.0032 1.9506 1.9002 1.8054 1.7181 1.6374 1.5626 (V IF )3 2.0091 1.9561 1.9054 1.8101 1.7222 1.6411 1.5659 R2 .68219 .68218 .68215 .68204 .68185 .68160 .68129 11-4 c .000 .005 .010 .020 .030 .040 .050 11.23. a. bR 1 −.5907 −.5868 −.5831 −.5758 −.5687 −.5619 −.5553 bR 2 −.1106 −.1123 −.1140 −.1171 −.1200 −.1228 −.1253 bR 3 −.2339 −.2338 −.2337 −.2334 −.2331 −.2329 −.2326 Ŷ = 62.4054 + 1.5511X1 + .5102X2 + .1019X3 − .1441X4 b. c .000 .002 .004 .006 .008 .020 .040 .060 .080 .010 (V IF )1 38.496 9.844 5.592 4.183 3.530 2.456 1.967 1.674 1.455 1.284 c .000 .002 .004 .006 .008 .020 .040 .060 .080 .100 11.24. a. b. c. bR 1 .6065 .5524 .5351 .5257 .5193 .4975 .4751 .4577 .4429 .4300 (V IF )2 254.423 51.695 21.903 12.253 7.957 2.108 .986 .715 .591 .516 bR 2 .5277 .3909 .3519 .3337 .3233 .3033 .2986 .2986 .2992 .2998 (V IF )3 (V IF )4 R2 46.868 282.513 .9824 11.346 57.092 .9823 6.089 23.971 .9822 4.359 13.248 .9822 3.566 8.478 .9821 2.323 2.015 .9819 1.833 .820 .9813 1.560 .560 .9805 1.360 .454 .9794 1.204 .396 .9783 bR 3 .0434 −.0159 −.0343 −.0439 −.0502 −.0694 −.0864 −.0984 −.1079 −.1157 bR 4 −.1603 −.3043 −.3452 −.3641 −.3748 −.3942 −.3958 −.3920 −.3873 −.3824 Ŷ = 12.2138 − 0.1462X1 + .2893X2 + 1.4277X3 + 0.0000X4 P |Yi − Ŷi | = 64.8315 66.9736, yes. 11.25. a. Ŷ = 50.3840 − .7620x1 − .5300x2 − .2929x21 11.26. a. t(.975; 10) = 2.228, bw1 = 3.4211, s{bw1 } = .3703, 3.4211 ± 2.228(.3703), 2.5961 ≤ β1 ≤ 4.2461 11.27. a. t(.95; 10) = 1.8125, bw1 = .18911, s{bw1 } = .05056, .18911 ± 1.8125(.05056), .0975 ≤ β1 ≤ .2808 11-5 11.28. a. b. Ŷ = 38.64062 + .33143x − .09107x2 , R2 = .9474 X̄ = 47.5, b1 = .331429, b11 = −.091071, X̂max = 47.5 − [.5(.331429)]/(−.091071) = 49.3196 Ŷh = 38.640625 + .331429(X̂max − 47.5) − .091071(X̂max − 47.5)2 = 38.942 11.29 a. First split point at X = 57, SSE = 5108.14 b. Second split point at X = 66, SSE = 4148.78 c. Third split point at X = 47, SSE = 3511.66 11.30 a. First split point at X1 = 37, SSE = 6753.62 b. Second split point at X1 = 47, SSE = 5276.25 c. Third split point at X1 = 30, SSE = 3948.85 d. Fourth split point at X2 = 49, for the region defined by X1 < 30. SSE = 3563.79 11-6 Chapter 12 AUTOCORRELATION IN TIME SERIES DATA 12.1. a. t: 1 2 3 4 εt : 3.5 2.8 3.1 3.1 εt−1 : 3.0 3.5 2.8 3.1 5 6 7 .8 −1.1 −.9 3.1 .8 −1.1 8 −1.2 −.9 9 −1.0 −1.2 10 −1.1 −1.0 b. t: ut : εt−1 : 1 2 3 .5 −.7 .3 3.0 3.5 2.8 4 5 6 7 0 −2.3 −1.9 .2 3.1 3.1 .8 −1.1 8 −.3 −.9 9 .2 −1.2 10 −.1 −1.0 12.2. Yes. 12.5. (1) H0 : ρ = 0, Ha : ρ = 6 0. dL = 1.12, dU = 1.45. If D > 1.45 and 4 − D > 1.45, conclude H0 , if D < 1.12 or 4 − D < 1.12 conclude Ha , otherwise the test is inconclusive. (2) H0 : ρ = 0, Ha : ρ < 0. dL = 1.32, dU = 1.66. If 4 − D > 1.66 conclude H0 , if 4 − D < 1.32 conclude Ha , otherwise the test is inconclusive. (3) H0 : ρ = 0, Ha : ρ > 0. dL = 1.12, dU = 1.45. If D > 1.45 conclude H0 , if D < 1.12 conclude Ha , otherwise the test is inconclusive. 12.6. H0 : ρ = 0, Ha : ρ > 0. D = 2.4015, dL = 1.29, dU = 1.38. If D > 1.38 conclude H0 , if D < 1.29 conclude Ha , otherwise the test is inconclusive. Conclude H0 . 12.7 H0 : ρ = 0, Ha : ρ > 0. D = 2.2984, dL = 1.51, dU = 1.59. If D > 1.59 conclude H0 , if D < 1.51 conclude Ha , otherwise the test is inconclusive. Conclude H0 . 12.8. H0 : ρ = 0, Ha : ρ > 0. D = 2.652, dL = .83, dU = 1.52. If D > 1.52 conclude H0 , if D < .83 conclude Ha , otherwise the test is inconclusive. Conclude H0 . 12.9. a. Ŷ = −7.7385 + 53.9533X, s{b0 } = 7.1746, s{b1 } = 3.5197 t: et : 1 −.0737 2 3 −.0709 .5240 4 .5835 12-1 5 .2612 6 −.5714 7 −1.9127 8 −.8276 t: et : 9 −.6714 10 11 .9352 1.803 12 13 .4947 .9435 14 .3156 15 16 −.6714 −1.0611 c. H0 : ρ = 0, Ha : ρ > 0. D = .857, dL = 1.10, dU = 1.37. If D > 1.37 conclude H0 , if D < 1.10 conclude Ha , otherwise the test is inconclusive. Conclude Ha . 12.10. a. r = .5784, 2(1 − .5784) = .8432, D = .857 b. b00 = −.69434, b01 = 50.93322 Ŷ 0 = −.69434 + 50.93322X 0 s{b00 } = 3.75590, s{b01 } = 4.34890 c. H0 : ρ = 0, Ha : ρ > 0. D = 1.476, dL = 1.08, dU = 1.36. If D > 1.36 conclude H0 , if D < 1.08 conclude Ha , otherwise the test is inconclusive. Conclude H0 . d. Ŷ = −1.64692 + 50.93322X s{b0 } = 8.90868, s{b1 } = 4.34890 f. F17 = −1.64692 + 50.93322(2.210) + .5784(−.6595) = 110.534, s{pred} = .9508, t(.975; 13) = 2.160, 110.534 ± 2.160(.9508), 108.48 ≤ Y17(new) ≤ 112.59 g. t(.975; 13) = 2.160, 50.93322 ± 2.160(4.349), 41.539 ≤ β1 ≤ 60.327. 12.11. a. ρ: .1 SSE: 11.5073 .2 10.4819 .3 .4 9.6665 9.0616 .5 8.6710 ρ: .6 .7 .8 .9 1.0 SSE: 8.5032 8.5718 8.8932 9.4811 10.3408 ρ = .6 b. Ŷ 0 = −.5574 + 50.8065X 0 , s{b00 } = 3.5967, s{b01 } = 4.3871 c. H0 : ρ = 0, Ha : ρ > 0. D = 1.499, dL = 1.08, dU = 1.36. If D > 1.36 conclude H0 , if D < 1.08 conclude Ha , otherwise test is inconclusive. Conclude H0 . d. Ŷ = −1.3935 + 50.8065X, s{b0 } = 8.9918, s{b1 } = 4.3871 f. F17 = −1.3935+50.8065(2.210)+.6(−.6405) = 110.505, s{pred} = .9467, t(.975; 13) = 2.160, 110.505 ± 2.160(.9467), 108.46 ≤ Y17(new) ≤ 112.55 12.12. a. b1 = 49.80564, s{b1 } = 4.77891 b. H0 : ρ = 0, Ha : ρ 6= 0. D = 1.75 (based on regression with intercept term), dL = 1.08, dU = 1.36. If D > 1.36 and 4 − D > 1.36 conclude H0 , if D < 1.08 or 4 − D < 1.08 conclude Ha , otherwise the test is inconclusive. Conclude H0 . c. Ŷ = .71172 + 49.80564X, s{b1 } = 4.77891 e. F17 = .71172 + 49.80564(2.210) − .5938 = 110.188, s{pred} = .9078, t(.975; 14) = 2.145, 110.188 ± 2.145(.9078), 108.24 ≤ Y17(new) ≤ 112.14 f. t(.975; 14) = 2.145, 49.80564 ± 2.145(4.77891), 39.555 ≤ β1 ≤ 60.056 12.13. a. Ŷ = 93.6865 + 50.8801X, s{b0 } = .8229, s{b1 } = .2634 t: et : 1 −1.5552 2 3 −.2471 −.1526 4 5 −.2078 .3349 12-2 6 .6431 7 .2557 t: et : 8 9 .5610 −.4949 10 −.6824 t: et : 15 −.0299 17 .8066 16 .5671 11 .0747 12 13 −.0817 −.2336 18 19 .1203 .5750 14 −1.0425 20 .7294 c. H0 : ρ = 0, Ha : ρ > 0. D = .974, dL = .95, dU = 1.15. If D > 1.15 conclude H0 , if D < .95 conclude Ha , otherwise the test is inconclusive. The test is inconclusive. 12.14. a. r = .3319, 2(1 − .3319) = 1.3362, D = .974 b. b00 = 63.3840, b01 = 50.5470 Ŷ 0 = 63.3840 + 50.5470X 0 s{b00 } = .5592, s{b01 } = .2622 c. H0 : ρ = 0, Ha : ρ > 0. D = 1.76, dL = .93, dU = 1.13. If D > 1.13 conclude H0 , if D < .93 conclude Ha , otherwise the test is inconclusive. Conclude H0 . d. Ŷ = 94.8720 + 50.5470X s{b0 } = .8370, s{b1 } = .2622 f. F21 = 94.8720 + 50.5470(3.625) + .3319(.7490) = 278.3535, s{pred} = .4743, t(.995; 17) = 2.898, 278.3535 ± 2.898(.4743), 276.98 ≤ Y21(new) ≤ 279.73 g. t(.995; 17) = 2.898, 50.5470 ± 2.898(.2622), 49.787 ≤ β1 ≤ 51.307 12.15. a. ρ: .1 .2 .3 .4 .5 SSE: 4.0450 3.7414 3.5511 3.4685 3.4889 ρ: .6 .7 .8 .9 1.0 SSE: 3.6126 3.8511 4.2292 4.7772 5.5140 ρ = .4 b. Ŷ 0 = 57.04056 + 50.49249X 0 , s{b00 } = .53287, s{b01 } = .27697 c. H0 : ρ = 0, Ha : ρ > 0. D = 1.905, dL = .93, dU = 1.13. If D > 1.13 conclude H0 , if D < .93 conclude Ha , otherwise test is inconclusive. Conclude H0 . d. Ŷ = 95.0676 + 50.49249X, s{b0 } = .88812, s{b1 } = .27697 f. F21 = 95.0676+50.49249(3.625)+.4(.7506) = 278.403, s{pred} = .4703, t(.995; 17) = 2.898, 278.403 ± 2.898(.4703), 277.04 ≤ Y21(new) ≤ 279.77 g. t(.995; 17) = 2.898, 50.49249 ± 2.898(.27697), 49.690 ≤ β1 ≤ 51.295 12.16. a. b01 = 50.16414, s{b01 } = .42496, Ŷ 0 = 50.16414X 0 b. H0 : ρ = 0, Ha : ρ 6= 0. D = 2.425 (based on regression with intercept term), dL = .93, dU = 1.13. If D > 1.13 and 4 − D > 1.13 conclude H0 , if D < .93 or 4 − D < .93 conclude Ha , otherwise test is inconclusive. Conclude H0 . c. Ŷ = 95.88984 + 50.16414X, s{b1 } = .42496 e. F21 = 95.88984+50.16414(3.625)+1.116 = 278.851, s{pred} = .5787, t(.995; 18) = 2.878, 278.851 ± 2.878(.5787), 277.19 ≤ Y21(new) ≤ 280.52 f. t(.995; 18) = 2.878, 50.16416 ± 2.878(.42496), 48.941 ≤ β1 ≤ 51.387 12-3 12.17. a. Positive b. Ŷ = −1.43484 + .17616X, s{b0 } = .24196, s{b1 } = .0016322 c. t: et : 1 −.0307 2 3 −.0664 .0180 t: et : 8 −.0613 9 10 −.0969 −.1517 t: et : 15 16 .1844 .1054 17 .0289 4 .1593 5 .0428 11 −.1501 18 .0422 6 .0429 12 −.0754 19 −.0439 7 .0582 13 −.0249 14 .1043 20 −.0852 d. H0 : ρ = 0, Ha : ρ > 0. D = .663, dL = .95, dU = 1.15. If D > 1.15 conclude H0 , if D < .95 conclude Ha , otherwise the test is inconclusive. Conclude Ha . 12.18. a. r = .67296, 2(1 − .67296) = .65408, D = .663 b. Ŷ = −.29235 + .17261X 0 , s{b00 } = .17709, s{b01 } = .00351. c. H0 : ρ = 0, Ha : ρ > 0. D = 1.364, dL = .93, dU = 1.13. If D > 1.13 conclude H0 , if D < .93 conclude Ha , otherwise test is inconclusive. Conclude H0 . d. Ŷ = −.89390 + .17261X, s{b0 } = .54149, s{b1 } = .00351 f. F21 = −.89390 + .17261(181.0) + .67296(−.015405) = 30.338, s{pred} = .09155, t(.95; 17) = 1.740, 30.338 ± 1.740(.09155), 30.179 ≤ Y21(new) ≤ 30.497. g. t(.95; 17) = 1.740, .17261 ± 1.740(.00351), .1665 ≤ β1 ≤ .1787. 12.19. a. ρ: .1 SSE: .1492 ρ: SSE: .6 .09275 .2 .3 .1318 .1176 .7 .08978 .4 .1064 .5 .09817 .8 .9 1.0 .08857 .08855 .09433 ρ = .9 b. Ŷ 0 = .04644 + .16484X 0 , s{b00 } = .11230, s{b01 } = .006538 c. H0 : ρ = 0, Ha : ρ > 0. D = 1.453, dL = .93, dU = 1.13. If D > 1.13 conclude H0 , if D < .93 conclude Ha , otherwise test is inconclusive. Conclude H0 . d. Ŷ = .4644 + .16484X, s{b0 } = 1.1230, s{b1 } = .006538. f. F21 = .4644+.16484(181.0)+.9(−.03688) = 30.267, s{pred} = .09545, t(.95; 17) = 1.740, 30.267 ± 1.740(.09545), 30.101 ≤ Y21(new) ≤ 30.433 g. t(.95; 17) = 1.740, .16484 ± 1.740(.006538), .1535 ≤ β1 ≤ .1762. 12.20. a. b01 = .16883, s{b01 } = .0055426, Ŷ 0 = .16883X 0 b. H0 : ρ = 0, Ha : ρ > 0. D = 1.480 (based on regression with intercept term), dL = .93, dU = 1.13. If D > 1.13 conclude H0 , if D < .93 conclude Ha , otherwise test is inconclusive. Conclude H0 . c. Ŷ = −.35222 + .16883X, s{b1 } = .0055426 e. F21 = −.35222 + .16883(181.0) + .0942 = 30.300, s{pred} = .0907, t(.95; 18) = 1.734, 30.300 ± 1.734(.0907), 30.143 ≤ Y21(new) ≤ 30.457 12-4 f. t(.95; 18) = 1.734, .16883 ± 1.734(.0055426), .1592 ≤ β1 ≤ .1784 12.22. σ{εt , εt−2 } = E{εt εt−2 } = E{[ut + ρut−1 + ρ2 ut−2 + ρ3 ut−3 + · · ·] ×[ut−2 + ρut−3 + ρ2 ut−4 + · · ·]} = E{[(ut + ρut−1 ) + ρ2 (ut−2 + ρut−3 + · · ·)] ×[ut−2 + ρut−3 + ρ2 ut−4 + · · ·]} = E{(ut + ρut−1 )(ut−2 + ρut−3 + ρ2 ut−4 + · · ·)} +E{ρ2 (ut−2 + ρut−3 + ρ2 ut−4 + · · ·)2 } = ρ2 E{ut−2 + ρut−3 + ρ2 ut−4 + · · ·}2 = ρ2 E{ε2t−2 } ! à σ2 2 2 2 2 2 = ρ σ {εt−2 } = ρ σ {εt } = ρ 1 − ρ2 12.23. a. E{Y } = 100 − .35X t: 1 2 3 4 5 6 Yt : 67.2058 61.5825 58.8570 67.2065 68.9889 73.4943 t: 7 Yt : 74.8076 8 9 10 66.7686 62.9622 61.3573 Ŷ = 96.08317 − .30839X b. t: 1 Yt : 65.7640 2 3 4 5 6 60.2590 57.7580 66.6920 69.7650 74.2510 t: 7 Yt : 74.9610 8 9 10 67.1840 62.9510 61.5300 Ŷ = 98.94338 − .34023X c. t: 1 Yt : 64.0819 2 3 4 5 6 60.9017 56.9518 67.4257 70.5170 74.0641 t: 7 Yt : 74.7411 8 9 10 67.7152 62.2754 62.2122 Ŷ = 99.45434 − .34576X εt − εt−1 : t: 1 ρ = .6: −.1972 ρ = 0: −1.6390 ρ = −.7: −3.3211 t: 6 ρ = .6: 1.0054 ρ = 0: .9860 ρ = −.7: .0471 2 −.3733 −.2550 2.0698 3 −.9750 −.7510 −2.1999 7 8 −.4367 .7110 −1.0400 .9730 −1.0730 1.7241 12-5 4 5 −2.1510 .0324 −1.5660 1.3230 −.0261 1.3413 9 −.3064 −.7330 −1.9398 10 .1451 .3290 1.6868 d. ρ .6 0 -.7 Σ(εt − εt−1 )2 7.579 11.164 32.687 12.24. Yt0 = Yt − ρYt−1 = β0 + β1 Xt1 + β2 Xt2 + εt − ρ(β0 + β1 Xt−1,1 + β2 Xt−1,2 + εt−1 ) = β0 (1 − ρ) + β1 (Xt1 − ρXt−1,1 ) + β2 (Xt2 − ρXt−1,2 ) + (εt − ρεt−1 ) Since εt − ρεt−1 = ut , we have: 0 0 + ut + β20 Xt2 Yt0 = β00 + β10 Xt1 0 where β00 = β0 (1 − ρ), β10 = β1 , β20 = β2 , Xt1 = Xt1 − ρXt−1,1 , and 0 Xt2 = Xt2 − ρXt−1,2 12.25. a. Yt0 = Yt − ρ1 Yt−1 − ρ2 Yt−2 Xt0 = Xt − ρ1 Xt−1 − ρ2 Xt−2 b. By regressing the residuals et against the two independent variables et−1 and et−2 with no intercept term in the regression model and obtaining the two regression coefficients. The answer to Exercise 6.23a provides the explicit formulas, with Y , X1 , and X2 replaced by et , et−1 , and et−2 , respectively. c. By minimizing SSE = P (Yt0 − b00 − b01 Xt0 )2 with respect to ρ1 and ρ2 . 12.26. Yn+1 = β0 + β1 Xn+1 + ρ1 εn + ρ2 εn−1 + un+1 since εn+1 = ρ1 εn + ρ2 εn−1 + un+1 . Therefore: Fn+1 = Ŷn+1 + r1 en + r2 en−1 where r1 and r2 are point estimates of ρ1 and ρ2 , respectively, obtained by either the Cochrane-Orcutt procedure or the Hildreth-Lu procedure. 12.27. c. E{b1 } = 24 even in presence of positive autocorrelation. 12-6 Chapter 13 INTRODUCTION TO NONLINEAR REGRESSION AND NEURAL NETWORKS 13.1. a. Intrinsically linear loge f (X, γ) = γ0 + γ1 X b. Nonlinear c. Nonlinear 13.2. a. Intrinsically linear loge f (X, γ) = γ0 + γ1 loge X b. Intrinsically linear loge f (X, γ) = loge γ0 + γ1 loge X1 + γ2 loge X2 c. Nonlinear 13.3. b. 300, 3.7323 13.4. b. 49, 2.2774 13.5. (0) (0) (0) a. b0 = −.5072512, b1 = −0.0006934571, g0 = 0, g1 = .0006934571, g2 = .6021485 b. g0 = .04823, g1 = .00112, g2 = .71341 13.6. a. Ŷ = .04823 + .71341exp(−.00112X) i: 1 Ŷi : .61877 ei : .03123 Exp. value: .04125 City A 2 3 .50451 .34006 −.04451 −.00006 −.04125 −.00180 i: 6 Ŷi : .12458 ei : .02542 Exp. value: .02989 7 8 .07320 .05640 −.01320 −.01640 −.01777 −.02304 13-1 4 .23488 .02512 .02304 5 .16760 .00240 .00180 City B 10 11 .50451 .34006 −.00451 −.04006 −.00545 −.02989 i: 9 Ŷi : .61877 ei : .01123 Exp. value: .01327 i: 14 Ŷi : .12458 ei : −.00458 Exp. value: −.00923 12 .23488 .00512 .00545 13 .16760 .02240 .01777 15 16 .07320 .05640 .00680 −.00640 .00923 −.01327 13.7. H0 : E{Y } = γ0 + γ2 exp(−γ1 X), Ha : E{Y } 6= γ0 + γ2 exp(−γ1 X). SSP E = .00290, SSE = .00707, M SP E = .00290/8 = .0003625, M SLF = (.00707 − .00290)/5 = .000834, F ∗ = .000834/.0003625 = 2.30069, F (.99; 5, 8) = 6.6318. If F ∗ ≤ 6.6318 conclude H0 , otherwise Ha . Conclude H0 . 13.8. s{g0 } = .01456, s{g1 } = .000092, s{g2 } = .02277, z(.9833) = 2.128 13.9. .04823 ± 2.128(.01456) .01725 ≤ γ0 ≤ .07921 .00112 ± 2.128(.000092) .00092 ≤ γ1 ≤ .00132 .71341 ± 2.128(.02277) .66496 ≤ γ2 ≤ .76186 a. g0 = .04948, g1 = .00112, g2 = .71341, g3 = −.00250 b. z(.975) = 1.96, s{g3 } = .01211, −.00250 ± 1.96(.01211), −.02624 ≤ γ3 ≤ .02124, yes, no. 13.10. (0) (0) a. b0 = .03376, b1 = .454, g0 = 29.6209, g1 = 13.4479 b. g0 = 28.13705, g1 = 12.57445 13.11. a. Ŷ = 28.13705X/(12.57445 + X) b. i: Ŷi : ei : Exp. value: 1 2.0728 .0272 −.1076 2 2.9987 −.4987 −.5513 3 3.8611 1.0389 .9447 i: Ŷi : ei : Exp. value: 7 9.0890 .5110 .4390 8 10.5123 −.3123 −.3442 9 11.3486 .0514 .0356 i: Ŷi : ei : Exp. value: 13 16.3726 .6274 .6983 14 17.2755 −.4755 −.4390 15 18.7209 −.1209 −.1817 c. No 13-2 4 5.4198 .0802 .1076 5 6.7905 .2095 .2597 10 12.4641 .0359 −.0356 16 19.8267 −.1267 −.2597 6 8.0051 .3949 .3442 11 14.0268 −.9268 −.9447 17 20.7001 .5999 .5513 12 15.3060 −.7060 −.6983 18 21.4074 .1926 .1817 13.12. s{g0 } = .72798, s{g1 } = .76305, z(.975) = 1.960 (1) 28.13705 ± 1.960(.72798), 26.7102 ≤ γ0 ≤ 29.5639 (2) H0 : γ1 = 20, Ha : γ1 6= 20. z ∗ = (12.57445 − 20)/.76305 = −9.731. If |z ∗ | ≤ 1.960 conclude H0 , otherwise Ha . Conclude Ha . 13.13. g0 = 100.3401, g1 = 6.4802, g2 = 4.8155 13.14. a. Ŷ = 100.3401 − 100.3401/[1 + (X/4.8155)6.4802 ] b. i: Ŷi : ei : Expected Val.: 1 .0038 .4962 .3928 2 .3366 1.9634 1.6354 3 4.4654 −1.0654 −1.0519 4 11.2653 .2347 −.1947 i: Ŷi : ei : Expected Val.: 8 39.3272 .2728 .1947 9 39.3272 −1.4272 −1.3183 10 56.2506 −1.5506 −1.6354 i: Ŷi : ei : Expected Val.: 15 80.8876 −.2876 −.3928 16 87.7742 1.4258 1.3183 17 92.1765 2.6235 2.7520 5 11.2653 −.3653 −.5981 11 56.2506 .5494 .5981 18 96.7340 −.5340 −.8155 6 23.1829 .8171 .8155 12 70.5308 .2692 .0000 7 23.1829 2.1171 2.0516 13 70.5308 −2.1308 −2.0516 14 80.8876 1.2124 1.0519 19 98.6263 −2.2263 −2.7520 13.15. H0 : E{Y } = γ0 − γ0 /[1 + (X/γ2 )γ1 ], Ha : E{Y } 6= γ0 − γ0 /[1 + (X/γ2 )γ1 ]. SSP E = 8.67999, SSE = 35.71488, M SP E = 8.67999/6 = 1.4467, M SLF = (35.71488 − 8.67999)/10 = 2.7035, F ∗ = 2.7035/1.4467 = 1.869,F (.99; 10, 6) = 7.87. If F ∗ ≤ 7.87 conclude H0 , otherwise Ha . Conclude H0 . 13.16. s{g0 } = 1.1741, s{g1 } = .1943, s{g2 } = .02802, z(.985) = 2.17 100.3401 ± 2.17(1.1741) 13.17. 97.7923 ≤ γ0 ≤ 102.8879 6.4802 ± 2.17(.1943) 6.0586 ≤ γ1 ≤ 6.9018 4.8155 ± 2.17(.02802) 4.7547 ≤ γ2 ≤ 4.8763 (0) (0) (0) a. b0 = .98187, b1 = .51485, b2 = .29845, g0 = 9.5911, g1 = .51485, g2 = .29845 b. g0 = 10.0797, g1 = .49871, g2 = .30199 13.18. a. Ŷ = 10.0797X1.49871 X2.30199 b. i: Ŷi : ei : Exp.val: 1 10.0797 1.9203 1.4685 2 31.7801 .2199 .2880 3 100.1987 2.8013 2.7817 13-3 4 20.2039 −.2039 −.2880 5 63.7005 −2.7005 −2.7817 6 200.8399 −2.8399 −3.5476 i: Ŷi : ei : Exp.val: 7 40.4970 −2.4970 −2.0992 8 127.6823 5.3177 5.6437 9 402.5668 3.4332 3.5476 10 10.0797 −2.0797 −.8696 i: Ŷi : ei : Exp.val: 13 20.2039 −6.2039 −5.6437 14 63.7005 −7.7005 −7.6346 15 200.8399 4.1601 4.4559 16 40.4970 2.5030 2.0992 11 31.7801 6.2199 7.6346 12 100.1987 −2.1987 −1.4685 17 127.6823 .3177 .8696 18 402.5668 −4.5668 −4.4559 13.19. H0 : E{Y } = γ0 X1γ1 X2γ2 , Ha : E{Y } 6= γ0 X1γ1 X2γ2 . F (.95; 6, 9) = 3.37, SSP E = 150.5, SSE = 263.443, SSLF = 112.943, F ∗ = [112.943/(15 − 9)] ÷ (150.5/9) = 1.126. If F ∗ ≤ 3.37 conclude H0 , otherwise Ha . Conclude H0 . 13.20. a. H0 : γ1 = γ2 , Ha : γ1 6= γ2 . F (.95; 1, 15) = 4.54, SSP E = 263.443, SSE = 9, 331.62, M SP E = 263.443/15 = 17.563, M SLF = (9, 331.62 − 263.443)/1 = 9, 068.177, F ∗ = 9, 068.177/17.563 = 516.327. If F ∗ ≤ 4.54 conclude H0 , otherwise Ha . Conclude Ha . b. s{g1 } = .00781, s{g2 } = .00485, z(.9875) = 2.24 .49871 ± 2.24(.00781) .4812 ≤ γ1 ≤ .5162 .30199 ± 2.24(.00485) .2911 ≤ γ2 ≤ .3129 c. γ1 6= γ2 13.21. 13.22. P a. Q = {Yi − [γ0 + γ2 exp(−γ1 Xi )]}2 X ∂Q = −2 [Yi − γ0 − γ2 exp(−γ1 Xi )] ∂γ0 X ∂Q = 2 [Yi − γ0 − γ2 exp(−γ1 Xi )][γ2 Xi exp(−γ1 Xi )] ∂γ1 X ∂Q = −2 [Yi − γ0 − γ2 exp(−γ1 Xi )][exp(−γ1 Xi )] ∂γ2 Setting each derivative equal to zero, simplifying, and substituting the least squares estimators g0 , g1 , and g2 yields: P P Yi − ng0 − g2 exp(−g1 Xi ) = 0 P P P g2 Yi Xi exp(−g1 Xi ) − g0 g2 Xi exp(−g1 Xi ) − g22 Xi exp(−2g1 Xi ) = 0 P P P Yi exp(−g1 Xi ) − g0 exp(−g1 Xi ) − g2 exp(−2g1 Xi ) = 0 ¾ ½ 1 1 X 2 exp − [Y − γ − γ exp(−γ X )] b. L(γ, σ 2 ) = i 0 2 1 i (2πσ 2 )n/2 2σ 2 a. Q = P à γ0 Xi Yi − γ1 + Xi !2 à X γ0 X i ∂Q Yi − = −2 ∂γ0 γ1 + Xi à X γ0 Xi ∂Q Yi − =2 ∂γ1 γ1 + X i !à !" Xi γ1 + Xi ! γ0 Xi (γ1 + Xi )2 13-4 # Setting the derivatives equal to zero, simplifying, and substituting the least squares estimators g0 and g1 yields: P g0 à X Xi Yi Xi − g0 g1 + Xi g1 + Xi P !2 =0 " # X Xi2 Yi Xi 2 − g =0 0 (g1 + Xi )2 (g1 + Xi )3 à 1 1 X γ0 Xi − b. L(γ, σ 2 ) = exp Yi − 2 n/2 2 (2πσ ) 2σ γ1 + X i 13.23. !2 P γ1 γ2 2 a. Q = (Yi − γ0 Xi1 Xi2 ) X ∂Q γ1 γ2 γ1 γ2 = −2 (Yi − γ0 Xi1 Xi2 ) (Xi1 Xi2 ) ∂γ0 X ∂Q γ1 γ2 γ1 γ2 = −2 (Yi − γ0 Xi1 Xi2 ) (γ0 Xi1 Xi2 loge Xi1 ) ∂γ1 X ∂Q γ1 γ2 γ1 γ2 = −2 (Yi − γ0 Xi1 Xi2 ) (γ0 Xi1 Xi2 loge Xi2 ) ∂γ2 Setting the derivatives equal to zero, simplifying, and substituting the least squares estimators g0 , g1 , and g2 yields: P g0 g1 g2 Yi Xi1 Xi2 − g0 P P P 2g1 2g2 Xi1 Xi2 = 0 g1 g2 Yi Xi1 Xi2 loge Xi1 − g02 P P 2g1 2g2 Xi1 Xi2 loge Xi1 = 0 g1 g2 2g1 2g2 Yi Xi1 Xi2 loge Xi2 − g02 Xi1 Xi2 loge Xi2 = 0 · ¸ 1 1 X γ1 γ2 2 exp − (Y − γ X X ) b. L(γ, σ 2 ) = i 0 i1 i2 (2πσ 2 )n/2 2σ 2 g0 ( 13.24. ) γ0 a. E{Y } = E γ0 − +ε 1 + (X/γ2 )γ1 " # µ γ0 (X/γ2 )γ1 A = γ0 − = γ = γ0 0 γ γ 1 1 1 + (X/γ2 ) 1 + (X/γ2 ) 1+A ¶ since (X/γ2 )γ1 = exp[γ1 (loge X − loge γ2 )]. b. E{Y 0 } = (1/γ0 )E{Y 0 } = A/(1 + A); hence: A E{Y 0 } = 1 + A = A = exp(β0 + β1 X 0 ) A 1 − E{Y 0 } 1− 1+A ! à ! à 0 Y Y = loge , X 0 = loge X c. loge 1−Y0 γ0 − Y d. Since β0 = −γ1 loge γ2 or 0 /γ1 ) and γ1 = β1 , starting values are ³ γ2 = exp(−β ´ (0) (0) (0) g1 = b1 and g2 = exp −b0 /g1 . 13.25. 13-5 (5, 5) (5, 15) (5, 25) (5, 35) (5, 45) (5, 55) (5, 65) (15, 5) (15, 15) (15, 25) (15, 35) (15, 45) (15, 55) (15, 65) (25, 5) (25, 15) (25, 25) (25, 35) (25, 45) (25, 55) (25, 65) (35, 5) (35, 15) (35, 25) (35, 35) (35, (35, (35, (45, (45, (45, (45, (45, (45, (45, (55, (55, (55, (55, (55, (55, (55, (65, (65, (65, (65, (65, (65, (65, 1,908.388 2,285.707 2,489.092 2,620.201 2,712.754 2,781.925 2,835.726 303.526 838.411 1,241.451 1,531.436 1,748.814 1,917.745 2,052.838 209.013 105.367 431.908 742.980 1,004.812 1,222.057 1,403.365 1,624.851 86.575 60.464 254.834 45) 55) 65) 5) 15) 25) 35) 45) 55) 65) 5) 15) 25) 35) 45) 55) 65) 5) 15) 25) 35) 45) 55) 65) 480.747 694.863 887.306 4,551.038 782.035 127.119 66.999 176.620 336.160 504.661 8,987.574 2,191.748 631.873 179.473 92.431 145.951 255.430 14,934.461 4,315.713 1,574.725 592.257 228.178 124.234 139.613 13.26. (1, .2, .1) (1, .2, .4) (1, .2, .7) (1, .5, .1) (1, .5, .4) (1, .5, .7) (1, .8, .1) (1, .8, .4) (1, .8, .7) (11, .2, .1) (11, .2, .4) (11, .2, .7) (11, .5, .1) (11, .5, .4) 459,935 433,916 345,157 429,284 342,964 119,656 322,547 98,262.9 728,313 348,524 153,117 494,720 124,813 201,515 (11, (11, (11, (11, (21, (21, (21, (21, (21, (21, (21, (21, (21, 13-6 .5, .8, .8, .8, .2, .2, .2, .5, .5, .5, .8, .8, .8, .7) .1) .4) .7) .1) .4) .7) .1) .4) .7) .1) .4) .7) 12,640,200 649,132 13,211,900 238,296,000 257,136 57,435.2 3,225,660 46,639.7 2,152,210 54,335,000 4,290,060 56,967,000 903,149,000 Chapter 14 LOGISTIC REGRESSION, POISSON REGRESSION,AND GENERALIZED LINEAR MODELS 14.3. No 14.4. a. E{Y } = [1 + exp(25 − .2X)]−1 b. 125 c. X = 150 : π = .993307149, π/(1 − π) = 148.41316 X = 151 : π = .994513701, π/(1 − π) = 181.27224 181.27224/148.41316 = 1.2214 = exp(.2) 14.5. a. E{Y } = [1 + exp(−20 + .2X)]−1 b. 100 c. X = 125 : π = .006692851, π/(1 − π) = .006737947 X = 126 : π = .005486299, π/(1 − π) = .005516565 005516565/.006737947 = .81873 = exp(−.2) 14.6. a. E{Y } = Φ(−25 + .2X) b. 125 14.7. a. b0 = −4.80751, b1 = .12508, π̂ = [1 + exp(4.80751 − .12508X)]−1 c. 1.133 d. .5487 e. 47.22 14.8. a. b0 = −2.94964, b1 = .07666, π̂ = Φ(−2.94964 + .07666X) b. b0 = −3.56532, b1 = .08227, π̂ = 1 − exp(− exp(−3.56532 + .08227X)) 14-1 14.9. a. b0 = −10.3089, b1 = .01892, π̂ = [1 + exp(10.3089 − .01892X)]−1 c. 1.019 d. .5243 e. 589.65 14.10. a. b0 = −6.37366, b1 = .01169, π̂ = Φ(−6.37366 + .01169X) b. b0 = −7.78587, b1 = .01344, π̂ = 1 − exp(− exp(−7.78587 + .01344X)) 14.11. a. j: 1 pj : .144 2 3 .206 .340 4 .592 5 6 .812 .898 b. b0 = −2.07656, b1 = .13585 π̂ = [1 + exp(2.07656 − .13585X)]−1 d. 1.1455 e. .4903 f. 23.3726 14.12. a&b. j: 1 pj : .112 2 3 .212 .372 4 .504 5 6 .688 .788 b0 = −2.6437, b1 = .67399 π̂ = [1 + exp(2.6437 − .67399X)]−1 d. 1.962 e. .4293 f. 3.922 14.13. a. b0 = −4.73931, b1 = .067733, b2 = .598632, π̂ = [1 + exp(4.73931 − .067733X1 − .598632X2 )]−1 b. 1.070, 1.820 c. .6090 14.14. a. b0 = −1.17717, b1 = .07279, b2 = −.09899, b3 = .43397 π̂ = [1 + exp(1.17717 − .07279X1 + .09899X2 − .43397X3 )]−1 b. exp(b1 ) = 1.0755, exp(b2 ) = .9058, exp(b3 ) = 1.5434 c. .0642 14.15. a. z(.95) = 1.645, s{b1 } = .06676, exp[.12508 ± 1.645(.06676)], 14-2 1.015 ≤ exp(β1 ) ≤ 1.265 b. H0 : β1 = 0, Ha : β1 6= 0. b1 = .12508, s{b1 } = .06676, z ∗ = .12508/.06676 = 1.8736. z(.95) = 1.645, |z ∗ | ≤ 1.645, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value=.0609. c. H0 : β1 = 0, Ha : β1 6= 0. G2 = 3.99, χ2 (.90; 1) = 2.7055. If G2 ≤ 2.7055, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value=.046 14.16. a. z(.975) = 1.960, s{b1 } = .007877, exp[.01892±1.960(.007877)], 1.0035 ≤ exp(β1 ) ≤ 1.0350 b. H0 : β1 = 0, Ha : β1 6= 0. b1 = .01892, s{b1 } = .007877, z ∗ = .01892/.007877 = 2.402. z(.975) = 1.960, |z ∗ | ≤ 1.960, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value= .0163. c. H0 : β1 = 0, Ha : β1 6= 0. G2 = 8.151, χ2 (.95; 1) = 3.8415. If G2 ≤ 3.8415, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value=.004. 14.17. a. z(.975) = 1.960, s{b1 } = .004772, .13585 ± 1.960(.004772), .1265 ≤ β1 ≤ .1452, 1.1348 ≤ exp(β1 ) ≤ 1.1563. b. H0 : β1 = 0, Ha : β1 6= 0. b1 = .13585, s{b1 } = .004772, z ∗ = .13585/.004772 = 28.468. z(.975) = 1.960, |z ∗ | ≤ 1.960, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value= 0+. c. H0 : β1 = 0, Ha : β1 6= 0. G2 = 1095.99, χ2 (.95; 1) = 3.8415. If G2 ≤ 3.8415, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value= 0+. 14.18. a. z(.995) = 2.576, s{b1 } = .03911, .67399 ± 2.576(.03911), .5732 ≤ β1 ≤ .7747, 1.774 ≤ exp(β1 ) ≤ 2.170. b. H0 : β1 = 0, Ha : β1 6= 0. b1 = .67399, s{b1 } = .03911, z ∗ = .67399/.03911 = 17.23. z(.995) = 2.576, |z ∗ | ≤ 2.576, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value= 0+. c. H0 : β1 = 0, Ha : β1 6= 0. G2 = 381.62, χ2 (.99; 1) = 6.6349. If G2 ≤ 6.6349, conclude H0 , otherwise conclude Ha . Conclude Ha . P -value= 0+. 14.19. a. z(1−.1/[2(2)]) = z(.975) = 1.960, s{b1 } = .02806, s{b2 } = .3901, exp{20[.067733± 1.960(.02806)]}, 1.29 ≤ exp(20β1 ) ≤ 11.64, exp{2[.5986 ± 1.960(.3901)]},.72 ≤ exp(2β2 ) ≤ 15.28. b. H0 : β2 = 0, Ha : β2 6= 0. b2 = .5986, s{b2 } = .3901, z ∗ = .5986/.3901 = 1.53. z(.975) = 1.96, |z ∗ | ≤ 1.96, conclude H0 , otherwise conclude Ha . Conclude H0 . P -value= .125. c. H0 : β2 = 0, Ha : β2 6= 0. G2 = 2.614, χ2 (.95; 1) = 3.8415. If G2 ≤ 3.8415, conclude H0 , otherwise conclude Ha . Conclude H0 . P -value= .1059. d. H0 : β3 = β4 = β5 = 0, Ha : not all βk = 0, for k = 3, 4, 5. G2 = 2.438, χ2 (.95; 3) = 7.81. If G2 ≤ 7.81, conclude H0 , otherwise conclude Ha . Conclude H0 . P -value= .4866. 14-3 14.20. a. z(1−.1/[2(2)]) = z(.975) = 1.960, s{b1 } = .03036, s{b2 } = .03343, exp{30[.07279± 1.960(.03036)]}, 1.49 ≤ exp(30β1 ) ≤ 52.92, exp{25[−.09899±1.960(.03343)]},.016 ≤ exp(2β2 ) ≤ .433. b. H0 : β3 = 0, Ha : β3 6= 0. b3 = .43397, s{b3 } = .52132, z ∗ = .43397/.52132 = .8324. z(.975) = 1.96, |z ∗ | ≤ 1.96, conclude H0 , otherwise conclude Ha . Conclude H0 . P -value= .405. c. H0 : β3 = 0, Ha : β3 6= 0. G2 = .702, χ2 (.95; 1) = 3.8415. If G2 ≤ 3.8415, conclude H0 , otherwise conclude Ha . Conclude H0 . d. H0 : β3 = β4 = β5 = 0, Ha : not all βk = 0, for k = 3, 4, 5. G2 = 1.534, χ2 (.95; 3) = 7.81. If G2 ≤ 7.81, conclude H0 , otherwise conclude Ha . Conclude H0 . 14.21. a. X1 enters in step 1; no variables satisfy criterion for entry in step 2. b. X22 is deleted in step 1; X11 is deleted in step 2; X12 is deleted in step 3; X2 is deleted in step 4; X1 is retained in the model. c. The best model according to the AICp criterion is based on X1 and X2 . AIC3 = 42.6896. d. The best model according to the SBCp criterion is based on X1 . SBC2 = 46.2976. 14.22. a. X1 enters in step 1; X2 enters in step 2; no variables satisfy criterion for entry in step 3. b. X11 is deleted in step 1; X12 is deleted in step 2; X3 is deleted in step 3; X22 is deleted in step 4; X1 and X2 are retained in the model. c. The best model according to the AICp criterion is based on X1 and X2 . AIC3 = 111.795. d. The best model according to the SBCp criterion is based on X1 and X2 . SBC3 = 121.002. 14.23. j: Oj1 : Ej1 : Oj0 : Ej0 : 1 2 3 4 5 72 103 170 296 406 71.0 99.5 164.1 327.2 394.2 428 397 330 204 94 429.0 400.5 335.9 172.9 105.8 6 449 440.0 51 60.0 H0 : E{Y } = [1 + exp(−β0 − β1 X)]−1 , Ha : E{Y } 6= [1 + exp(−β0 − β1 X)]−1 . X 2 = 12.284, χ2 (.99; 4) = 13.28. If X 2 ≤ 13.28 conclude H0 , otherwise Ha . Conclude H0 . 14.24. 14-4 j: Oj1 : Ej1 : Oj0 : Ej0 : 1 2 3 4 28 53 93 126 30.7 53.8 87.4 128.3 222 197 157 124 219.3 196.2 162.6 121.7 5 172 168.5 78 81.6 6 197 200.5 53 49.5 H0 : E{Y } = [1 + exp(−β0 − β1 X)]−1 , Ha : E{Y } 6= [1 + exp(−β0 − β1 X)]−1 . X 2 = 1.452, χ2 (.99; 4) = 13.28. If X 2 ≤ 13.28 conclude H0 , otherwise Ha . Conclude H0 . 14.25. a. Class j 1 2 3 0 π̂ −1.1 −.4 .6 Interval Midpoint nj - under −.4 −.75 10 - under .6 .10 10 - under 1.5 1.05 10 pj .3 .6 .7 b. i: 1 2 rSPi : −.6233 1.7905 14.26. 3 −.6233 ··· ··· 28 .6099 29 .5754 30 −2.0347 a. Class j 1 2 3 0 π̂ −2.80 −.70 .80 Interval Midpoint nj - under −.70 −1.75 9 - under .80 .05 9 - under 2.00 1.40 9 pj .222 .556 .778 b. i: devi : 14.27. 1 −.6817 2 3 −.4727 −.5692 ··· ··· 25 26 1.0433 −.8849 27 .7770 a. Class j 1 2 3 0 π̂ Interval Midpoint nj −3.00 - under −1.10 −2.050 11 −1.10 - under .35 −.375 11 .35 - under 3.00 1.675 11 pj .273 .182 .818 b. i: 1 rSPi : −.7584 14.28. 2 −1.0080 3 .7622 ··· 31 32 33 · · · −.6014 1.3700 −.5532 a. j: 1 2 Oj1 : 0 1 Ej1 : .2 .5 Oj0 : 19 19 Ej0 : 18.8 19.5 3 4 5 0 2 1 1.0 1.5 2.4 20 18 19 19.0 18.5 17.6 14-5 6 7 8 8 2 10 3.4 4.7 10.3 12 18 10 16.6 15.3 9.7 b. H0 : E{Y } = [1 + exp(−β0 − β1 X1 − β2 X2 − β3 X3 )]−1 , Ha : E{Y } 6= [1 + exp(−β0 − β1 X1 − β2 X2 − β3 X3 )]−1 . X 2 = 12.116, χ2 (.95; 6) = 12.59. If X 2 ≤ 12.59, conclude H0 , otherwise conclude Ha . Conclude H0 . P -value = .0594. c. i: devi : 14.29 1 −.5460 2 3 ··· −.5137 1.1526 · · · 157 .4248 158 159 .8679 1.6745 a. i: 1 hii : .1040 2 .1040 3 .1040 ··· ··· 28 .0946 29 .1017 30 .1017 b. i: 1 2 .3885 3.2058 ∆devi : .6379 3.0411 Di : .0225 .1860 ∆Xi2 : 14.30 3 .3885 .6379 .0225 ··· ··· ··· ··· 28 4.1399 3.5071 .2162 29 .2621 .4495 .0148 30 .2621 .4495 .0148 a. i: 1 hii : .0968 2 .1048 3 .1044 ··· ··· 25 .0511 26 .0744 27 .0662 b. i: 1 ∆Xi2 : .2896 ∆devi : .4928 Di : .0155 14.31 2 .1320 .2372 .0077 3 .1963 .3445 .0114 ··· ··· ··· ··· 25 .7622 1.1274 .0205 26 .5178 .8216 .0208 27 .3774 .6287 .0134 a. i: 1 hii : .0375 2 .0420 3 .0780 ··· ··· 31 .0507 32 .0375 33 .0570 b. i: 1 2 ∆Xi : .5751 1.0161 ∆devi2 : .9027 1.4022 Di : .0112 .0223 14.32 3 .5809 .9031 .0246 ··· ··· ··· ··· 31 32 .3617 1.8769 .6087 2.1343 .0097 .0366 33 .3061 .5246 .0093 a. i: 1 hii : .0197 2 .0186 3 .0992 ··· ··· 157 .0760 158 .1364 159 .0273 b. i: 1 .1340 ∆devi : .2495 Di : .0007 ∆Xi2 : 14.33. 2 3 ··· .1775 1.4352 · · · .3245 1.8020 · · · .0008 .0395 · · · 157 .0795 .1478 .0016 158 159 .6324 2.7200 .9578 2.6614 .0250 .0191 a. z(.95) = 1.645, π̂ 0h = .19561, s2 {b0 } = 7.05306, s2 {b1 } = .004457, s{b0 , b1 } = −.175353, s{π̂ 0h } = .39428, .389 ≤ πh ≤ .699 14-6 b. Cutoff Renewers Nonrenewers Total .40 18.8 50.0 33.3 .45 25.0 50.0 36.7 .50 25.0 35.7 30.0 .55 43.8 28.6 36.7 .60 43.8 21.4 33.3 c. Cutoff = .50. Area = .70089. 14.34. a. z(.975) = 1.960, s2 {b0 } = 19.1581, s2 {b1 } = .00006205, s{b0 , b1 } = −.034293 0 Xh π̂ h 550 .0971 625 1.5161 0 s{π̂ h } .4538 .7281 .312 ≤ πh ≤ .728 .522 ≤ πh ≤ .950 b. Cutoff Able .325 14.3 .425 14.3 .525 21.4 .625 42.9 Unable 46.2 38.5 30.8 30.8 Total 29.6 25.9 25.9 37.0 c. Cutoff = .525. Area = .79670. 14.35. a. z(.975) = 1.960, π̂ 0h = −.04281, s2 {b0 } = .021824, s2 {b1 } = .000072174, s{b0 , b1 } = −.0010644, s{π̂ 0h } = .0783, .451 ≤ πh ≤ .528 b. Cutoff Purchasers Nonpurchasers Total .15 4.81 71.54 76.36 .30 11.70 45.15 56.84 .45 23.06 23.30 46.27 .60 23.06 23.30 46.27 .75 48.85 9.64 52.49 c. Cutoff = .45 (or .60). Area = .82445. 14.36. a. π̂ 0h = −1.3953, s2 {π̂ 0h } = .1613, s{ˆπh0 } = .4016, z(.95) = 1.645. L = −1.3953 − 1.645(.4016) = −2.05597, U = −1.3953 + 1.645(.4016) = −.73463. L∗ = [1 + exp(2.05597)]−1 = .11345, U ∗ = [1 + exp(.73463)]−1 = .32418. b. Cutoff Received Not receive Total .05 4.35 62.20 66.55 .10 13.04 39.37 52.41 .15 17.39 26.77 44.16 .20 39.13 15.75 54.88 c. Cutoff = .15. Area = .82222. 14.38. a. b0 = 2.3529, b1 = .2638, s{b0 } = .1317, s{b1 } = .0792, µ̂ = exp(2.3529 + .2638X). 14-7 b. i: devi : 1 .6074 2 −.4796 3 ··· −.1971 · · · 8 .3482 9 10 .2752 .1480 c. Xh : 0 1 2 3 Poisson: 10.5 13.7 17.8 23.2 Linear: 10.2 14.2 18.2 22.2 e. µ̂h = exp(2.3529) = 10.516 P (Y ≤ 10 | Xh = 0) = 10 (10.516)Y exp(−10.516) P Y =0 −5 = 2.7 × 10 Y! + · · · + .1235 = .5187 f. z(.975) = 1.96, .2638 ± 1.96(.0792), .1086 ≤ β1 ≤ .4190 14.39. a. b0 = .4895, b1 = −1.0694, b2 = −.0466, b3 = .0095, b4 = .0086, s{b0 } = .3369, s{b1 } = .1332, s{b2 } = .1200, s{b3 } = .0030, s{b4 } = .0043, µ̂ = exp(.4895 − 1.0694X1 − .0466X2 + .0095X3 + .0086X4 ) b. i: devi : 1 −.4816 2 3 ··· 98 99 −.6328 .4857 · · · −.3452 .0488 100 −.9889 c. H0 : β2 = 0, Ha : β2 6= 0. G2 = .151, χ2 (.95; 1) = 3.84. If G2 ≤ 3.84 conclude H0 , otherwise Ha . Conclude H0 . d. b1 = −1.0778, s{b1 } = .1314, z(.975) = 1.96, −1.0778 ± 1.96(.1314), −1.335 ≤ β1 ≤ −.820. " # exp(β0 + β1 X) exp(−β0 − β1 X) 1 14.40. E{Y } = = 1 + exp(β0 + β1 X) exp(−β0 − β1 X) 1 + exp(−β0 − β1 X) = [1 + exp(−β0 − β1 X)]−1 14.41. Formula (14.26) holds for given observations Y1 , Y2 ,... Yn . Assembling all terms with a given X value, Xj , we obtain: y.j (β0 + β1 Xj ) − nj loge [1 + exp(β0 + β1 Xj )] since ³ ´ there are nj cases with X value Xj , of which y.j have value Yi = 1. There are nj y.j ways of obtaining these y.j 1s out of nj , all of which are equally likely. Hence, in the log-likelihood function of the y.j , we must add loge given Xj : loge ³ nj y.j ´ ³ nj y.j + y.j (β0 + β1 Xj ) − nj loge [1 + exp(β0 + β1 Xj )] Assembling the terms for all Xj , we obtain (14.34). 14.42. From (14.16) and (14.18), we have: 14-8 ´ to the above term for exp(π 0 ) 1 + exp(π 0 ) Then: 1 + exp(π 0 ) − exp(π 0 ) 1−π = = [1 + exp(π 0 )]−1 0 1 + exp(π ) πi = π exp(π 0 ) = × [1 + exp(π 0 )] = exp(π 0 ) 1−π 1 + exp(π 0 ) Solving for π 0 = FL−1 (π) by taking logarithms of both sides yields the result. 14.43. From (14.26), we obtain: n X ∂ 2 loge L exp(β0 + β1 Xi ) = − 2 2 ∂β0 i=1 [(1 + exp(β0 + β1 Xi )] n X ∂ 2 loge L Xi2 exp(β0 + β1 Xi ) = − 2 ∂β12 i=1 [1 + exp(β0 + β1 Xi )] n X ∂ 2 loge L Xi exp(β0 + β1 Xi ) =− 2 ∂β0 ∂β1 i=1 [1 + exp(β0 + β1 Xi )] Since these partial derivatives only involve the constants Xi , β0 , and β1 , the expectations of the partial derivatives are the partial derivatives themselves. Hence: ( ∂ 2 loge L −E ∂β02 ( ∂ 2 loge L −E ∂β12 ) ( ∂ 2 loge L −E ∂β0 ∂β1 = −g00 ) ) = −g01 = −g10 = −g11 and the stated matrix reduces to (14.51). " 14.44. 4.1762385 74.574657 74.574657 1, 568.4817 14.45. E{Y } = " #−1 = 1.58597 −.075406 −.075406 .0042228 # γ0 1 + γ1 exp(γ2 X) Consider γ2 < 0 and γ1 > 0; as X → ∞, E{Y } = π → 1 so that " 1 = limX→∞ # γ0 = γ0 1 + γ1 exp(γ2 X) Therefore, letting γ2 = −β1 and γ1 = exp(−β0 ) we have: E{Y } = exp(β0 + β1 X) 1 = 1 + exp(−β0 − β1 X) 1 + exp(β0 + β1 X) 14.46. E{Y } = [1 + exp(−β0 − β1 X1 − β2 X2 − β3 X1 X2 )]−1 π 0 (X1 + 1) = β0 + β1 (X1 + 1) + β2 X2 + β3 (X1 + 1)X2 14-9 π 0 (X1 ) = β0 + β1 X1 + β2 X2 + β3 X1 X2 π 0 (X1 + 1) − π 0 (X1 ) = loge (odds ratio) = β1 + β3 X2 Hence the odds ratio for X1 is exp(β1 + β3 X2 ). No. " à !# à ! Xi − γ0 14.47. 1 − πi = exp − exp γ1 Xi − γ0 −loge (1 − πi ) = exp γ1 Hence: loge [− loge (1 − πi )] = where β0 = − 14.48. γ0 1 Xi − γ0 = − + Xi = β0 + β1 Xi γ1 γ1 γ1 1 γ0 and β1 = . γ1 γ1 a. X1 = age Socioeconomic status Upper Middle Lower X2 0 1 0 Sector 1 2 X3 0 0 1 X4 0 1 b0 = .1932, b1 = .03476, b2 = −1.9092, b3 = −2.0940, b4 = .9508, b5 = .02633, b6 = .007144, b7 = −.01721, b8 = .004107, b9 = .4145, where X0 = (1 X1 X2 X3 X4 X1 X2 X1 X3 X1 X4 X2 X4 X3 X4 ) b. H0 : β5 = β6 = β7 = β8 = β9 = 0, Ha : not all equalities hold. G2 = .858, χ2 (.99; 5) = 15.09. If G2 ≤ 15.09 conclude H0 , otherwise conclude Ha . Conclude H0 . P -value = .973. c. Retain socioeconomic status and age. 14.49. a. j: 1 2 3 4 5 Oj1 : 6 4 13 15 16 Ej1 : 4.6 7.3 11.7 14.8 15.7 Oj0 : 14 16 7 5 2 Ej0 : 15.4 12.7 8.3 5.2 2.3 nj : 20 20 20 20 18 H0 : E{Y } = [1 + exp(−β0 − β1 X1 − β2 X2 − β3 X3 )]−1 , Ha : E{Y } 6= [1 + exp(−β0 − β1 X1 − β2 X2 − β3 X3 )]−1 . X 2 = 3.28, χ2 (.95; 3) = 7.81. If X 2 ≤ 7.81 conclude H0 , otherwise Ha . Conclude H0 . P -value = .35. b. i: devi : 1 .6107 2 3 .5905 −1.4368 ··· 96 · · · −.8493 14-10 97 −.7487 98 −1.0750 d&e. i: hii ∆Xi2 : ∆devi : Di : 1 2 3 ··· .0265 .0265 .0509 · · · .2106 .1956 1.9041 · · · .3785 .3538 2.1613 · · · .0014 .0013 .0255 · · · 96 .0305 .4479 .7350 .0035 97 98 .0316 .0410 .3341 .8156 .5712 1.1891 .0027 .0087 f. Cutoff Savings Account No Savings Account Total .45 18.5 31.8 24.5 .50 22.2 31.8 26.5 .55 22.2 22.7 22.4 .60 29.6 22.7 26.5 Cutoff = .55. Area = .766. 14.50. a. Cutoff Savings Account No Savings Account Total .55 24.5 28.9 26.5 b. b0 : s{b0 }: b1 : s{b1 }: b2 : s{b2 }: b3 : s{b3 }: Model Building Combined Data Set Data Set .3711 .3896 .5174 .3493 .03678 .03575 .01393 .00961 −1.2555 −1.1572 .5892 .4095 −1.9040 −2.0897 .5552 .3967 c. z(.9833) = 2.128, exp[.03575 ± 2.128(.00961)], 1.015 ≤ exp(β1 ) ≤ 1.058, exp[−1.1572 ± 2.128(.4095)], .132 ≤ exp(β2 ) ≤ .751, exp [−2.0897 ± 2.128(.3967)], .053 ≤ exp(β3 ) ≤ .288 14.51. a. X1 = age, X2 = routine chest X-ray ratio, X3 = average daily census, X4 = number of nurses b0 = −8.8416, b1 = .02238, b2 = .005645, b3 = .14721, b4 = −.10475, b5 = .0002529, b6 = −.001995, b7 = .0014375, b8 = −.000335, b9 = .0003912, b10 = −.00000519, where X0 = (1 X1 X2 X3 X4 X1 X2 X1 X3 X1 X4 X2 X3 X2 X4 X3 X4 ) b. H0 : β5 = β6 = β7 = β8 = β9 = β10 = 0, Ha : not all equalities hold. G2 = 7.45, χ2 (.95; 6) = 12.59. If G2 ≤ 12.59 conclude H0 , otherwise Ha . Conclude H0 . P -value = .28 c. Retain age and average daily census. 14-11 d. The best subset: X3 , X6 , X10 , AIC4 = 59.6852; The best subset: X10 , SBC2 = 66.963. 14.52. a. j: 1 2 Oj1 : 0 0 Ej1 : .1 .4 Oj0 : 22 23 Ej0 : 21.9 22.6 nj : 22 23 3 4 5 1 3 13 .9 2.3 13.3 21 20 10 21.1 20.7 9.7 22 23 23 H0 : E{Y } = [1 + exp(−β0 − β1 X1 − β3 X3 )]−1 , Ha : E{Y } 6= [1 + exp(−β0 − β1 X1 − β3 X3 )]−1 , X 2 = .872, χ2 (.95; 3) = 7.81. If X 2 ≤ 7.81 conclude H0 , otherwise Ha . Conclude H0 . P -value = .832 b i: devi : 1 −.3166 2 3 −.1039 −.1377 ··· 111 · · · −.1402 112 .1895 113 −.0784 112 .0279 .0186 .0364 .00018 113 .0041 .0031 .0062 .000004 d & e. i: 1 hii .0168 ∆Xi2 : .0523 ∆devi : .1011 Di : .00030 2 .0056 .0054 .0108 .00001 3 .0074 .0096 .0190 .00002 ··· ··· ··· ··· ··· 111 .0076 .0100 .0197 .00003 f. Cutoff Affiliation .30 29.4 .40 29.4 .50 41.2 .60 52.9 No Affiliation Total 9.4 12.4 6.3 9.7 4.2 9.7 2.1 9.7 Cutoff = .40. Area = .923. g. z(.95) = 1.645, π̂ 0h = .6622, s2 {b0 } = 17.1276, s2 {b1 } = .006744, s2 {b3 } = .000006687, s{b0 , b1 } = −.33241, s{b0 , b3 } = .0003495, s{b1 , b3 } = −.00004731, s{π̂ 0h } = .6193, −.35655 ≤ πh0 ≤ 1.68095, .70 ≤ πh /(1 − πh ) ≤ 5.37 14.57. a. b1 = 33.249 −1.905 −.046 −.039 .039 −4.513 −.088 .039 −.085 , b2 = 12.387 −.838 −.016 −.028 .016 .590 .00008 −.009 −.097 , b3 = 14-12 13.505 −.562 −.095 −.010 .020 −.595 −.011 −.008 −.044 b. H0 : b13 = b23 = b33 = 0; Ha : not all bk3 = 0, for k = 1, 2, 3. G2 = 2.34, conclude H0 . P -value=.5049. c. G2 = 10.3, conclude H0 . P -value=.1126. −12.840 .585 .108 .007 −.017 d. N E = 1, N C = 0 : b1 = .231 .008 .009 .023 −14.087 .754 .016 .026 −.025 N E = 1, S = 0 : b1 = .567 .010 .010 .113 −48.020 3.014 .060 .012 N E = 1, W = 0 : b1 = −.033 7.415 .079 −.038 .122 e&f. N E = 1, N C = 0 : i: 1 2 3 ··· 58 59 60 Devi : −1.137 .708 −1.200 · · · −.562 −1.406 .547 ∆Xi2 : 1.061 .306 1.205 · · · .195 2.260 .347 ∆devi : 1.445 .523 1.591 · · · .339 2.550 .485 Di : .020 .003 .019 · · · .003 .085 .044 N E = 1, S = 0 : i: 1 2 3 ··· 63 64 65 Devi : −.327 .630 −1.153 · · · −.528 .696 −1.080 .058 .237 1.028 · · · .164 1.189 1.030 ∆Xi2 : ∆devi : .110 .415 1.413 · · · .293 1.400 1.404 Di : .0003 .0021 .0103 · · · .002 .441 .035 N E = 1, W = 0 : 14-13 i: 1 2 Devi : −.3762 −.3152 ∆Xi2 : .0936 .0852 ∆devi : .1618 .1336 Di : .0029 .0064 14.58. a. b1 = −20.8100 −.0016 −.5738 −.2150 142.1400 .3998 .2751 .4516 .2236 −.0005 , b2 = 3 .0177 .0002 .0003 .0000 28.7900 −.0013 −.3878 −.1253 147.73 −.2426 .3778 .1510 −.6755 −.0004 ··· ··· ··· ··· ··· 42 .0000 .0000 .0000 .0000 , b3 = b. Row T erm 1 X5 /X4 2 X6 3 X7 4 X10 /X5 5 X11 6 X12 7 X13 8 X14 9 X15 log L(b) −189.129 −178.009 −166.716 −192.499 −197.042 −186.324 −168.769 −183.663 −172.189 G2 P -value 51.074 .0000 28.834 .0000 6.248 .1001 57.814 .0000 66.900 .0000 45.464 .0000 10.354 .0158 40.142 .0000 17.194 .0006 c. N E = 1, N C = 0 : b1 = 7.8100 .0009 .1208 .9224 −107.4200 −.3536 .4683 −.6225 1.0985 −.0002 14-14 43 −.8576 1.1225 1.4135 .1903 −18.4800 −.0008 −.0354 −.1897 93.3700 .2884 −.2055 .2979 −.4803 .00008 44 .0000 .0000 .0000 .0000 −25.3800 .0015 .2399 −.0852 −172.7000 .2126 −.4522 −.4086 1.7355 .0006 b1 = N E = 1, S = 0 : b1 = N E = 1, W = 0 : −48.7700 .0054 1.9580 1.3413 −457.9000 .0917 −.6156 −.7196 −.3703 .0005 d&e. N E = 1, N C = 0 : i: 1 2 Devi : −1.1205 .6339 ∆Xi2 : 1.1715 6.5919 ∆devi : 1.5536 6.7712 Di : .0400 18.8671 3 −.0909 .0042 .0083 .000 ··· 101 · · · −.6718 ··· .3024 ··· .5006 ··· .0059 102 .0464 .0011 .0022 .0000 103 −.4253 .1067 .1929 .0014 N E = 1, S = 0 : i: 1 Devi : .6801 2 ∆Xi : 5.5413 ∆devi : 5.7437 Di : 11.2465 2 −.0030 .0000 .0000 .0000 3 .0542 .0015 .0029 .0000 ··· 122 123 · · · −.5644 −.4215 ··· .2338 .1275 ··· .3797 .2123 ··· .0083 .0047 124 −.4334 .1091 .1985 .0012 N E = 1, W = 0 : i: 1 2 Devi : −.2713 .0000 .0506 .0000 ∆Xi2 : ∆devi : .0867 .0000 Di : .0018 .0000 3 −.0011 .0000 .0000 .0000 ··· ··· ··· ··· ··· 14-15 87 .0713 .0027 .0052 .0000 88 −.2523 .0795 .1108 .0116 89 .0004 .0000 .0000 .0000 14.59. a. b = 4.6970 7.5020 −.0509 −.0359 .0061 −.0710 −.0051 .3531 −.1699 b. X3 , orX4 , or X6 , or X7 , or X8 can be dropped. c. Drop X6 , then X7 , then X3 , and then X4 , then stop. d. The result is as follows: Variable Y(1) Value 1 0 Total Count 33 64 97 (Event) Logistic Regression Table Predictor Coef SE Coef Constant 3.767 2.208 PSA -0.03499 0.02208 age -0.05548 0.03507 Capspen -0.2668 0.1498 Response Information Variable Value Y(2) 1 0 Total Count 76 21 97 Z 1.71 -1.59 -1.58 -1.78 P 0.088 0.113 0.114 0.075 (Event) Logistic Regression Table Predictor Coef SE Coef Constant 8.704 3.595 PSA -0.06045 0.01944 age -0.08484 0.05253 Capspen -0.14496 0.08098 Z 2.42 -3.11 -1.61 -1.79 P 0.015 0.002 0.106 0.073 Log-Likelihood = -32.633 Test that all slopes are zero: G = 36.086, DF = 3, P-Value = 0.000 e&f. Y (1) i: Devi : ∆Xi2 : ∆devi : Di : 1 .8018 .4036 .6673 .0065 2 −.3651 .1476 .1431 .0026 ··· 95 96 · · · −.0233 −.0113 ··· .0003 .0001 ··· .0005 .0001 ··· .0000 .0000 14-16 97 −.0012 .0000 .0000 .0000 Y (2) i: 1 Devi : .1545 ∆Xi2 : .0122 ∆devi : .0240 Di : .00004 14.60. a. b = −133.0400 −123.4400 .00002 .0014 −.5250 .9014 1.1787 .5412 −.3977 .0585 .0000 .4336 2 .3077 .0492 .0960 .00033 ··· 95 · · · −.0297 ··· .0004 ··· .0009 · · · .00000 96 −.0031 .0000 .0000 .00000 97 −.0005 .0000 .0000 .00000 b. X13 , or X12 , or X8 , or X7 can be dropped. c. Drop X12 , then X13 , then X8 , then X7 , then stop. e&f. Y (1) i: 1 2 Devi : −.4904 −.1791 ∆Xi2 : .1300 .0160 ∆devi : .2423 .0322 Di : .0003 .0000 ··· 520 · · · −.0000 ··· .0000 ··· .0000 ··· .0000 521 −.0143 .0000 .0002 .0000 522 −.0000 .0000 .0000 .0000 Y (2) i: 1 Devi : .0162 ∆Xi2 : .0000 ∆devi : .0003 Di : .00000 14.61. 2 .2472 .0320 .0616 .00007 ··· 520 · · · −.2214 ··· .0250 ··· .0492 · · · .00003 521 −.4205 .0940 .1782 .00020 522 −.0850 .0040 .0072 .00000 a. The estimated regression coefficents and their estimated standard deviations are as follows, Poisson Regression Coefficient Estimates Label Estimate Constant 0.499446 Cost 0.0000149508 Age 0.00672387 Gender 0.181920 Interventions 0.0100748 Drugs 0.193237 14-17 Std. Error 0.176041 2.854645E-6 0.00296715 0.0439932 0.00380812 0.0126846 Complications Comorbids Duration 0.0612547 -0.000899912 0.000352919 0.0599478 0.00368517 0.000189870 b. i: 1 2 Devi : .2813 1.7836 3 −1.0373 ··· ··· 786 787 .6562 −1.2158 c. X3 , or X8 , or X9 or X10 can be dropped. d. G2 = 5.262, conclude X0 , the P -value=.1536. e. We drop X9 , then drop X8 , then stop. 14-18 788 −.0544 Chapter 15 INTRODUCTION TO THE DESIGN OF EXPERIMENTAL AND OBSERVATIONAL STUDIES 15.7. Panel. 15.8. a. Mixed. Type of instruction is an experimental factor, and school is an observational factor. b. Factor 1: type of instruction, two levels (standard curriculum, computer-based curriculum). Factor 2: school, three levels. Randomized complete blocked design. d. 15.9. a. b. Section. Observational. Factor: expenditures for research and development in the past three years. Factor levels: low, moderate, and high. c. Cross-sectional study. d. Firm. 15.10. a. b. Mixed. Color of paper is experimental factor, and parking lot is an observational factor. Factor 1: color of paper, three levels (blue, green, orange). Factor 2: supermarket parking lot, four levels. c. Randomized complete block design. d. Car. 15.11. a. Observational. b. Fitness status, three levels (below average, average, above average). c. Cross-sectional study. 15-1 d. 15.12. a. b. Person Mixed. Applicant’s eye contact is an experimental factor, and personnel officer’s gender is an observational factor. Factor 1: applicant’s eye contact, two levels (yes, no). Factor 2: personnel officer’s gender (male, female). c. Randomized complete blocked design. d. Personnel officer. 15.13. a. Mixed. b. Wheel. c. Four rubber compounds. d. Randomized complete blocked design. e. Balanced incomplete blocked design. 15.14. a. b. Experimental. Factor 1: ingredient 1, with three levels (low, medium, high). Factor 2: ingredient 2, with three levels (low, medium, high). There are 9 factor-level combinations. d. Completely randomized design. e. Volunteer. 15.15. a. b. Observational. Factor 1: treatment duration, with 2 levels (short, long). Factor 2: weight gain, with 3 levels (slight, moderate, substantial) c. Cross-sectional study. d. Patient. 15.16. a. Mixed. b. Factor: questionnaire, with 3 levels (A, B, C). c. Repeated measure design. d. Subject-time combination (i.e., the different occasions when a treatment is applied to a subject). 15.17. a. b. Observational. Factor 1: batch, with 5 levels. Factor 2: barrel, with 4 levels (nested within batch). c. Nested design. d. Barrel. 15-2 15.18. a. b. Experimental. Factor 1: poly-film thickness, with 2 levels (low, high). Factor 2: old mixture ratio, with 2 levels (low, high). Factor 3: operator glove type, with 2 levels (cotton, nylon). Factor 4: underside oil coating, with 2 levels (no coating, coating). c. Fractional factorial design. d. 1000 moldings in a batch. 15.19. a. c. 15.20. a. c. 15.23. a. Randomized complete block design with four blocks and three treatments. Assembler. 23 factorial design with two replicates. Rod. H0 : W̄ = 0, Ha : W̄ 6= 0. t∗ = −.1915/.0112 = −17.10, t(.975, 19) = 2.093. If |t∗ | > 2.093 conclude H0 , otherwise conclude Ha . Conclude Ha . P -value = 0+. Agree with results on page 670. They should agree. b. H0 : β2 = · · · = β20 = 0, Ha : not all βk (k = 2, 3, . . . , 20) equal zero. F ∗ = [(.23586 − .023828)/(38 − 19)] ÷ [.023828/19] = 8.90, F (.95; 19, 19) = 2.17. If F ∗ > 2.17 conclude H0 , otherwise conclude Ha . Conclude Ha . P -value = 0+. Not of primary interest because blocking factor was used here to increase the precision. 15.24. Since X̄ = P n/2 n = 1/2, it follows from the definition of Xi that: (Xi − X̄) = n/2(1 − 1/2)2 + n/2(0 − 1/2)2 = n/4. Then from (15.5a): σ 2 {b1 } = 4σ 2 /n. 15-3 15-4 Chapter 16 SINGLE-FACTOR STUDIES 16.4. b. E{M ST R} = 9 + 25(450) = 5, 634 2 E{M SE} = 9 16.5. b. E{M ST R} = (2.8)2 + 100(11) = 374.507 3 E{M SE} = 7.84 c. 16.7. b. c. E{M ST R} = (2.8)2 + 100(15.46) = 523.173 3 Ŷ1j = Ȳ1. = 6.87778, Ŷ2j = Ȳ2. = 8.13333, Ŷ3j = Ȳ3. = 9.20000 eij : i 1 2 3 j=1 j=2 j=3 .772 1.322 −.078 −1.433 −.033 1.267 −.700 .500 .900 i 1 2 j=7 −.578 .767 j=4 −1.078 .467 −1.400 j = 8 j = 9 j = 10 .822 −.878 −.233 .167 .567 j=5 j=6 .022 −.278 −.333 −.433 .400 .300 j = 11 j = 12 −1.033 .267 Yes d. Source SS df MS Between levels 20.125 2 10.0625 Error 15.362 24 .6401 Total 35.487 26 e. H0 : all µi are equal (i = 1, 2, 3), Ha : not all µi are equal. F ∗ = 10.0625/.6401 = 15.720, F (.95; 2, 24) = 3.40. If F ∗ ≤ 3.40 conclude H0 , otherwise Ha . Conclude Ha . f. P -value = 0+ 16.8. b. Ŷ1j = Ȳ1. = 29.4, Ŷ2j = Ȳ2. = 29.6, Ŷ3j = Ȳ3. = 28.0 16-1 c. eij : i j=1 j=2 j=3 j=4 j=5 1 −1.4 −3.4 1.6 −2.4 5.6 2 4.4 −.6 −4.6 1.4 −.6 3 3.0 −3.0 −1.0 1.0 0.0 d. Source SS df M S Between colors 7.60 2 3.80 Error 116.40 12 9.70 Total 124.00 14 e. 16.9. b. c. H0 : all µi are equal (i = 1, 2, 3), Ha : not all µi are equal. F ∗ = 3.80/9.70 = .392, F (.90; 2, 12) = 2.81. If F ∗ ≤ 2.81 conclude H0 , otherwise Ha . Conclude H0 . P -value = .684 Ŷ1j = Ȳ1. = 38.0, Ŷ2j = Ȳ2. = 32.0, Ŷ3j = Ȳ3. = 24.0 eij : i 1 2 3 j=1 −9.0 −2.0 2.0 i j=6 1 2.0 2 −1.0 3 −2.0 Yes j=2 4.0 3.0 8.0 j=7 −8.0 −3.0 j=3 j=4 j=5 0.0 2.0 5.0 7.0 −4.0 −1.0 −3.0 −4.0 −1.0 j=8 4.0 3.0 j=9 j = 10 −3.0 1.0 d. Source SS df MS Between treatments 672.0 2 336.00 Error 416.0 21 19.81 Total 1, 088.0 23 e. 16.10. b. c. H0 : all µi are equal (i = 1, 2, 3), Ha : not all µi are equal. F ∗ = 336.00/19.81 = 16.96, F (.99; 2, 21) = 5.78. If F ∗ ≤ 5.78 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ Ŷ1j = Ȳ1. = 21.500, Ŷ2j = Ȳ2. = 27.750, Ŷ3j = Ȳ3. = 21.417 eij : i 1 2 3 i 1 2 3 j=1 1.500 .250 1.583 j=2 j=3 j=4 3.500 −.500 .500 −.750 −.750 1.250 −1.417 3.583 −.417 j=7 j=8 j=9 −1.500 1.500 −2.500 −.750 2.250 .250 −.417 −1.417 −2.417 j=5 −.500 −1.750 .583 j=6 .500 1.250 1.583 j = 10 j = 11 .500 −2.500 −.750 −1.750 −1.417 .583 16-2 j = 12 −.500 1.250 −.417 d. Source SS df Between ages 316.722 2 Error 82.167 33 Total 398.889 35 e. 16.11. b. MS 158.361 2.490 H0 : all µi are equal (i = 1, 2, 3), Ha : not all µi are equal. F ∗ = 158.361/2.490 = 63.599, F (.99; 2, 33) = 5.31. If F ∗ ≤ 5.31 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ Ŷ1j = Ȳ1. = .0735, Ŷ2j = Ȳ2. = .1905, Ŷ3j = Ȳ3. = .4600, Ŷ4j = Ȳ4. = .3655, Ŷ5j = Ȳ5. = .1250, Ŷ6j = Ȳ6. = .1515 c. eij : i 1 2 3 4 5 6 j=1 −.2135 .2695 −.2500 .1245 −.3150 −.1015 j=2 .1265 −.0805 .3200 .2145 .1450 −.2015 j=3 −.0035 −.0705 −.1400 .1545 −.0650 .1285 i 1 2 3 4 5 6 j=6 .0265 −.1305 −.1100 .1845 .0250 .1185 j=7 j=8 −.1135 −.3435 −.3105 .1395 .0800 −.2200 .0345 −.2255 −.1150 .0950 −.0715 .0185 j=9 .1965 −.1305 .0100 .1145 .1650 .2785 i 1 2 3 4 5 6 j = 11 .3165 −.1405 .0100 −.3555 .0750 .0485 j = 12 −.1435 .3395 .0900 −.0355 .1750 −.1415 j = 14 j = 15 .2065 .0165 .0995 .1695 .2500 −.0100 −.2355 .1145 .1450 −.3250 .0085 −.2115 i 1 2 3 4 5 6 j = 16 .0565 −.1505 .0200 .1745 .1150 −.0215 j = 17 j = 18 .1865 −.0035 −.0205 −.1705 −.0200 .0400 .1445 .0545 .0750 .0150 .2785 .1985 j = 13 −.0935 .2295 .1300 −.1855 −.2350 −.0515 j=4 j=5 .1065 .3065 .2795 .0495 −.0100 −.2400 −.0755 −.0955 −.0150 .1050 .3185 −.0315 j = 19 −.0835 −.0805 −.2600 .0845 .2250 −.2415 Yes d. 16-3 j = 10 −.2835 −.2205 .1600 −.0255 .0150 −.2215 j = 20 −.2635 −.0705 .1500 −.1655 −.3050 −.1015 Source SS df Between machines 2.28935 5 Error 3.53060 114 Total 5.81995 119 MS .45787 .03097 e. H0 : all µi are equal (i = 1, ..., 6), Ha : not all µi are equal. F ∗ = .45787/.03097 = 14.78, F (.95; 5, 114) = 2.29. If F ∗ ≤ 2.29 conclude H0 , otherwise Ha . Conclude Ha . f. P -value = 0+ 16.12. b. Ŷ1j = Ȳ1. = 24.55, Ŷ2j = Ȳ2. = 22.55, Ŷ3j = Ȳ3. = 11.75, Ŷ4j = Ȳ4. = 14.80, Ŷ5j = Ȳ5. = 30.10 c. eij : i 1 2 3 4 5 j=1 j=2 j=3 j=4 −.55 −.55 4.45 −4.55 −4.55 −2.55 −2.55 1.45 −1.75 −.75 −3.75 .25 .20 −1.80 3.20 1.20 2.90 −8.10 −2.10 4.90 j=5 −3.55 −.55 .25 −2.80 −1.10 i 1 2 3 4 5 j=6 j=7 j=8 j=9 .45 3.45 2.45 −1.55 6.45 .45 1.45 5.45 −1.75 2.25 −2.75 −3.75 4.20 −4.80 3.20 −3.80 −2.10 −.10 .90 −1.10 j = 10 −3.55 −3.55 −.75 2.20 −2.10 i 1 2 3 4 5 j = 11 −.55 1.45 4.25 .20 2.90 j = 12 1.45 2.45 .25 −2.80 −.10 j = 13 −1.55 −1.55 6.25 −1.80 1.90 j = 14 −.55 −2.55 2.25 −1.80 2.90 j = 15 3.45 1.45 1.25 −.80 −1.10 i 1 2 3 4 5 j = 16 −1.55 −.55 −.75 2.20 4.90 j = 17 −1.55 −3.55 2.25 1.20 1.90 j = 18 2.45 3.45 −2.75 2.20 −4.10 j = 19 1.45 −.55 −.75 −.80 −.10 j = 20 .45 −1.55 .25 1.20 −1.10 Yes d. Source SS df Between agents 4, 430.10 4 Error 714.65 95 Total 5, 144.75 99 MS 1, 107.525 7.523 16-4 e. H0 : all µi are equal (i = 1, ..., 5), Ha : not all µi are equal. F ∗ = 1, 107.525/7.523 = 147.22, F (.90; 4, 95) = 2.00. If F ∗ ≤ 2.00 conclude H0 , otherwise Ha . Conclude Ha . f. P -value = 0+ 16.15. µ. = 80, τ1 = −15, τ2 = 0, τ3 = 15 16.16. µ. = 7.2, τ1 = −2.1, τ2 = −.9, τ3 = .7, τ4 = 2.3 16.17. a. µ̂. = 20.4725 b. H0 : all τi equal zero (i = 1, ..., 5), Ha : not all τi equal zero. No 16.18. a. Y= 7.6 8.2 6.8 5.8 6.9 6.6 6.3 7.7 6.0 6.7 8.1 9.4 8.6 7.8 7.7 8.9 7.9 8.3 8.7 7.1 8.4 8.5 9.7 10.1 7.8 9.6 9.5 X= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 b. 16-5 µ. β = τ1 τ2 Xβ = c. µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 = µ1 µ1 µ1 µ1 µ1 µ1 µ1 µ1 µ1 µ2 µ2 µ2 µ2 µ2 µ2 µ2 µ2 µ2 µ2 µ2 µ2 µ3 µ3 µ3 µ3 µ3 µ3 Ŷ = 8.07037 − 1.19259X1 + .06296X2 , µ. defined in (16.63) d. Source SS df MS Regression 20.125 2 10.0625 Error 15.362 24 .6401 Total 35.487 26 e. H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = 10.0625/.6401 = 15.720, F (.95; 2, 24) = 3.40. If F ∗ ≤ 3.40 conclude H0 , otherwise Ha . Conclude Ha . 16.19. a. 16-6 Y= 28 26 31 27 35 34 29 25 31 29 31 25 27 29 28 X= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 −1 −1 −1 −1 −1 0 0 0 0 0 1 1 1 1 1 −1 −1 −1 −1 −1 µ . β = τ1 τ2 b. Xβ = c. µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ1 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. + τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 µ. − τ1 − τ2 = µ1 µ1 µ1 µ1 µ1 µ2 µ2 µ2 µ2 µ2 µ3 µ3 µ3 µ3 µ3 Ŷ = 29.0 + .4X1 + .6X2 , µ. defined in (16.63) d. Source SS df M S Regression 7.60 2 3.80 Error 116.40 12 9.70 Total 124.00 14 e. H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = 3.80/9.70 = .392, F (.90; 2, 12) = 2.81. If F ∗ ≤ 2.81 conclude H0 , otherwise Ha . Conclude H0 . 16.20. a. 16-7 29 . .. Y= 42 30 .. . 33 26 .. . 1 .. . 0 .. . 1 1 .. . 1 0 .. . 0 1 .. . X= 22 b. 1 . .. µ. + τ1 . .. µ. µ. .. . µ. µ. .. . µ1 . .. µ1 + τ1 µ + τ2 2 = .. . µ2 + τ2 µ − 86 τ1 − 10 τ 3 2 6 . . . µ. − 86 τ1 − c. µ . β = τ1 τ2 1 0 1 10 8 1 −6 − 6 .. .. .. . . . 1 − 86 − 10 6 Xβ = 10 τ 6 2 µ3 Ŷ = 32.0 + 6.0X1 + 0.0X2 , µ. defined in (16.80a) d. Source SS df MS Regression 672 2 336.00 Error 416 21 19.81 Total 1088 23 e. H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = 336.00/19.81 = 16.96, F (.99; 2, 21) = 5.78. If F ∗ ≤ 5.78 conclude H0 , otherwise Ha . Conclude H0 . 16.21. a. Ŷ = 23.55556 − 2.05556X1 + 4.19444X2 , µ. defined in (16.63) b. Source SS df MS Regression 316.722 2 158.361 Error 82.167 33 2.490 Total 398.889 35 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = 158.361/2.490 = 63.599, F (.99; 2, 33) = 5.31. If F ∗ ≤ 5.31 conclude H0 , otherwise Ha . Conclude Ha . 16.22. a. b. Ŷ = 38X1 + 32X2 + 24X3 Ŷ = 32 16-8 c. H0 : all µi are equal (i = 1, 2, 3), Ha : not all µi are equal. SSE(F ) = 416, SSE(R) = 1, 088, F ∗ = (672/2) ÷ (416/21) = 16.96, F (.99; 2, 21) = 5.78. If F ∗ ≤ 5.78 conclude H0 , otherwise Ha . Conclude Ha . 1−β ∼ = .878 16.23. µ. = 15.5, φ = 1.58, 1 − β ∼ = .47 b. 1 − β ∼ = .18 16.24. a. 16.25. µ. = 7.889, φ = 2.457, 1 − β ∼ = .95 16.26. µ. = 33.917, φ = 2.214, 1 − β ∼ = .70 16.27. µ. = 24, φ = 6.12, 1 − β > .99 16.29. a. 4 : 10 15 20 30 n : 51 23 14 7 b. 4 : 10 15 20 30 n : 39 18 11 6 16.30. a. σ : 50 25 20 n : 34 10 7 b. σ : 50 n : 30 25 20 9 6 16.31. a. λ : 20 10 5 n : 10 38 150 b. λ : 20 10 5 n : 22 85 337 16.32. a. ∆/σ = 4.5/3.0 = 1.5, n = 13 b. ∆/σ = 6.0/3.0 = 2.0, 1 − β ≥ .95 c. n = [3.6173(3.0)/1.5]2 = 53 16.33. a. ∆/σ = 5.63/4.5 = 1.25, n = 20 · b. c. 16.34. a. ¸ 1/2 1 20 φ= (40.6667) = 3.659, 1 − β ≥ .99 4.5 3 √ (2.0 n)/4.5 = 2.2302, n = 26 ∆/σ = .15/.15 = 1.0, n = 22 16-9 · b. c. ¸ 1/2 1 22 φ= (.02968) = 2.199, 1 − β ≥ .97 .15 6 √ (.10 n)/.15 = 3.1591, n = 23 16.35. a. ∆/σ = 3.75/3.0 = 1.25, n = 22 √ b. (1.0 n)/3.0 = 2.5997, n = 61 16.36. L= 3 Y 2 µ Y i=1 j=1 1 2πσ 2 ¶1/2 · exp − 1 (Yij − µi )2 2σ 2 ¸ 3 X 2 1 1 X − = exp (Yij − µi )2 2σ 2 i=1 j=1 (2πσ 2 )3 loge L = −3 loge 2π − 3 loge σ 2 − 1 PP (Yij − µi )2 2σ 2 2 P ∂(loge L) = − 2 (Yij − µi )(−1) ∂µi 2σ j Setting the partial derivatives equal to zero, simplifying, and substituting the maximum likelihood estimators yields: P j (Yij − µ̂i ) = 0 or: µ̂i = Ȳi. Yes 16.37. t∗ = Ȳ1. − Ȳ2. Ȳ1. − Ȳ2. s =s s{Ȳ1. − Ȳ2. } nT Σ(Y1j − Ȳ1. )2 + Σ(Y2j − Ȳ2. )2 n1 n2 nT − 2 F∗ = à n1 (Ȳ1. − Ȳ.. )2 + n2 (Ȳ2. − Ȳ.. )2 ! Σ(Y1j − Ȳ1. )2 + Σ(Y2j − Ȳ2. )2 nT − 2 Therefore to show (t∗ )2 = F ∗ , it suffices to show: n1 n2 (Ȳ1. − Ȳ2. )2 = n1 (Ȳ1. − Ȳ.. )2 + n2 (Ȳ2. − Ȳ.. )2 nT Now, the right-hand side equals: " n1 à = n1 · = n1 = à n1 Ȳ1. + n2 Ȳ2. Ȳ1. − nT " !#2 nT Ȳ1. − n1 Ȳ1. − n2 Ȳ2. nT + n2 n1 Ȳ1. + n2 Ȳ2. Ȳ2. − nT à !2 + n2 à !#2 nT Ȳ2. − n1 Ȳ1. − n2 Ȳ2. nT · ´¸2 ´¸ 2 n1 ³ n2 ³ + n2 Ȳ1. − Ȳ2. Ȳ2. − Ȳ1. nT nT ´2 n1 n2 ³ Ȳ1. − Ȳ2. nT 16-10 !2 P 16.38. wi τi = P wi (µi − µ. ) = = µ. − µ. = 0 since 16.39. a. P P P wi = 1 and µ. = wi µi − µ. P wi wi µi Using (6.25) and substituting µ̂ for b: µ̂ = (X0 X)−1 X0 Y X0 X = n1 n2 0 · · 0 · (X0 X)−1 = n−1 1 n−1 2 · · 0 X0 Y = Y1· Y2· · · · Yr· 16.40. a. b. 16.41. 16.42. µ̂ = PP Ȳ1· Ȳ2· · · · Ȳr· (Yij − Ȳi. )2 = SSE 1 PP X0 X = nT , (X0 X)−1 = , X0 Y = Yij nT 1 PP µ̂c = Yij = Ȳ.. nT PP SSE(R) = (Yij − Ȳ.. )2 = SST O SSE(F ) = b. · n−1 r nr 0 90, 15 Smallest P -value = .067 µ ¶ µ ¶ µ ¶ 2µ2 − 1 2 2 − µ2 2 µ2 + 1 2 + + (µi − µ. ) = − 3 3 3 Differentiating with respect to µ2 yields: 12 6 µ2 − 9 9 Setting this derivative equal to zero and solving yields µ2 = .5. P 2 H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. Source SS Between regions 13.9969 Error 187.3829 Total 201.3798 df MS 3 4.6656 109 1.7191 112 F ∗ = 4.6656/1.7191 = 2.714, F (.95; 3, 109) = 2.688. If F ∗ ≤ 2.688 conclude H0 , otherwise Ha . Conclude Ha . 16.43. H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. 16-11 Source SS df MS Between ages 3.0677 3 1.02257 Error 198.3121 109 1.81938 Total 201.3798 112 F ∗ = 1.02257/1.81938 = .562, F (.90; 3, 109) = 2.135. If F ∗ ≤ 2.135 conclude H0 , otherwise Ha . Conclude H0 . 16.44. H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. Source Between regions Error Total SS df .059181 3 .268666 436 .327847 439 MS .019727 .000616 F ∗ = .019727/.000616 = 32.01, F (.95; 3, 436) = 2.6254. If F ∗ ≤ 2.6254 conclude H0 , otherwise Ha . Conclude Ha . 16.45. H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. Source SS df Between treatments 1.6613 3 Error .7850 32 Total 2.4463 35 MS .5538 .0245 F ∗ = .5538/.0245 = 22.57, F (.95; 3, 32) = 2.9011. If F ∗ ≤ 2.9011 conclude H0 , otherwise Ha . Conclude Ha . ν2 16.46. c. E{F ∗ } = = 1.2 ν2 − 2 d. Expected proportion is .95. e. E{F ∗ } = 117.9; E{M ST R} = 14, 144, E{M SE} = 144 f. φ = 8.05, expected proportion is 1 − β > .99. 16.47. a. 20, 6 b. F∗ : .29 .59 .97 1.06 P (F ∗ ) : 4/20 4/20 2/20 4/20 P -value = .10 c. 1.64 4/20 2.74 2/20 P {F (1, 4) ≥ 2.74} = .17 16.48. a. F∗ : P (F ∗ ) : 0 .1 .4 .98 2.0 3.85 8/70 18/70 12/70 14/70 8/70 6/70 7.71 19.60 2/70 2/70 H0 : µ1 = µ2 , Ha : µ1 6= µ2 . F ∗ = 7.71. P -value = P (F ∗ ≥ 7.71) = .0571. If P -value ≥ .10 conclude H0 , otherwise Ha . Conclude Ha . b&c. F (.90; 1, 6) = 3.78 10/70 = .143 F (.95; 1, 6) = 5.99 F (.99; 1, 6) = 13.7 4/70 = .0571 2/70 = .0286 16-12 Chapter 17 ANALYSIS OF FACTOR LEVEL MEANS 17.3. a. b. (i) and (iii) are contrasts. (i) L̂ = Ȳ1. + 3Ȳ2. − 4Ȳ3. , s2 {L̂} = 26M SE n .36M SE n (Ȳ1. + Ȳ2. + Ȳ3. ) 4M SE (iii) L̂ = − Ȳ4. , s2 {L̂} = 3 3n (ii) L̂ = .3Ȳ1. + .5Ȳ2. + .1Ȳ3. + .1Ȳ4. , s2 {L̂} = 17.4. a. q(.90; 6, 54) = 3.765, F (.90; 5, 54) = 1.96 g T S B 2 2.66 3.13 t(.975; 54) = 2.00 5 2.66 3.13 t(.99; 54) = 2.40 15 2.66 3.13 t(.99667; 54) = 2.82 b. Refer to part (a) for S and B multiples. 17.5. a. q(.95; 5, 20) = 4.23, F (.95; 4, 20) = 2.87 g T 2 2.99 5 2.99 10 2.99 b. S B 3.39 t(.9875; 20) = 2.42 3.39 t(.995; 20) = 2.845 3.39 t(.9975; 20) = 3.15 q(.95; 5, 95) = 3.94, F (.95; 4, 95) = 2.46 g T 2 2.79 5 2.79 10 2.79 S B 3.14 t(.9875; 95) = 2.28 3.14 t(.995; 95) = 2.63 3.14 t(.9975; 95) = 2.87 17.7. q(.99; 2, 18) = 4.07, F (.99; 1, 18) = 8.29, T = S = B = t(.995; 18) = 2.88 17.8. a. b. Ȳ1. = 6.878, Ȳ2. = 8.133, Ȳ3. = 9.200 s{Ȳ3. } = .327, t(.975; 24) = 2.064, 9.200 ± 2.064(.327), 8.525 ≤ µ3 ≤ 9.875 17-1 c. D̂ = Ȳ2. − Ȳ1. = 1.255, s{D̂} = .353, t(.975; 24) = 2.064, 1.255 ± 2.064(.353), .526 ≤ D ≤ 1.984 d. D̂1 = Ȳ3. − Ȳ2. = 1.067, D̂2 = Ȳ3. − Ȳ1. = 2.322, D̂3 = Ȳ2. − Ȳ1. = 1.255, s{D̂1 } = .400, s{D̂2 } = .422, s{D̂3 } = .353, q(.90; 3, 24) = 3.05, T = 2.157 1.067 ± 2.157(.400) 2.322 ± 2.157(.422) 1.255 ± 2.157(.353) e. .204 ≤ D1 ≤ 1.930 1.412 ≤ D2 ≤ 3.232 .494 ≤ D3 ≤ 2.016 F (.90; 2, 24) = 2.54, S = 2.25 B = t(.9833; 24) = 2.257 Yes 17.9. a. Ȳ1. = 29.4, Ȳ2. = 29.6, Ȳ3. = 28.0, s{Ȳ1. } = s{Ȳ2. } = s{Ȳ3. } = t(.975; 12) = 2.179 q 9.7 5 = 1.3928, b. s{Ȳ1. } = 1.393, t(.95; 12) = 1.782, 29.40 ± 1.782(1.393), 26.92 ≤ µ1 ≤ 31.88 c. H0 : D = µ3 − µ2 = 0, Ha : D 6= 0. D̂ = −1.6, s{D̂} = 1.970, t∗ = −1.6/1.970 = −.81, t(.95; 12) = 1.782. If | t∗ | ≤ 1.782 conclude H0 , otherwise Ha . Conclude H0 . No 17.10. a. Ȳ1. = 38.00, Ȳ2. = 32.00, Ȳ3. = 24.00 b. M SE = 19.81, s{Ȳ2. } = 1.4075, t(.995; 21) = 2.831, 32.00±2.831(1.4075), 28.02 ≤ µ2 ≤ 35.98 c. D̂1 = Ȳ2. − Ȳ3. = 8.00, D̂2 = Ȳ1. − Ȳ2. = 6.00, s{D̂1 } = 2.298, s{D̂2 } = 2.111, B = t(.9875; 21) = 2.414 8.00 ± 2.414(2.298) 6.00 ± 2.414(2.111) 2.45 ≤ D1 ≤ 13.55 .90 ≤ D2 ≤ 11.10 d. q(.95; 3, 21) = 3.57, T = 2.524, no e. Yes, no f. q(.95; 3, 21) = 3.57 Test Comparison i Di 1 µ1 − µ2 2 µ1 − µ3 3 µ2 − µ3 Group 1: Group 2: Group 3: 17.11. a. b. D̂i 6.00 14.00 8.00 s{D̂i } 2.111 2.404 2.298 qi∗ Conclusion 4.02 Ha 8.24 Ha 4.92 Ha Below Average Average Above Average Ȳ1. = 21.500, Ȳ2. = 27.750, Ȳ3. = 21.417 M SE = 2.490, s{Ȳ1. } = .456, t(.995; 33) = 2.733, 21.500 ± 2.733(.456), 20.254 ≤ µ1 ≤ 22.746 17-2 c. D̂ = Ȳ3. − Ȳ1. = −.083, s{D̂} = .644, t(.995; 33) = 2.733, −.083 ± 2.733(.644), −1.843 ≤ D ≤ 1.677 d. H0 : 2µ2 − µ1 − µ3 = 0, Ha : 2µ2 − µ1 − µ3 6= 0. F ∗ = (12.583)2 /1.245 = 127.17, F (.99; 1, 33) = 7.47. If F ∗ ≤ 7.47 conclude H0 , otherwise Ha . Conclude Ha . e. D̂1 = Ȳ3. − Ȳ1. = −.083, D̂2 = Ȳ3. − Ȳ2. = −6.333, D̂3 = Ȳ2. − Ȳ1. = 6.250, s{D̂i } = .644 (i = 1, 2, 3), q(.90; 3, 33) = 3.01, T = 2.128 −.083 ± 2.128(.644) −6.333 ± 2.128(.644) 6.250 ± 2.128(.644) f. 17.12. a. −1.453 ≤ D1 ≤ 1.287 −7.703 ≤ D2 ≤ −4.963 4.880 ≤ D3 ≤ 7.620 B = t(.9833; 33) = 2.220, no Ȳ1. = .0735, Ȳ2. = .1905, Ȳ3. = .4600, Ȳ4. = .3655, Ȳ5. = .1250, Ȳ6. = .1515 b. M SE = .03097, s{Ȳ1. } = .0394, t(.975; 114) = 1.981, .0735 ± 1.981(.0394), −.005 ≤ µ1 ≤ .152 c. D̂ = Ȳ2. − Ȳ1. = .1170, s{D̂} = .0557, t(.975; 114) = 1.981, .1170 ± 1.981(.0557), .007 ≤ D ≤ .227 e. D̂1 = Ȳ1. − Ȳ4. = −.2920, D̂2 = Ȳ1. − Ȳ5. = −.0515, D̂3 = Ȳ4. − Ȳ5. = .2405, s{D̂i } = .0557 (i = 1, 2, 3), B = t(.9833; 114) = 2.178 Test Comparison i i 1 D1 2 D2 3 D3 f. 17.13. a. t∗i −5.242 −.925 4.318 Conclusion Ha H0 Ha q(.90; 6, 114) = 3.71, T = 2.623, no Ȳ1. = 24.55, Ȳ2. = 22.55, Ȳ3. = 11.75, Ȳ4. = 14.80, Ȳ5. = 30.10, s{Ȳi. } = q 7.52 20 = .6132, (i = 1, 2, 3, 4, 5), t(.975; 95) = 1.985 b. Test 1: H0 : Ha : Test 2: H0 : Ha : Test 3: H0 : Ha : Test 4: H0 : Ha : Test 5: H0 : Ha : µ1 − µ2 µ1 − µ2 µ1 − µ3 µ1 − µ3 µ1 − µ4 µ1 − µ4 µ1 − µ5 µ1 − µ5 µ2 − µ3 µ2 − µ3 = 0 Test 6: 6= 0 = 0 Test 7: 6= 0 = 0 Test 8: 6= 0 = 0 Test 9: 6= 0 = 0 Test 10: 6= 0 H0 : Ha : H0 : Ha : H0 : Ha : H0 : Ha : H0 : Ha : µ2 − µ4 µ2 − µ4 µ2 − µ5 µ2 − µ5 µ3 − µ4 µ3 − µ4 µ3 − µ5 µ3 − µ5 µ4 − µ5 µ4 − µ5 =0 6= 0 =0 6= 0 =0 6= 0 =0 6= 0 =0 6= 0 D̂1 = 24.55 − 22.55 = 2.00, D̂2 = 24.55 − 11.75 = 12.80, D̂3 = 24.55 − 14.80 = 9.75, D̂4 = 24.55 − 30.10 = −5.55, D̂5 = 22.55 − 11.75 = 10.80, D̂6 = 22.55 − 14.80 = 7.75, 17-3 D̂7 = 22.55 − 30.10 = −7.55, D̂8 = 11.75 − 14.80 = −3.05, D̂9 = 11.75 − 30.10 = −18.35, D̂10 = 14.80 − 30.10 = −15.30, s{D̂i } = .8673 (i = 1, ..., 10), q(.90; 5, 95) = 3.54. If |qi∗ | ≤ 3.54 conclude H0 , otherwise Ha . Test i 1 2 3 4 5 6 7 8 9 10 qi∗ Conclusion 3.26 Ho 20.87 Ha 15.90 Ha −9.05 Ha 17.61 Ha 12.64 Ha −12.31 Ha −4.97 Ha −29.92 Ha −24.95 Ha Group 1 Agent 3 Ȳ3. = 11.75 Group 2 Agent 4 Ȳ4. = 14.80 Group 3 Agent 1 Ȳ1. = 24.55 Agent 2 Ȳ2. = 22.55 Group 4 Agent 5 Ȳ5. = 30.10 c. M SE = 7.523, s{Ȳ1. } = .6133, t(.95; 95) = 1.661, 24.550 ± 1.661(.6133), 23.531 ≤ µ1 ≤ 25.569 d. D̂ = Ȳ2. − Ȳ1. = −2.000, s{D̂} = .8673, t(.95; 95) = 1.661, −2.000 ± 1.661(.8673), −3.441 ≤ D ≤ −.559 e. D̂1 = Ȳ1. − Ȳ3. = 12.800, D̂2 = Ȳ1. − Ȳ5. = −5.550, D̂3 = Ȳ3. − Ȳ5. = −18.350, s{D̂i } = .8673 (i = 1, 2, 3), B = t(.9833; 95) = 2.158 12.800 ± 2.158(.8673) −5.550 ± 2.158(.8673) −18.350 ± 2.158(.8673) f. 17.14. a. 10.928 ≤ D1 ≤ 14.672 −7.422 ≤ D2 ≤ −3.678 − 20.222 ≤ D3 ≤ −16.478 q(.90; 5, 95) = 3.54, T = 2.503, no L̂ = (Ȳ1. + Ȳ2. )/2 − Ȳ3. = (6.8778 + 8.1333)/2 − 9.200 = −1.6945, s{L̂} = .3712, t(.975; 24) = 2.064, −1.6945 ± 2.064(.3712), −2.461 ≤ L ≤ −.928 b. L̂ = (3/9)Ȳ1. + (4/9)Ȳ2. + (2/9)Ȳ3. = 7.9518, s{L̂} = .1540, t(.975; 24) = 2.064, 7.9518 ± 2.064(.1540), 7.634 ≤ L ≤ 8.270 c. F (.90; 2, 24) = 2.54, S = 2.254; see also part (a) and Problem 17.8. 1.067 ± 2.254(.400) 2.322 ± 2.254(.422) .165 ≤ D1 ≤ 1.969 1.371 ≤ D2 ≤ 3.273 17-4 1.255 ± 2.254(.353) −1.6945 ± 2.254(.3712) 17.15. a. .459 ≤ D3 ≤ 2.051 −2.531 ≤ L1 ≤ −.858 L̂ = (Ȳ1. − Ȳ2. ) − (Ȳ2. − Ȳ3. ) = Ȳ1. − 2Ȳ2. + Ȳ3. = 38.000 − 2(32.000) +24.000 = −2.000, s{L̂} = 3.7016, t(.995; 21) = 2.831, −2.000 ± 2.831(3.7016), −12.479 ≤ L ≤ 8.479 b. D̂1 = Ȳ1. − Ȳ2. = 6.000, D̂2 = Ȳ1. − Ȳ3. = 14.000, D̂3 = Ȳ2. − Ȳ3. = 8.000, L̂1 = D̂1 − D̂3 = −2.000, s{D̂1 } = 2.1112, s{D̂2 } = 2.4037, s{D̂3 } = 2.2984, s{L̂1 } = 3.7016, B = t(.99375; 21) = 2.732 6.000 ± 2.732(2.1112) 14.000 ± 2.732(2.4037) 8.000 ± 2.732(2.2984) −2.000 ± 2.732(3.7016) c. 17.16. a. .232 ≤ D1 ≤ 11.768 7.433 ≤ D2 ≤ 20.567 1.721 ≤ D3 ≤ 14.279 −12.113 ≤ L1 ≤ 8.113 F (.95; 2, 21) = 3.47, S = 2.634, yes L̂ = (Ȳ3. − Ȳ2. ) − (Ȳ2. − Ȳ1. ) = Ȳ3. − 2Ȳ2. + Ȳ1. = 21.4167− 2(27.7500) + 21.500 = −12.5833, s{L̂} = 1.1158, t(.995; 33) = 2.733, −12.5833 ± 2.733(1.1158), −15.632 ≤ L ≤ −9.534 b. D̂1 = Ȳ2. − Ȳ1. = 6.2500, D̂2 = Ȳ3. − Ȳ2. = −6.3333, D̂3 = Ȳ3. − Ȳ1. = −.0833, L̂1 = D̂2 − D̂1 = −12.5833, s{D̂i } = .6442 (i = 1, 2, 3), s{L̂1 } = 1.1158, F (.90; 2, 33) = 2.47, S = 2.223 6.2500 ± 2.223(.6442) −6.3333 ± 2.223(.6442) −.0833 ± 2.223(.6442) −12.5833 ± 2.223(1.1158) 17.17. a. 4.818 ≤ D1 ≤ 7.682 −7.765 ≤ D2 ≤ −4.901 −1.515 ≤ D3 ≤ 1.349 −15.064 ≤ L1 ≤ −10.103 L̂ = (Ȳ1. + Ȳ2. )/2 − (Ȳ3. + Ȳ4. )/2 = (.0735 + .1905)/2 − (.4600 + .3655)/2 = −.28075, s{L̂} = .03935, t(.975; 114) = 1.981, −.28075±1.981(.03935), −.3587 ≤ L ≤ −.2028 b. D̂1 = −.1170, D̂2 = .0945, D̂3 = −.0265, L̂1 = −.28075, L̂2 = −.00625, L̂3 = −.2776, L̂4 = .1341, s{D̂i } = .0557 (i = 1, 2, 3), s{L̂1 } = s{L̂2 } = .03935, s{L̂3 } = s{L̂4 } = .03408, B = t(.99286; 114) = 2.488 −.1170 ± 2.488(.0557) .0945 ± 2.488(.0557) −.0265 ± 2.488(.0557) −.28075 ± 2.488(.03935) −.00625 ± 2.488(.03935) −.2776 ± 2.488(.03408) .1341 ± 2.488(.03408) 17.18. a. −.2556 ≤ D1 ≤ .0216 −.0441 ≤ D2 ≤ .2331 −.1651 ≤ D3 ≤ .1121 −.3787 ≤ L1 ≤ −.1828 −.1042 ≤ L2 ≤ .0917 −.3624 ≤ L3 ≤ −.1928 .0493 ≤ L4 ≤ .2189 L̂ = (Ȳ1. + Ȳ2. )/2 − (Ȳ3. + Ȳ4. )/2 = (24.55 + 22.55)/2 − (11.75 + 14.80)/2 17-5 = 10.275, s{L̂} = .6133, t(.95; 95) = 1.661, 10.275 ± 1.661(.6133), 9.256 ≤ L ≤ 11.294 b. D̂1 = 2.00, D̂2 = −3.05, L̂1 = −6.55, L̂2 = −16.825, L̂3 = 10.275, s{D̂i } = .8673 (i = 1, 2), s{L̂i } = .7511 (i = 1, 2), s{L̂3 } = .6133, F (.90; 4, 95) = 1.997, S = 2.826 2.00 ± 2.826(.8673) −3.05 ± 2.826(.8673) −6.55 ± 2.826(.7511) −16.825 ± 2.826(.7511) 10.275 ± 2.826(.6133) c. 17.19. a. −.451 ≤ D1 ≤ 4.451 −5.501 ≤ D2 ≤ −.599 −8.673 ≤ L1 ≤ −4.427 −18.948 ≤ L2 ≤ −14.702 8.542 ≤ L3 ≤ 12.008 L̂ = .25Ȳ1. + .20Ȳ2. + .20Ȳ3. + .20Ȳ4. + .15Ȳ5. = 20.4725, s{L̂} = .2777, t(.95; 95) = 1.661, 20.4725 ± 1.661(.2777), 20.011 ≤ L ≤ 20.934 L1 = µ1 − µ. L2 = µ2 − µ. L3 = µ3 − µ. L4 = µ4 − µ. L5 = µ5 − µ. L6 = µ6 − µ. L̂1 = .0735 − .2277 = −.1542, L̂2 = .1905 − .2277 = −.0372 L̂3 = .4600 − .2277 = .2323, L̂4 = .3655 − .2277 = .1378 L̂5 = .1250 − .2277 = −.1027, L̂6 = .1515 − .2277 = −.0762 s µ ¶ µ ¶ .03097 25 .03097 5 s{L̂i } = + = .0359 20 36 36 20 B = t(.99583; 114) = 2.685 −.1542 ± 2.685(.0359) −.0372 ± 2.685(.0359) .2323 ± 2.685(.0359) .1378 ± 2.685(.0359) −.1027 ± 2.685(.0359) −.0762 ± 2.685(.0359) .2506 ≤ L1 ≤ −.0578 −.1336 ≤ L2 ≤ .0592 .1359 ≤ L3 ≤ .3287 .0414 ≤ L4 ≤ .2342 −.1991 ≤ L5 ≤ −.0063 −.1726 ≤ L6 ≤ .0202 Conclude not all µi are equal. 17.20. a. L1 = µ1 − µ. L 2 = µ2 − µ. L3 = µ3 − µ. L4 = µ4 − µ. L5 = µ5 − µ. L̂1 = 24.55 − 20.75 = 3.80, L̂2 = 22.55 − 20.75 = 1.80 L̂3 = 11.75 − 20.75 = −9.00, L̂4 = 14.80 − 20.75 = −5.95 L̂5 = 30.10 − 20.75 = 9.35 s µ ¶ µ ¶ 7.5226 4 7.5226 16 s{L̂i } = + = .5485 20 25 25 20 B = t(.99; 95) = 2.366 17-6 3.80 ± 2.366(.5485) 1.80 ± 2.366(.5485) −9.00 ± 2.366(.5485) −5.95 ± 2.366(.5485) 9.35 ± 2.366(.5485) 2.502 ≤ L1 ≤ 5.098 .502 ≤ L2 ≤ 3.098 −10.298 ≤ L3 ≤ −7.702 −7.248 ≤ L4 ≤ −4.652 8.052 ≤ L5 ≤ 10.648 Conclude not all µi are equal. 17.21. a. Yij = µi + ²ij b. i: 1 Ȳi. : .0800 2 3 4 5 .1800 .5333 1.1467 2.8367 c. Source SS df MS Treatments 15.3644 4 3.8411 Error .1574 10 .01574 Total 15.5218 14 d. H0 : all µi are equal (i = 1, ..., 5), Ha : not all µi are equal. F ∗ = 3.8411/.01574 = 244.034, F (.975; 4, 10) = 4.47. If F ∗ ≤ 4.47 conclude H0 , otherwise Ha . Conclude Ha . e. D̂1 = Ȳ1. − Ȳ2. = −.1000, D̂2 = Ȳ2. − Ȳ3. = −.3533, D̂3 = Ȳ3. − Ȳ4. = −.6134. D4 = Ȳ4. − Ȳ5. = −1.6900, s{D̂i } = .1024 (i = 1, ..., 4), B = t(.99375; 10) = 3.038 −.1000 ± 3.038(.1024) −.3533 ± 3.038(.1024) −.6134 ± 3.038(.1024) −1.6900 ± 3.038(.1024) 17.23. n = 13 17.24. Bonferroni, n = 24 17.25. Bonferroni, n = 45 17.26. Bonferroni, n = 92 17.27. a. n = 20, 2n = 40, n = 20 b. −.411 ≤ D1 ≤ .211 −.664 ≤ D2 ≤ −.042 −.924 ≤ D3 ≤ −.302 −2.001 ≤ D4 ≤ −1.379 (1) n = 26, n = 26, n = 26 (2) n = 18, 3n = 54, n = 18 c. 17.28. a. b. b(1) Ŷ = 68.66655 − .36820X eij : 17-7 i j=1 1 −9.106 2 −1.847 3 1.886 i j=6 1 1.894 2 −.847 3 −2.114 j=4 j=5 1.894 4.894 −3.847 −.847 −4.114 −1.114 j = 9 j = 10 −2.847 1.153 c. H0 : E{Y } = β0 + β1 X, Ha : E{Y } 6= β0 + β1 X. SSP E = 416.0000, SSLF = .4037, F ∗ = (.4037/1) ÷ (416.0000/21) = .020, F (.95; 1, 21) = 4.32. If F ∗ ≤ 4.32 conclude H0 , otherwise Ha . Conclude H0 . d. No 17.29. a. b. Ŷ = .18472 + .06199x + .01016x2 eij : i 1 2 3 4 5 6 i 1 2 3 4 5 6 i 1 2 3 4 5 6 17.30. j=2 j=3 3.894 −.106 3.153 7.153 7.886 −3.114 j=7 j=8 −8.106 3.894 −2.847 3.153 j=1 −.2310 .2393 −.2440 .1268 −.2969 −.0802 j=8 −.3610 .1093 −.2140 −.2232 .1131 .0398 j = 15 −.0010 .1393 −.0040 .1168 −.3069 −.1902 j=2 .1090 −.1107 .3260 .2168 .1631 −.1802 j=9 .1790 −.1607 .0160 .1168 .1831 .2998 j = 16 .0390 −.1807 .0260 .1768 .1331 −.0002 j=3 −.0210 −.1007 −.1340 .1568 −.0469 .1498 j = 10 −.3010 −.2507 .1660 −.0232 .0331 −.2002 j = 17 .1690 −.0507 −.0140 .1468 .0931 .2998 j=4 .0890 .2493 −.0040 −.0732 .0031 .3398 j = 11 .2990 −.1707 .0160 −.3532 .0931 .0698 j = 18 −.0210 −.2007 .0460 .0568 .0331 .2198 j=5 .2890 .0193 −.2340 −.0932 .1231 −.0102 j = 12 −.1610 .3093 .0960 −.0332 .1931 −.1202 j = 19 −.1010 −.1107 −.2540 .0868 .2431 −.2202 j=6 .0090 −.1607 −.1040 .1868 .0431 .1398 j = 13 −.1110 .1993 .1360 −.1832 −.2169 −.0302 j = 20 −.2810 −.1007 .1560 −.1632 −.2869 −.0802 j=7 −.1310 −.3407 .0860 .0368 −.0969 −.0502 j = 14 .1890 .0693 .2560 −.2332 .1631 .0298 c. H0 : E{Y } = β0 + β1 x + β11 x2 , Ha : E{Y } 6= β0 + β1 x + β11 x2 . SSP E = 3.5306, SSLF = .0408, F ∗ = (.0408/3) ÷ (3.5306/114) = .439, F (.99; 3, 114) = 3.96. If F ∗ ≤ 3.96 conclude H0 , otherwise Ha . Conclude H0 . d. H0 : β11 = 0, Ha : β11 6= 0. s{b11 } = .00525, t∗ = .01016/.00525 = 1.935, t(.995; 117) = 2.619. If |t∗ | ≤ 2.619 conclude H0 , otherwise Ha . Conclude H0 . With r = 2 and ni ≡ n, M SE = s2 as defined in (A.63) and max(Ȳi. − µi ) − min(Ȳi. − µi ) = (Ȳi. − µi ) − (Ȳi0 . − µi0 ) = 17-8 = (Ȳi. − Ȳi0 . ) − (µi − µi0 ), i 6= i0 . Thus: q∗ = 17.31. (Ȳi. − Ȳi0 . ) − (µi − µi0 ) √ ∗ √ = 2|t | s/ n Working within the probability expression, we obtain: ¯ ¯ ¯ ¯ ¯ (Ȳi. − µi ) − (Ȳi0 . − µi0 ) ¯ ¯ ¯ ≤ q(1 − α; r, nT − r) q ¯ ¯ ¯ ¯ M SE/n ³q ´ |(Ȳi. − µi ) − (Ȳi0 . − µi0 )| ≤ or M SE/n q(1 − α; r, nT − r) |(Ȳi. − µi ) − (Ȳi0 . − µi0 )| ≤ s{D̂}T 1 since T = √ q(1 − α; r, nT − r) and 2 s M SE s{D̂} = √ n 2 −s{D̂}T ≤ (Ȳi. − Ȳi0 . ) − (µi − µi0 ) ≤ s{D̂}T or or or (Ȳi. − Ȳi0 . ) − T s{D̂} ≤ µi − µi0 ≤ (Ȳi. − Ȳi0 . ) + T s{D̂} 17.32. When r = 2, S 2 = F (1 − α; 1, nT − 2) which by (A.50b) equals [t(1 − α/2; nT − 2)]2 . 17.33. 2 2 σ {L̂i } = σ {Ȳi. − r X Ȳh. /r} h=1 2 = σ 2 {Ȳi. } + σ { X Ȳh. /r} − 2σ{Ȳi. , 2 X Ȳh. /r} 2 σ 1 X 2 2σ + 2 (σ /nh ) − ni r rni r 2 1 X σ σ2 2σ 2 = 2 σ 2 (1/nh ) + + 2 − r ni r ni rni h6=i = µ = r 1 2X σ2 1 2 σ (1/n ) + 1+ 2 − h 2 r ni r r h6=i = r 1 2X σ2 σ (1/n ) + h r2 h6=i ni µ r−1 r ¶ ¶2 Replacing σ 2 by the estimator M SE leads to (17.49). 17.34. Given n1 = n3 = n and n2 = kn. Let c = kn/nT . Then n1 = n3 = (nT − kn)/2 = nT (1 − c)/2 and n2 = cnT . Hence: " 2 1 σ 2 {Ȳ1. − Ȳ2. } = σ 2 {Ȳ3. − Ȳ2. } = σ 2 + nT (1 − c) cnT Differentiating with respect to c yields: σ2 2σ 2 (1 − c)−2 + (−c−2 ) nT nT 17-9 # Setting the derivative equal to zero and solving yields c = .4142. Hence, n2 = (.4142)nT and n1 = n3 = (.2929)nT . (Note: This derivation treats n as a continuous variable. Since n2 must be an even integer, appropriate rounding of the calculated sample sizes is required. For example, if nT = 100, the calculated sample sizes are n1 = 29.29, n2 = 41.42, and n3 = 29.29. The smallest variance is obtained for n1 = 29, n2 = 42, and n3 = 29.) 17.35. Ȳ1. = 4.86071, Ȳ2. = 4.39375, Ȳ3. = 3.92703, Ȳ4. = 4.38125, M SE = 1.7191, n1 = 28, n2 = 32, n3 = 37, n4 = 16, D̂1 = Ȳ1. − Ȳ2. = .46696, D̂2 = Ȳ1. − Ȳ3. = .93368, D̂3 = Ȳ1. − Ȳ4. = .47946, D̂4 = Ȳ2. − Ȳ3. = .46667, D̂5 = Ȳ2. − Ȳ4. = .01250, D̂6 = Ȳ3. − Ȳ4. = −.45422, s{D̂1 } = .3393, s{D̂2 } = .3284, s{D̂3 } = .4109, s{D̂4 } = .3165, s{D̂5 } = .4015, s{D̂6 } = .3923, q(.90; 4, 109) = 3.28, T = 2.319 .46696 ± 2.319(.3393) .93368 ± 2.319(.3284) .47946 ± 2.319(.4109) .46667 ± 2.319(.3165) .01250 ± 2.319(.4015) −.45422 ± 2.319(.3923) 17.36. −.320 ≤ D1 ≤ 1.254 .172 ≤ D2 ≤ 1.695 −.473 ≤ D3 ≤ 1.432 −.267 ≤ D4 ≤ 1.201 −.919 ≤ D5 ≤ .944 − 1.364 ≤ D6 ≤ .456 Ȳ1. = .04123, Ȳ2. = .05111, Ȳ3. = .07074, Ȳ4. = .06088, M SE = .000616, n1 = 103, n2 = 108, n3 = 152, n4 = 77, D̂1 = Ȳ1. − Ȳ2. = −.0099, s{D̂1 } = .0034 D̂2 = Ȳ1. − Ȳ3. = −.0295, s{D̂2 } = .0032 D̂3 = Ȳ1. − Ȳ4. = −.0196, s{D̂3 } = .0037 D̂4 = Ȳ2. − Ȳ3. = −.0196, s{D̂4 } = .0031 D̂5 = Ȳ2. − Ȳ4. = −.0098, s{D̂5 } = .0037 D̂6 = Ȳ3. − Ȳ4. = .0099, s{D̂6 } = .0035, q(.90; 4, 137) = 3.24, T = 2.291 −.01771 ≤ D1 ≤ −.00204, −.03677 ≤ D2 ≤ −.02225 −.02822 ≤ D3 ≤ −.01108, −.02679 ≤ D4 ≤ −.01247 −.01825 ≤ D5 ≤ −.00129, .00191 ≤ D6 ≤ .01782 17.37. Ȳ1. = 2.4125, Ȳ2. = 2.7375, Ȳ3. = 2.4286, Ȳ4. = 2.9000, M SE = .0245, n1 = 8, n2 = 8, n3 = 7, n4 = 13, D̂1 = Ȳ1. − Ȳ2. = −.3250, s{D̂1 } = .0783 D̂2 = Ȳ1. − Ȳ3. = −.0161, s{D̂2 } = .0810 D̂3 = Ȳ1. − Ȳ4. = −.4875, s{D̂3 } = .0703 D̂4 = Ȳ2. − Ȳ3. = .3089, s{D̂4 } = .0810 D̂5 = Ȳ2. − Ȳ4. = −.1625, s{D̂5 } = .0703 17-10 D̂6 = Ȳ3. − Ȳ4. = −.4714, s{D̂6 } = .0734 q(.95; 4, 32) = 3.83, T = 2.708 −.5371 ≤ D1 ≤ −.1129, −.2356 ≤ D2 ≤ .2035 −.6781 ≤ D3 ≤ −.2969, .0894 ≤ D4 ≤ .5285 −.3531 ≤ D5 ≤ .0281, −.6703 ≤ D6 ≤ −.2726 17.38. b. Expected proportion is .95. 17-11 17-12 Chapter 18 ANOVA DIAGNOSTICS AND REMEDIAL MEASURES 18.4. a. See Problem 16.7c. b. r = .992 c. tij : i 1 2 3 j=1 j=2 .9557 1.8377 −1.9821 −.0426 −.9568 .6768 i 1 2 j=7 −.7592 1.0009 j=3 −.1010 1.7197 1.2464 j=8 j=9 1.0945 −1.1728 −.2988 .2132 j=4 −1.4623 .6011 −2.0391 j=5 .0288 −.4277 .5395 j=6 −.3615 −.5575 .4035 j = 10 j = 11 j = 12 .7326 −1.3737 .3417 H0 : no outliers, Ha : at least one outlier. t(.999815; 23) = 4.17. If | tij |≤ 4.17 conclude H0 , otherwise Ha . Conclude H0 . 18.5. a. See Problem 16.8c. b. r = .991 d. tij : i 1 2 3 j=1 −.4863 1.6992 1.0849 j=2 −1.2486 −.2066 −1.0849 j=3 .5576 −1.7985 −.3456 j=4 −.8516 .4863 .3456 j=5 2.3634 −.2066 .0000 H0 : no outliers, Ha : at least one outlier. t(.99917; 11) = 4.13. If |tij | ≤ 4.13 conclude H0 , otherwise Ha . Conclude H0 . 18.6. a. See Problem 16.9c. b. r = .990 d. tij : 18-1 i 1 2 3 j=1 j=2 −2.3926 .9589 −.4647 .7019 .4832 2.1280 j=3 .0000 1.7354 −.7301 j=4 .4714 −.9449 −.9837 i 1 2 j=7 j=8 −2.0656 .9589 −.7019 .7019 j=9 j = 10 −.7019 .2314 j=5 j=6 1.2145 .4714 −.2314 −.2314 −.2405 −.4832 H0 : no outliers, Ha : at least one outlier. t(.99979; 20) = 4.22. If |tij | ≤ 4.22 conclude H0 , otherwise Ha . Conclude H0 . 18.7. a. See Problem 16.10c. b. r = .984 d. tij : i j=1 1 .9927 2 .1630 3 1.0497 j=2 2.4931 −.4907 −.9360 i 1 2 3 j=8 j=9 .9927 −1.7017 1.5185 .1630 −.9360 −1.6401 j=7 −.9927 −.4907 −.2719 j=3 j=4 −.3265 .3265 −.4907 .8234 2.5645 −.2719 j=5 j=6 −.3265 .3265 −1.1646 .8234 .3811 1.0497 j = 10 j = 11 .3265 −1.7017 −.4907 −1.1646 −.9360 .3811 j = 12 −.3265 .8234 −.2719 H0 : no outliers, Ha : at least one outlier. t(.99965; 32) = 3.75. If |tij | ≤ 3.75 conclude H0 , otherwise Ha . Conclude H0 . 18.8. a. See Problem 16.11c. b. r = .992 d. tij : i 1 2 3 4 5 6 j=1 j=2 −1.2477 .7360 1.5815 −.4677 −1.4648 1.8864 .7243 1.2537 −1.8560 .8443 −.5901 −1.1767 j=3 −.0203 −.4095 −.8150 .9000 −.3775 .7477 j=4 .6192 1.6415 −.0580 −.4386 −.0871 1.8773 j=5 1.8045 .2874 −1.4052 −.5551 .6105 −.1829 j=6 .1538 −.7594 −.6396 1.0764 .1451 .6893 i 1 2 3 4 5 6 j=8 j=9 −2.0298 1.1472 .8121 −.7594 −1.2863 .0580 −1.3189 .6659 .5522 .9616 .1074 1.6355 j = 10 −1.6656 −1.2892 .9323 −.1480 .0871 −1.2952 j = 11 1.8651 −.8179 .0580 −2.1035 .4357 .2816 j = 12 −.8355 2.0053 .5230 −.2061 1.0204 −.8238 j = 13 −.5434 1.3427 .7565 −1.0823 −1.3754 −.2990 18-2 j=7 −.6601 −1.8287 .4648 .2003 −.6688 −.4153 j = 14 1.2063 .5784 1.4648 −1.3784 .8443 .0493 i 1 2 3 4 5 6 j = 15 j = 16 .0958 .3281 .9881 −.8765 −.0580 .1161 .6659 1.0175 −1.9168 .6688 −1.2359 −.1248 j = 17 1.0882 −.1190 −.1161 .8414 .4357 1.6355 j = 18 j = 19 −.0203 −.4852 −.9940 −.4677 .2322 −1.5246 .3165 .4910 .0871 1.3160 1.1590 −1.4141 j = 20 −1.5455 −.4095 .8736 −.9646 −1.7954 −.5901 H0 : no outliers, Ha : at least one outlier. t(.9999417; 113) = 4.08. If |tij | ≤ 4.08 conclude H0 , otherwise Ha . Conclude H0 . 18.9. a. See Problem 16.12c. b. r = .995 d. tij : i 1 2 3 4 5 j=1 j=2 −.2047 −.2047 −1.7195 −.9534 −.6526 −.2792 .0744 −.6714 1.0858 −3.1711 j=3 j=4 1.6805 −1.7195 −.9534 .5404 −1.4100 .0930 1.1998 .4470 −.7840 1.8564 i 1 2 3 4 5 j=8 j=9 .9157 −.5778 .5404 2.0738 −1.0290 −1.4100 1.1998 −1.4293 .3351 −.4097 j = 10 j = 11 −1.3334 −.2047 −1.3334 .5404 −.2792 1.6029 .8216 .0744 −.7840 1.0858 i 1 2 3 4 5 j = 15 1.2951 .5404 .4657 −.2978 −.4097 j = 16 j = 17 −.5778 −.5778 −.2047 −1.3334 −.2792 .8404 .8216 .4470 1.8564 .7089 j = 18 .9157 1.2951 −1.0290 .8216 −1.5448 j=5 j=6 −1.3334 .1675 −.2047 2.4771 .0930 −.6526 −1.0479 1.5835 −.4097 −.7840 j = 12 j = 13 .5404 −.5778 .9157 −.5778 .0930 2.3955 −1.0479 −.6714 −.0372 .7089 j = 19 .5404 −.2047 −.2792 −.2978 −.0372 j=7 1.2951 .1675 .8404 −1.8172 −.0372 j = 14 −.2047 −.9534 .8404 −.6714 1.0858 j = 20 .1675 −.5778 .0930 .4470 −.4097 H0 : no outliers, Ha : at least one outlier. t(.999875; 94) = 3.81. If |tij | ≤ 3.81 conclude H0 , otherwise Ha . Conclude H0 . 18.11. H0 : all σi2 are equal (i = 1, 2, 3), Ha : not all σi2 are equal. Ỹ1 = 6.80, Ỹ2 = 8.20, Ỹ3 = 9.55, M ST R = .0064815, M SE = .26465, ∗ ∗ ≤ 3.40 conclude H0 , = .0064815/.26465 = .02, F (.95; 2, 24) = 3.40. If FBF FBF otherwise Ha . Conclude H0 . P -value = .98 18.12. H0 : all σi2 are equal (i = 1, 2, 3), Ha : not all σi2 are equal. Ỹ1 = 40.0, Ỹ2 = 31.0, Ỹ3 = 22.5, M ST R = 2.96667, M SE = 11.30476, ∗ ∗ ≤ 2.575 conclude = 2.96667/11.30476 = .26, F (.90; 2, 21) = 2.575. If FBF FBF H0 , otherwise Ha . Conclude H0 . P -value = .77 18-3 18.13. a. H0 : all σi2 are equal (i = 1, 2, 3), Ha : not all σi2 are equal. s1 = 1.7321, s2 = 1.2881, s3 = 1.6765, ni ≡ 12, H ∗ = (1.7321)2 /(1.2881)2 = 1.808, H(.99; 3, 11) = 6.75. If H ∗ ≤ 6.75 conclude H0 , otherwise Ha . Conclude H0 . P -value > .05 b. Ỹ1 = 21.5, Ỹ2 = 27.5, Ỹ3 = 21.0, M ST R = .19444, M SE = .93434, ∗ ∗ FBF = .19444/.93434 = .21, F (.99; 2, 33) = 5.31. If FBF ≤ 5.31 conclude H0 , otherwise Ha . Conclude H0 . P -value = .81 18.14. a. H0 : all σi2 are equal (i = 1, ..., 6), Ha : not all σi2 are equal. s1 = .1925, s2 = .1854, s3 = .1646, s4 = .1654, s5 = .1727, s6 = .1735, ni ≡ 20, H ∗ = (.1925)2 /(.1646)2 = 1.3677, H(.99; 6, 19) = 5.2. If H ∗ ≤ 5.2 conclude H0 , otherwise Ha . Conclude H0 . P -value > .05 b. 18.15. a. Ỹ1 = .08, Ỹ2 = .12, Ỹ3 = .47, Ỹ4 = .41, Ỹ5 = .175, Ỹ6 = .125, M ST R = .002336, ∗ ∗ M SE = .012336, FBF = .002336/.012336 = .19, F (.99; 5, 114) = 3.18. If FBF ≤ 3.18 conclude H0 , otherwise Ha . Conclude H0 . P -value = .97 Ȳ1. = 3.90, Ȳ2. = 1.15, Ȳ3. = 2.00, Ȳ4. = 3.40 eij : c. i 1 2 3 4 j=1 j=2 j=3 j=4 j=5 j=6 .10 −.90 1.10 .10 2.10 −.90 −1.15 .85 −1.15 1.85 .85 −.15 0.0 −1.00 −2.00 1.00 2.00 −1.00 1.60 −1.40 .60 .60 2.60 1.60 i 1 2 3 4 j=8 1.10 1.85 2.00 1.60 i 1 2 3 4 j = 15 .10 −.15 −2.00 −.40 j=9 3.10 −.15 0.0 3.60 j = 16 1.10 1.85 −1.00 .60 j = 10 −2.90 −1.15 −2.00 −.40 j = 17 −3.90 −.15 1.00 −2.40 j = 11 −1.90 −1.15 −1.00 −2.40 j = 12 1.10 −.15 1.00 −3.40 j = 18 .10 .85 −2.00 1.60 j = 19 −2.90 .85 0.0 −1.40 j=7 −1.90 −1.15 1.00 −.40 j = 13 .10 −.15 0.0 −1.40 j = 14 3.10 −1.15 2.00 −.40 j = 20 2.10 −1.15 2.00 −.40 H0 : all σi2 are equal (i = 1, 2, 3, 4), Ha : not all σi2 are equal. Ỹ1 = 4, Ỹ2 = 1, Ỹ3 = 2, Ỹ4 = 3, M ST R = 1.64583, M SE = .96776, ∗ ∗ ≤ 2.157 conclude H0 , = 1.64583/.96776 = 1.70, F (.90; 3, 76) = 2.157. If FBF FBF otherwise Ha . Conclude H0 . P -value = .17 d. i Ȳi. si 1 3.9000 1.9708 2 1.1500 1.0894 3 2.0000 1.4510 4 3.4000 1.7889 18-4 e. λ −1.0 −.8 −.6 −.4 −.2 −.1 0 λ .1 .2 .4 .6 .8 1.0 SSE 434.22 355.23 297.21 254.90 224.59 213.09 203.67 SSE 196.14 190.35 183.48 182.41 186.91 197.15 Yes 18.16. a. Ȳ1.0 = 1.8714, Ȳ2.0 = .8427, Ȳ3.0 = 1.2293, Ȳ40 . = 1.7471 e0ij : i 1 2 3 4 j=1 .129 −.843 .185 .489 j=2 j=3 −.139 .365 .572 −.843 −.229 −1.229 −.333 .253 i 1 2 3 4 j=8 .365 .889 .771 .489 j=9 .774 .157 .185 .899 i 1 2 3 4 j = 15 j = 16 j = 17 .129 .365 −1.871 .157 .889 .157 −1.229 −.229 .503 −.015 .253 −.747 j = 10 −.871 −.843 −1.229 −.015 j=4 .129 .889 .503 .253 j = 11 −.457 −.843 −.229 −.747 j=5 j=6 .578 −.139 .572 .157 .771 −.229 .702 .489 j=7 −.457 −.843 .503 −.015 j = 12 j = 13 j = 14 .365 .129 .774 .157 .157 −.843 .503 .185 .771 −1.747 −.333 −.015 j = 18 .129 .572 −1.229 .489 j = 19 −.871 .572 .185 −.333 j = 20 .578 −.843 .771 −.015 b. r = .964 c. H0 : all σi2 are equal (i = 1, 2, 3, 4), Ha : not all σi2 are equal. Ỹ1 = 2.000, Ỹ2 = 1.000, Ỹ3 = 1.414, Ỹ4 = 1.732, M ST R = .07895, M SE = .20441, ∗ ∗ FBF = .07895/.20441 = .39, F (.90; 3, 76) = 2.157. If FBF ≤ 2.157 conclude H0 , otherwise Ha . Conclude H0 . 18.17. a. Ȳ1. = 3.5625, Ȳ2. = 5.8750, Ȳ3. = 10.6875, Ȳ4. = 15.5625 eij : i j=1 1 .4375 2 1.1250 3 1.3125 4 .4375 j=2 −.5625 .1250 −4.6875 −1.5625 j=3 −1.5625 −1.8750 3.3125 −9.5625 j=4 −.5625 .1250 1.3125 3.4375 18-5 j=5 .4375 1.1250 −.6875 −3.5625 j=6 .4375 −3.8750 −1.6875 −5.5625 c. i 1 2 3 4 j=7 −.5625 3.1250 1.3125 −.5625 j=8 j=9 2.4375 1.4375 −.8750 −.8750 6.3125 −3.6875 8.4375 −5.5625 i 1 2 3 4 j = 13 j = 14 .4375 −1.5625 .1250 −1.8750 −4.6875 2.3125 −.5625 2.4375 j = 10 .4375 3.1250 −4.6875 7.4375 j = 11 −1.5625 −2.8750 1.3125 1.4375 j = 12 .4375 2.1250 .3125 4.4375 j = 15 j = 16 −.5625 .4375 1.1250 .1250 −.6875 3.3125 −7.5625 6.4375 H0 : all σi2 are equal (i = 1, 2, 3, 4), Ha : not all σi2 are equal. Ỹ1 = 4.0, Ỹ2 = 6.0, Ỹ3 = 11.5, Ỹ4 = 16.5, M ST R = 37.1823, M SE = 3.8969, ∗ ∗ FBF = 37.1823/3.8969 = 9.54, F (.95; 3, 60) = 2.76. If FBF ≤ 2.76 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. i 1 2 3 4 Ȳi. 3.5625 5.8750 10.6875 16.5625 si 1.0935 1.9958 3.2397 5.3786 e. λ .1 .2 .4 .6 .8 1.0 λ SSE −1.0 1, 038.26 −.8 790.43 −.6 624.41 −.4 516.16 −.2 450.16 −.1 429.84 0 416.84 SSE 410.65 410.92 430.49 476.68 553.64 669.06 Yes 18.18. a. Ȳ1.0 = .5314, Ȳ2.0 = .7400, Ȳ3.0 = 1.0080, Ȳ4.0 = 1.1943 e0ij : i 1 2 3 4 j=1 .071 .105 .071 .036 j=2 −.054 .038 −.230 −.018 i 1 2 3 4 j=9 .168 −.041 −.163 −.153 j = 10 .071 .214 −.230 .186 j=3 j=4 j=5 −.230 −.054 .071 −.138 .038 .105 .138 .071 −.008 −.349 .107 −.080 j = 11 −.230 −.263 .071 .061 j=6 .071 −.439 −.054 −.153 j=7 j=8 −.054 .247 .214 −.041 .071 .222 .010 .204 j = 12 j = 13 j = 14 j = 15 j = 16 .071 .071 −.230 −.054 .071 .163 .038 −.138 .105 .038 .033 −.230 .106 −.008 .138 .128 .010 .085 −.240 .167 18-6 b. r = .971 c. H0 : all σi2 are equal (i = 1, 2, 3, 4), Ha : not all σi2 are equal. Ỹ1 = .6021, Ỹ2 = .7782, Ỹ3 = 1.0603, Ỹ4 = 1.2173, M ST R = .001214, ∗ M SE = .01241, FBF = .001214/.01241 = .10, F (.95; 3, 60) = 2.76. ∗ If FBF ≤ 2.76 conclude H0 , otherwise Ha . Conclude H0 . 18.19. i: 1 si : 1.97084 wi : .25745 2 3 4 1.08942 1.45095 1.78885 .84257 .47500 .31250 H0 : all µi are equal (i = 1, 2, 3, 4), Ha : not all µi are equal. SSEw (F ) = 76, dfF = 76, SSEw (R) = 118.54385, dfR = 79, Fw∗ = [(118.54385 − 76)/3] ÷ (76/76) = 14.18, F (.95; 3, 76) = 2.725. If Fw∗ ≤ 2.725 conclude H0 , otherwise Ha . Conclude Ha . 18.20. i: 1 si : 1.09354 wi : .83624 2 3 4 1.99583 3.23973 5.37858 .25105 .09528 .034567 H0 : all µi are equal (i = 1, 2, 3, 4), Ha : not all µi are equal. SSEw (F ) = 60, dfF = 60, SSEw (R) = 213.9541, dfR = 63, Fw∗ = [(213.9541 − 60)/3] ÷ (60/60) = 51.32, F (.99; 3, 60) = 4.13. If Fw∗ ≤ 4.13 conclude H0 , otherwise Ha . Conclude Ha . 18.23. a. H0 : all µi are equal (i = 1, 2, 3, 4), Ha : not all µi are equal. M ST R = 470.8125, M SE = 28.9740, FR∗ = 470.8125/28.9740 = 16.25, F (.95; 2, 24) = 3.40. If FR∗ ≤ 3.40 conclude H0 , otherwise Ha . Conclude Ha . b. P -value = 0+ e. R̄1. = 6.50, R̄2. = 15.50, R̄3. = 22.25, B = z(.9833) = 2.13 Comparison 1 and 2 1 and 3 2 and 3 Testing −9.00 ± 2.13(3.500) 15.75 ± 2.13(4.183) −6.75 ± 2.13(3.969) Limits −16.455 and −1.545 −24.660 and −9.840 −15.204 and 1.704 Group 1 Low Level i = 1 18.24. a. Group 2 Moderate level i = 2 High level i = 3 H0 : all µi are equal (i = 1, 2, 3), Ha : not all µi are equal. M ST R = 1, 297.0000, M SE = 37.6667, FR∗ = 1, 297.0000/37.6667 = 34.43, F (.99; 2, 33) = 5.31. If FR∗ ≤ 5.31 conclude H0 , otherwise Ha . Conclude Ha . 18-7 b. P -value = 0+ e. R̄1. = 12.792, R̄2. = 30.500, R̄3. = 12.208, B = z(.9833) = 2.128 Comparison 1 and 2 1 and 3 2 and 3 Testing Limits −17.708 ± 2.128(4.301) −26.861 and −8.555 .584 ± 2.128(4.301) −8.569 and 9.737 18.292 ± 2.128(4.301) 9.140 and 27.445 Group 1 Young i = 1 Elderly i = 3 18.25. b. Group 2 Middle i = 2 H0 : all µi are equal (i = 1, 2, 3), Ha : not all µi are equal. M ST R = 465.6000, M SE = 48.7519, FR∗ = 465.6000/48.7519 = 9.550, F (.95; 2, 27) = 3.354. If FR∗ ≤ 3.354 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0007 c. R̄1. = 21.1, R̄2. = 7.9, R̄3. = 17.5, B = z(.99167) = 2.394 Comparison 1 and 2 1 and 3 2 and 3 Testing Limits 13.2 ± 2.394(3.937) 3.775 and 22.625 3.6 ± 2.394(3.937) −5.825 and 13.025 −9.6 ± 2.394(3.937) −19.025 and −.175 Group 1 Production i = 2 18.26. 18.27. Group 2 Sales i = 1 Research i = 3 Yij = µi + βtj + ²ij , tj = 1, ..., 7 nT X nT X nT (nT + 1) i= 2 i=1 SST O = nT X à n !2 T X i2 − i i=1 i2 = i=1 nT (nT + 1)(2nT + 1) 6 /nT i=1 nT (nT + 1)(2nT + 1) n2T (nT + 1)2 nT (nT + 1)(nT − 1) − = 6 4nT 12 SST O/(nT − 1) = nT (nT + 1)/12 = 18.28. SST O nT − 1 SST R SST O − SST R ÷ FR∗ = r−1 nT − r 2 = SST R ÷ XKW µ · à = = 2 XKW r−1 !µ ¶ SST O ÷ nT − 1 SST O − 2 XKW SST O nT − 1 ¶¸ nT − r 2 2 ) ] SST O SST O(nT − 1 − XKW [(nT − r)XKW ÷ (r − 1)(nT − 1) nT − 1 18-8 2 2 = [(nT − r)XKW ] ÷ [(r − 1)(nT − 1 − XKW )] 18.29. b. c. r = .994 H0 : all σi2 are equal (i = 1, ..., 4), Ha : not all σi2 are equal. Ỹ1 = 4.85, Ỹ2 = 4.40, Ỹ3 = 4.20, Ỹ4 = 4.45, M ST R = .97716, M SE = .70526, ∗ ∗ FBF = .97716/.70526 = 1.39, F (.95; 3, 109) = 2.688. If FBF ≤ 2.688 conclude H0 , otherwise Ha . Conclude H0 . P -value = .25 18.30. b. i Ȳi. si 1 11.08893 2.66962 2 9.68344 1.19294 3 9.19135 1.22499 4 8.11375 1.00312 c. λ −1.0 −.8 −.6 −.4 −.2 −.1 0 SSE 206.15 208.55 212.09 216.87 223.09 226.79 230.93 λ .1 .2 .4 .6 .8 1.0 SSE 235.54 240.65 252.56 267.04 284.55 305.66 Yes e. r = .995 f. H0 : all σi2 are equal (i = 1, ..., 4), Ha : not all σi2 are equal. Ỹ1 = .09332, Ỹ2 = .10199, Ỹ3 = .11111, Ỹ4 = .12799, M ST R = .00008213, ∗ M SE = .00008472, FBF = .00008213/.00008472 = .97, F (.99; 3, 109) = 3.97. ∗ If FBF ≤ 3.97 conclude H0 , otherwise Ha . Conclude H0 . P -value = .41 g. Source Between regions Error Total SS df .0103495 3 .0254284 109 .0357779 112 MS .0034498 .0002333 H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. F ∗ = .0034498/.0002333 = 14.787, F (.99; 3, 109) = 3.967. If F ∗ ≤ 3.967 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 18.31. b. c. r = .9154 H0 : all σi2 are equal (i = 1, ..., 4), Ha : not all σi2 are equal. 18-9 Ỹ1 = .03489, Ỹ2 = .04781, Ỹ3 = .06948, Ỹ4 = .05966, M ST R = .001001, M SE = ∗ ∗ .000326, FBF = .001001/.000326 = 3.07, F (.99; 3, 436) = 3.83. If FBF ≤ 3.83 conclude H0 , otherwise Ha . Conclude H0 . P -value = .028 18.32. b. c. r = .9902 H0 : all σi2 are equal (i = 1, ..., 4), Ha : not all σi2 are equal. Ỹ1 = 2.415, Ỹ2 = 2.705, Ỹ3 = 2.480, Ỹ4 = 2.880, M ST R = .0106, M SE = .0085, ∗ ∗ FBF = .0106/.0085 = 1.25, F (.95; 3, 32) = 2.90. If FBF ≤ 2.90 conclude H0 , otherwise Ha . Conclude H0 . P -value = .31 18.33. a. H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. M ST R = 2, 582.575, M SE = 1, 031.966, FR∗ = 2, 582.575/1, 031.966 = 2.50, F (.95; 3, 109) = 2.69. If FR∗ ≤ 2.69 conclude H0 , otherwise Ha . Conclude H0 . P -value = .063 c. R̄1. = 69.196, R̄2. = 57.797, R̄3. = 47.189, R̄4. = 56.750, B = z(.99167) = 2.394 Comparison Testing Limits 1 and 2 11.399 ± 2.394(8.479) −8.900 and 31.698 1 and 3 22.007 ± 2.394(8.207) 2.359 and 41.655 1 and 4 12.446 ± 2.394(10.268) −12.136 and 37.028 2 and 3 10.608 ± 2.394(7.910) −8.329 and 29.545 2 and 4 1.047 ± 2.394(10.032) −22.970 and 25.064 3 and 4 −9.561 ± 2.394(9.803) −33.029 and 13.907 Group 1 Region 3 Region 4 Region 2 18.34. a. Group 2 Region 4 Region 2 Region 1 H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. M ST R = 651, 049, M SE = 11, 802, FR∗ = 651, 049/11, 802 = 55.17, F (.95; 3, 436) = 2.6254. If FR∗ ≤ 2.6254 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. R̄1. = 120.4, R̄2. = 192.9, R̄3. = 290.7, R̄4. = 254.6, n1 = 103, n2 = 108, n3 = 152, n4 = 77, B = z(.99583) = 2.638 Comparison 1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4 Testing Limits −72.5 ± 2.638(17.51) −118.7 and −26.3 −170.3 ± 2.638(16.23) −213.1 and −127.5 −134.2 ± 2.638(19.16) −184.7 and −83.7 −97.8 ± 2.638(16.00) −140.0 and −55.6 −61.7 ± 2.638(18.97) −111.7 and −11.7 36.1 ± 2.638(17.79) −10.8 and 83.0 Group 1 Region 1 Group 2 Region 2 18-10 Group 3 Region 3 Region 4 18.35. a. H0 : all µi are equal (i = 1, ..., 4), Ha : not all µi are equal. M ST R = 955.5, M SE = 31.8, FR∗ = 955.5/31.8 = 30.1, F (.95; 3, 32) = 2.90. If FR∗ ≤ 2.90 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. R̄1. = 7.938, R̄2. = 22.375, R̄3. = 8.571, R̄4. = 27.962, n1 = 8, n2 = 8, n3 = 7, n4 = 13, B = z(.99583) = 2.638 Comparison 1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4 Testing Limits −14.437 ± 2.638(5.268) −28.334 and −.541 −.633 ± 2.638(5.453) −15.017 and 13.751 −20.024 ± 2.638(4.734) −32.513 and −7.535 13.804 ± 2.638(5.453) −.580 and 28.188 −5.587 ± 2.638(4.734) −18.076 and 6.902 −19.391 ± 2.638(4.939) −32.421 and −6.361 Group 1 Region 1 Region 3 18.36. Group 2 Region 2 Region 3 Group 3 Region 2 Region 4 Under H0 , each arrangement of the ranks 1, ..., 4 into groups of size 2 are equally likely and occur with probability 2!2!/4! = 1/6. The values of FR∗ computed for the six arrangements are 0, .5, and 8, each occurring twice. Therefore the probability function f (x) is: x 0 .5 8 18.37. c. f (x) = P (FR∗ = x) 1/3 1/3 1/3 For the F distribution with ν1 = 2 degrees of freedom and ν2 = 27 degrees of freedom, the mean is: ν2 = 1.08 ν2 − 2 and the standard deviation is: " ν2 2(ν1 + ν2 − 2) ν2 − 2 ν1 (ν2 − 4) d. #1/2 = 1.17. Expect 90% less than 2.51 and 99% less than 5.49. 18-11 18-12 Chapter 19 TWO-FACTOR ANALYSIS OF VARIANCE WITH EQUAL SAMPLE SIZES 19.1. a. b. 19.3. 8 Infection risk (αβ)11 = µ11 − (µ.. + α1 + β1 ) = 9 − (12 + 1 − 3) = −1 (αβ)12 = µ12 − (µ.. + α1 + β2 ) = 12 − (12 + 1 − 1) = 0 (αβ)13 = µ13 − (µ.. + α1 + β3 ) = 18 − (12 + 1 + 4) = 1 (αβ)21 = µ21 − (µ.. + α2 + β1 ) = 9 − (12 − 1 − 3) = 1 (αβ)22 = µ22 − (µ.. + α2 + β2 ) = 10 − (12 − 1 − 1) = 0 (αβ)23 = µ23 − (µ.. + α2 + β3 ) = 14 − (12 − 1 + 4) = −1 19.4. a. b. 19.5. a. c. µ1. = 31, µ2. = 37 α1 = µ1. − µ.. = 31 − 34 = −3, α2 = µ2. − µ.. = 37 − 34 = 3 µ.j = 269 (j = 1, ..., 4), βj = µ.j − µ.. , βj = 0 (j = 1, ..., 4) loge µij : Factor A A1 A2 Factor B B1 B2 B3 B4 5.5215 5.5797 5.5910 5.5947 5.6630 5.6095 5.5984 5.5947 19.7. a. E{M SE} = 1.96, E{M SA} = 541.96 19.8. a. E{M SE} = 16, E{M SAB} = 952 19.10. a. Ȳ11. = 21.66667, Ȳ12. = 21.33333, Ȳ21. = 27.83333, Ȳ22. = 27.66667, Ȳ31. = 22.33333, Ȳ32. = 20.50000 b. eijk : 19-1 i 1 d. j=1 j=2 −.66667 −.33333 1.33333 .66667 −2.66667 −1.33333 .33333 −.33333 .33333 −2.33333 1.33333 3.66667 i 2 j=1 2.16667 1.16667 −1.83333 .16667 −.83333 −.83333 j=2 −1.66667 1.33333 −.66667 .33333 −.66667 1.33333 i 3 j=1 2.66667 −.33333 .66667 −1.33333 −.33333 −1.33333 r = .986 19.11. b. Source SS df MS Treatments 327.222 5 65.444 A (age) 316.722 2 158.361 B (gender) 5.444 1 5.444 AB interactions 5.056 2 2.528 Error 71.667 30 2.389 Total 398.889 35 Yes, factor A (age) accounts for most of the total variability. c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 2.528/2.389 = 1.06, F (.95; 2, 30) = 3.32. If F ∗ ≤ 3.32 conclude H0 , otherwise Ha . Conclude H0 . P -value = .36 d. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 158.361/2.389 = 66.29, F (.95; 2, 30) = 3.32. If F ∗ ≤ 3.32 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = 5.444/2.389 = 2.28, F (.95; 1, 30) = 4.17. If F ∗ ≤ 4.17 conclude H0 , otherwise Ha . Conclude H0 . P -value = .14 e. α ≤ .143 g. SSA = SST R, SSB + SSAB + SSE = SSE, yes 19.12. a. b. Ȳ11. = 9.2, Ȳ12. = 13.6, Ȳ21. = 13.0, Ȳ22. = 16.4 eijk : i 1 d. j=1 1.8 −2.2 2.8 −3.2 .8 j=2 1.4 −1.6 .4 −2.6 2.4 i j=1 2 −1.0 3.0 −3.0 0 1.0 r = .976 19.13. b. 19-2 j=2 −2.4 .6 −3.4 3.6 1.6 j=2 2.50000 −1.50000 −.50000 .50000 −.50000 −.50000 Source SS Treatments 131.75 A (eye contact) 54.45 B (gender) 76.05 AB interactions 1.25 Error 97.20 Total 228.95 df MS 3 43.917 1 54.45 1 76.05 1 1.25 16 6.075 19 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 1.25/6.075 = .21, F (.99; 1, 16) = 8.53. If F ∗ ≤ 8.53 conclude H0 , otherwise Ha . Conclude H0 . P -value = .66 d. H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = 54.45/6.075 = 8.96, F (.99; 1, 16) = 8.53. If F ∗ ≤ 8.53 conclude H0 , otherwise Ha . Conclude Ha . P -value = .009 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = 76.05/6.075 = 12.52, F (.99; 1, 16) = 8.53. If F ∗ ≤ 8.53 conclude H0 , otherwise Ha . Conclude Ha . P -value = .003. e. 19.14. a. α ≤ .030 Ȳ11. = 2.475, Ȳ12. = 4.600, Ȳ13. = 4.575, Ȳ21. = 5.450, Ȳ22. = 8.925, Ȳ23. = 9.125, Ȳ31. = 5.975, Ȳ32. = 10.275, Ȳ33. = 13.250 b. eijk : i 1 j=1 −.075 .225 −.175 .025 j=2 j=3 0 .225 −.400 −.075 .300 −.175 .100 .025 j=1 .125 −.275 −.075 .225 r = .988 j=2 j=3 −.375 .250 .225 −.250 .325 .050 −.175 −.050 i 3 d. i 2 j=1 j=2 .350 −.025 −.250 .175 .050 −.225 −.150 .075 j=3 −.025 .175 −.425 .275 19.15. b. Source Treatments A (ingredient 1) B (ingredient 2) AB interactions Error Total c. SS df MS 373.105 8 46.638 220.020 2 110.010 123.660 2 61.830 29.425 4 7.356 1.625 27 .0602 374.730 35 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 7.356/.0602 = 122.19, F (.95; 4, 27) = 2.73. If F ∗ ≤ 2.73 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 19-3 d. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 110.010/.0602 = 1, 827.41, F (.95; 2, 27) = 3.35. If F ∗ ≤ 3.35 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : all βj equal zero (j = 1, 2, 3), Ha : not all βj equal zero. F ∗ = 61.830/.0602 = 1, 027.08, F (.95; 2, 27) = 3.35. If F ∗ ≤ 3.35 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. 19.16. a. α ≤ .143 Ȳ11. = 59.8, Ȳ12. = 47.8, Ȳ13. = 58.4, Ȳ21. = 48.4, Ȳ22. = 61.2, Ȳ23. = 56.2, Ȳ31. = 60.2, Ȳ32. = 60.8, Ȳ33. = 49.6 b. d. eijk : i 1 j=1 j=2 j=3 2.2 9.2 .6 −11.8 −2.8 −5.4 3.2 −8.8 8.6 −2.8 6.2 7.6 9.2 −3.8 −11.4 i 3 j=1 −1.2 4.8 −5.2 −8.2 9.8 j=2 −2.8 2.2 9.2 −7.8 −.8 i 2 j=1 2.6 8.6 −3.4 1.6 −9.4 j=2 j=3 −.2 −1.2 −3.2 1.8 8.8 −6.2 4.8 12.8 −10.2 −7.2 j=3 −2.6 6.4 1.4 −5.6 .4 r = .989 19.17. b. Source Treatments A (technician) B (make) AB interactions Error Total SS df MS 1, 268.17778 8 158.52222 24.57778 2 12.28889 28.31111 2 14.15556 1, 215.28889 4 303.82222 1, 872.40000 36 52.01111 3, 140.57778 44 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 303.82222/52.01111 = 5.84, F (.99; 4, 36) = 3.89. If F ∗ ≤ 3.89 conclude H0 , otherwise Ha . Conclude Ha . P -value = .001 d. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 12.28889/52.01111 = .24, F (.99; 2, 36) = 5.25. If F ∗ ≤ 5.25 conclude H0 , otherwise Ha . Conclude H0 . P -value = .79 H0 : all βj equal zero (j = 1, 2, 3), Ha : not all βj equal zero. F ∗ = 14.15556/52.01111 = .27, F (.99; 2, 36) = 5.25. If F ∗ ≤ 5.25 conclude H0 , otherwise Ha . Conclude H0 . P -value = .76 e. α ≤ .003 19-4 19.18. a. 0 0 0 Ȳ11. = .44348, Ȳ12. = .80997, Ȳ13. = 1.10670, 0 0 0 Ȳ21. = .39823, Ȳ22. = .58096, Ȳ23. = .86639 e0ijk : i 1 j=1 −.44348 .03364 .03364 −.44348 −.14245 .33467 .15858 .40162 −.44348 .51076 j=2 −.33285 −.11100 −.11100 −.20791 .09312 −.50894 .30398 −.03182 .39415 .51225 j=3 .09742 .12375 −.06531 −.20361 −.15246 .38466 −.32855 −.50464 .30827 .34046 j=1 −.39823 .07889 −.09720 .50486 −.09720 .30074 −.39823 −.39823 .30074 .20383 r = .987 j=2 .19719 −.27993 .02110 .02110 −.10384 .26413 −.58096 .32213 −.27993 .41904 j=3 .17500 .33773 .08785 −.16742 .24755 .13361 −.26433 −.02130 .03670 −.56536 i 2 c. 19.19. b. Source Treatments A (duration) B (weight gain) AB interactions Error Total SS 3.76217 .44129 3.20098 .11989 5.46770 9.22987 df MS 5 .75243 1 .44129 2 1.60049 2 .05995 54 .10125 59 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = .05995/.10125 = .59, F (.95; 2, 54) = 3.17. If F ∗ ≤ 3.17 conclude H0 , otherwise Ha . Conclude H0 . P value = .56 d. H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = .44129/.10125 = 4.36, F (.95; 1, 54) = 4.02. If F ∗ ≤ 4.02 conclude H0 , otherwise Ha . Conclude Ha . P -value = .04 H0 : all βj equal zero (j = 1, 2, 3), Ha : not all βj equal zero. F ∗ = 1.60049/.10125 = 15.81, F (.95; 2, 54) = 3.17. If F ∗ ≤ 3.17 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. 19.20. a. b. α ≤ .143 Ȳ11. = 222.00, Ȳ12. = 106.50, Ȳ13. = 60.50, Ȳ21. = 62.25, Ȳ22. = 44.75, Ȳ23. = 38.75 eijk : i 1 j=1 18 −16 −5 3 j=2 j=3 3.5 −4.5 11.5 −.5 −3.5 7.5 −11.5 −2.5 i 2 j=1 8.75 −9.25 5.75 −5.25 19-5 j=2 j=3 2.25 −1.75 7.25 −5.75 −13.75 1.25 4.25 6.25 d. r = .994 19.21. b. Source Treatments A (type) B (years) AB interactions Error Total SS df 96, 024.37500 5 39, 447.04167 1 36, 412.00000 2 20, 165.33333 2 1, 550.25000 18 97, 574.62500 23 MS 19, 204.87500 39, 447.04167 18, 206.00000 10, 082.66667 86.12500 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 10, 082.66667/86.12500 = 117.07, F (.99; 2, 18) = 6.01. If F ∗ ≤ 6.01 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = 39, 447.04167/86.12500 = 458.02, F (.99; 1, 18) = 8.29. If F ∗ ≤ 8.29 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : all βj equal zero (j = 1, 2, 3), Ha : not all βj equal zero. F ∗ = 18, 206.00000/86.12500 = 211.39, F (.99; 2, 18) = 6.01. If F ∗ ≤ 6.01 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. α ≤ .030 19.27. a. B = t(.9975; 75) = 2.8925, q(.95; 5, 75) = 3.96, T = 2.800 b. B = t(.99167; 27) = 2.552, q(.95; 3, 27) = 3.51, T = 2.482 19.28. (1) B = t(.9972; 324) = 2.791, (2) F (.975; 5, 324) = 2.606, S = 3.6097 (3) F (.95; 10, 324) = 1.86, S = 4.3128 19.30. a. s{Ȳ11. } = .631, t(.975; 30) = 2.042, 21.66667 ± 2.042(.631), 20.378 ≤ µ11 ≤ 22.955 b. Ȳ.1. = 23.94, Ȳ.2. = 23.17 c. D̂ = .77, s{D̂} = .5152, t(.975; 30) = 2.042, .77±2.042(.5152), −.282 ≤ D ≤ 1.822 d. Ȳ1.. = 21.50, Ȳ2.. = 27.75, Ȳ3.. = 21.42 e. D̂1 = Ȳ1.. −Ȳ2.. = −6.25, D̂2 = Ȳ1.. −Ȳ3.. = .08, D̂3 = Ȳ2.. −Ȳ3.. = 6.33, s{D̂i } = .631 (i = 1, 2, 3), q(.90; 3, 30) = 3.02, T = 2.1355 −6.25 ± 2.1355(.631) .08 ± 2.1355(.631) 6.33 ± 2.1355(.631) −7.598 ≤ D1 ≤ −4.902 −1.268 ≤ D2 ≤ 1.428 4.982 ≤ D3 ≤ 7.678 f. Yes g. L̂ = −6.29, s{L̂} = .5465, t(.976; 30) = 2.042, −6.29 ± 2.042(.5465), −7.406 ≤ L ≤ −5.174 h. L = .3µ12 + .6µ22 + .1µ32 , L̂ = 25.05000, s{L̂} = .4280, t(.975; 30) = 2.042, 25.05000 ± 2.042(.4280), 24.176 ≤ L ≤ 25.924 19-6 19.31. a. s{Ȳ21. } = 1.1023, t(.995; 16) = 2.921, 13.0 ± 2.921(1.1023), 9.780 ≤ µ21 ≤ 16.220 b. s{Ȳ1.. } = .7794, t(.995; 16) = 2.921, 11.4 ± 2.921(.7794), 9.123 ≤ µ1. ≤ 13.677 c. Ȳ.1. = 11.1, Ȳ.2. = 15.0 d. s{Ȳ.1. } = s{Ȳ.2. } = .7794, t(.995; 16) = 2.921 11.1 ± 2.921(.7794) 15.0 ± 2.921(.7794) 98 percent 8.823 ≤ µ.1 ≤ 13.377 12.723 ≤ µ.2 ≤ 17.277 e. Ȳ1.. = 11.4, Ȳ2.. = 14.7 f. D̂1 = 3.3, D̂2 = 3.9, s{D̂i } = 1.1023 (i = 1, 2), B = t(.9875; 16) = 2.473 3.3 ± 2.473(1.1023) 3.9 ± 2.473(1.1023) g. 19.32. a. .574 ≤ D1 ≤ 6.026 1.174 ≤ D2 ≤ 6.626 Yes s{Ȳ23. } = .1227, t(.975; 27) = 2.052, 9.125 ± 2.052(.1227), 8.873 ≤ µ23 ≤ 9.377 b. D̂ = 2.125, s{D̂} = .1735, t(.975; 27) = 2.052, 2.125 ± 2.052(.1735), 1.769 ≤ D ≤ 2.481 c. L̂1 = 2.1125, L̂2 = 3.5750, L̂3 = 5.7875, L̂4 = 1.4625, L̂5 = 3.6750, L̂6 = 2.2125, s{L̂i } = .1502 (i = 1, 2, 3), s{L̂i } = .2125 (i = 4, 5, 6), F (.90; 8, 27) = 1.90, S = 3.899 2.1125 ± 3.899(.1502) 1.527 ≤ L1 ≤ 2.698 3.5750 ± 3.899(.1502) 2.989 ≤ L2 ≤ 4.161 5.7875 ± 3.899(.1502) 5.202 ≤ L3 ≤ 6.373 1.4625 ± 3.899(.2125) .634 ≤ L4 ≤ 2.291 3.6750 ± 3.899(.2125) 2.846 ≤ L5 ≤ 4.504 2.2125 ± 3.899(.2125) 1.384 ≤ L6 ≤ 3.041 d. s{D̂i } = .1735, q(.90; 9, 27) = 4.31, T = 3.048, T s{D̂i } = .529, Ȳ33. = 13.250 e. q i j 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 19.33. a. 1/Ȳij. .404 .217 .219 .183 .112 .110 .167 .097 .075 Ȳij. 1.573 2.145 2.139 2.335 2.987 3.021 2.444 3.205 3.640 s{Ȳ11. } = 3.2252, t(.995; 36) = 2.7195, 59.8 ± 2.7195(3.2252), 51.029 ≤ µ11 ≤ 68.571 b. D̂ = 12.8, s{D̂} = 4.5612, t(.995; 36) = 2.7195, 12.8 ± 2.7195(4.5612), .396 ≤ D ≤ 25.204 19-7 c. D̂1 = Ȳ11. − Ȳ12. = 12.0, D̂2 = Ȳ11. − Ȳ13. = 1.4, D̂3 = Ȳ12. − Ȳ13. = −10.6, D̂4 = Ȳ21. − Ȳ22. = −12.8, D̂5 = Ȳ21. − Ȳ23. = −7.8, D̂6 = Ȳ22. − Ȳ23. = 5.0, D̂7 = Ȳ31. − Ȳ32. = −.6, D̂8 = Ȳ31. − Ȳ33. = 10.6, D̂9 = Ȳ32. − Ȳ33. = 11.2, s{D̂i } = 4.5612 (i = 1, ..., 9), B = t(.99167; 36) = 2.511 12.0 ± 2.511(4.5612) 1.4 ± 2.511(4.5612) −10.6 ± 2.511(4.5612) −12.8 ± 2.511(4.5612) −7.8 ± 2.511(4.5612) 5.0 ± 2.511(4.5612) −.6 ± 2.511(4.5612) 10.6 ± 2.511(4.5612) 11.2 ± 2.511(4.5612) d. .547 ≤ D1 ≤ 23.453 −10.053 ≤ D2 ≤ 12.853 −22.053 ≤ D3 ≤ .853 −24.253 ≤ D4 ≤ −1.347 −19.253 ≤ D5 ≤ 3.653 −6.453 ≤ D6 ≤ 16.453 −12.053 ≤ D7 ≤ 10.853 −.853 ≤ D8 ≤ 22.053 −.253 ≤ D9 ≤ 22.653 Ȳ... = 55.8222, 90Ȳ... = 5, 024, s{90Ȳ... } = 96.7574, t(.995; 36) = 2.7195, 5, 024 ± 2.7195(96.7574), 4, 760.87 ≤ 90µ.. ≤ 5, 287.13 e. L = 10µ11 + 10µ13 + 10µ22 + 10µ23 + 10µ31 + 10µ32 − 20µ12 − 20µ21 − 20µ33 , L̂ = 650, s{L̂} = 136.8357, t(.995; 36) = 2.7195, 650 ± 2.7195(136.8357), 277.875 ≤ L ≤ 1, 022.125 f. i 1 1 1 2 2 2 3 3 3 19.34. a. j 1 2 3 1 2 3 1 2 3 1/Ȳij. .0167 .0209 .0171 .0207 .0163 .0178 .0166 .0164 .0202 log10 Ȳij. 1.777 1.679 1.766 1.685 1.787 1.750 1.780 1.784 1.695 0 s{Ȳ22. } = .1006, t(.975; 54) = 2.005, .58096 ± 2.005(.1006), .37926 ≤ µ22 ≤ .78266 b. D̂ = .46816, s{D̂} = .1423, t(.975; 54) = 2.005, .46816 ± 2.005(.1423), .18285 ≤ D ≤ .75347 c. 0 0 = .61519 = .78672, Ȳ2.. Ȳ1.. 0 0 0 = .98655 = .69547, Ȳ.3. = .42086, Ȳ.2. Ȳ.1. d. B = t(.9875; 54) = 2.306, q(.95; 2, 54) = 2.84, T = 2.008, q(.95; 3, 54) = 3.41, T = 2.411, F (.90; 3, 54) = 2.20, S = 2.569 e. 0 0 0 0 = −.27461, − Ȳ.2. = .17153, D̂2 = Ȳ.1. − Ȳ2.. D̂1 = Ȳ1.. 0 0 0 0 = −.29108, − Ȳ.3. = −.56569, D̂4 = Ȳ.2. − Ȳ.3. D̂3 = Ȳ.1. s{D̂1 } = .0822, s{D̂i } = .1006 (i = 2, 3, 4), B = 2.306 19-8 .17153 ± 2.306(.0822) −.27461 ± 2.306(.1006) −.56569 ± 2.306(.1006) −.29108 ± 2.306(.1006) f. −.0180 ≤ D1 −.5066 ≤ D2 −.7977 ≤ D3 −.5231 ≤ D4 ≤ .3611 ≤ −.0426 ≤ −.3337 ≤ −.0591 L = .3µ.1 + .4µ.2 + .3µ.3 , L̂ = .70041, s{L̂} = .04149, t(.975; 54) = 2.005, .70041 ± 2.005(.04149), .6172 ≤ L ≤ .7836, (3.142, 5.076), yes 19.35. a. s{Ȳ23. } = 4.6402, t(.995; 18) = 2.878, 38.75 ± 2.878(4.6402), 25.3955 ≤ µ23 ≤ 52.1045 b. D̂ = 46.00, s{D̂} = 6.5622, t(.995; 18) = 2.878, 46.00 ± 2.878(6.5622), 27.114 ≤ D ≤ 64.886 c. F (.95; 5, 18) = 2.77, S = 3.7216, B = t(.99583; 18) = 2.963 d. D̂1 = 159.75, D̂2 = 61.75, D̂3 = 21.75, L̂1 = 98.00, L̂2 = 138.00, L̂3 = 40.00, s{D̂i } = 6.5622 (i = 1, 2, 3), s{L̂i } = 9.2804 (i = 1, 2, 3), B = t(.99583; 18) = 2.963 159.75 ± 2.963(6.5622) 140.31 ≤ D1 ≤ 179.19 61.75 ± 2.963(6.5622) 42.31 ≤ D2 ≤ 81.19 21.75 ± 2.963(6.5622) 2.31 ≤ D3 ≤ 41.19 98.00 ± 2.963(9.2804) 70.50 ≤ L1 ≤ 125.50 138.00 ± 2.963(9.2804) 110.50 ≤ L2 ≤ 165.50 40.00 ± 2.963(9.2804) 12.50 ≤ L3 ≤ 67.50 e. q(.95; 6, 18) = 4.49, T = 3.1749, s{D̂} = 6.5622, T s{D̂} = 20.834, Ȳ23. = 38.75, Ȳ22. = 44.75 f. B = t(.9875; 18) = 2.445, s{Ȳij. } = 4.6402 44.75 ± 2.445(4.6402) 38.75 ± 2.445(4.6402) 33.405 ≤ µ22 ≤ 56.095 27.405 ≤ µ23 ≤ 50.095 g. i 1 1 1 2 2 2 19.36. a. j 1 2 3 1 2 3 1/Ȳij. .00450 .00939 .01653 .01606 .02235 .02581 log10 Ȳij. 2.346 2.027 1.782 1.794 1.651 1.588 Yijk = µ.. + αi + βj + (αβ)ij + ²ijk , i = 1, ..., 4; j = 1, 2; k = 1, 2 b. Source SS df MS Treatments 1, 910.00 7 272.85714 A (moisture content) 1, 581.50 3 527.16667 B (sweetness) 306.25 1 306.25000 AB interactions 22.25 3 7.41667 Error 57.00 8 7.12500 Total 1, 967.00 15 19-9 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 7.41667/7.125 = 1.04, F (.99; 3, 8) = 7.59. If F ∗ ≤ 7.59 conclude H0 , otherwise Ha . Conclude H0 . d. L̂ = −1.500, s{L̂} = 2.669, t(.975; 8) = 2.306, −1.500 ± 2.306(2.669), −7.655 ≤ L ≤ 4.655 e. H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = 306.25/7.125 = 42.98, F (.99; 1, 8) = 11.3. If F ∗ ≤ 11.3 conclude H0 , otherwise Ha . Conclude Ha . 19.37. n = 21 19.38. ∆/σ = 2, 2n = 8, n = 4 19.39. n = 21 √ .5 n/.29 = 4.1999, n = 6 19.40. 19.41. 19.42. n = 14 √ 8 n/9.1 = 3.1591, n = 13 19.43. Using (19.4) and (19.5), we have: µij = µ.. + αi + βj = µ.. + (µi. − µ.. ) + (µ.j − µ.. ) = µi. + µ.j − µ.. 19.44. P P j j (αβ)ij = (µij − µi. − µ.j + µ.. ) = bµi. − bµi. − bµ.. + bµ.. = 0 19.45. L= · 2 Y 2 Y 2 Y 1 1 exp − 2 (Yijk − µij )2 2 1/2 2σ i=1 j=1 k=1 (2πσ ) · ¸ ¸ 1 1 PPP exp − (Yijk − µij )2 (2πσ 2 )4 2σ 2 1 PPP loge L = −4 loge (2πσ 2 ) − 2 (Yijk − µij )2 2σ ∂(loge L) 2 P = − 2 (Yijk − µij )(−1) ∂µij 2σ k Setting the derivatives equal to zero, simplifying, and solving for the maximum = likelihood estimators µ̂ij yields: 2 X µ̂ij = Yijk k=1 2 = Ȳij. Yes 19.46. PPP Q= (Yijk − µij )2 X ∂Q = 2 (Yijk − µij )(−1) ∂µij k 19-10 Setting the derivatives equal to zero, simplifying, and solving for the least squares estimators yields: P Yijk k µ̂ij = = Ȳij. n PPP 19.47. (Ȳij. − Ȳ... )2 = = PPP PPP [(Ȳi.. − Ȳ... ) + (Ȳ.j. − Ȳ... ) + (Ȳij. − Ȳi.. − Ȳ.j. + Ȳ... )]2 [(Ȳi.. − Ȳ... )2 + (Ȳ.j. − Ȳ... )2 + (Ȳij. − Ȳi.. − Ȳ.j. + Ȳ... )2 +2(Ȳi.. − Ȳ... )(Ȳ.j. − Ȳ... ) + 2(Ȳi.. − Ȳ... )(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ... ) +2(Ȳ.j. − Ȳ... )(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ... )] = nb P (Ȳi.. −Ȳ... )2 +na P (Ȳ.j. −Ȳ... )2 +n PP (Ȳij. −Ȳi.. −Ȳ.j. +Ȳ... )2 since all summations of cross-product terms equal zero. 19.48. E{L̂} = E{ P cj Ȳ.j. } = P σ 2 {L̂} = σ 2 { = P cj Ȳ.j. } = cj E{Ȳ.j. } = P P 2 2 cj σ {Ȳ.j. } because of independence σ2 P 2 P 2 σ2 cj = cj an an PP PP 2 2 σ2{ cij Ȳij. } = cij σ {Ȳij. } 19.49. cj µ.j = L = because of independence σ2 P P 2 P P 2 σ2 cij = cij n n By (19.9a), (αβ)11 + (αβ)21 = 0; hence (αβ)21 = −(αβ)11 . 19.50. By (19.9b), (αβ)11 + (αβ)12 = 0; hence (αβ)12 = −(αβ)11 . 19.51. a. Ȳ11. = 10.05875, Ȳ12. = 11.45500, Ȳ21. = 9.84000, Ȳ22. = 9.57250, Ȳ31. = 9.68250, Ȳ32. = 9.52375, Ȳ41. = 8.21250, Ȳ42. = 8.01500 d. r = .996 19.52. b. Source SS df MS Treatments 65.08508 7 9.29787 A (region) 56.74396 3 18.91465 B (average age) .59676 1 .59676 AB interactions 7.74436 3 2.58145 Error 76.03013 56 1.35768 Total 141.11521 63 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 2.58145/1.35768 = 1.90, F (.95; 3, 56) = 2.77. If F ∗ ≤ 2.77 conclude H0 , otherwise Ha . Conclude H0 . P -value = .14 d. H0 : all αi equal zero (i = 1, ..., 4), Ha : not all αi equal zero. F ∗ = 18.91465/1.35768 = 13.93, F (.95; 3, 56) = 2.77. If F ∗ ≤ 2.77 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 19-11 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = .59676/1.35768 = .44, F (.95; 1, 56) = 4.01. If F ∗ ≤ 4.01 conclude H0 , otherwise Ha . Conclude H0 . P -value = .51 e. 19.53. a. α ≤ .143 Ȳ11. = .0359, Ȳ12. = .0454, Ȳ21. = .0516, Ȳ22. = .0515, Ȳ31. = .0758, Ȳ32. = .1015, Ȳ41. = .0673, Ȳ42. = .0766 d. 19.54. a. r = .993 Ȳ1.. = .0406, Ȳ2.. = .0515, Ȳ3.. = .0886, Ȳ4.. = .0719 Ȳ.1. = .0576, Ȳ.2. = .0687 b. c. Source SS df MS A .019171 3 .006390 B .001732 1 .001732 AB .001205 3 .000402 Error .011042 48 .000230 Total .033151 55 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = .000402/.000230 = 1.75, F (.99; 3, 48) = 4.22. If F ∗ ≤ 4.22 conclude H0 , otherwise Ha . Conclude H0 . P -value = .170 d. (i) Test for factor A (region effect) H0 : all αi equal zero (i = 1, ..., 4), Ha : not all αi equal zero. F ∗ = .006390/.000230 = 27.79, F (.99; 3, 48) = 4.22. If F ∗ ≤ 4.22 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ (ii) Test for factor B (% below poverty) H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = .001732/.000230 = 7.53, F (.99; 1, 48) = 7.19. If F ∗ ≤ 7.19 conclude H0 , otherwise Ha . Conclude Ha . P -value = .009 e. 19.55. a. d. 19.56. a. α ≤ .030 Ȳ11. = 2.4386, Ȳ12. = 2.4286, Ȳ21. = 2.7286, Ȳ22. = 2.9786, r = .994 Ȳ1.. = 2.4336, Ȳ2.. = 2.8536 Ȳ.1. = 2.5836, Ȳ.2. = 2.7036 b. Source SS df MS A 1.2348 1 1.2348 B .1008 1 .1008 AB .1183 1 .1183 Error .5341 24 .0223 Total 1.9880 27 19-12 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = .1183/.0223 = 5.32, F (.95; 1, 24) = 4.26. If F ∗ ≤ 4.26 conclude H0 , otherwise Ha . Conclude Ha . P -value = .030 d. (i) Test for factor A (region effect) H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = 1.2348/.0223 = 55.48, F (.95; 1, 24) = 4.26. If F ∗ ≤ 4.26 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ (ii) Test for factor B (% below poverty) H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = .1008/.0223 = 4.53, F (.95; 1, 24) = 4.26. If F ∗ ≤ 4.26 conclude H0 , otherwise Ha . Conclude Ha . P -value = .044 e. 19.57 b. α ≤ .143 D̂1 = Ȳ1.. − Ȳ2.. = 1.0506, D̂2 = Ȳ1.. − Ȳ3.. = 1.1538, D̂3 = Ȳ1.. − Ȳ4.. = 2.6431, D̂4 = Ȳ2.. − Ȳ3.. = .1032, D̂5 = Ȳ2.. − Ȳ4.. = 1.5925, D̂6 = Ȳ3.. − Ȳ4.. = 1.4893, s{D̂i } = .41196 (i = 1, ..., 6), q(.90; 4, 56) = 3.31, T = 2.341 1.0506 ± 2.341(.41196) 1.1538 ± 2.341(.41196) 2.6431 ± 2.341(.41196) .1032 ± 2.341(.41196) 1.5925 ± 2.341(.41196) 1.4893 ± 2.341(.41196) 19.58. b. .0862 ≤ D1 .1894 ≤ D2 1.6787 ≤ D3 −.8612 ≤ D4 .6281 ≤ D5 .5249 ≤ D6 ≤ 2.0150 ≤ 2.1182 ≤ 3.6075 ≤ 1.0676 ≤ 2.5569 ≤ 2.4537 D̂1 = Ȳ1.. − Ȳ2.. = −.0109, D̂2 = Ȳ1.. − Ȳ3.. = −.0480, D̂3 = Ȳ1.. − Ȳ4.. = −.0313, D̂4 = Ȳ2.. − Ȳ3.. = −.0371, D̂5 = Ȳ2.. − Ȳ4.. = −.0204, D̂6 = Ȳ3.. − Ȳ4.. = .0167, s{D̂i } = .005732 (i = 1, ..., 6), q(.95; 4, 48) = 3.79, T = 2.680 −.0109 ± 2.680(.0057) −.0480 ± 2.680(.0057) −.0313 ± 2.680(.0057) −.0371 ± 2.680(.0057) −.0204 ± 2.680(.0057) .0167 ± 2.680(.0057) −.0262 ≤ D1 ≤ .0043 −.0633 ≤ D2 ≤ −.0328 −.0466 ≤ D3 ≤ −.0161 −.0524 ≤ D4 ≤ −.0219 −.0356 ≤ D5 ≤ −.0052 .0015 ≤ D6 ≤ .0320 19-13 19-14 Chapter 20 TWO-FACTOR STUDIES – ONE CASE PER TREATMENT 20.1. 0 20.2. b. Source SS df Location 37.0050 3 Week 47.0450 1 Error .3450 3 Total 84.3950 7 MS 12.3350 47.0450 .1150 H0 : all αi equal zero (i = 1, ..., 4), Ha : not all αi equal zero. F ∗ = 12.3350/.1150 = 107.26, F (.95; 3, 3) = 9.28. If F ∗ ≤ 9.28 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0015 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = 47.0450/.1150 = 409.09, F (.95; 1, 3) = 10.1. If F ∗ ≤ 10.1 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0003. α ≤ .0975 c. D̂1 = Ȳ1. − Ȳ2. = 18.95 − 14.55 = 4.40, D̂2 = Ȳ1. − Ȳ3. = 18.95 − 14.60 = 4.35, D̂3 = Ȳ1. −Ȳ4. = 18.95−18.80 = .15, D̂4 = Ȳ2. −Ȳ3. = −.05, D̂5 = Ȳ2. −Ȳ4. = −4.25, D̂6 = Ȳ3. − Ȳ4. = −4.20, D̂7 = Ȳ.1 − Ȳ.2 = 14.30 − 19.15 = −4.85, s{D̂i } = .3391 (i = 1, ..., 6), s{D̂7 } = .2398, B = t(.99286; 3) = 5.139 4.40 ± 5.139(.3391) 4.35 ± 5.139(.3391) .15 ± 5.139(.3391) −.05 ± 5.139(.3391) −4.25 ± 5.139(.3391) −4.20 ± 5.139(.3391) −4.85 ± 5.139(.2398) 20.3. a. 2.66 ≤ D1 ≤ 6.14 2.61 ≤ D2 ≤ 6.09 −1.59 ≤ D3 ≤ 1.89 −1.79 ≤ D4 ≤ 1.69 −5.99 ≤ D5 ≤ −2.51 −5.94 ≤ D6 ≤ −2.46 −6.08 ≤ D7 ≤ −3.62 µ̂32 = Ȳ3. + Ȳ.2 − Ȳ.. = 14.600 + 19.150 − 16.725 = 17.025 b. s2 {µ̂32 } = .071875 c. s{µ̂32 } = .2681, t(.975; 3) = 3.182, 17.025 ± 3.182(.2681), 16.172 ≤ µ32 ≤ 17.878 20-1 D̂ = (−4.13473)/(18.5025)(11.76125) = −.019, SSAB ∗ = .0786, SSRem∗ = .2664. 20.4. H0 : D = 0, Ha : D 6= 0. F ∗ = (.0786/1) ÷ (.2664/2) = .59, F (.975; 1, 2) = 38.5. If F ∗ ≤ 38.5 conclude H0 , otherwise Ha . Conclude H0 . 20.5. b. Source SS df Type of group 1.125 1 Size of group 318.375 3 Error 6.375 3 Total 325.875 7 MS 1.125 106.125 2.125 H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = 1.125/2.125 = .53, F (.99; 1, 3) = 34.1. If F ∗ ≤ 34.1 conclude H0 , otherwise Ha . Conclude H0 . P -value = .52 H0 : all βj equal zero (j = 1, ..., 4), Ha : not all βj equal zero. F ∗ = 106.125/2.125 = 49.94, F (.99; 3, 3) = 29.5. If F ∗ ≤ 29.5 conclude H0 , otherwise Ha . Conclude Ha . P -value = .005. α ≤ .0199 c. D̂1 = Ȳ.2 − Ȳ.1 = 22.5 − 16.5 = 6.0, D̂2 = Ȳ.3 − Ȳ.2 = 30.0 − 22.5 = 7.5, D̂3 = Ȳ.4 − Ȳ.3 = 32.5−30.0 = 2.5, s{D̂i } = 1.4577 (i = 1, 2, 3), B = t(.99167; 3) = 4.857 6.0 ± 4.857(1.4577) 7.5 ± 4.857(1.4577) 2.5 ± 4.857(1.4577) d. 20.6. a. −1.08 ≤ D1 ≤ 13.08 .42 ≤ D2 ≤ 14.58 −4.58 ≤ D3 ≤ 9.58 No, q(.95; 4, 3) = 6.82, T = 4.822 µ̂14 = Ȳ1. + Ȳ.4 − Ȳ.. = 25.750 + 32.500 − 25.375 = 32.875 b. s2 {µ̂14 } = 1.3281 c. s{µ̂14 } = 1.1524, t(.995; 3) = 5.841, 32.875 ± 5.841(1.1524), 26.144 ≤ µ14 ≤ 39.606 20.7. D̂ = (−8.109375)/(.28125)(159.1875) = −.1811, SSAB ∗ = 1.4688, SSRem∗ = 4.9062. H0 : D = 0, Ha : D 6= 0. F ∗ = (1.4688/1) ÷ (4.9062/2) = .60, F (.99; 1, 2) = 98.5. If F ∗ ≤ 98.5 conclude H0 , otherwise Ha . Conclude H0 . 20.8. b. Source SS df Humidity 2.12167 2 Temperature 202.20000 3 Error 6.58500 6 Total 210.90667 11 MS 1.06083 67.40000 1.09750 H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 1.06083/1.09750 = .97, F (.975; 2, 6) = 7.26. If F ∗ ≤ 7.26 conclude H0 , otherwise Ha . Conclude H0 . P -value = .43 H0 : all βj equal zero (j = 1, ..., 4), Ha : not all βj equal zero. 20-2 F ∗ = 67.40000/1.09750 = 61.41, F (.975; 3, 6) = 6.60. If F ∗ ≤ 6.60 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. D̂1 = Ȳ.2 − Ȳ.1 = 15.30 − 14.90 = .40, D̂2 = Ȳ.3 − Ȳ.2 = 20.70 − 15.30 = 5.40, D̂3 = Ȳ.4 − Ȳ.3 = 24.83 − 20.70 = 4.13, s{D̂i } = .8554 (i = 1, 2, 3), B = t(.99167; 6) = 3.2875 .40 ± 3.2875(.8554) 5.40 ± 3.2875(.8554) 4.13 ± 3.2875(.8554) d. 20.9. a. 20.10. −2.41 ≤ D1 ≤ 3.21 2.59 ≤ D2 ≤ 8.21 1.32 ≤ D3 ≤ 6.94 Yes µ̂23 = Ȳ2. + Ȳ.3 − Ȳ.. = 19.325 + 20.700 − 18.933 = 21.092 b. s2 {µ̂23 } = .54875 c. s{µ̂23 } = .7408, t(.99; 6) = 3.143, 21.092 ± 3.143(.7408), 18.764 ≤ µ23 ≤ 23.420, (2.66%, 4.12%) D̂ = (−8.27113)/(.5304)(67.4000) = −.2314, SSAB ∗ = 1.9137, SSRem∗ = 4.6713. H0 : D = 0, Ha : D 6= 0. F ∗ = (1.9137/1) ÷ (4.6713/5) = 2.05, F (.995; 1, 5) = 22.8. If F ∗ ≤ 22.8 conclude H0 , otherwise Ha . Conclude H0 . 20.11. SSA = b P (Ȳi. − Ȳ.. )2 , SSB = a P (Ȳ.j − Ȳ.. )2 20.12. (αβ)ij = A + Bαi + Cβj + Dαi βj + Eαi2 + F βj2 Averaging (1) over i yields: P (αβ).j = A + Cβj + E αi2 /a + F βj2 = 0 P P because αi = 0 and (αβ)ij = 0. Similarly: i P (αβ)i. = A + Bαi + Eαi2 + F βj2 /b P P because βj = 0 and (αβ)ij = 0. From (2) and (3) we obtain: j P Cβj + F βj2 = −A − E αi2 /a P Bαi + Eαi2 = −A − F βj2 /b Substituting (4) and (5) in (1) yields: P P (αβ)ij = −A − E αi2 /a − F βj2 /b + Dαi βj Averaging (6) over j yields: P P (αβ)i. = −A − E αi2 /a − F βj2 /b = 0 Using (7) in (6) yields: (αβ)ij = Dαi βj 20-3 (1) (2) (3) (4) (5) (6) (7) (8) 20-4 Chapter 21 RANDOMIZED COMPLETE BLOCK DESIGNS 21.5. b. eij : i j=1 1 −2.50000 2 1.50000 3 2.16667 4 .16667 5 4.16667 6 1.50000 7 −1.50000 8 −2.83333 9 −1.50000 10 −1.16667 r = .984 d. j=2 1.50000 −.50000 −.83333 −.83333 −4.83333 −.50000 −1.50000 3.16667 2.50000 1.83333 j=3 1.00000 −1.00000 −1.33333 .66667 .66667 −1.00000 3.00000 −.33333 −1.00000 −.66667 H0 : D = 0, Ha : D 6= 0. SSBL.T R∗ = .13, SSRem∗ = 112.20, F ∗ = (.13/1) ÷ (112.20/17) = .02, F (.99; 1, 17) = 8.40. If F ∗ ≤ 8.40 conclude H0 , otherwise Ha . Conclude H0 . P -value = .89 21.6. a. Source SS df MS Blocks 433.36667 9 48.15185 Training methods 1, 295.00000 2 647.50000 Error 112.33333 18 6.24074 Total 1, 840.70000 29 b. Ȳ.1 = 70.6, Ȳ.2 = 74.6, Ȳ.3 = 86.1 c. H0 : all τj equal zero (j = 1, 2, 3), Ha : not all τj equal zero. F ∗ = 647.50000/6.24074 = 103.754, F (.95; 2, 18) = 3.55. If F ∗ ≤ 3.55 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. D̂1 = Ȳ.1 − Ȳ.2 = −4.0, D̂2 = Ȳ.1 − Ȳ.3 = −15.5, D̂3 = Ȳ.2 − Ȳ.3 = −11.5, s{D̂i } = 1.1172 (i = 1, 2, 3), q(.90; 3, 18) = 3.10, T = 2.192 21-1 −4.0 ± 2.192(1.1172) −15.5 ± 2.192(1.1172) −11.5 ± 2.192(1.1172) e. −6.45 ≤ D1 ≤ −1.55 −17.95 ≤ D2 ≤ −13.05 −13.95 ≤ D3 ≤ −9.05 H0 : all ρi equal zero (i = 1, ..., 10), Ha : not all ρi equal zero. F ∗ = 48.15185/6.24074 = 7.716, F (.95; 9, 18) = 2.46. If F ∗ ≤ 2.46 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0001 21.7. b. eij : i 1 2 3 4 5 j=1 −.05267 −.01267 .00400 −.02267 .08400 j=2 .00533 −.00467 −.00800 .01533 −.00800 j=3 .04733 .01733 .00400 .00733 −.07600 r = .956 d. H0 : D = 0, Ha : D 6= 0. SSBL.T R∗ = .0093, SSRem∗ = .01002, F ∗ = (.0093/1) ÷ (.01002/7) = 6.50, F (.99; 1, 7) = 12.2. If F ∗ ≤ 12.2 conclude H0 , otherwise Ha . Conclude H0 . P -value = .038 21.8. a. Source SS df Blocks 1.41896 4 Fat content 1.32028 2 Error .01932 8 Total 2.75856 14 MS .35474 .66014 .002415 b. Ȳ.1 = 1.110, Ȳ.2 = .992, Ȳ.3 = .430 c. H0 : all τj equal zero (j = 1, 2, 3), Ha : not all τj equal zero. F ∗ = .66014/.002415 = 273.35, F (.95; 2, 8) = 4.46. If F ∗ ≤ 4.46 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. D̂1 = .118, D̂2 = .562, s{D̂i } = .03108 (i = 1, 2), B = t(.9875; 8) = 2.7515 .118 ± 2.7515(.03108) .562 ± 2.7515(.03108) e. .032 ≤ D1 ≤ .204 .476 ≤ D2 ≤ .648 H0 : all ρi equal zero (i = 1, ..., 5), Ha : not all ρi equal zero. F ∗ = .35474/.002415 = 146.89, F (.95; 4, 8) = 3.84. If F ∗ ≤ 3.84 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 21.9. c. ejik : 21-2 i 1 2 3 4 5 6 7 8 k=1 j=1 j=2 −.01875 .01875 .13125 −.03125 .05625 −.00625 .08125 −.08125 −.09375 −.15625 −.09375 −.05625 −.09375 .24375 .03125 .06875 i 1 2 3 4 5 6 7 8 k=2 j=1 j=2 .00625 −.00625 −.04375 −.05625 −.11875 .06875 .00625 −.00625 .23125 .01875 .03125 .11875 .03125 −.18125 −.14375 .04375 r = .984 e. H0 : D = 0, Ha : D 6= 0. SSBL.T R∗ = .00503, SSRem∗ = .29872, F ∗ = (.00503/1) ÷ (.29872/20) = .337, F (.99; 1, 20) = 8.10. If F ∗ ≤ 8.10 conclude H0 , otherwise Ha . Conclude H0 . P -value = .57 21.10. a. Source SS df MS Blocks 5.59875 7 .79982 A 2.31125 1 2.31125 B 3.38000 1 3.38000 AB interactions .04500 1 .04500 Error .30375 21 .01446 Total 11.63875 31 b. H0 : all (αβ)jk equal zero, Ha : not all (αβ)jk equal zero. F ∗ = .04500/.01446 = 3.112, F (.99; 1, 21) = 8.017. If F ∗ ≤ 8.017 conclude H0 , otherwise Ha . Conclude H0 . P -value = .092 c. Ȳ.1. = .88750, Ȳ.2. = 1.42500, Ȳ..1 = .83125, Ȳ..2 = 1.42500 d. H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = 2.31125/.01446 = 159.84, F (.99; 1, 21) = 8.017. If F ∗ ≤ 8.017 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = 3.38000/.01446 = 233.75, F (.99; 1, 21) = 8.017. If F ∗ ≤ 8.017 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. L̂1 = Ȳ.1. − Ȳ.2. = −.53750, L̂2 = Ȳ..1 − Ȳ..2 = −.65000, s{L̂1 } = s{L̂2 } = .0425, B = t(.9875; 21) = 2.414 −.53750 ± 2.414(.0425) −.65000 ± 2.414(.0425) f. −.640 ≤ L1 ≤ −.435 −.753 ≤ L2 ≤ −.547 H0 : all ρi equal zero (i = 1, ..., 8), Ha : not all ρi equal zero. F ∗ = .79982/.01446 = 55.31, F (.99; 7, 21) = 3.64. If F ∗ ≤ 3.64 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 21-3 21.12. b. Ȳ.1.. = 7.25, Ȳ.2.. = 12.75, L̂ = Ȳ.1.. − Ȳ.2.. = −5.50, s{L̂} = 1.25, t(.995; 8) = 3.355, −5.50 ± 3.355(1.25), −9.69 ≤ L ≤ −1.31 21.13. a. Yijk = µ.. + ρi + τj + (ρτ )ij + ²ijk b. Source SS df MS Blocks 523.20000 4 130.80000 Treatments 1, 796.46667 2 898.23333 BL.T R interactions 87.20000 8 10.90000 Error 207.00000 15 13.80000 Total 2, 613.86667 29 c. H0 : all τj equal zero (j = 1, 2, 3), Ha : not all τj equal zero. F ∗ = 898.23333/13.80000 = 65.089, F (.99; 2, 15) = 6.36. If F ∗ ≤ 6.36 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. e. Ȳ.1. = 68.9, Ȳ.2. = 77.1, Ȳ.3. = 87.8, L̂1 = Ȳ.1. − Ȳ.2. = −8.2, L̂2 = Ȳ.1. − Ȳ.3. = −18.9, L̂3 = Ȳ.2. − Ȳ.3. = −10.7, s{L̂i } = 1.6613 (i = 1, 2, 3), q(.95; 3, 15) = 3.67, T = 2.595 −8.2 ± 2.595(1.6613) −12.51 ≤ L1 ≤ −3.89 −18.9 ± 2.595(1.6613) −23.21 ≤ L2 ≤ −14.59 −10.7 ± 2.595(1.6613) −15.01 ≤ L3 ≤ −6.39 eijk : i 1 2 3 4 5 j=1 k=1 k=2 1.5 −1.5 2.0 −2.0 4.0 −4.0 −2.5 2.5 1.5 −1.5 j=2 k=1 k=2 3.0 −3.0 −4.0 4.0 3.5 −3.5 −2.5 2.5 −1.5 1.5 j=3 k=1 k=2 −2.0 2.0 −2.5 2.5 1.5 −1.5 −1.5 1.5 3.5 −3.5 r = .956 f. H0 : all (ρτ )ij equal zero, Ha : not all (ρτ )ij equal zero. F ∗ = 10.90000/13.80000 = .7899, F (.99; 8, 15) = 4.00. If F ∗ ≤ 4.00 conclude H0 , otherwise Ha . Conclude H0 . P -value = .62 s 21.14. 1 φ= 2.5 21.15. 1 φ= .04 21.16. nb = 49 blocks 21.17. a. nb = 21 blocks b. s 10(18) = 3.098, ν1 = 2, ν2 = 27, 1 − β > .99 3 5(.02) = 4.564, ν1 = 2, ν2 = 12, 1 − β > .99 3 nb = 7 blocks 21-4 21.18. Ê = 3.084 21.19. Ê 0 = 40.295 21.20. Ê = 13.264 21.21. L= 3 Y 2 Y · √ i=1 j=1 1 1 exp − 2 (Yij − µ.. − ρi − τj )2 2σ 2πσ 2 loge L = −3 loge 2π − 3 loge σ 2 − ∂(loge L) ∂µ.. ∂(loge L) ∂ρi ∂(loge L) ∂τj Setting each P ρi = P ¸ 1 PP (Yij − µ.. − ρi − τj )2 2σ 2 2 PP (Yij − µ.. − ρi − τj )(−1) 2σ 2 2 P = − 2 (Yij − µ.. − ρi − τj )(−1) 2σ j 2 P = − 2 (Yij − µ.. − ρi − τj )(−1) 2σ i partial derivative equal to zero, utilizing the constraints =− τj = 0, simplifying, and substituting the maximum likelihood estimators yields: PP P j P i Yij = Yij = Yij = P j P i PP Ȳ.. = µ̂.. or Ȳi. − µ̂.. = ρ̂i (µ̂.. + τ̂ j ) or E{M ST R} = E = or (µ̂.. + ρ̂i ) ( 21.22. µ̂.. nb P Ȳ.j − µ̂.. = τ̂ j (Ȳ.j − Ȳ.. )2 r−1 ) nb P E{ (Ȳ.j − Ȳ.. )2 } r−1 Since: (Ȳ.j − Ȳ.. ) = (µ.. + τj + ²̄.j ) − (µ.. + ²̄.. ) = τj + (²̄.j − ²̄.. ) and: P (Ȳ.j − Ȳ.. )2 = P 2 P P τj + (²̄.j − ²̄.. )2 + 2 τj (²̄.j − ²̄.. ) we find: E{ P P 2 τj } = τj2 à σ2 E { (²̄.j − ²̄.. ) } = (r − 1) nb P E {2 P ! 2 τj (²̄.j − ²̄.. )} = 0 Hence: ¸ · nb P 2 nb P 2 r − 1 2 E{M ST R} = σ = τj + τj + σ 2 r−1 nb r−1 21.23. From (A.69): 21-5 " W̄ (t ) = s{W̄ } From (27.6b): #2 ∗ 2 = nb (nb − 1)(Ȳ.1 − Ȳ.2 )2 Σ[(Yi1 − Yi2 ) − (Ȳ.1 − Ȳ.2 )]2 " à Ȳ.1 + Ȳ.2 M ST R = nb Ȳ.1 − 2 nb = (Ȳ.1 − Ȳ.2 )2 2 From (27.6c): · P ³ M SBL.T R = i !#2 " à Ȳ.1 + Ȳ.2 + Ȳ.2 − 2 Yi1 − Ȳi. − Ȳ.1 + Ȳ.. ´2 !#2 ¸ 2 + (Yi2 − Ȳi. − Ȳ.2 + Ȳ.. ) (nb − 1)(2 − 1) Using: Yi1 + Yi2 2 we obtain: Ȳi. = Ȳ.. = Ȳ.1 + Ȳ.2 2 i 1 P1h (Yi1 − Yi2 − Ȳ.1 + Ȳ.2 )2 + (Yi2 − Yi1 − Ȳ.2 + Ȳ.1 )2 nb − 1 i 4 i2 1 Ph = (Yi1 − Yi2 ) − (Ȳ.1 − Ȳ.2 ) 2(nb − 1) i M SBL.T R = Therefore: F∗ = 21.24. nb (nb − 1)(Ȳ.1 − Ȳ.2 )2 = (t∗ )2 Σ[(Yi1 − Yi2 ) − (Ȳ.1 − Ȳ.2 )]2 When there are no ties: R..2 P 2 = [nb r(r + 1)/2] PP " Ri.2 = nb r(r + 1) 2 #2 2 Rij = nb [r(r + 1)(2r + 1)/6] Then: nb (r − 1)SST R SST R + SSBL.T R à ! R..2 2 (r − 1) ΣR.j − r à ! à ! = 2 2 2 2 2 ΣR.j ΣR R.. ΣR R .j i. 2 − + ΣΣRij − − + .. nb rnb r nb rnb à P ! R2 − .. (r − 1) r = 2 ΣRi. PP 2 Rij − r " # " # n2b (r + 1)2 r nb r(r + 1)(2r + 1) nb r(r + 1)2 P 2 = (r − 1) ÷ − R.j − 4 6 4 P 2 12 R.j − 3nb (r + 1) = nb r(r + 1) R.j2 21-6 Chapter 22 ANALYSIS OF COVARIANCE 22.5. a. B = t(.9917; 11) = 2.820 22.6. Yij = µ. + τi + γ1 (Xij1 − X̄..1 ) + γ2 (Xij2 − X̄..2 ) + γ3 (Xij1 − X̄..1 )2 +γ4 (Xij2 − X̄..2 )2 + ²ij , i = 1, ..., 4 22.7. a. eij : i 1 2 3 j=1 −.5281 −.2635 −.1615 j=2 j=3 .4061 .0089 −.2005 .3196 .2586 −.0099 j=4 j=5 .4573 −.1140 .2995 −.1662 −.3044 .0472 j=6 −.1911 .0680 .1700 i 1 2 j=7 .0660 −.0690 j=8 j=9 −.0939 −.0112 −.1776 −.0005 j = 10 j = 11 j = 12 .0653 .0251 .0995 b. r = .988 c. Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + β1 Iij1 xij + β2 Iij2 xij + εij H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. SSE(F ) = .9572, SSE(R) = 1.3175, F ∗ = (.3603/2) ÷ (.9572/21) = 3.95, F (.99; 2, 21) = 5.78. If F ∗ ≤ 5.78 conclude H0 , otherwise Ha . Conclude H0 . P -value = .035 d. 22.8. b. Yes, 5 Full model: Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + εij , (X̄.. = 9.4). Reduced model: Yij = µ. + γxij + εij . c. Full model: Ŷ = 7.80627 + 1.65885I1 − .17431I2 + 1.11417x, SSE(F ) = 1.3175 Reduced model: Ŷ = 7.95185 + .54124x, SSE(R) = 5.5134 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (4.1959/2) ÷ (1.3175/23) = 36.625, F (.95; 2, 23) = 3.42. If F ∗ ≤ 3.42 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. M SE(F ) = .0573, M SE = .6401 22-1 e. Ŷ = µ̂. + τ̂ 2 − .4γ̂ = 7.18629, s2 {µ̂. } = .00258, s2 {τ̂ 2 } = .00412, s2 {γ̂} = .00506, s{µ̂. , τ̂ 2 } = −.00045, s{τ̂ 2 , γ̂} = −.00108, s{µ̂. , γ̂} = −.00120, s{Ŷ } = .09183, t(.975; 23) = 2.069, 7.18629 + 2.069(.09183), 6.996 ≤ µ. + τ2 − .4γ ≤ 7.376 f. D̂1 = τ̂ 1 − τ̂ 2 = 1.83316, D̂2 = τ̂ 1 − τ̂ 3 = 2τ̂ 1 + τ̂ 2 = 3.14339, D̂3 = τ̂ 2 − τ̂ 3 = 2τ̂ 2 + τ̂ 1 = 1.31023, s2 {τ̂ 1 } = .03759, s{τ̂ 1 , τ̂ 2 } = −.00418, s{D̂1 } = .22376, s{D̂2 } = .37116, s{D̂3 } = .19326, F (.90; 2, 23) = 2.55, S = 2.258 1.83316 ± 2.258(.22376) 3.14339 ± 2.258(.37116) 1.31023 ± 2.258(.19326) 22.9. a. 1.328 ≤ D1 ≤ 2.338 2.305 ≤ D2 ≤ 3.981 .874 ≤ D3 ≤ 1.747 eij : i 1 2 3 j=1 −.5474 −.2747 −.4225 j=2 j=3 j=4 −.1325 .2465 −.0567 .1215 .2655 .0346 −.0128 .1090 .5290 j=5 .4901 −.1468 −.2027 b. r = .994 c. Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + β1 Iij1 xij + β2 Iij2 xij + εij . H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. SSE(F ) = .7682, SSE(R) = 1.3162, F ∗ = (.5480/2) ÷ (.7682/9) = 3.21, F (.995; 2, 9) = 10.1. If F ∗ ≤ 10.1 conclude H0 , otherwise Ha . Conclude H0 . P -value = .089 d. 22.10. b. No Full model: Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + εij , (X̄.. = 280). Reduced model: Yij = µ. + γxij + εij . c. Full model: Ŷ = 29.00000 + .14361I1 + 1.48842I2 − .02981x, SSE(F ) = 1.3162 Reduced model: Ŷ = 29.00000 − .02697x, SSE(R) = 24.7081 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (23.3919/2) ÷ (1.3162/11) = 97.748, F (.90; 2, 11) = 2.86. If F ∗ ≤ 2.86 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. M SE(F ) = .1197, M SE = 9.70 e. Ŷ = µ̂. + τ̂ 1 = 29.14361, s2 {µ̂. } = .00798, s2 {τ̂ 1 } = .01602, s{µ̂. , τ̂ 1 } = 0, s{Ŷ } = .15492, t(.95; 11) = 1.796, 29.14361 ± 1.796(.15492), 28.865 ≤ µ. + τ1 ≤ 29.422 f. D̂1 = τ̂ 1 − τ̂ 2 = −1.34481, D̂2 = τ̂ 1 − τ̂ 3 = 2τ̂ 1 + τ̂ 2 = 1.77564, D̂3 = τ̂ 2 − τ̂ 3 = 2τ̂ 2 + τ̂ 1 = 3.12045, s2 {τ̂ 2 } = .01678, s{τ̂ 1 , τ̂ 2 } = −.00822, s{D̂1 } = .2219, s{D̂2 } = .2190, s{D̂3 } = .2242, F (.90; 2, 11) = 2.86, S = 2.392 −1.34481 ± 2.392(.2219) 1.77564 ± 2.392(.2190) 3.12045 ± 2.392(.2242) 22.11. a. −1.876 ≤ D1 ≤ −.814 1.252 ≤ D2 ≤ 2.299 2.584 ≤ D3 ≤ 3.657 eij : 22-2 i 1 2 3 j=1 .2070 .1361 .7938 i 1 2 3 j=6 .1178 −.3813 −.0545 j=2 −.4503 .0001 −.2099 j=3 j=4 −.3648 −.2324 −.6691 −.9300 .2295 .2801 j=7 j=8 j=9 −.5440 .3668 .4201 .5837 −.1635 j=5 .8999 .3190 −1.0389 j = 10 .6848 b. r = .995 c. Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + β1 Iij1 xij + β2 Iij2 xij + εij H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. SSE(F ) = 5.94391, SSE(R) = 6.16575, F ∗ = (.221834/2) ÷ (5.94391/18) = .336, F (.95; 2, 18) = 3.55. If F ∗ ≤ 3.55 conclude H0 , otherwise Ha . Conclude H0 . P -value = .72 d. 22.12. b. No Full model: Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + εij , (X̄.. = 23.575). Reduced model: Yij = µ. + γxij + εij . c. Full model: Ŷ = 31.42704 + 3.52342I1 + 1.67605I2 + 1.16729x, SSE(F ) = 6.16575 Reduced model: Ŷ = 32.00000 + 1.47113x, SSE(R) = 252.24945 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (246.08370/2) ÷ (6.16575/20) = 399.114, F (.99; 2, 20) = 5.85. If F ∗ ≤ 5.85 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. M SE(F ) = .30829, M SE = 19.8095 e. Ŷ = µ̂. + τ̂ 2 + .425γ̂ = 33.59919, s2 {µ̂. } = .013423, s2 {τ̂ 2 } = .024459, s2 {γ̂} = .001025, s{µ̂. , τ̂ 2 } = −.003069, s{µ̂. , γ̂} = .000082, s{τ̂ 2 , γ̂} = .000886, s{Ŷ } = .180975, t(.995; 20) = 2.845, 33.59919±2.845(.180975), 33.0843 ≤ µ. +τ2 +.425γ ≤ 34.1141 f. D̂1 = τ̂ 1 − τ̂ 2 = 1.84738, D̂2 = τ̂ 1 − τ̂ 3 = 2τ̂ 1 + τ̂ 2 = 8.72289, D̂3 = τ̂ 2 − τ̂ 3 = 2τ̂ 2 + τ̂ 1 = 6.87551, s2 {τ̂ 1 } = .0336934, s{τ̂ 1 , τ̂ 2 } = −.0120919, s{D̂1 } = .28705, s{D̂2 } = .33296, s{D̂3 } = .28838, B = t(.99167; 20) = 2.613 1.84738 ± 2.613(.28705) 8.72289 ± 2.613(.33296) 6.87551 ± 2.613(.28838) 22.13. a. 1.097 ≤ D1 ≤ 2.597 7.853 ≤ D2 ≤ 9.529 6.122 ≤ D3 ≤ 7.629 eij : i 1 2 3 j=1 j=2 −1.7973 −6.7636 −3.4017 −4.9059 −3.0314 −2.5019 j=3 j=4 j=5 2.2280 .5922 5.7406 1.4415 3.9373 2.9288 .7781 2.6297 2.1255 22-3 b. r = .983 c. Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + β1 Iij1 xij + β2 Iij2 xij + εij H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. SSE(F ) = 145.2007, SSE(R) = 176.5300, F ∗ = (31.3293/2) ÷ (145.2007/9) = .971, F (.95; 2, 9) = 4.26. If F ∗ ≤ 4.26 conclude H0 , otherwise Ha . Conclude H0 . P -value = .415 d. 22.14. b. No Full model: Yij = µ. + τ1 Iij1 + τ2 Iij2 + γxij + εij , (X̄.. = 70.46667). Reduced model: Yij = µ. + γxij + εij . c. Full model: Ŷ = 66.40000−13.57740I1 +5.54806I2 +.83474x, SSE(F ) = 176.5300 Reduced model: Ŷ = 66.40000 + .81587x, SSE(R) = 1, 573.8109 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (1, 397.2809/2) ÷ (176.5300/11) = 43.53, F (.95; 2, 11) = 3.98. If F ∗ ≤ 3.98 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. M SE(F ) = 16.0482, M SE = 113.9333 e. Ŷ = µ̂. + τ̂ 2 + 4.5333γ̂ = 75.7322, s2 {µ̂. } = 1.06988, s2 {τ̂ 2 } = 2.40689, s2 {γ̂} = .00939, s{µ̂. , τ̂ 2 } = s{µ̂. , γ̂} = 0, s{τ̂ 2 , γ̂} = −.05009, s{Ŷ } = 1.7932, t(.975; 11) = 2.201, 75.7322 ± 2.201(1.7932), 71.785 ≤ µ. + τ2 + 4.5333γ ≤ 79.679 f. D̂1 = τ̂ 1 − τ̂ 2 = −19.12546, D̂2 = τ̂ 1 − τ̂ 3 = 2τ̂ 1 + τ̂ 2 = −21.60674, D̂3 = τ̂ 2 − τ̂ 3 = 2τ̂ 2 + τ̂ 1 = −2.48128, s2 {τ̂ 1 } = 2.14043, s{τ̂ 1 , τ̂ 2 } = −1.08324, s{D̂1 } = 2.5911, s{D̂2 } = 2.5760, s{D̂3 } = 2.7267, F (.90; 2, 11) = 2.86, S = 2.392 −19.12546 ± 2.392(2.5911) −21.60674 ± 2.392(2.5760) −2.48128 ± 2.392(2.7267) 22.15. a. −25.323 ≤ D1 ≤ −12.928 −27.769 ≤ D2 ≤ −15.445 −9.004 ≤ D3 ≤ 4.041 eijk : i 1 j=1 −.1184 −.3469 .0041 −.6041 1.2000 −.1347 j=2 −.3510 −.0939 .0286 .0735 −.0163 .3592 i j=1 j=2 2 −.6809 .2082 .8660 −.1877 −.1177 .2531 .2905 −.2327 −.3912 −.2776 .0333 .2367 i 3 b. r = .974 c. Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + β1 Iijk3 + (αβ)11 Iijk1 Iijk3 j=1 .9687 −.0150 .8789 −1.1211 .0912 −.8027 +(αβ)21 Iijk2 Iijk3 + γxijk + δ1 Iijk1 xijk + δ2 Iijk2 xijk +δ3 Iijk3 xijk + δ4 Iijk1 Iijk3 xijk + δ5 Iijk2 Iijk3 xijk + ²ijk H0 : all δi equal zero (i = 1, ..., 5), Ha : not all δi equal zero. 22-4 j=2 .6606 .0565 −.1109 −.0660 −.4293 −.1109 SSE(R) = 8.2941, SSE(F ) = 6.1765, F ∗ = (2.1176/5) ÷ (6.1765/24) = 1.646, F (.99; 5, 24) = 3.90. If F ∗ ≤ 3.90 conclude H0 , otherwise Ha . Conclude H0 . P -value = .19 22.16. a. Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + β1 Iijk3 + (αβ)11 Iijk1 Iijk3 +(αβ)21 Iijk2 Iijk3 + γxijk + ²ijk 1 if case from level 1 for factor A Iijk1 = −1 if case from level 3 for factor A 0 otherwise Iijk2 1 if case from level 2 for factor A −1 if case from level 3 for factor A = 0 otherwise ( Iijk3 = 1 if case from level 1 for factor B −1 if case from level 2 for factor B xijk = Xijk − X̄... (X̄... = 3.4083) Ŷ = 23.55556−2.15283I1 +3.68152I2 +.20907I3 −.06009I1 I3 −.04615I2 I3 +1.06122x SSE(F ) = 8.2941 b. Interactions: Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + β1 Iijk3 + γxijk + ²ijk Ŷ = 23.55556 − 2.15400I1 + 3.67538I2 + .20692I3 + 1.07393x SSE(R) = 8.4889 Factor A: Yijk = µ.. + β1 Iijk3 + (αβ)11 Iijk1 Iijk3 + (αβ)21 Iijk2 Iijk3 + γxijk + ²ijk Ŷ = 23.55556 + .12982I3 + .01136I1 I3 + .06818I2 I3 + 1.52893x SSE(R) = 240.7835 Factor B: Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + (αβ)11 Iijk1 Iijk3 +(αβ)21 Iijk2 Iijk3 + γxijk + ²ijk Ŷ = 23.55556 − 2.15487I1 + 3.67076I2 − .05669I1 I3 − .04071I2 I3 + 1.08348x SSE(R) = 9.8393 c. H0 : (αβ)11 = (αβ)21 = 0, Ha : not both (αβ)11 and (αβ)21 equal zero. F ∗ = (.1948/2) ÷ (8.2941/29) = .341, F (.95; 2, 29) = 3.33. If F ∗ ≤ 3.33 conclude H0 , otherwise Ha . Conclude H0 . P -value = .714 d. H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = (232.4894/2) ÷ (8.2941/29) = 406.445, F (.95; 2, 29) = 3.33. If F ∗ ≤ 3.33 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 22-5 e. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = (1.5452/1) ÷ (8.2941/29) = 5.403, F (.95; 1, 29) = 4.18. If F ∗ ≤ 4.18 conclude H0 , otherwise Ha . Conclude Ha . P -value = .027 f. D̂1 = α̂1 − α̂2 = −5.83435, D̂2 = α̂1 − α̂3 = 2α̂1 + α̂2 = −.62414, D̂3 = α̂2 − α̂3 = 2α̂2 + α̂1 = 5.21021, D̂4 = β̂ 1 − β̂ 2 = 2β̂ 1 = .41814, s2 {α̂1 } = .01593, s2 {α̂2 } = .01708, s{α̂1 , α̂2 } = −.00772, s2 {β̂ 1 } = .00809, s{D̂1 } = .22011, s{D̂2 } = .22343, s{D̂3 } = .23102, s{D̂4 } = .17989, B = t(.9875; 29) = 2.364 −5.83435 ± 2.364(.22011) −.62414 ± 2.364(.22343) 5.21021 ± 2.364(.23102) .41814 ± 2.364(.17989) 22.17. a. −6.355 ≤ D1 ≤ −5.314 −1.152 ≤ D2 ≤ −.096 4.664 ≤ D3 ≤ 5.756 −.007 ≤ D4 ≤ .843 eijk : i 1 j=1 j=2 .1707 −.8159 .0810 1.3979 −.4586 −.8383 −1.2448 −.5796 1.4517 .8359 i 2 j=1 .3035 1.0448 −.7190 −.9776 .3483 j=2 .2069 1.5776 −2.0965 .6672 −.3552 b. r = .988 c. Yijk = µ.. + α1 Iijk1 + β1 Iijk2 + (αβ)11 Iijk1 Iijk2 + γxijk +δ1 Iijk1 xijk + δ2 Iijk2 xijk + δ3 Iijk1 Iijk2 xijk + ²ijk H0 : all δi equal zero (i = 1, 2, 3), Ha : not all δi equal zero. SSE(F ) = 16.8817, SSE(R) = 18.5364, F ∗ = (1.6547/3) ÷ (16.8817/12) = .392, F (.995; 3, 12) = 7.23. If F ∗ ≤ 7.23 conclude H0 , otherwise Ha . Conclude H0 . P -value = .76 22.18. a. Yijk = µ. + α1 Iijk1 + β1 Iijk2 + (αβ)11 Iijk1 Iijk2 + γxijk + εijk , (X̄... = 44.55). Ŷ = 13.05000 − .36284I1 − 1.11905I2 + .09216I1 I2 + .32586x SSE(F ) = 18.5364 b. Interactions: Yijk = µ.. + α1 Iijk1 + β1 Iijk2 + γxijk + ²ijk Ŷ = 13.05000 − .37286I1 − 1.12552I2 + .32333x SSE(R) = 18.7014 Factor A: Yijk = µ.. + β1 Iijk2 + (αβ)11 Iijk1 Iijk2 + γxijk + ²ijk Ŷ = 13.05000 − 1.04962I2 + .12074I1 I2 + .35309x 22-6 SSE(R) = 20.3891 Factor B: Yijk = µ.. + α1 Iijk1 + (αβ)11 Iijk1 Iijk2 + γxijk + ²ijk Ŷ = 13.05000 − .10397I1 + .16097I1 I2 + .39140x SSE(R) = 39.8416 c. H0 : (αβ)11 = 0, Ha : (αβ)11 6= 0. F ∗ = (.1650/1) ÷ (18.5364/15) = .1335, F (.99; 1, 15) = 8.68. If F ∗ ≤ 8.68 conclude H0 , otherwise Ha . Conclude H0 . P -value = .72 d. H0 : α1 = 0, Ha : α1 6= 0. F ∗ = (1.8527/1) ÷ (18.5364/15) = 1.499, F (.99; 1, 15) = 8.68. If F ∗ ≤ 8.68 conclude H0 , otherwise Ha . Conclude H0 . P -value = .24 e. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = (21.3052/1) ÷ (18.5364/15) = 17.241, F (.99; 1, 15) = 8.68. If F ∗ ≤ 8.68 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. D̂ = β̂ 1 − β̂ 2 = 2β̂ 1 = −2.2381, s{D̂} = .539, t(.995; 15) = 2.947, −2.2381 ± 2.947(.539), −3.8265 ≤ D ≤ −.6497 g. 2 2 d Ŷ = µ̂.. + α̂1 − β̂ 1 − (αβ) 11 − 4.55γ̂ = 12.2314, s {µ̂.. } = .06179, s {α̂1 } = .08782, d } = .06363, s{α̂ , β̂ } = .01680, s2 {β̂ 1 } = .07264, s2 {γ̂} = .00167, s2 {(αβ) 11 1 1 d d s{α̂1 , (αβ)11 } = .00692, s{β̂ 1 , (αβ)11 } = .00447, s{α̂1 , γ̂} = .00659, s{β̂ 1 , γ̂} = d } = .00175, s{µ̂ , α̂ } = s{µ̂ , β̂ } = s{µ̂ , (αβ) d } = s{µ̂ , γ̂} = .00425, s{γ̂, (αβ) 11 1 11 .. .. 1 .. .. 0, s{Ŷ } = .5259, t(.995; 15) = 2.947, 12.2314 ± 2.947(.5259), 10.682 ≤ µ.. + α1 − β1 − (αβ)11 − 4.55γ ≤ 13.781 22.19. b. Yij = µ.. + ρ1 Iij1 + ρ2 Iij2 + ρ3 Iij3 + ρ4 Iij4 + ρ5 Iij5 + ρ6 Iij6 +ρ7 Iij7 + ρ8 Iij8 + ρ9 Iij9 + τ1 Iij10 + τ2 Iij11 + γxij + ²ij Iij1 1 −1 = 0 if experimental unit from block 1 if experimental unit from block 10 otherwise Iij2 , . . . , Iij9 are defined similarly Iij10 Iij11 1 if experimental unit received treatment 1 −1 if experimental unit received treatment 3 = 0 otherwise 1 if experimental unit received treatment 2 = −1 if experimental unit received treatment 3 0 otherwise xij = Xij − X̄.. c. (X̄.. = 80.033333) Ŷ = 77.10000 + 4.87199I1 + 3.87266I2 + 2.21201I3 + 3.22003I4 +1.23474I5 + .90876I6 − 1.09124I7 − 3.74253I8 − 4.08322I9 22-7 −6.50033I10 − 2.49993I11 + .00201x SSE(F ) = 112.3327 d. Yij = µ.. + ρ1 Iij1 + ρ2 Iij2 + ρ3 Iij3 + ρ4 Iij4 + ρ5 Iij5 + ρ6 Iij6 +ρ7 Iij7 + ρ8 Iij8 + ρ9 Iij9 + γxij + ²ij Ŷ = 77.10000 + 6.71567I1 + 5.67233I2 + 3.61567I3 + 4.09567I4 +1.14233I5 + .33233I6 − 1.66767I7 − 5.33100I8 − 5.18767I9 − .13000x SSE(R) = 1, 404.5167 e. H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (1, 292.18/2) ÷ (112.3327/17) = 97.777, F (.95; 2, 17) = 3.59. If F ∗ ≤ 3.59 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. τ̂ 1 = −6.50033, τ̂ 2 = −2.49993, L̂ = −4.0004, L2 {τ̂ 1 } = .44162, s2 {τ̂ 2 } = .44056, s{τ̂ 1 , τ̂ 2 } = −.22048, s{L̂} = 1.1503, t(.975; 17) = 2.11, −4.0004 ± 2.11(1.1503), −6.43 ≤ L ≤ −1.57 22.20. a. Yij = µ.. + ρ1 Iij1 + ρ2 Iij2 + ρ3 Iij3 + ρ4 Iij4 + τ1 Iij5 + τ2 Iij6 + γxij + ²ij Iij1 1 = −1 0 if experimental unit from block 1 if experimental unit from block 5 otherwise Iij2 , . . . , Iij4 are defined similarly 1 = −1 0 if experimental unit received treatment 1 if experimental unit received treatment 3 otherwise 1 Iij6 = −1 0 if experimental unit received treatment 2 if experimental unit received treatment 3 otherwise Iij5 xij = Xij − X̄.. b. (X̄.. = 104.46667) Ŷ = .84400 − .25726I1 − .18916I2 − .16649I3 + .27012I4 + .26663I5 +.15238I6 + .009385x SSE(F ) = .007389 c. Yij = µ.. + ρ1 Iij1 + ρ2 Iij2 + ρ3 Iij3 + ρ4 Iij4 + γxij + ²ij Ŷ = .84400 − .34176I1 − .24725I2 − .17555I3 + .32143I4 − .00193x SSE(R) = 1.339085 d. H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (1.331696/2) ÷ (.007389/7) = 630.79, F (.95; 2, 7) = 4.737. If F ∗ ≤ 4.737 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. τ̂ 1 = .26663, τ̂ 2 = .15238, L̂1 = τ̂ 1 − τ̂ 2 = .11425, L̂2 = τ̂ 1 + 2τ̂ 2 = .57139, s2 {τ̂ 1 } = .0001408, s2 {τ̂ 2 } = .0001424, s{τ̂ 1 , τ̂ 2 } = −.0000701, s{L̂1 } = .02058, s{L̂2 } = .02074, B = t(.9875; 7) = 2.841 22-8 .11425 ± 2.841(.02058) .57139 ± 2.841(.02074) .0558 ≤ L1 ≤ .1727 .5125 ≤ L2 ≤ .6303 22.21. a. Source SS df Between treatments 25.5824 2 Error 1.4650 24 Total 27.0474 26 b. MS 12.7912 .0610 Covariance: M SE = .0573, γ̂ = 1.11417 22.22. a. Source SS df MS Between treatments 1, 417.7333 2 708.8667 Error 223.2000 12 18.6000 Total 1, 640.9333 14 b. Covariance: M SE = 16.048, γ̂ = .83474 Yij = µ. + τi + γ(Xij − X̄.. ) + ²ij = ∆i + γ(Xij − X̄.. ) + ²ij 22.23. Q= PP [Yij − ∆i − γ(Xij − X̄.. )]2 ∂Q P = 2 [Yij − ∆i − γ(Xij − X̄.. )](−1) ∂∆i j ∂Q PP =2 [Yij − ∆i − γ(Xij − X̄.. )][−(Xij − X̄.. )] ∂γ Setting the partial derivatives equal to zero, simplifying, and substituting the least squares estimators yields: P P ˆi Yij − γ̂ (Xij − X̄.. ) = ni ∆ j j or: ˆ i = Ȳi. − γ̂(X̄i. − X̄.. ) ∆ and: PP ˆ i − γ̂(Xij − X̄.. )](Xij − X̄.. ) = 0 [Yij − ∆ or: PP or: Yij (Xij − X̄.. ) − PP [Ȳi. − γ̂(X̄i. − X̄.. )](Xij − X̄.. ) = γ̂ PP (Xij − X̄.. )2 PP (Yij − Ȳi. )(Xij − X̄i. ) (Xij − X̄i. )2 It needs to be recognized in the development that: γ̂ = PP PP 22.24. b. c. PP (Yij − Ȳi. )(Xij − X̄.. ) = PP (Xij − X̄.. )(Xij − X̄i. ) = (Yij − Ȳi. )(Xij − X̄i. ) PP (Xij − X̄i. )2 r = .907 Yij = µ. + τ1 Iij1 + τ2 Iij2 + τ3 Iij3 + γxij + β1 Iij1 xij + β2 Iij2 xij + β3 Iij3 xij + ²ij 22-9 H0 : β1 = β2 = β3 = 0, Ha : not all βi equal zero. SSE(F ) = 147.8129, SSE(R) = 151.3719, F ∗ = (3.5590/3) ÷ (147.8129/56) = .449, F (.995; 3, 56) = 4.76. If F ∗ ≤ 4.76 conclude H0 , otherwise Ha . Conclude H0 . P -value = .72 22.25. b. Full model: Yij = µ. + τ1 Iij1 + τ2 Iij2 + τ3 Iij3 + γxij + ²ij Iij1 = Iij2 Iij3 1 −1 0 1 = −1 0 1 −1 = 0 if case from region NE if case from region W otherwise if case from region NC if case from region W otherwise if case from region S if case from region W otherwise xij = Xij − X̄.. (X̄.. = 42.75625) Reduced model: Yij = µ. + γxij + ²ij c. Full model: Ŷ = 9.58406 + 1.60061I1 + .05250I2 − .26776I3 + .02579x, SSE(F ) = 151.3719 Reduced model: Ŷ = 9.58406 + .04013x, SSE(R) = 221.2543 H0 : all τi equal zero (i = 1, 2, 3), Ha : not all τi equal zero. F ∗ = (69.8824/3) ÷ (151.3719/59) = 9.079, F (.95; 3, 59) = 2.76. If F ∗ ≤ 2.76 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. D̂1 = τ̂ 1 − τ̂ 2 = 1.54811, D̂2 = τ̂ 1 − τ̂ 3 = 1.86837, D̂3 = τ̂ 1 − τ̂ 4 = 2τ̂ 1 + τ̂ 2 + τ̂ 3 = 2.98596, D̂4 = τ̂ 2 − τ̂ 3 = .32026, D̂5 = τ̂ 2 − τ̂ 4 = 2τ̂ 2 + τ̂ 1 + τ̂ 3 = 1.43785, D̂6 = τ̂ 3 − τ̂ 4 = 2τ̂ 3 + τ̂ 1 + τ̂ 2 = 1.11759, s2 {τ̂ 1 } = .12412, s2 {τ̂ 2 } = .12188, s2 {τ̂ 3 } = .12355, s{τ̂ 1 , τ̂ 2 } = −.03759, s{τ̂ 1 , τ̂ 3 } = −.04365, s{τ̂ 2 , τ̂ 3 } = −.04240, s{D̂1 } = .56673, s{D̂2 } = .57877, s{D̂3 } = .57632, s{D̂4 } = .57466, s{D̂5 } = .57265, s{D̂6 } = .56641, B = t(.99167; 59) = 2.464 1.54811 ± 2.464(.56673) 1.86837 ± 2.464(.57877) 2.98596 ± 2.464(.57632) .32026 ± 2.464(.57466) 1.43785 ± 2.464(.57265) 1.11759 ± 2.464(.56641) 22.26. b. c. .1517 ≤ D1 .4423 ≤ D2 1.5659 ≤ D3 −1.0957 ≤ D4 .0268 ≤ D5 −.2780 ≤ D6 ≤ 2.9445 ≤ 3.2945 ≤ 4.4060 ≤ 1.7362 ≤ 2.8489 ≤ 2.5132 r = .9914 Yij = µ. + τ1 Iij1 + τ2 Iij2 + τ3 Iij3 + γxij + β1 Iij1 xij + β2 Iij2 xij + β3 Iij3 xij + ²ij H0 : β1 = β2 = β3 = 0, Ha : not all βi equal zero. 22-10 SSE(F ) = .6521, SSE(R) = .6778, F ∗ = (.0257/3) ÷ (.6521/28) = .37, F (.95; 3, 28) = 2.95. If F ∗ ≤ 2.95 conclude H0 , otherwise Ha . Conclude H0 . P -value = .78 22.27. b. Full model: Yij = µ. + τ1 Iij1 + τ2 Iij2 + τ3 Iij3 + γxij + ²ij 1 Iij1 = −1 0 Iij2 Iij3 1 = −1 0 1 −1 = 0 if case from (Var5 Var6)=(0,0) if case from (Var5 Var6)=(1,1) otherwise if case from (Var5 Var6)=(1,0) if case from (Var5 Var6)=(1,1) otherwise if case from (Var5 Var6)=(0,1) if case from (Var5 Var6)=(1,1) otherwise xij = Xij − X̄.. (X̄.. = 2.3244) Reduced model: Yij = µ. + γxij + ²ij c. Full model: Ŷ = 2.619 − .217I1 + .109I2 − .178I3 − .344x, SSE(F ) = .6778 Reduced model: Ŷ = 2.664 − .306x, SSE(R) = 2.3593 H0 : τ1 = τ2 = τ3 = 0, Ha : not all τi equal zero. F ∗ = (1.6815/3) ÷ (.6778/31) = 25.64, F (.99; 3, 31) = 4.51. If F ∗ ≤ 4.51 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. In Project 16.45, SSE = .7850. No, almost none. e. (2.5005, 2.8353) f. D̂1 = τ̂ 1 − τ̂ 2 = −.326, D̂2 = τ̂ 1 − τ̂ 3 = −.039, D̂3 = τ̂ 1 − τ̂ 4 = 2τ̂ 1 + τ̂ 2 + τ̂ 3 = −.503, D̂4 = τ̂ 2 − τ̂ 3 = .287, D̂5 = τ̂ 2 − τ̂ 4 = 2τ̂ 2 + τ̂ 1 + τ̂ 3 = −.177, D̂6 = τ̂ 3 − τ̂ 4 = 2τ̂ 3 + τ̂ 1 + τ̂ 2 = −.464, s2 {τ̂ 1 } = .002028, s2 {τ̂ 2 } = .002024, s2 {τ̂ 3 } = .002239, s{τ̂ 1 , τ̂ 2 } = −.00071, s{τ̂ 1 , τ̂ 3 } = −.00085, s{τ̂ 2 , τ̂ 3 } = −.00085, s{D̂1 } = .073927, s{D̂2 } = .077232, s{D̂3 } = .066790, s{D̂4 } = .077165, s{D̂5 } = .066743, s{D̂6 } = .069400, B = t(.99583; 31) = 2.818 (S 2 = 3F (.95; 3, 31) = 3(2.9113), S = 2.955) −.326 ± 2.818(.073927) −.039 ± 2.818(.077232) −.503 ± 2.818(.066790) .287 ± 2.818(.077165) −.177 ± 2.818(.066743) −.464 ± 2.818(.069400) −.534 ≤ D1 ≤ −.118 −.257 ≤ D2 ≤ .179 −.691 ≤ D3 ≤ −.315 .070 ≤ D4 ≤ .504 −.365 ≤ D5 ≤ .011 −.660 ≤ D6 ≤ −.268 22-11 22.28. b. c. r = .991 Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + α3 Iijk3 + β1 Iijk4 +(αβ)11 Iijk1 Iijk4 + (αβ)21 Iijk2 Iijk4 + (αβ)31 Iijk3 Iijk4 +γxijk + δ1 Iijk1 xijk + δ2 Iijk2 xijk + δ3 Iijk3 xijk +δ4 Iijk4 xijk + δ5 Iijk1 Iijk4 xijk + δ6 Iijk2 Iijk4 xijk + δ7 Iijk3 Iijk4 xijk + ²ijk H0 : all δi equal zero (i = 1, ..., 7), Ha : not all δi equal zero. SSE(F ) = .0093126, SSE(R) = .0108089, F ∗ = (.0014963/7) ÷ (.0093126/40) = .92, F (.999; 7, 40) = 4.436. If F ∗ ≤ 4.436 conclude H0 , otherwise Ha . Conclude H0 . P -value = .46 22.29. a. Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + α3 Iijk3 + β1 Iijk4 + (αβ)11 Iijk1 Iijk4 +(αβ)21 Iijk2 Iijk4 + (αβ)31 Iijk3 Iijk4 + γxijk + ²ijk Iijk1 1 if case from region NE −1 if case from region W = 0 otherwise Iijk2 = 1 if case from region NC −1 if case from region W 0 otherwise 1 if case from region S Iijk3 = −1 if case from region W 0 otherwise ( 1 −1 Iijk4 = if percent of poverty less than 8.0 percent if percent of poverty 8.0 percent or more xijk = Xijk − X̄... (X̄... = 12.521) Ŷ = .0632 − .0239I1 − .0115I2 + .0254I3 − .00548I4 +.00149I1 I4 + .00643I2 I4 − .00904I3 I4 + .000627x SSE(F ) = .0108089 b. Interactions: Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + α3 Iijk3 + β1 Iijk4 + γxijk + ²ijk Ŷ = .0632 − .0224I1 − .0117I2 + .0255I3 − .00557I4 − .000061x SSE(R) = .0122362 Factor A: Yijk = µ.. + β1 Iijk4 + (αβ)11 Iijk1 Iijk4 + (αβ)21 Iijk2 Iijk4 +(αβ)31 Iijk3 Iijk4 + γxijk + ²ijk Ŷ = .0632 − .00565I4 + .00001I1 I4 + .00463I2 I4 − .00532I3 I4 − .000719x SSE(R) = .0298356 Factor B: 22-12 Yijk = µ.. + α1 Iijk1 + α2 Iijk2 + α3 Iijk3 + (αβ)11 Iijk1 Iijk4 +(αβ)21 Iijk2 Iijk4 + (αβ)31 Iijk3 Iijk4 + γxijk + ²ijk Ŷ = .0632 − .0241I1 − .0115I2 + .0254I3 + .00157I1 I4 +.00652I2 I4 − .00923I3 I4 + .000695x SSE(R) = .012488 c. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = (.0014273/3) ÷ (.0108089/47) = 2.069, F (.99; 3, 47) = 4.23. If F ∗ ≤ 4.23 conclude H0 , otherwise Ha . Conclude H0 . P -value = .12 d. H0 : α1 = α2 = α3 = 0, Ha : not all αi equal zero. F ∗ = (.0190267/3) ÷ (.0108089/47) = 27.57, F (.99; 3, 47) = 4.23. If F ∗ ≤ 4.23 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = (.0016791/1) ÷ (.0108089/47) = 7.30, F (.99; 1, 47) = 7.21. If F ∗ ≤ 7.21 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0096 22.30. b. c. r = .983 Yijk = µ.. + α1 Iijk1 + β1 Iijk2 + (αβ)11 Iijk1 Iijk4 + γxijk +δ1 Iijk1 xijk + δ2 Iijk2 xijk + δ3 Iijk1 Iijk2 xijk + ²ijk H0 : δ1 = δ2 = δ3 = 0, Ha : not all δi equal zero. SSE(F ) = .48044, SSE(R) = .51032, F ∗ = (.02988/3) ÷ (.48044/20) = .41, F (.95; 3, 20) = 3.10. If F ∗ ≤ 3.10 conclude H0 , otherwise Ha . Conclude H0 . P -value = .75 22.31. a. Yijk = µ.. + α1 Iijk1 + β1 Iijk2 + (αβ)11 Iijk1 Iijk2 + ²ijk ( Iijk1 = ( Iijk2 = 1 −1 no discount price discount price 1 −1 no package promotion package promotion xijk = Xijk − X̄... (X̄... = 2.2716) Ŷ = 2.644 − .197I1 − .0605I2 + .0533I1 I2 − .276x SSE(F ) = .51032 b. Interactions: Yijk = µ.. + α1 Iijk1 + β1 Iijk2 + γxijk + ²ijk Ŷ = 2.644 − .189I1 − .0608I2 − .451x SSE(R) = .57864 Factor A: 22-13 Yijk = µ.. + β1 Iijk2 + (αβ)11 Iijk1 Iijk2 + γxijk + ²ijk Ŷ = 2.644 − .0616I2 + .0241I1 I2 − .962x SSE(R) = 1.42545 Factor B: Yijk = µ.. + α1 Iijk1 + (αβ)11 Iijk1 Iijk2 + γxijk + ²ijk Ŷ = 2.644 − .198I1 + .0536I1 I2 − .267x SSE(R) = .61269 c. H0 : (αβ)11 = 0, Ha : (αβ)11 6= 0 F ∗ = (.06832/1) ÷ (.51032/23) = 3.08, F (.99; 1, 23) = 7.88. If F ∗ ≤ 7.88 conclude H0 , otherwise Ha . Conclude H0 . P -value = .09 d. H0 : α1 = 0, Ha : α1 6= 0 F ∗ = (.91513/1) ÷ (.51032/23) = 41.24, F (.99; 1, 23) = 7.88. If F ∗ ≤ 7.88 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. H0 : β1 = 0, Ha : β1 6= 0. F ∗ = (.10237/1) ÷ (.51032/23) = 4.61, F (.99; 1, 23) = 7.88. If F ∗ ≤ 7.88 conclude H0 , otherwise Ha . Conclude H0 . P -value = .04 22-14 Chapter 23 TWO-FACTOR STUDIES WITH UNEQUAL SAMPLE SIZES 23.3. a. Yijk = µ.. + α1 Xijk1 + β1 Xijk2 + (αβ)11 Xijk1 Xijk2 + ²ijk ( Xijk1 = ( 1 −1 if case from level 1 for factor A if case from level 2 for factor A 1 if case from level 1 for factor B −1 if case from level 2 for factor B Y entries: in order Y111 , ..., Y115 , Y121 , ..., Y125 , Y211 , ... β entries: µ.. , α1 , β1 , (αβ)11 X entries: A B Freq. X1 X2 X1 X2 1 1 5 1 1 1 1 1 2 5 1 1 −1 −1 2 1 5 1 −1 1 −1 2 2 5 1 −1 −1 1 Xβ entries: A B 1 1 µ.. + α1 + β1 + (αβ)11 1 2 µ.. + α1 − β1 − (αβ)11 = µ.. + α1 + β2 + (αβ)12 2 1 µ.. − α1 + β1 − (αβ)11 = µ.. + α2 + β1 + (αβ)21 2 2 µ.. − α1 − β1 + (αβ)11 = µ.. + α2 + β2 + (αβ)22 Xijk2 = b. c. d. Ŷ = 13.05 − 1.65X1 − 1.95X2 − .25X1 X2 µ.. e. Source Regression X1 X2 |X1 X1 X2 |X1 , X2 Error Total SS 131.75 54.45 76.05 1.25 97.20 228.95 df 3 1] A 1] B 1] AB 16 19 23-1 Yes. f. 23.4. a. See Problem 19.13c and d. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + β1 Xijk3 + β2 Xijk4 + (αβ)11 Xijk1 Xijk3 +(αβ)12 Xijk1 Xijk4 + (αβ)21 Xijk2 Xijk3 + (αβ)22 Xijk2 Xijk4 + ²ijk 1 if case from level 1 for factor A Xijk1 = −1 if case from level 3 for factor A 0 otherwise Xijk2 1 if case from level 2 for factor A −1 if case from level 3 for factor A = 0 otherwise Xijk3 = Xijk4 b. 1 if case from level 1 for factor B −1 if case from level 3 for factor B 0 otherwise 1 if case from level 2 for factor B −1 if case from level 3 for factor B = 0 otherwise Y entries: in order Y111 , ..., Y114 , Y121 , ..., Y124 , Y131 , ..., Y134, Y211 , ... β entries: µ.. , α1 , α2 , β1 , β2 , (αβ)11 , (αβ)12 , (αβ)21 , (αβ)22 X entries: A B Freq. 1 1 4 1 2 4 1 3 4 2 1 4 2 2 4 2 3 4 3 1 4 3 2 4 3 3 4 c. 1 1 1 1 1 1 1 1 1 X1 X2 X3 1 0 1 1 0 0 1 0 −1 0 1 1 0 1 0 0 1 −1 −1 −1 1 −1 −1 0 −1 −1 −1 X4 0 1 −1 0 1 −1 0 1 −1 X1 X3 1 0 −1 0 0 0 −1 0 1 X1 X4 X2 X3 X2 X4 0 0 0 1 0 0 −1 0 0 0 1 0 0 0 1 0 −1 −1 0 −1 0 −1 0 −1 1 1 1 Xβ entries: A 1 1 1 2 2 2 3 3 3 B 1 2 3 1 2 3 1 2 3 µ.. + α1 + β1 + (αβ)11 µ.. + α1 + β2 + (αβ)12 µ.. + α1 − β1 − β2 − (αβ)11 − (αβ)12 = µ.. + α1 + β3 + (αβ)13 µ.. + α2 + β1 + (αβ)21 µ.. + α2 + β2 + (αβ)22 µ.. + α2 − β1 − β2 − (αβ)21 − (αβ)22 = µ.. + α2 + β3 + (αβ)23 µ.. − α1 − α2 + β1 − (αβ)11 − (αβ)21 = µ.. + α3 + β1 + (αβ)31 µ.. − α1 − α2 + β2 − (αβ)12 − (αβ)22 = µ.. + α3 + β2 + (αβ)32 µ.. − α1 − α2 − β1 − β2 + (αβ)11 + (αβ)12 + (αβ)21 + (αβ)22 = µ.. + α3 + β3 + (αβ)33 23-2 d. Ŷ = 7.18333 − 3.30000X1 + .65000X2 − 2.55000X3 + .75000X4 +1.14167X1 X3 − .03333X1 X4 + .16667X2 X3 + .34167X2 X4 α1 = µ1. − µ.. e. Source Regression X1 X2 | X1 X3 | X1 , X2 X4 | X1 , X2 , X3 X1 X3 | X1 , X2 , X3 , X4 X1 X4 | X1 , X2 , X3 , X4 , X1 X3 X2 X3 | X1 , X2 , X3 , X4 , X1 X3 , X1 X4 X2 X4 | X1 , X2 , X3 , X4 , X1 X3 , X1 X4 , X2 X3 Error Total SS 373.125 212.415 7.605 113.535 10.125 26.7806 .2269 1.3669 1.0506 1.625 374.730 df 8 1] A 1] A 1] B 1] B 1] AB 1] AB 1] AB 1] AB 27 35 Yes. f. 23.5. a. b. See Problem 19.15c and d. See Problem 23.4a. Ŷ = 55.82222 − .48889X1 − .55556X2 + .31111X3 + .77778X4 +4.15556X1 X3 − 8.31111X1 X4 − 7.17778X2 X3 + 5.15556X2 X4 β1 = µ.1 − µ.. c. Source Regression X1 X2 | X1 X3 | X1 , X2 X4 | X1 , X2 , X3 X1 X3 | X1 , X2 , X3 , X1 X4 | X1 , X2 , X3 , X2 X3 | X1 , X2 , X3 , X2 X4 | X1 , X2 , X3 , Error Total X4 X4 , X1 X3 X4 , X1 X3 , X1 X4 X4 , X1 X3 , X1 X4 , X2 X3 SS 1, 268.17778 17.63333 6.94445 14.70000 13.61111 105.80000 493.06667 317.40000 299.02222 1, 872.40000 3, 140.57778 Yes. d. 23.6. a. See Problem 19.17c and d. Yijk = µ.. + αi + βj + (αβ)ij + ²ijk Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + β1 Xijk3 + (αβ)11 Xijk1 Xijk3 +(αβ)21 Xijk2 Xijk3 + ²ijk 23-3 df 8 1] A 1] A 1] B 1] B 1] AB 1] AB 1] AB 1] AB 36 44 Xijk1 = Xijk2 1 if case from level 1 for factor A −1 if case from level 3 for factor A 0 otherwise 1 if case from level 2 for factor A −1 if case from level 3 for factor A = 0 otherwise ( Xijk3 = b. 1 −1 β entries: µ.. , α1 , α2 , β1 , (αβ)11 , (αβ)21 X entries: A B Freq. 1 1 6 1 2 6 2 1 5 2 2 6 3 1 6 3 2 5 c. if case from level 1 for factor B if case from level 2 for factor B 1 1 1 1 1 1 X1 X2 X3 X1 X3 X2 X3 1 0 1 1 0 1 0 −1 −1 0 0 1 1 0 1 0 1 −1 0 −1 −1 −1 1 −1 −1 −1 −1 −1 1 1 Xβ entries: A 1 1 2 2 3 3 B 1 2 1 2 1 2 µ.. + α1 + β1 + (αβ)11 µ.. + α1 − β1 − (αβ)11 = µ.. + α1 + β2 + (αβ)12 µ.. + α2 + β1 + (αβ)21 µ.. + α2 − β1 − (αβ)21 = µ.. + α2 + β2 + (αβ)22 µ.. − α1 − α2 + β1 − (αβ)11 − (αβ)21 = µ.. + α3 + β1 + (αβ)31 µ.. − α1 − α2 − β1 + (αβ)11 + (αβ)21 = µ.. + α3 + β2 + (αβ)32 d. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + β1 Xijk3 + ²ijk e. Full model: Ŷ = 23.56667 − 2.06667X1 + 4.16667X2 + .36667X3 − .20000X1 X3 − .30000X2 X3 , SSE(F ) = 71.3333 Reduced model: Ŷ = 23.59091 − 2.09091X1 + 4.16911X2 + .36022X3 , SSE(R) = 75.5210 H0 : (αβ)11 = (αβ)21 = 0, Ha : not both (αβ)11 and (αβ)21 equal zero. F ∗ = (4.1877/2) ÷ (71.3333/28) = .82, F (.95; 2, 28) = 3.34. If F ∗ ≤ 3.34 conclude H0 , otherwise Ha . Conclude H0 . P -value = .45 f. A effects: Ŷ = 23.50000 + .17677X3 − .01010X1 X3 − .49495X2 X3 , SSE(R) = 359.9394 H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. 23-4 F ∗ = (288.6061/2) ÷ (71.3333/28) = 56.64, F (.95; 2, 28) = 3.34. If F ∗ ≤ 3.34 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ B effects: Ŷ = 23.56667 − 2.06667X1 + 4.13229X2 − .17708X1 X3 − .31146X2 X3 , SSE(R) = 75.8708 H0 : β1 = 0, Ha : β1 6= 0. F ∗ = (4.5375/1) ÷ (71.3333/28) = 1.78, F (.95; 1, 28) = 4.20. If F ∗ ≤ 4.20 conclude H0 , otherwise Ha . Conclude H0 . P -value = .19 g. D̂1 = α̂1 − α̂2 = −6.23334, D̂2 = α̂1 − α̂3 = 2α̂1 + α̂2 = .03333, D̂3 = α̂2 − α̂3 = 2α̂2 + α̂1 = 6.26667, s2 {α̂1 } = .14625, s2 {α̂2 } = .15333, s{α̂1 , α̂2 } = −.07313, s{D̂1 } = .6677, s{D̂2 } = .6677, s{D̂3 } = .6834, q(.90; 3, 28) = 3.026, T = 2.140 −6.23334 ± 2.140(.6677) .03333 ± 2.140(.6677) 6.26667 ± 2.140(.6834) h. 23.7. a. −7.662 ≤ D1 ≤ −4.804 −1.396 ≤ D2 ≤ 1.462 4.804 ≤ D3 ≤ 7.729 L̂ = .3Ȳ12. +.6Ȳ22. +.1Ȳ32. = .3(21.33333)+.6(27.66667)+.1(20.60000) = 25.06000, s{L̂} = .4429, t(.975; 28) = 2.048, 25.06000 ± 2.048(.4429), 24.153 ≤ L ≤ 25.967 Yijk = µ.. + αi + βj + (αβ)ij + ²ijk Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + β1 Xijk3 + β2 Xijk4 + (αβ)11 Xijk1 Xijk3 + (αβ)12 Xijk1 Xijk4 + (αβ)21 Xijk2 Xijk3 + (αβ)22 Xijk2 Xijk4 + ²ijk Xijk1 = 1 if case from level 1 for factor A −1 if case from level 3 for factor A 0 otherwise 1 if case from level 2 for factor A Xijk2 = −1 if case from level 3 for factor A 0 otherwise Xijk3 Xijk4 b. 1 if case from level 1 for factor B −1 if case from level 3 for factor B = 0 otherwise 1 if case from level 2 for factor B −1 if case from level 3 for factor B = 0 otherwise β entries: µ.. , α1 , α2 , β1 , β2 , (αβ)11 , (αβ)12 , (αβ)21 , (αβ)22 X entries: 23-5 A 1 1 1 2 2 2 3 3 3 c. B 1 2 3 1 2 3 1 2 3 Freq. 3 4 4 4 2 4 4 4 4 1 1 1 1 1 1 1 1 1 X1 X2 X3 X4 X1 X3 1 0 1 0 1 1 0 0 1 0 1 0 −1 −1 −1 0 1 1 0 0 0 1 0 1 0 0 1 −1 −1 0 −1 −1 1 0 −1 −1 −1 0 1 0 −1 −1 1 −1 1 X1 X4 0 1 −1 0 0 0 0 −1 1 X2 X3 0 0 0 1 0 −1 −1 0 1 X2 X4 0 0 0 0 1 −1 0 −1 1 Xβ entries: A 1 1 1 2 2 2 3 3 3 B 1 2 3 1 2 3 1 2 3 µ.. + α1 + β1 + (αβ)11 µ.. + α1 + β2 + (αβ)12 µ.. + α1 − β1 − β2 − (αβ)11 − (αβ)12 = µ.. + α1 + β3 + (αβ)13 µ.. + α2 + β1 + (αβ)21 µ.. + α2 + β2 + (αβ)22 µ.. + α2 − β1 − β2 − (αβ)21 − (αβ)22 = µ.. + α2 + β3 + (αβ)23 µ.. − α1 − α2 + β1 − (αβ)11 − (αβ)21 = µ.. + α3 + β1 + (αβ)31 µ.. − α1 − α2 + β2 − (αβ)12 − (αβ)22 = µ.. + α3 + β2 + (αβ)32 µ.. − α1 − α2 − β1 − β2 + (αβ)11 + (αβ)12 + (αβ)21 + (αβ)22 = µ.. + α3 + β3 + (αβ)33 d. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + β1 Xijk3 + β2 Xijk4 + ²ijk e. Full model: Ŷ = 7.18704 − 3.28426X1 + .63796X2 − 2.53426X3 + .73796X4 +1.16481X1 X3 − .04074X1 X4 + .15926X2 X3 + .33704X2 X4 , SSE(F ) = 1.5767 Reduced model: Ŷ = 7.12711 − 3.33483X1 + .62861X2 − 2.58483X3 + .72861X4 , SSE(R) = 29.6474 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = (28.0707/4) ÷ (1.5767/24) = 106.82, F (.95; 4, 24) = 2.78. If F ∗ ≤ 2.78 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. Ȳ11. = 2.5333, Ȳ12. = 4.6000, Ȳ13. = 4.57500, Ȳ21. = 5.45000, Ȳ22. = 8.90000, Ȳ23. = 9.12500, Ȳ31. = 5.97500, Ȳ32. = 10.27500, Ȳ33. = 13.25000, L̂1 = 2.0542, L̂2 = 3.5625, L̂3 = 5.7875, L̂4 = 1.5083, L̂5 = 3.7333, L̂6 = 2.2250, s{L̂1 } = .1613, s{L̂2 } = .1695, s{L̂3 } = .1570, s{L̂4 } = .2340, s{L̂5 } = .2251, s{L̂6 } = .2310, F (.90; 8, 24) = 1.94, S = 3.9395 23-6 2.0542 ± 3.9395(.1613) 3.5625 ± 3.9395(.1695) 5.7875 ± 3.9395(.1570) 1.5083 ± 3.9395(.2340) 3.7333 ± 3.9395(.2251) 2.2250 ± 3.9395(.2310) 23.8. a. 1.419 ≤ L1 2.895 ≤ L2 5.169 ≤ L3 .586 ≤ L4 2.846 ≤ L5 1.315 ≤ L6 ≤ 2.690 ≤ 4.230 ≤ 6.406 ≤ 2.430 ≤ 4.620 ≤ 3.135 Yijk = µ.. + αi + βj + (αβ)ij + ²ijk Regression model: see (22.4). b. β entries: µ.. , α1 , β1 , β2 , (αβ)11 , (αβ)12 X entries: A B Freq. 1 1 10 1 2 9 1 3 10 2 1 9 2 2 10 2 3 9 c. 1 1 1 1 1 1 X1 X2 X3 X1 X2 X1 X3 1 1 0 1 0 1 0 1 0 1 1 −1 −1 −1 −1 −1 1 0 −1 0 −1 0 1 0 −1 −1 −1 −1 1 1 Xβ entries: A 1 1 1 2 2 2 B 1 2 3 1 2 3 µ.. + α1 + β1 + (αβ)11 µ.. + α1 + β2 + (αβ)12 µ.. + α1 − β1 − β2 − (αβ)11 − (αβ)12 = µ.. + α1 + β3 + (αβ)13 µ.. − α1 + β1 − (αβ)11 = µ.. + α2 + β1 + (αβ)21 µ.. − α1 + β2 − (αβ)12 = µ.. + α2 + β2 + (αβ)22 µ.. − α1 − β1 − β2 + (αβ)11 + (αβ)12 = µ.. + α2 + β3 + (αβ)23 d. Yijk = µ.. + α1 Xijk1 + β1 Xijk2 + β2 Xijk3 + ²ijk e. Full model: Ŷ = .69139 + .08407X1 − .27492X2 − .01281X3 − .05706X1 X2 + .01355X1 X3 , SSE(F ) = 5.3383 Reduced model: Ŷ = .69092 + .08407X1 − .27745X2 − .01305X3 , SSE(R) = 5.4393 H0 : (αβ)11 = (αβ)12 = 0, Ha : not both (αβ)11 and (αβ)12 equal zero. F ∗ = (.1010/2) ÷ (5.3383/51) = .48, F (.95; 2, 51) = 3.179. If F ∗ ≤ 3.179 conclude H0 , otherwise Ha . Conclude H0 . P -value = .62 f. Duration: Yijk = µ.. + β1 Xijk2 + β2 Xijk3 + (αβ)11 Xijk1 Xijk2 + (αβ)12 Xijk1 Xijk3 + ²ijk Ŷ = .69287 − .27197X2 − .01871X3 − .05706X1 X2 + .01355X1 X3 , SSE(R) = 5.7400 23-7 H0 : α1 = 0, Ha : α1 6= 0. F ∗ = (.4017/1) ÷ (5.3383/51) = 3.84, F (.95; 1, 51) = 4.03. If F ∗ ≤ 4.03 conclude H0 , otherwise Ha . Conclude H0 . P -value = .06 Weight gain: Yijk = µ.. + α1 Xijk1 + (αβ)11 Xijk1 Xijk2 + (αβ)12 Xijk1 Xijk3 + ²ijk Ŷ = .69139 + .08452X1 − .07198X1 X2 + .01377X1 X3 , SSE(R) = 8.3421 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (3.0038/2) ÷ (5.3383/51) = 14.35, F (.95; 2, 51) = 3.179. If F ∗ ≤ 3.179 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ g. H0 : µ.1 ≤ .5, Ha : µ.1 > .5. µ̂.1 = (Ȳ11. + Ȳ21. )/2 = (.44348 + .38946)/2 = .41647, s{µ̂.1 } = .0743, t∗ = −.08353/.0743 = −1.12, t(.95; 51) = 1.675. If t∗ ≤ 1.675 conclude H0 , otherwise Ha . Conclude H0 . P -value = .87 h. Ȳ11. = .44348, Ȳ12. = .77619, Ȳ13. = 1.10670, Ȳ21. = .38946, Ȳ22. = .58096, Ȳ23. = .85155, D̂1 = .16813, D̂2 = .26211, D̂3 = .56266, D̂4 = .30055, s{D̂1 } = .08582, s{D̂i } = .10511 (i = 2, 3, 4), B = t(.9875; 51) = 2.3096 .16813 ± 2.3096(.08582) .26211 ± 2.3096(.10511) .56266 ± 2.3096(.10511) .30055 ± 2.3096(.10511) 23.9. a. −.0301 ≤ D1 .0193 ≤ D2 .3199 ≤ D3 0578 ≤ D4 ≤ .3663 ≤ .5049 ≤ .8054 ≤ .5433 Yijk = µ.. + αi + βj + (αβ)ij + ²ijk Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 +(αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 +(αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk5 + ²ijk a. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + β1 Xijk3 + β2 Xijk4 + (αβ)11 Xijk1 Xijk3 +(αβ)12 Xijk1 Xijk4 + (αβ)21 Xijk2 Xijk3 + (αβ)22 Xijk2 Xijk4 + ²ijk 1 if case from level 1 for factor A Xijk1 = −1 if case from level 4 for factor A 0 otherwise Xijk2 and Xijk3 are defined similarly Xijk4 1 if case from level 1 for factor B = −1 if case from level 3 for factor B 0 otherwise 1 if case from level 2 for factor B Xijk5 = −1 if case from level 3 for factor B 0 otherwise b. β entries: µ.. , α1 , α2 , α3 , β1 , β2 , (αβ)11 , (αβ)12 , (αβ)21 , (αβ)22 , (αβ)31 , (αβ)32 23-8 X entries: A B Freq. 1 1 2 1 2 2 1 3 8 2 1 4 2 2 5 2 3 4 3 1 2 3 2 4 3 3 5 4 1 2 4 2 2 4 3 5 A 1 1 1 2 2 2 3 3 3 4 4 4 c. d. B 1 2 3 1 2 3 1 2 3 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 X1 X2 X3 X4 1 0 0 1 1 0 0 0 1 0 0 −1 0 1 0 1 0 1 0 0 0 1 0 −1 0 0 1 1 0 0 1 0 0 0 1 −1 −1 −1 −1 1 −1 −1 −1 0 −1 −1 −1 −1 X5 0 1 −1 0 1 −1 0 1 −1 0 1 −1 X1 X4 1 0 −1 0 0 0 0 0 0 −1 0 1 X1 X5 X2 X4 X2 X5 X3 X4 X3 X5 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −1 −1 0 −1 0 −1 0 −1 0 −1 0 −1 1 1 1 1 1 Xβ entries: A 1 1 1 2 2 2 3 3 3 4 B 1 2 3 1 2 3 1 2 3 1 4 2 4 3 µ.. + α1 + β1 + (αβ)11 µ.. + α1 + β2 + (αβ)12 µ.. + α1 − β1 − β2 − (αβ)11 − (αβ)12 = µ.. + α1 + β3 + (αβ)13 µ.. + α2 + β1 + (αβ)21 µ.. + α2 + β2 + (αβ)22 µ.. + α2 − β1 − β2 − (αβ)21 − (αβ)22 = µ.. + α2 + β3 + (αβ)23 µ.. + α3 + β1 + (αβ)31 µ.. + α3 + β2 + (αβ)32 µ.. + α3 − β1 − β2 − (αβ)31 − (αβ)32 = µ.. + α3 + β3 + (αβ)33 µ.. − α1 − α2 − α3 + β1 − (αβ)11 − (αβ)21 − (αβ)31 = µ.. + α4 + β1 + (αβ)41 µ.. − α1 − α2 − α3 + β2 − (αβ)12 − (αβ)22 − (αβ)32 = µ.. + α4 + β2 + (αβ)42 µ.. − α1 − α2 − α3 − β1 − β2 + (αβ)11 + (αβ)12 + (αβ)21 + (αβ)22 +(αβ)31 + (αβ)32 = µ.. + α4 + β3 + (αβ)43 See Problem 23.10c for fitted model. 23-9 eijk : e. 23.10. a. k 1 2 3 4 5 6 7 8 i=1 j=1 j=2 j=3 −.10 −.15 −.20 .10 .15 .00 .20 −.20 −.10 .10 .00 .20 k 1 2 3 4 5 i=3 j=1 j=2 j=3 −.05 .05 −.04 .05 .15 −.14 −.05 −.04 −.15 .06 .16 k 1 2 3 4 5 k 1 2 3 4 5 i=2 j=1 j=2 .05 .18 −.15 −.12 .15 .08 .05 −.12 −.02 j=1 −.05 .05 i=4 j=2 −.25 .25 j=3 .05 −.15 .15 −.05 j=3 −.12 −.02 −.12 .08 .18 r = .986 Ȳ11. = 1.80, Ȳ12. = 1.95, Ȳ13. = 2.70, Ȳ21. = 2.45, Ȳ22. = 2.52, Ȳ23. = 3.45, Ȳ31. = 2.75, Ȳ32. = 2.85, Ȳ33. = 3.74, Ȳ41. = 2.55, Ȳ42. = 2.55, Ȳ43. = 3.42 b. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 + ²ijk c. Full model: Ŷ = 2.72750 − .57750X1 + .07917X2 − .38583X3 − .34000X4 − .26000X5 −.01000X1 X4 + .06000X1 X5 − .01667X2 X4 − .02667X2 X5 −.02333X3 X4 − .00333X3 X5 , SSE(F ) = .7180 Reduced Model: Ŷ = 2.72074 − .59611X1 + .08412X2 + .39964X3 − .33756X4 − .26317X5 , SSE(R) = .7624 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = (.0444/6) ÷ (.7180/33) = .34, F (.99; 6, 33) = 3.41. If F ∗ ≤ 3.41 conclude H0 , otherwise Ha . Conclude H0 . P -value = .91 d. Subject matter: Yijk = µ.. + β1 Xijk4 + β2 Xijk5 + (αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 +(αβ)21 Xijk2 Xijk4 + (αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 +(αβ)32 Xijk3 Xijk5 + ²ijk 23-10 Ŷ = 2.75121 − .34885X4 − .19441X5 + .19925X1 X4 + .19481X1 X5 −.01178X2 X4 − .08433X2 X5 − .22413X3 X4 + .00731X3 X5 , SSE(R) = 4.9506 H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = (4.2326/3) ÷ (.7180/33) = 64.845, F (.99; 3, 33) = 4.437. If F ∗ ≤ 4.437 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ Degree: Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + (αβ)11 Xijk1 Xijk4 +(αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 + (αβ)22 Xijk2 Xijk5 +(αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk5 + ²ijk Ŷ = 2.88451 − .44871X1 − .09702X2 + .36160X3 − .06779X1 X4 + .08939X1 X5 −.05349X2 X4 − .03742X2 X5 + .07190X3 X4 − .10851X3 X5 , SSE(R) = 8.9467 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (8.2287/2) ÷ (.7180/33) = 189.10, F (.99; 2, 33) = 5.321. If F ∗ ≤ 5.321 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. D̂1 = µ̂1. − µ̂2. = 2.1500 − 2.8067 = −.6567, D̂2 = µ̂1. − µ̂3. = 2.1500 − 3.1133 = −.9633, D̂3 = µ̂1. − µ̂4. = 2.1500 − 2.8400 = −.6900, D̂4 = µ̂2. − µ̂3. = −.3066, D̂5 = µ̂2. − µ̂4. = −.0333, D̂6 = µ̂3. − µ̂4. = .2733, s{D̂1 } = .06642, s{D̂2 } = .07083, s{D̂3 } = .07497, s{D̂4 } = .06316, s{D̂5 } = .06777, s{D̂6 } = .07209, q(.95; 4, 33) = 3.825, T = 2.705 −.6567 ± 2.705(.06642) −.9633 ± 2.705(.07083) −.6900 ± 2.705(.07497) −.3066 ± 2.705(.06316) −.0333 ± 2.705(.06777) .2733 ± 2.705(.07209) f. D̂1 = µ̂.1 − µ̂.2 = 2.3875 − 2.4675 = −.0800, D̂2 = µ̂.1 − µ̂.3 = 2.3875 − 3.3350 = −.9475, D̂3 = µ̂.2 − µ̂.3 = −.8675, s{D̂1 } = .06597, s{D̂2 } = .05860, s{D̂3 } = .05501, q(.95; 3, 33) = 3.470, T = 2.4537 −.0800 ± 2.4537(.06597) −.9475 ± 2.4537(.05860) −.8675 ± 2.4537(.05501) 23.11. a. −.836 ≤ D1 ≤ −.477 −1.155 ≤ D2 ≤ −.772 −.893 ≤ D3 ≤ −.487 −.477 ≤ D4 ≤ −.136 −.217 ≤ D5 ≤ .150 .078 ≤ D6 ≤ .468 −.242 ≤ D1 ≤ .082 −1.091 ≤ D2 ≤ −.804 −1.002 ≤ D3 ≤ −.733 Full model: Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 + ²ijk Xijk1 , Xijk2 Xijk3 , Xijk4 , Xijk5 defined same as in Problem 23.9a Reduced models: Factor A: Yijk = µ.. + β1 Xijk4 + β2 Xijk5 + ²ijk 23-11 Factor B: Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + ²ijk b. Full model: Ŷ = 2.72074 − .59611X1 + .08412X2 + .33964X3 − .33756X4 − .26317X5 , SSE(F ) = .762425, dfF = 39 Reduced models: Factor A: Ŷ = 2.72494 − .32494X4 − .18648X5 , SSE(R) = 6.741678, dfR = 42 H0 : α1 = α2 = α3 = 0, Ha : not all αi equal zero. F ∗ = (5.979253/3) ÷ (.762425/39) = 101.95, F (.95; 3, 39) = 2.845. If F ∗ ≤ 2.845 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ Factor B: Ŷ = 2.86983 − .44483X1 − .08521X2 + .36654X3 , SSE(R) = 9.144878, dfR = 41 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (8.382453/2) ÷ (.762425/39) = 214.39, F (.95; 2, 39) = 3.238. If F ∗ ≤ 3.238 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 23.12. a. See Problem 19.14a. D̂1 = Ȳ13. − Ȳ11. = 2.100, D̂2 = Ȳ23. − Ȳ21. = 3.675, D̂3 = Ȳ33. − Ȳ31. = 7.275, L̂1 = D̂1 − D̂2 = −1.575, L̂2 = D̂1 − D̂3 = −5.175, M SE = .06406, s{D̂i } = .1790 (i = 1, 2, 3), s{L̂i } = .2531 (i = 1, 2), B = t(.99; 24) = 2.492 2.100 ± 2.492(.1790) 3.675 ± 2.492(.1790) 7.275 ± 2.492(.1790) −1.575 ± 2.492(.2531) −5.175 ± 2.492(.2531) b. 1.654 ≤ D1 ≤ 2.546 3.229 ≤ D2 ≤ 4.121 6.829 ≤ D3 ≤ 7.721 −2.206 ≤ L1 ≤ −.944 −5.806 ≤ L2 ≤ −4.544 H0 : µ12 − µ13 = 0, Ha : µ12 − µ13 6= 0. D̂ = Ȳ12. − Ȳ13. = .025, s{D̂} = .1790, t∗ = .025/.1790 = .14, t(.99; 24) = 2.492. If |t∗ | ≤ 2.492 conclude H0 , otherwise Ha . Conclude H0 . H0 : µ32 − µ33 = 0, Ha : µ32 − µ33 6= 0. D̂ = Ȳ32. − Ȳ33. = −2.975, s{D̂} = .1790, t∗ = −2.975/.1790 = −16.62, t(.99; 24) = 2.492. If |t∗ | ≤ 2.492 conclude H0 , otherwise Ha . Conclude Ha . α ≤ .04 23.13. a. Yijk = µ.. + α1 Xijk1 + β1 Xijk2 + β2 Xijk3 + ²ijk ( Xijk1 = Xijk2 = 1 −1 if case from level 1 for factor A if case from level 2 for factor A 1 if case from level 1 for factor B −1 if case from level 3 for factor B 0 otherwise 1 if case from level 2 for factor B Xijk3 = −1 if case from level 3 for factor B 0 otherwise 23-12 Ŷ = .66939 + .11733X1 − .34323X2 + .02608X3 , SSE(F ) = 4.4898 Factor A: Yijk = µ.. + β1 Xijk2 + β2 Xijk3 + ²ijk Ŷ = .70850 − .26502X2 − .01303X3 , SSE(R) = 5.0404 Factor B: Yijk = µ.. + α1 Xijk1 + ²ijk Ŷ = .77520 + .03152X1 , SSE(R) = 7.1043 b. H0 : α1 = 0, Ha : α1 6= 0. F ∗ = (.5506/1) ÷ (4.4898/46) = 5.641, F (.95; 1, 46) = 4.05. If F ∗ ≤ 4.05 conclude H0 , otherwise Ha . Conclude Ha . P -value = .022 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (2.6145/2) ÷ (4.4898/46) = 13.393, F (.95; 2, 46) = 3.20. If F ∗ ≤ 3.20 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 23.14. a. See Problem 19.20a. D̂1 = Ȳ12. − Ȳ13. = 46.0, D̂2 = Ȳ22. − Ȳ23. = 6.0, L̂1 = D̂1 − D̂2 = 40.0, M SE = 88.50, s{D̂1 } = s{D̂2 } = 6.652, s{L̂1 } = 9.407, B = t(.99167; 15) = 2.694 46.0 ± 2.694(6.652) 28.080 ≤ D1 ≤ 63.920 6.0 ± 2.694(6.652) −11.920 ≤ D2 ≤ 23.920 40.0 ± 2.694(9.407) 14.658 ≤ L1 ≤ 65.342 b. 23.15. a. H0 : µ22 − µ23 ≤ 0, Ha : µ22 − µ23 > 0. D̂ = Ȳ22. − Ȳ23. = 6.0, s{D̂} = 6.652, t∗ = 6.0/6.652 = .90, t(.95; 15) = 1.753. If t∗ ≤ 1.753 conclude H0 otherwise Ha . Conclude H0 . P -value = .19 Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 + ²ijk Xijk1 1 if case from level 1 for factor A −1 if case from level 4 for factor A = 0 otherwise Xijk2 and Xijk3 are defined similarly Xijk4 Xijk5 1 if case from level 1 for factor B = −1 if case from level 3 for factor B 0 otherwise 1 if case from level 2 for factor B = −1 if case from level 3 for factor B 0 otherwise Ŷ = 2.71932 − .59897X1 + .08546X2 + .40036X3 − .34043X4 − .26218X5 , SSE(F ) = .7419 Factor A: 23-13 Yijk = µ.. + β1 Xijk4 + β2 Xijk5 + ²ijk Ŷ = 2.77494 − .22494X4 − .23648X5 , SSE(R) = 5.8217 Factor B: Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + ²ijk Ŷ = 2.90108 − .35108X1 − .11646X2 + .33529X3 , SSE(R) = 8.1874 b. H0 : α1 = α2 = α3 = 0, Ha : not all αi equal zero. F ∗ = (5.0798/3) ÷ (.7419/37) = 84.45, F (.99; 3, 37) = 4.360. If F ∗ ≤ 4.360 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (7.4455/2) ÷ (.7419/37) = 185.66, F (.99; 2, 37) = 5.229. If F ∗ ≤ 5.229 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 23.16. a. Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + ρ3 Xij3 + ρ4 Xij4 + ρ5 Xij5 + ρ6 Xij6 +ρ7 Xij7 + ρ8 Xij8 + ρ9 Xij9 + τ1 Xij10 + τ2 Xij11 + ²ij Iij1 1 −1 = 0 if experimental unit from block 1 if experimental unit from block 10 otherwise Iij2 , . . . , Iij9 are defined similarly Iij10 = Iij11 b. 1 if experimental unit received treatment 1 −1 if experimental unit received treatment 3 0 otherwise 1 if experimental unit received treatment 2 = −1 if experimental unit received treatment 3 0 otherwise Ŷ = 77.10000 + 4.90000X1 + 3.90000X2 + 2.23333X3 + 3.23333X4 + 1.23333X5 +.90000X6 − 1.10000X7 − 3.76667X8 − 4.10000X9 − 6.50000X10 − 2.50000X11 c. Source Regression X1 , X2 , X3 , X4 , X5 , X6, X7 , X8, X9 X10 , X11 |X1 , X2 , X3 , X4 , X5 , X6, X7 , X8, X9 Error Total d. SS 1, 728.3667 433.3667 1, 295.0000 112.3333 1, 840.7000 df MS 1 157.1242 9 48.1519 2 647.5000 18 6.2407 29 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (1, 295.0000/2 ÷ (112.3333/18) = 103.754, F (.95; 2, 18) = 3.55. If F ∗ ≤ 3.55 conclude H0 , otherwise Ha . Conclude Ha . 23.17. a. Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + ρ3 Xij3 + ρ4 Xij4 + τ1 Xij5 + τ2 Xij6 + ²ij 23-14 Iij1 = 1 −1 0 if experimental unit from block 1 if experimental unit from block 5 otherwise Iij2 , . . . , Iij4 are defined similarly Iij5 Iij6 b. 1 = −1 0 1 −1 = 0 if experimental unit received treatment 1 if experimental unit received treatment 3 otherwise if experimental unit received treatment 2 if experimental unit received treatment 3 otherwise Ŷ = .84400 − .32733X1 − .23733X2 − .17400X3 + .31267X4 + .26600X5 + .14800X6 c. Source Regression X 1 , X2 , X 3 , X4 X5 , X6 , | X1 , X2 , X3 , X4 Error Total d. SS 2.7392 1.4190 1.3203 .0193 2.7585 df 6 4 2 8 14 MS .4565 .35475 .6602 .0024 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (1.3203/2) ÷ (.0193/8) = 273.637, F (.95; 2, 8) = 4.46. If F ∗ ≤ 4.46 conclude H0 , otherwise Ha . Conclude Ha . 23.18. a. Yij = µ.. + ρi + τj + ²ij Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + ρ3 Xij3 + ρ4 Xij4 + ρ5 Xij5 + ρ6 Xij6 +ρ7 Xij7 + ρ8 Xij8 + ρ9 Xij9 + τ1 Xij10 + τ2 Xij11 + ²ij Iij1 1 −1 = 0 if experimental unit from block 1 if experimental unit from block 10 otherwise Iij2 , . . . , Iij9 are defined similarly Iij10 = Iij11 b. 1 if experimental unit received treatment 1 −1 if experimental unit received treatment 3 0 otherwise 1 if experimental unit received treatment 2 −1 if experimental unit received treatment 3 = 0 otherwise Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + +ρ3 Xij3 + ρ4 Xij4 + ρ5 Xij5 + ρ6 Xij6 +ρ7 Xij7 + ρ8 Xij8 + ρ9 Xij9 + ²ij c. Full model: Ŷ = 77.15556 + 4.84444X1 + 4.40000X2 + 2.17778X3 +3.17778X4 + 1.17778X5 + .84444X6 − 1.15556X7 −3.82222X8 − 4.15556X9 − 6.55556X10 − 2.55556X11 23-15 SSE(F ) = 110.6667 Reduced model: Ŷ = 76.70000 + 5.30000X1 + .30000X2 + 2.63333X3 +3.63333X4 + 1.63333X5 + 1.30000X6 − .70000X7 −3.36667X8 − 3.70000X9 SSE(R) = 1, 311.3333 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (1, 200.6666/2) ÷ (110.6667/17) = 92.22, F (.95; 2, 17) = 3.59. If F ∗ ≤ 3.59 conclude H0 , otherwise Ha . Conclude Ha . d. L̂ = τ̂ 2 − τ̂ 3 = 2τ̂ 2 + τ̂ 1 = −11.66667, s2 {τ̂ i } = .44604 (i = 1, 2), s{τ̂ 1 , τ̂ 2 } = −.20494, s{L̂} = 1.1876, t(.975; 17) = 2.11, −11.66667 ± 2.11(1.1876), −14.17 ≤ L ≤ −9.16 23.19. a. Yij = µ.. + ρi + τj + ²ij Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + ρ3 Xij3 + ρ4 Xij4 + τ1 Xij5 + τ2 Xij6 + ²ij Iij1 1 = −1 0 if experimental unit from block 1 if experimental unit from block 5 otherwise Iij2 , . . . , Iij4 are defined similarly Iij5 1 −1 = 0 Iij6 = 1 −1 0 if experimental unit received treatment 1 if experimental unit received treatment 3 otherwise if experimental unit received treatment 2 if experimental unit received treatment 3 otherwise b. Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + ρ3 Xij3 + ρ4 Xij4 + ²ij c. Full model: Ŷ = .82941 − .33613X1 − .22274X2 − .15941X3 + .32726X4 +.25085X5 + .16259X6 SSE(F ) = .0035 Reduced model: Ŷ = .84567 − 14567X1 − .23900X2 − .17567X3 + .31100X4 SSE(R) = .9542 H0 : τ1 = τ2 = 0, Ha : not both τ1 and τ2 equal zero. F ∗ = (.9507/2) ÷ (.0035/6) = 814.89, F (.95; 2, 6) = 5.14. If F ∗ ≤ 5.14 conclude H0 , otherwise Ha . Conclude Ha . d. L̂ = τ̂ 1 − τ̂ 3 = 2τ̂ 1 + τ̂ 2 = .66429, s2 {τ̂ 1 } = .000105, s2 {τ̂ 2 } = .000087, s{τ̂ 1 , τ̂ 2 } = −.000043, s{L̂} = .0183, t(.99; 6) = 3.143, .66429 ± 3.143(.0183), .607 ≤ L ≤ .722 23.20. See Problem 19.10a. L1 = .3µ11 + .6µ21 + .1µ31 , L2 = .3µ12 +.6µ22 + .1µ32 . 23-16 H0 : L1 = L2 , Ha : L1 6= L2 . L̂1 − L̂2 = 25.43332 − 25.05001 = .38331, M SE = 2.3889, s{L̂1 − L̂2 } = .6052, t∗ = .38331/.6052 = .63, t(.975; 30) = 2.042. If |t∗ | ≤ 2.042 conclude H0 , otherwise Ha . Conclude H0 . P -value = .53 23.21. a. 3µ11 + µ21 3µ12 + µ22 − =0 4 4 H0 : 3µ11 + µ21 3µ13 + µ23 L2 = − =0 4 4 Ha : not both L1 and L2 equal zero L1 = b. Regression model equivalent to (19.15) using 1, 0 indicator variables: Full model: Yijk = µ11 Xijk1 + µ12 Xijk2 + µ13 Xijk3 + µ21 Xijk4 + µ22 Xijk5 +µ23 Xijk6 + ²ijk ( Xijk1 = ( Xijk2 = ( Xijk3 = ( Xijk4 = ( Xijk5 = ( Xijk6 = c. 1 if case from level 1 for factor A and level 1 for factor B 0 otherwise 1 if case from level 1 for factor A and level 2 for factor B 0 otherwise 1 if case from level 1 for factor A and level 3 for factor B 0 otherwise 1 if case from level 2 for factor A and level 1 for factor B 0 otherwise 1 if case from level 2 for factor A and level 2 for factor B 0 otherwise 1 if case from level 2 for factor A and level 3 for factor B 0 otherwise Reduced model: µ11 = µ12 + µ22 /3 − µ21 /3 µ13 = µ12 + µ22 /3 − µ23 /3 Yijk = (µ12 + µ22 /3 − µ21 /3)Xijk1 + µ12 Xijk2 + (µ12 + µ22 /3 − µ23 /3)Xijk3 +µ21 Xijk4 + µ22 Xijk5 + µ23 Xijk6 + ²ijk or Yijk = µ12 Zijk1 + µ21 Zijk2 + µ22 Zijk3 + µ23 Zijk4 + ²ijk where: Zijk1 Zijk2 Zijk3 Zijk4 = = = = Xijk1 + Xijk2 + Xijk3 −Xijk1 /3 + Xijk4 (Xijk1 + Xijk3 )/3 + Xijk5 (−Xijk3 /3) + Xijk6 23-17 d. SSE(F ) = 5.468, dfF = 54, SSE(R) = 8.490, dfR = 56, F ∗ = [(8.490 − 5.468)/2] ÷ (5.468/54) = 14.92, F (.95; 2, 54) = 3.17. If F ∗ ≤ 3.17 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. See Problem 19.18a. L̂2 = (.75Ȳ11. + .25Ȳ21. ) − (.75Ȳ13. + .25Ȳ23. ) = −.61446, s{L̂2 } = .1125, t(.975; 54) = 2.005, −.61446 ± 2.005(.1125), −.840 ≤ L2 ≤ −.389 23.22. a. µ11 + 2µ12 + 7µ13 µ21 + 2µ22 + 7µ23 − =0 10 10 µ11 + 2µ12 + 7µ13 µ31 + 2µ32 + 7µ33 H0 : L 2 = − =0 10 10 µ11 + 2µ12 + 7µ13 µ41 + 2µ42 + 7µ43 L3 = − =0 10 10 Ha : not all Li equal zero (i = 1, 2, 3) L1 = b. β entries: µ11 , µ12 , µ13 , µ21 , µ22 , µ23 , µ31 , µ32 , µ33 , µ41 , µ42 , µ43 X entries: A B Freq. 1 1 2 1 2 2 1 3 8 2 1 4 2 2 5 2 3 4 3 1 2 3 2 4 3 3 5 4 1 2 4 2 2 4 3 5 c. .1 C = .1 .1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 .2 .7 −.1 −.2 −.7 0 0 0 0 0 0 0 .2 .7 0 0 0 −.1 −.2 −.7 0 0 0 h= 0 .2 .7 0 0 0 0 0 0 −.1 −.2 −.7 0 d. SSE(R) − SSE(F ) = 5.6821 e. SSE(F ) = .7180, F ∗ = (5.6821/3) ÷ (.7180/33) = 87.05, F (.99; 3, 33) = 4.437. If F ∗ ≤ 4.437 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. See Problem 23.10a. L̂2 = (.1Ȳ11. + .2Ȳ12. + .7Ȳ13. ) − (.1Ȳ31. + .2Ȳ32. + .7Ȳ33. ) = −1.003, s{L̂2 } = .0658, t(.995; 33) = 2.733, −1.003 ± 2.733(.0658), −1.183 ≤ L2 ≤ −.823 23.23. H0 : 4µ11 +4µ12 +2µ13 10 = 4µ21 +4µ22 +3µ23 , 11 Ha : equality does not hold. Ȳ... = 93.714, Ȳ1.. = 143, Ȳ2.. = 48.91 SSA = 10(143 − 93.714)2 + 11(48.91 − 93.714)2 = 46, 372 23-18 F ∗ = (46, 372/1) ÷ (1, 423.1667/15) = 488.8, F (.99; 1, 15) = 8.68. If F ∗ ≤ 8.68 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 2 2 H0 : 12 µ11 + 12 µ12 + 2 2 µ + 9 µ42 + 95 µ43 , 9 41 23.24. 8 µ 12 13 = 4 µ 13 21 + 5 µ 13 22 + 4 µ 13 23 = 2 µ 11 31 + 4 µ 11 32 + 5 µ 11 33 = Ha : not all equalities hold. Ȳ... = 2.849, Ȳ1.. = 2.425, Ȳ2.. = 2.785, Ȳ3.. = 3.236, Ȳ4.. = 3.033 SSA = 12(2.425 − 2.849)2 + 13(2.785 − 2.849)2 + 11(3.236 − 2.849)2 + 9(3.033 − 2.849)2 = 4.163 F ∗ = (4.163/3) ÷ (.718/33) = 63.78, F (.95; 3, 33) = 2.89. If F ∗ ≤ 2.89 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ P σ 2 {L̂} = σ 2 { 23.25. ci µ̂i. } = P 2 2 P ci σ {µ̂i. } = c2i σ 2 i P Ȳij. j b 1 P 2 P σ2 σ2 P 2 P 1 = c c b2 i i j nij b2 i i j nij = because of independence of Ȳij. . n ( o 2 2 P P cij E s {L̂} = E M SE 23.26. 23.27. a. X= b. 1 1 1 1 1 1 1 1 1 Xβ = 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 β0 + β1 + β3 β0 + β1 + β4 β0 + β1 β0 + β2 + β3 β0 + β2 + β4 β0 + β2 β0 + β3 β0 + β4 β0 β0 = µ.. + ρ3 + τ3 β4 = τ 2 − τ 3 β3 = τ 1 − τ 3 nij ) = 2 P P cij nij = µ.. + ρ1 + τ1 µ.. + ρ1 + τ2 µ.. + ρ1 + τ3 µ.. + ρ2 + τ1 µ.. + ρ2 + τ2 µ.. + ρ2 + τ3 µ.. + ρ3 + τ1 µ.. + ρ3 + τ2 µ.. + ρ3 + τ3 β2 = ρ2 − ρ3 β1 = ρ1 − ρ3 23-19 E{M SE} = σ 2 2 P P cij nij = σ 2 {L̂} 23.28. Y111 Y112 Y121 Y122 Y211 Y212 Y221 Y= Cβ = h X= 1 1 0 0 0 0 0 0 0 1 1 0 0 0 i 1 1 −1 −1 0 0 0 0 1 1 0 µ11 µ12 µ21 µ22 0 0 0 0 0 0 1 bR = Ȳ11. Ȳ12. Ȳ21. Ȳ22. = − Ȳ11. Ȳ12. Ȳ21. Ȳ22. β= µ11 µ12 µ21 µ22 bF = Ȳ11. Ȳ12. Ȳ21. Ȳ22. = µ11 − µ12 − µ21 + µ22 = 0 From (23.46): 1/2 0 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0 1 1 −1 −1 1 µ 5 ¶−1 ³ ´ Ȳ11. − Ȳ12. − Ȳ21. + Ȳ22. − 0 2 ´ 2³ Ȳ11. − Ȳ12. − Ȳ21. + Ȳ22. − 5 1/2 −1/2 −1/2 1 2 µ̂22 = Ȳ22. − (Ȳ11. − Ȳ12. − Ȳ21. + Ȳ22. ) 5 23.29. a. β entries: µ11 , µ12 , µ13 , µ22 X entries: A B Freq. 1 1 10 1 2 10 1 3 10 2 2 10 2 3 10 b. 23.30. a. C = [0 1 1 0 0 0 0 0 1 0 0 −1 0 − 1] 0 0 1 0 1 0 0 0 1 1 h=0 Yijk = µ.. + αi + βj + (αβ)ij + ²ijk Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 +(αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 +(αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk4 + ²ijk 1 if case from NE Iijk1 = −1 if case from W 0 otherwise 1 if case from NC Iijk2 = −1 if case from W 0 otherwise 23-20 Iijk3 = Iijk4 = Iijk5 b. 1 if case from S −1 if case from W 0 otherwise 1 if average age under 52.0 −1 if average age 55.0 or more 0 otherwise 1 if average age 52.0 - under 55.0 −1 if average age 55.0 or more = 0 otherwise Ŷ = 9.40661 + 1.45009X1 + .23601X2 − .24406X3 − .38373X4 +.19446X5 − .76296X1 X4 − .57198X1 X5 + .44674X2 X4 +.17515X2 X5 + .35707X3 X4 − .38986X3 X5 , SSE(F ) = 261.2341 c. 23.31. a. r = .959 Ȳ11. = 9.71000, Ȳ12. = 10.47917, Ȳ13. = 12.38091, Ȳ21. = 9.70563, Ȳ22. = 10.01222, Ȳ23. = 9.21000, Ȳ31. = 9.13588, Ȳ32. = 8.96714, Ȳ33. = 9.38462, Ȳ41. = 7.54000, Ȳ42. = 8.94571, Ȳ43. = 7.40800 b. Yijk = µ.. + α1 Xijk1 + α1 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 + ²ijk c. Ŷ = 9.52688 + 1.50561X1 + .23119X2 − .30781X3 − .26423X4 − .00518X5 , SSE(R) = 300.4100 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = (39.1759/6) ÷ (261.2341/101) = 2.524, F (.99; 6, 101) = 2.99. If F ∗ ≤ 2.99 conclude H0 , otherwise Ha . Conclude H0 . P -value = .026 d. Yijk = µ.. + β1 Xijk4 + β2 Xijk5 + (αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 + (αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk5 + ²ijk Ŷ = 9.52473 − .50240X4 + .24409X5 − 1.44778X1 X4 − .17942X1 X5 +.61345X2 X4 + .11924X2 X5 + .34296X3 X4 − .24453X3 X5 , SSE(R) = 345.4833 H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = (84.2492/3) ÷ (261.2341/101) = 10.858, F (.99; 3, 101) = 3.98. If F ∗ ≤ 3.98 conclude H0 , otherwise Ha . Conclude Ha . P -value 0+ e. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + (αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 + (αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk5 + ²ijk Ŷ = 9.42456 + 1.53811X1 + .15829X2 − .31129X3 − .69021X1 X4 −.60603X1 X5 + .29855X2 X4 + .26600X2 X5 + .18805X3 X4 − .35618X3 X5 , 23-21 SSE(R) = 267.7103 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (6.4762/2) ÷ (261.2341/101) = 1.252, F (.99; 2, 101) = 4.82. If F ∗ ≤ 4.82 conclude H0 , otherwise Ha . Conclude H0 . P -value = .29 f. n11 = 5, n12 = 12, n13 = 11, n21 = 16, n22 = 9, n23 = 7, n31 = 17, n32 = 7, n33 = 13, n41 = 4, n42 = 7, n43 = 5, D̂1 = µ̂1. − µ̂2. = 10.85669 − 9.64262 = 1.21407, D̂2 = µ̂1. − µ̂3. = 10.85669 − 9.16255 = 1.69414, D̂3 = µ̂1. − µ̂4. = 10.85669 − 7.96457 = 2.89212, D̂4 = µ̂2. − µ̂3. = .48007, D̂5 = µ̂2. − µ̂4. = 1.67805, D̂6 = µ̂3. − µ̂4. = 1.19798, M SE = 2.5865, s{D̂1 } = .4455, s{D̂2 } = .4332, s{D̂3 } = .5272, s{D̂4 } = .4135, s{D̂5 } = .5112, s{D̂6 } = .5004, q(.95; 4, 101) = 3.694, T = 2.612 1.21407 ± 2.612(.4455) 1.69414 ± 2.612(.4332) 2.89212 ± 2.612(.5272) .48007 ± 2.612(.4135) 1.67805 ± 2.612(.5112) 1.19798 ± 2.612(.5004) 23.32. a. .050 ≤ D1 .563 ≤ D2 1.515 ≤ D3 −.600 ≤ D4 .343 ≤ D5 −.109 ≤ D6 ≤ 2.378 ≤ 2.826 ≤ 4.269 ≤ 1.560 ≤ 3.013 ≤ 2.505 ANOVA model: Yijk = µ.. + αi + βj + (αβ)ij + ²ijk Regression: Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 + (αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 Iijk1 1 if case from NE −1 if case from W = 0 otherwise Iijk2 = Iijk3 Iijk4 + (αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk5 +²ijk 1 if case from NC −1 if case from W 0 otherwise 1 if case from S = −1 if case from W 0 otherwise 1 if poverty level below 6.0 percent −1 if poverty level is 10 percent or more = 0 otherwise 1 if poverty level between 6.0 and under 10.0 percent Iijk5 = −1 if poverty level is 10 percent or more 0 otherwise 23-22 b. Ŷ = .0568 − .00852X1 − .00475X2 + .00983X3 − .0114X4 − .00173X5 − .00206X1 X4 −.00629X1 X5 − .00106X2 X4 + .00069X2 X5 − .00102X3 X4 + .00133X3 X5 , SSE(F ) = .23111 c. 23.33. a. r = .932 Ȳ11. = .0348, Ȳ12. = .0402, Ȳ13. = .0697, Ȳ21. = .0396, Ȳ22. = .0510, Ȳ23. = .0655, Ȳ31. = .0542, Ȳ32. = .0662, Ȳ33. = .0794, Ȳ41. = .0530, Ȳ42. = .0627, Ȳ43. = .0649 b. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + β2 Xijk5 +²ijk c. Ŷ = .0563 − .0105X1 − .0043X2 + .0106X3 − .0111X4 − .0013X5 , SSE(R) = .23589 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = (.00478/6) ÷ (.23111/428) = 1.476. F (.995; 6, 428) = 3.14. If F ∗ ≤ 3.14 conclude H0 , otherwise Ha . Conclude H0 . P -value = .18 d. Yijk = µ.. + β1 Xijk4 + β2 Xijk5 + (αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 + (αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk5 + ²ijk Ŷ = .0578 − .0141X4 − .0024X5 − .0043X1 X4 − .0090X1 X5 + .0020X2 X4 −.0005X2 X5 − .0040X3 X4 + .0039X3 X5 , SSE(R) = .25118 H0 : α1 = α2 = α3 , Ha : not all αi equal zero. F ∗ = (.02007/3) ÷ (.23111/428) = 12.39, F (.995; 3, 428) = 4.34. If F ∗ ≤ 4.34 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + (αβ)11 Xijk1 Xijk4 + (αβ)12 Xijk1 Xijk5 + (αβ)21 Xijk2 Xijk4 + (αβ)22 Xijk2 Xijk5 + (αβ)31 Xijk3 Xijk4 + (αβ)32 Xijk3 Xijk5 + ²ijk Ŷ = .0558 − .0138X1 − .0047X2 + .0135X3 − .0015X1 X4 − .0009X1 X5 +3.15459X2 X4 − .23458X2 X5 − .0032X3 X4 − .0025X3 X5 , SSE(R) = .26209 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (.03098/2) ÷ (.23111/428) = 28.69, F (.995; 2, 428) = 5.36. If F ∗ ≤ 5.36 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. n11 = 52, n12 = 38, n13 = 13, n21 = 32, n22 = 50, n23 = 26, n31 = 25, n32 = 52, n33 = 75, n41 = 20, n42 = 33, n43 = 24, D̂1 = µ̂1. − µ̂2. = −.0038, D̂2 = µ̂1. − µ̂3. = −.0184, D̂3 = µ̂1. − µ̂4. = −.0120, D̂4 = µ̂2. − µ̂3. = −.0146, D̂5 = µ̂2. − µ̂4. = −.0082, D̂6 = µ̂3. − µ̂4. = .0064, 23-23 M SE = .00054, q(.95; 4, 428) = 3.63, T = 2.567 s{D̂1 } = .00357, s{D̂2 } = .00342, s{D̂3 } = .00383, s{D̂4 } = .00312, s{D̂5 } = .00356, s{D̂6 } = .00342, −.0038 ± 2.567(.00357) −.0184 ± 2.567(.00342) −.0120 ± 2.567(.00383) −.0146 ± 2.567(.00312) −.0082 ± 2.567(.00356) .0064 ± 2.567(.00342) 23.34. a. −.0130 ≤ D1 ≤ .0054 −.0271 ≤ D2 ≤ −.0096 −.0218 ≤ D3 ≤ −.0021 −.0226 ≤ D4 ≤ −.0066 −.0173 ≤ D5 ≤ .0010 −.0024 ≤ D6 ≤ .0152 ANOVA model: Yijk = µ.. + αi + βj + (αβ)ij + ²ijk Regression: Yijk = µ.. + α1 Xijk1 + β1 Xijk2 + (αβ)11 Xijk1 Xijk2 + ²ijk ( Xijk1 = ( Xijk2 = b. 1 if no discount price (level 0 of variable 5) −1 if discount price (level 1 of variable 5) 1 if no package promotion (level 0 of variable 6) −1 if package promotion (level 1 of variable 6) Ŷ = 2.620 − .199X1 − .0446X2 + .0366X1 X2 SSE(F ) = .7850 c. 23.35. a. r = .990 Ȳ00. = 2.4125, Ȳ01. = 2.4286, Ȳ10. = 2.7375, Ȳ11. = 2.9000, b. Yijk = µ.. + α1 Xijk1 + β1 Xijk2 + ²ijk c. Ŷ = 2.625 − .201X1 − .0498X2 , SSE(R) = .8306 H0 : (αβ)11 = 0, Ha : (αβ)11 6= 0. F ∗ = (.0456/1) ÷ (.7850/32) = 1.86. F (.95; 1, 32) = 4.15. If F ∗ ≤ 4.15 conclude H0 , otherwise Ha . Conclude H0 . P -value = .18 d. Yijk = µ.. + β1 Xijk2 + (αβ)11 Xijk1 Xijk2 + ²ijk Ŷ = 2.648 − .0726X2 + .0494X1 X2 , SSE(R) = 2.1352 H0 : α1 = 0, Ha : α1 6= 0. F ∗ = (1.3502/1) ÷ (.7850/32) = 55.04, F (.95; 1, 32) = 4.15. If F ∗ ≤ 4.15 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. Yijk = µ.. + α1 Xijk1 + (αβ)11 Xijk1 Xijk2 + ²ijk Ŷ = 2.623 − .205X1 + .0429X1 X2 , SSE(R) = .8529 H0 : β1 = 0, Ha : β1 6= 0 F ∗ = (.0679/1) ÷ (.7850/32) = 2.77, F (.95; 1, 32) = 4.15. If F ∗ ≤ 4.15 conclude H0 , otherwise Ha . Conclude H0 . P -value = .11 23.36. a. H0 : 5µ11 +12µ12 +11µ13 28 = 16µ21 +9µ22 +7µ23 32 = 23-24 17µ31 +7µ32 +13µ33 37 = 4µ41 +7µ42 +5µ43 , 16 Ha : not all equalities hold. F ∗ = (103.55418/3) ÷ (261.23406/101) = 13.346, F (.99; 3, 101) = 3.98. If F ∗ ≤ 3.98 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ b. H0 : 5µ11 +16µ21 +17µ31 +4µ41 42 = 12µ12 +9µ22 +7µ32 +7µ42 35 = 11µ13 +7µ23 +13µ33 +5µ43 , 36 Ha : not all equalities hold. F ∗ = (10.63980/2) ÷ (261.23406/101) = 2.057, F (.99; 2, 101) = 4.82. If F ∗ ≤ 4.82 conclude H0 , otherwise Ha . Conclude H0 . P -value = .13 23.37. a. H0 : 52µ11 +38µ12 +13µ13 103 = 32µ21 +50µ22 +26µ23 108 = 25µ31 +52µ32 +75µ33 152 = 20µ41 +33µ42 +24µ43 , 77 Ha : not all equalities hold. Ȳ... = .05729, Ȳ1.. = .04123, Ȳ2.. = .05111, Ȳ3.. = .07074, Ȳ4.. = .06088 F ∗ = (.0592/3) ÷ (.23111/428) = 36.54, F (.995; 3, 428) = 4.34. If F ∗ ≤ 4.34 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ b. H0 : 52µ11 +32µ21 +25µ31 +20µ41 129 = 38µ12 +50µ22 +52µ32 +33µ42 173 = 13µ13 +26µ23 +75µ33 +24µ43 , 138 Ha : not all equalities hold. Ȳ... = .05729, Ȳ.1. = .04259, Ȳ.2. = .05544, Ȳ.3. = .07334, F ∗ = (.0640/2) ÷ (.23111/428) = 59.26, F (.995; 2, 428) = 5.36. If F ∗ ≤ 5.36 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 23-25 23-26 Chapter 24 MULTIFACTOR STUDIES 24.1. a. β1 = µ.1. − µ... = −2, β2 = µ.2. − µ... = −.5, β3 = µ.3. − µ... = 2.5 b. (βγ)12 = µ.12 − µ.1. − µ..2 + µ... = 1 c. (αβγ)212 = µ212 − µ21. − µ.12 − µ2.2 + µ2.. + µ.1. + µ..2 − µ... = −.5 24.4. a. α1 = µ1.. − µ... = 138 − 131.5 = 6.5, α2 = µ2.. − µ... = 131.5 − 131.5 = 0 α3 = µ3.. − µ... = 125 − 131.5 = −6.5 b. β2 = µ.2. − µ... = 134 − 131.5 = 2.5, γ1 = µ..1 − µ... = 128.5 − 131.5 = −3 c. (αβ)12 = µ12. − µ1.. − µ.2. + µ... = 141 − 138 − 134 + 131.5 = .5 (αγ)21 = µ2.1 − µ2.. − µ..1 + µ... = 128 − 131.5 − 128.5 + 131.5 = −.5 (βγ)12 = µ.12 − µ.1. − µ..2 + µ... = 132 − 129 − 134.5 + 131.5 = 0 d. (αβγ)111 = µ111 − µ.11 − µ1.1 − µ11. + µ1.. + µ.1. + µ..1 − µ... = 130 − 126 − 134 − 135 + 138 + 129 + 128.5 − 131.5 = −1 (αβγ)322 = µ322 − µ32. − µ3.2 − µ.22 + µ3.. + µ.2. + µ..2 − µ... = 131 − 128 − 126.5 − 137 + 125 + 134 + 134.5 − 131.5 = 1.5 24.6. a. eijkm : i 1 2 b. 24.7. a. k=1 j=1 j=2 3.7667 1.1667 −3.9333 −1.6333 .1667 .4667 −1.7000 1.1000 .6000 −.8333 1.3667 −.5333 i 1 2 k=2 j=1 j=2 −.5000 −1.0333 .4000 1.3667 .1000 −.3333 1.1333 −1.6667 .5333 −.5667 1.7333 −1.1667 r = .973 Ȳ111. = 36.1333, Ȳ112. = 56.5000, Ȳ121. = 52.3333, Ȳ122. = 71.9333, Ȳ211. = 46.9000, Ȳ212. = 68.2667, Ȳ221. = 64.1333, Ȳ222. = 83.4667 24-1 b. Source Between treatments A (chemical) B (temperature) C (time) AB interactions AC interactions BC interactions ABC interactions Error Total SS df MS 4, 772.25835 7 681.75119 788.90667 1 788.90667 1, 539.20167 1 1, 539.20167 2, 440.16667 1 2, 440.16667 .24000 1 .24000 .20167 1 .20167 2.94000 1 2.94000 .60167 1 .60167 53.74000 16 3.35875 4, 825.99835 23 c. H0 : all (αβγ)ijk equal zero, Ha : not all (αβγ)ijk equal zero. F ∗ = .60167/3.35875 = .18, F (.975; 1, 16) = 6.12. If F ∗ ≤ 6.12 conclude H0 , otherwise Ha . Conclude H0 . P -value = .68 d. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = .24000/3.35875 = .07, F (.975; 1, 16) = 6.12. If F ∗ ≤ 6.12 conclude H0 , otherwise Ha . Conclude H0 . P -value = .79 H0 : all (αγ)ik equal zero, Ha : not all (αγ)ik equal zero. F ∗ = .20167/3.35875 = .06, F (.975; 1, 16) = 6.12. If F ∗ ≤ 6.12 conclude H0 , otherwise Ha . Conclude H0 . P -value = .81 H0 : all (βγ)jk equal zero, Ha : not all (βγ)jk equal zero. F ∗ = 2.94000/3.35875 = .875, F (.975; 1, 16) = 6.12. If F ∗ ≤ 6.12 conclude H0 , otherwise Ha . Conclude H0 . P -value = .36 e. H0 : all αi equal zero (i = 1, 2), Ha : not all αi equal zero. F ∗ = 788.90667/3.35875 = 234.88, F (.975; 1, 16) = 6.12. If F ∗ ≤ 6.12 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : all βj equal zero (j = 1, 2), Ha : not all βj equal zero. F ∗ = 1, 539.20167/3.35875 = 458.27, F (.975; 1, 16) = 6.12. If F ∗ ≤ 6.12 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : all γk equal zero (k = 1, 2), Ha : not all γk equal zero. F ∗ = 2, 440.1667/3.35875 = 726.51, F (.975; 1, 16) = 6.12. If F ∗ ≤ 6.12 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. 24.8. a. α ≤ .1624 D̂1 = 65.69167 − 54.22500 = 11.46667, D̂2 = 67.96667 − 51.95000 = 16.01667, D̂3 = 70.04167 − 49.87500 = 20.16667, M SE = 3.35875, s{D̂i } = .7482 (i = 1, 2, 3), B = t(.99167; 16) = 2.673 11.46667 ± 2.673(.7482) 9.467 ≤ D1 ≤ 13.467 16.01667 ± 2.673(.7482) 14.017 ≤ D2 ≤ 18.017 20.16667 ± 2.673(.7482) 18.167 ≤ D3 ≤ 22.167 b. Ȳ222. = 83.46667, s{Ȳ222. } = 1.0581, t(.975; 16) = 2.120, 24-2 83.46667 ± 2.120(1.0581), 81.2235 ≤ µ222 ≤ 85.7098 24.9. a. eijkm : i 1 b. 24.10. a. k=1 j=1 j=2 2.250 −1.825 −1.450 2.975 −1.350 −1.525 .550 .375 i 1 k=2 j=1 j=2 1.450 −4.475 −1.050 3.325 2.250 3.725 −2.650 −2.575 2 −1.925 .950 −2.325 −1.850 4.075 −2.850 .175 3.750 2 2.625 2.100 −1.875 .500 −2.075 .100 1.325 −2.700 3 −.850 4.375 3.550 −2.525 −2.950 .975 .250 −2.825 3 −1.350 −2.450 .650 2.450 3.550 −1.250 −2.850 1.250 r = .974 Ȳ111. = 122.050, Ȳ112. = 111.250, Ȳ121. = 116.925, Ȳ122. = 92.675, Ȳ211. = 121.225, Ȳ212. = 110.975, Ȳ221. = 116.250, Ȳ222. = 90.600, Ȳ311. = 91.750, Ȳ312. = 79.950, Ȳ321. = 85.525, Ȳ322. = 61.050 b. Ȳ1... = 110.7250, Ȳ2... = 109.7625, Ȳ3... = 79.5688 c. Source SS df MS Between treatments 16, 291.75564 11 1, 481.06870 A (fee) 10, 044.27125 2 5, 022.13563 B (scope) 1, 833.97688 1 1, 833.97688 C (supervision) 3, 832.40021 1 3, 832.40021 AB interactions 1.60125 2 .80062 AC interactions .78792 2 .39396 BC interactions 574.77521 1 574.77521 ABC interactions 3.94292 2 1.97146 Error 266.13750 36 7.39271 Total 16, 557.89314 47 d. H0 : all (αβγ)ijk equal zero, Ha : not all (αβγ)ijk equal zero. F ∗ = 1.97146/7.39271 = .27, F (.99; 2, 36) = 5.25. If F ∗ ≤ 5.25 conclude H0 , otherwise Ha . Conclude H0 . P -value = .77 e. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = .80062/7.39271 = .11, F (.99; 2, 36) = 5.25. If F ∗ ≤ 5.25 conclude H0 , otherwise Ha . Conclude H0 . P -value = .90 24-3 H0 : all (αγ)ik equal zero, Ha : not all (αγ)ik equal zero. F ∗ = .39396/7.39271 = .05, F (.99; 2, 36) = 5.25. If F ∗ ≤ 5.25 conclude H0 , otherwise Ha . Conclude H0 . P -value = .95 H0 : all (βγ)jk equal zero, Ha : not all (βγ)jk equal zero. F ∗ = 574.77521/7.39271 = 77.75, F (.99; 1, 36) = 7.40. If F ∗ ≤ 7.40 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 5, 022.13563/7.39271 = 679.34, F (.99; 2, 36) = 5.25. If F ∗ ≤ 5.25 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ g. α ≤ .049 24.11. a. D̂1 = .9625, D̂2 = 30.1937, D̂3 = 31.1562, D̂4 = 111.6750 − 100.7250 = 10.9500 D̂5 = 106.2333 − 81.4417 = 24.7916, L̂1 = −13.8416, s{D̂i } = .9613 (i = 1, 2, 3), s{D̂4 } = s{D̂5 } = 1.1100, s{L̂1 } = 1.5698, B = t(.99167; 36) = 2.511 .9625 ± 2.511(.9613) 30.1937 ± 2.511(.9613) 31.1562 ± 2.511(.9613) 10.9500 ± 2.511(1.1100) 24.7916 ± 2.511(1.1100) −13.8416 ± 2.511(1.5698) b. −1.451 ≤ D1 ≤ 3.376 27.780 ≤ D2 ≤ 32.608 28.742 ≤ D3 ≤ 33.570 8.163 ≤ D4 ≤ 13.737 22.004 ≤ D5 ≤ 27.579 −17.783 ≤ L1 ≤ −9.900 D̂ = 116.925 − 116.250 = .675, s{D̂} = 1.9226, t(.975; 36) = 2.028, .675 ± 2.028(1.9226), −3.224 ≤ D ≤ 4.574 c. s{D̂} = 1.9226, q(.90; 12, 36) = 4.52, T = 3.196, T s{D̂} = 6.14, Ȳ111. = 122.050, Ȳ211. = 121.225, Ȳ121. = 116.925, Ȳ221. = 116.250 24.12. a. eijkm : i 1 i 2 b. j=1 31.4 −43.6 17.4 20.4 −25.6 k=1 j=2 j=3 44.8 −1.2 −23.2 −28.2 −33.2 −17.2 20.8 13.8 −9.2 32.8 j=1 29.6 39.6 −32.4 −34.4 −2.4 k=1 j=2 j=3 27.6 .6 −34.4 −.4 −26.4 14.6 50.6 −20.4 −17.4 5.6 i j=1 1 −30.0 48.0 18.0 −55.0 19.0 i 2 j=1 −6.6 −22.6 10.4 21.4 −2.6 r = .992 24-4 k=2 j=2 −3.4 −12.4 .6 −25.4 40.6 j=3 −18.2 15.8 5.8 25.8 −29.2 k=2 j=2 −4.6 12.4 25.4 −34.6 1.4 j=3 −19.4 4.6 −43.4 50.6 7.6 24.13. a. Ȳ111. = 1, 218.6, Ȳ112. = 1, 051.0, Ȳ121. = 1, 274.2, Ȳ122. = 1, 122.4, Ȳ131. = 1, 218.2, Ȳ132. = 1, 051.2, Ȳ211. = 1, 036.4, Ȳ212. = 870.6, Ȳ221. = 1, 077.4, Ȳ222. = 931.6, Ȳ231. = 1, 020.4, Ȳ232. = 860.4 b. Source SS df MS Between treatments 973, 645.933 11 88, 513.267 A (gender) 540, 360.600 1 540, 360.600 B (sequence) 49, 319.633 2 24, 659.817 C (experience) 382, 401.667 1 382, 401.667 AB interactions 542.500 2 271.250 AC interactions 91.267 1 91.267 BC interactions 911.233 2 455.617 ABC interactions 19.033 2 9.517 Error 41, 186.000 48 858.042 Total 1, 014, 831.933 59 c. H0 : all (αβγ)ijk equal zero, Ha : not all (αβγ)ijk equal zero. F ∗ = 9.517/858.042 = .01, F (.95; 2, 48) = 3.19. If F ∗ ≤ 3.19 conclude H0 , otherwise Ha . Conclude H0 . P -value = .99 d. H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = 271.250/858.042 = .32, F (.95; 2, 48) = 3.19. If F ∗ ≤ 3.19 conclude H0 , otherwise Ha . Conclude H0 . P -value = .73 H0 : all (αγ)ik equal zero, Ha : not all (αγ)ik equal zero. F ∗ = 91.267/858.042 = .11, F (.95; 1, 48) = 4.04. If F ∗ ≤ 4.04 conclude H0 , otherwise Ha . Conclude H0 . P -value = .75 H0 : all (βγ)jk equal zero, Ha : not all (βγ)jk equal zero. F ∗ = 455.617/858.042 = .53, F (.95; 2, 48) = 3.19. If F ∗ ≤ 3.19 conclude H0 , otherwise Ha . Conclude H0 . P -value = .59 e. H0 : all αi equal zero (i = 1, 2), Ha : not all αi equal zero. F ∗ = 540, 360.600/858.042 = 629.76, F (.95; 1, 48) = 4.04. If F ∗ ≤ 4.04 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : all βj equal zero (j = 1, 2, 3), Ha : not all βj equal zero. F ∗ = 24, 659.817/858.042 = 28.74, F (.95; 2, 48) = 3.19. If F ∗ ≤ 3.19 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : all γk equal zero (k = 1, 2), Ha : not all γk equal zero. F ∗ = 382, 401.667/858.042 = 445.67, F (.95; 1, 48) = 4.04. If F ∗ ≤ 4.04 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. 24.14. a. α ≤ .302 Ȳ1... = 1, 155.933, Ȳ2... = 966.133, Ȳ.1.. = 1, 044.150, Ȳ.2.. = 1, 101.400, Ȳ.3.. = 1, 037.550, Ȳ..1. = 1, 140.867, Ȳ..2. = 981.200 D̂1 = 189.800, D̂2 = −57.250, D̂3 = 6.600, D̂4 = 63.850, D̂5 = 159.667, M SE = 858.042, s{D̂1 } = 7.5633, s{D̂i } = 9.2631 (i = 2, 3, 4), 24-5 s{D̂5 } = 7.5633, B = t(.99; 48) = 2.406 189.800 ± 2.406(7.5633) −57.250 ± 2.406(9.2631) 6.600 ± 2.406(9.2631) 63.850 ± 2.406(9.2631) 159.667 ± 2.406(7.5633) b. 171.603 ≤ D1 ≤ 207.997 −79.537 ≤ D2 ≤ −34.963 −15.687 ≤ D3 ≤ 28.887 41.563 ≤ D4 ≤ 86.137 141.470 ≤ D5 ≤ 177.864 Ȳ231. = 1, 020.4, s{Ȳ231. } = 13.0999, t(.975; 48) = 2.011, 1, 020.4 ± 2.011(13.0999), 994.056 ≤ µ231 ≤ 1, 046.744 24.15. a. Yijkm = µ... +α1 Xijkm1 +β1 Xijkm2 +γ1 Xijkm3 +(αβ)11 Xijkm1 Xijkm2 +(αγ)11 Xijkm1 Xijkm3 ( Xijk1 = ( Xijk2 = ( Xijk3 = b. +(βγ)11 Xijkm2 Xijkm3 + (αβγ)111 Xijkm1 Xijkm2 Xijkm3 + ²ijkm 1 −1 if case from level 1 for factor A if case from level 2 for factor A 1 −1 if case from level 1 for factor B if case from level 2 for factor B 1 −1 if case from level 1 for factor C if case from level 2 for factor C Yijkm = µ... + β1 Xijkm2 + γ1 Xijkm3 + (αβ)11 Xijkm1 Xijkm2 + (αγ)11 Xijkm1 Xijkm3 +(βγ)11 Xijkm2 Xijkm3 + (αβγ)111 Xijkm1 Xijkm2 Xijkm3 + ²ijkm c. Full model: Ŷ = 60.01667 − 5.67500X1 − 8.06667X2 − 10.02500X3 + .04167X1 X2 +.15000X1 X3 − .40833X2 X3 + .10000X1 X2 X3 , SSE(F ) = 49.4933 Reduced model: Ŷ = 61.15167 − 9.20167X2 − 8.89000X3 − 1.09333X1 X2 + 1.28500X1 X3 −1.54333X2 X3 − 1.03500X1 X2 X3 , SSE(R) = 667.8413 H0 : α1 = 0, Ha : α1 6= 0. F ∗ = (618.348/1) ÷ (49.4933/14) = 174.91, F (.975; 1, 14) = 6.298. If F ∗ ≤ 6.298 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. D̂ = µ̂2.. − µ̂1.. = α̂2 − α̂1 = −2α̂1 = 11.35000, s2 {α̂1 } = .18413, s{D̂} = .8582, t(.975; 14) = 2.145, 11.35000 ± 2.145(.8582), 9.509 ≤ D ≤ 13.191 24.16. a. Yijkm = µ... + α1 Xijkm1 + β1 Xijkm2 + β2 Xijkm3 + γ1 Xijkm4 +(αβ)11 Xijkm1 Xijkm2 + (αβ)12 Xijkm1 Xijkm3 + (αγ)11 Xijkm1 Xijkm4 +(βγ)11 Xijkm2 Xijkm4 + (βγ)21 Xijkm3 Xijkm4 +(αβγ)111 Xijkm1 Xijkm2 Xijkm4 + (αβγ)121 Xijkm1 Xijkm3 Xijkm4 + ²ijkm 24-6 ( Xijkm1 = Xijkm2 = Xijkm3 1 if case from level 1 for factor B −1 if case from level 3 for factor B 0 otherwise 1 if case from level 2 for factor B −1 if case from level 3 for factor B = 0 otherwise ( Xijkm4 = b. 1 if case from level 1 for factor A −1 if case from level 2 for factor A 1 if case from level 1 for factor C −1 if case from level 2 for factor C Yijkm = µ... + α1 Xijkm1 + β1 Xijkm2 + β2 Xijkm3 + (αβ)11 Xijkm1 Xijkm2 +(αβ)12 Xijkm1 Xijkm3 + (αγ)11 Xijkm1 Xijkm4 + (βγ)11 Xijkm2 Xijkm4 +(βγ)21 Xijkm3 Xijkm4 + (αβγ)111 Xijkm1 Xijkm2 Xijkm4 +(αβγ)121 Xijkm1 Xijkm3 Xijkm4 + ²ijkm c. Full model: Ŷ = 1, 062.16667 + 94.82500X1 − 17.85417X2 + 42.47083X3 + 79.80000X4 −4.33750X1 X2 + 2.01250X1 X3 + .20833X1 X4 + 3.38750X2 X4 −5.33750X3 X4 + .40417X1 X2 X4 − 1.94583X1 X3 X4 , SSE(F ) = 39, 499.9000 Reduced model: Ŷ = 1, 063.73137 + 96.38971X1 − 14.72475X2 + 40.90613X3 − 10.59632X1 X2 +9.83603X1 X3 + 1.77304X1 X4 + 3.38750X2 X4 − 10.03162X3 X4 +3.53358X1 X2 X4 − 3.51054X1 X3 X4 , SSE(R) = 399, 106.8647 H0 : γ1 = 0, Ha : γ1 6= 0. F ∗ = (359, 606.9647/1) ÷ (39, 499.9000/45) = 409.68, F (.95; 1, 45) = 4.06. If F ∗ ≤ 4.06 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. 24.17. 24.18. 24.19. D̂ = µ̂..1 − µ̂..2 = γ̂ 1 − γ̂ 2 = 2γ̂ 1 = 159.60000, s2 {γ̂ 1 } = 15.54394, s{D̂} = 7.8852, t(.975; 45) = 2.014, 159.60000 ± 2.014(7.8852), 143.719 ≤ D ≤ 175.481 √ 2 n = 4.1475, n = 14 1.8 q t[.99; 12(n − 1)] (29)2 /2n = ±20, n = 6 P P i i (αβγ)ijk = (µijk − µij. − µi.k − µ.jk + µi.. + µ.j. + µ..k − µ... ) = aµ.jk − aµ.j. − aµ..k − aµ.jk + aµ... + aµ.j. + aµ..k − aµ... = 0 24-7 24.20. Yijk = µ... + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + ²ijk Source A B C AB AC BC Error Total SS SSA SSB SSC SSAB SSAC SSBC SSE SST O PP σ 2 {L̂} = σ 2 { 24.21. = df a−1 b−1 c−1 (a − 1)(b − 1) (a − 1)(c − 1) (b − 1)(c − 1) (a − 1)(b − 1)(c − 1) abc − 1 cij Ȳij.. } = 2 2 cn cn MS M SA M SB M SC M SAB M SAC M SBC M SE PP 2 2 cij σ {Ȳij.. } (because of independence) σ PP 2 PP 2 σ cij = cij 24.22. c. r = .992 24.23. a. Ȳ111. = 8.80000, Ȳ112. = 9.68667, Ȳ113. = 8.33000, Ȳ114. = 7.50333, Ȳ121. = 10.07667, Ȳ122. = 9.56333, Ȳ123. = 10.02667, Ȳ124. = 8.16000, Ȳ211. = 10.55333, Ȳ212. = 8.79000, Ȳ213. = 8.77333, Ȳ214. = 8.00667, Ȳ221. = 12.48000, Ȳ222. = 10.01667, Ȳ223. = 10.20000, Ȳ224. = 8.33000 b. c. d. Source SS df MS Between treatments 69.63346 15 4.64223 A (age) 4.69375 1 4.69375 B (facilities) 13.26152 1 13.26152 C (region) 37.43491 3 12.47830 AB interactions .36575 1 .36575 AC interactions 9.03731 3 3.01244 BC interactions 3.38421 3 1.12807 ABC interactions 1.45601 3 .48534 Error 34.18440 32 1.06826 Total 103.81786 47 H0 : all (αβγ)ijk equal zero, Ha : not all (αβγ)ijk equal zero. F ∗ = .48534/1.06826 = .45, F (.99; 3, 32) = 4.46. If F ∗ ≤ 4.46 conclude H0 , otherwise Ha . Conclude H0 . P -value = .72 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = .36575/1.06826 = .34, F (.99; 1, 32) = 7.50. If F ∗ ≤ 7.50 conclude H0 , otherwise Ha . Conclude H0 . P -value = .56 H0 : all (αγ)ik equal zero, Ha : not all (αγ)ik equal zero. F ∗ = 3.01244/1.06826 = 2.82, F (.99; 3, 32) = 4.46. If F ∗ ≤ 4.46 conclude H0 , otherwise Ha . Conclude H0 . P -value = .055 H0 : all (βγ)jk equal zero, Ha : not all (βγ)jk equal zero. F ∗ = 1.12807/1.06826 = 1.06, F (.99; 3, 32) = 4.46. If F ∗ ≤ 4.46 conclude H0 , otherwise Ha . Conclude H0 . P -value = .38 24-8 e. H0 : all αi equal zero (i = 1, 2), Ha : not all αi equal zero. F ∗ = 4.69375/1.06826 = 4.39, F (.99; 1, 32) = 7.50. If F ∗ ≤ 7.50 conclude H0 , otherwise Ha . Conclude H0 . P -value = .044 H0 : all βj equal zero (j = 1, 2), Ha : not all βj equal zero. F ∗ = 13.26152/1.06826 = 12.41, F (.99; 1, 32) = 7.50. If F ∗ ≤ 7.50 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0013 H0 : all γk equal zero (k = 1, ..., 4), Ha : not all γk equal zero. F ∗ = 12.47830/1.06826 = 11.68, F (.99; 3, 32) = 4.46. If F ∗ ≤ 4.46 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. Ȳ1... = 9.01833, Ȳ2... = 9.64375, Ȳ.1.. = 8.80542, Ȳ.2.. = 9.85667, Ȳ..1. = 10.47750, Ȳ..2. = 9.51417, Ȳ..3. = 9.33250, Ȳ..4. = 8.00000 D̂1 = Ȳ.1.. − Ȳ.2.. = −1.05125, D̂2 = Ȳ..1. − Ȳ..2. = .96333, D̂3 = Ȳ..1. − Ȳ..3. = 1.14500, D̂4 = Ȳ..1. − Ȳ..4. = 2.47750, D̂5 = Ȳ..2. − Ȳ..3. = .18167, D̂6 = Ȳ..2. − Ȳ..4. = 1.51417, D̂7 = Ȳ..3. − Ȳ..4. = 1.33250, M SE = 1.06826, s{D̂1 } = .29836, s{D̂i } = .42195 (i = 2, ..., 7), B = t(.99286; 32) = 2.5915 −1.05125 ± 2.5915(.29836) .96333 ± 2.5915(.42195) 1.14500 ± 2.5915(.42195) 2.47750 ± 2.5915(.42195) .18167 ± 2.5915(.42195) 1.51417 ± 2.5915(.42195) 1.33250 ± 2.5915(.42195) −1.824 ≤ D1 −.130 ≤ D2 .052 ≤ D3 1.384 ≤ D4 −.912 ≤ D5 .421 ≤ D6 .239 ≤ D7 ≤ −.278 ≤ 2.057 ≤ 2.238 ≤ 3.571 ≤ 1.275 ≤ 2.608 ≤ 2.426 24.24. c. r = .920 24.25. a. Ȳ111. = .03303, Ȳ112. = .03886, Ȳ121. = .03553, Ȳ122. = .05415, Ȳ211. = .04076, Ȳ212. = .05128, Ȳ221. = .05516, Ȳ222. = .06056, Ȳ311. = .05841, Ȳ312. = .05997, Ȳ321. = .07738, Ȳ322. = .07915, Ȳ411. = .05655, Ȳ412. = .04688, Ȳ421. = .06755, Ȳ422. = .06442 b. Yijkm = µ... + α1 Xijk1 + α2 Xijk2 + α3 Xijk3 + β1 Xijk4 + γ1 Xijk5 +(αβ)11 Xijk1 Xijk4 + (αβ)21 Xijk2 Xijk4 + (αβ)31 Xijk3 Xijk4 +(αγ)11 Xijk1 Xijk5 + (αγ)21 Xijk2 Xijk5 + (αγ)31 Xijk3 Xijk5 +(βγ)11 Xijk4 Xijk5 + (αβγ)111 Xijk1 Xijk4 Xijk5 Xijk1 +(αβγ)211 Xijk2 Xijk4 Xijk5 + (αβγ)311 Xijk3 Xijk4 Xijk5 + ²ijkm 1 if case from NE = −1 if case from W 0 otherwise 1 if case from NC Xijk2 = −1 if case from W 0 otherwise 24-9 Xijk3 = 1 if case from S −1 if case from W 0 otherwise ( Xijk4 = ( Xijk5 = 1 −1 if poverty level below 8 percent if poverty level 8 percent or higher 1 −1 if percent of population 65 or older < 12.0% if percent of population 65 or older ≥ 12.0% Ŷ = .05498 − .0146X1 − .00303X2 + .0137X3 − .00676X4 −.00193X5 + .00231X1 X4 + .00084X2 X4 − .00278X3 X4 − .00418X1 X5 −.00205X2 X5 + .00110X3 X5 + .00090X4 X5 + .00230X1 X4 X5 −.00218X2 X4 X5 − .00085X3 X4 X5 , SSE(F ) = .23779 c. ABC interactions; Ŷ = .0552 − .0133X1 − .00412X2 + .0135X3 − .00712X4 −.00157X5 + .00085X1 X4 + .00128X2 X4 − .00254X3 X4 −.00278X1 X5 − .00251X2 X5 + .00083X3 X5 + .00046X4 X5 , SSE(R) = .23849 H0 : all (αβγ)ijk equal zero, Ha : not all (αβγ)ijk equal zero. F ∗ = (.0007/3) ÷ (.23779/424) = .42, F (.975; 3, 424) = 3.147. If F ∗ ≤ 3.147 conclude H0 , otherwise Ha . Conclude H0 . P -value = .74 AB interactions: Ŷ = 0.0556 − 0.0133X1 − 0.00355X2 + 0.0136X3 − 0.00743X4 −0.00135X5 − 0.00315X1 X5 − 0.00190X2 X5 +0.00040X3 X5 +0.00026X4 X5 +0.00095X1 X4 X5 − 0.00161X2 X4 X5 − 0.00081X3 X4 X5 , SSE(R) = .23897 H0 : all (αβ)ij equal zero, Ha : not all (αβ)ij equal zero. F ∗ = (.00118/3) ÷ (.23779/424) = .70, F (.975; 3, 424) = 3.147. If F ∗ ≤ 3.147 conclude H0 , otherwise Ha . Conclude H0 . P -value = .55 AC interactions: Ŷ = 0.0562 − 0.0129X1 − 0.00419X2 + 0.0127X3 − 0.00727X4 −0.00161X5 + 0.00038X1 X4 + 0.00021X2 X4 − 0.00222X3 X4 −0.00023X4 X5 + 0.00052X1 X4 X5 − 0.00119X2 X4 X5 + 0.00011X3 X4 X5 , SSE(R) = .24070 H0 : all (αγ)ik equal zero, Ha : not all (αγ)ik equal zero. F ∗ = (.00291/3) ÷ (.23779/424) = 1.73, F (.975; 3, 424) = 3.147. If F ∗ ≤ 3.147 conclude H0 , otherwise Ha . Conclude H0 . P -value = .16 24-10 BC interactions: Ŷ = 0.0553 − 0.0142X1 − 0.00303X2 + 0.0134X3 − 0.00687X4 − 0.00179X5 +0.00152X1 X4 +0.00092X2 X4 −0.00253X3 X4 −0.00344X1 X5 −0.00214X2 X5 +0.00085X3 X5 + 0.00183X1 X4 X5 − 0.00204X2 X4 X5 − 0.00042X3 X4 X5 , SSE(R) = .23801 H0 : all (βγ)jk equal zero, Ha : not all (βγ)jk equal zero. F ∗ = (.00022/1) ÷ (.23779/424) = .39, F (.975; 1, 424) = 5.06. If F ∗ ≤ 5.06 conclude H0 , otherwise Ha . Conclude H0 . P -value = .53 d. A effects: Ŷ = 0.0585 − 0.0104X4 + 0.00191X5 − 0.00575X1 X4 + 0.00409X2 X4 −0.00150X3 X4 + 0.00401X1 X5 − 0.00558X2 X5 + 0.00016X3 X5 −0.00218X4 X5 − 0.00445X1 X4 X5 − 0.00227X2 X4 X5 + 0.00280X3 X4 X5 , SSE(R) = .27011 H0 : all αi equal zero (i = 1, ..., 4), Ha : not all αi equal zero. F ∗ = (.03232/3) ÷ (.23779/424) = 19.21, F (.975; 3, 424) = 3.147. If F ∗ ≤ 3.147 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ B effects: Ŷ = 0.0539 − 0.0202X1 − 0.00235X2 + 0.0156X3 − 0.00465X5 +0.00583X1 X4 − 0.00024X2 X4 − 0.00598X3 X4 − 0.00705X1 X5 −0.00208X2 X5 + 0.00362X3 X5 + 0.00174X4 X5 + 0.00828X1 X4 X5 −0.00275X2 X4 X5 − 0.00270X3 X4 X5 , SSE(R) = .25047 H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = (.01268/1) ÷ (.23779/424) = 22.61, F (.975; 1, 424) = 5.06. If F ∗ ≤ 5.06 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ C effects: Ŷ = 0.0552 − 0.0129X1 − 0.00320X2 + 0.0132X3 − 0.00754X4 +0.00150X1 X4 + 0.00083X2 X4 − 0.00206X3 X4 − 0.00318X1 X5 −0.00236X2 X5 + 0.00018X3 X5 + 0.00061X4 X5 + 0.00069X1 X4 X5 −0.00198X2 X4 X5 − 0.00032X3 X4 X5 , SSE(R) = .23882 H0 : γ1 = γ2 = 0, Ha : not both γ1 and γ2 equal zero. F ∗ = (.00103/1) ÷ (.23779/424) = 1.84, F (.975; 1, 424) = 5.06. If F ∗ ≤ 5.06 conclude H0 , otherwise Ha . Conclude H0 . P -value = .175 e. D̂1 = µ̂1.. − µ̂2.. = α̂1 − α̂2 = −.01155, D̂2 = µ̂1.. − µ̂3.. = α̂1 − α̂3 = −.02834, 24-11 D̂3 = µ̂1.. − µ̂4.. = −.01846, D̂4 = µ̂2.. − µ̂3.. = −.016784, D̂5 = µ̂2.. − µ̂4.. = −.006907, D̂6 = µ̂3.. − µ̂4.. = .009877, −.02276 ≤ D1 −.03878 ≤ D2 −.03030 ≤ D3 −.02531 ≤ D4 −.01711 ≤ D5 .00053 ≤ D6 ≤ ≤ ≤ ≤ ≤ ≤ −.00034 −.01790 −.00662 −.00826 .00329 .01922 24-12 Chapter 25 RANDOM AND MIXED EFFECTS MODELS 25.3. (1) I, (2) II, (3) I, (4) II 25.5. b. H0 : σµ2 = 0, Ha : σµ2 > 0. F ∗ = .45787/.03097 = 14.78, F (.95; 5, 114) = 2.29. If F ∗ ≤ 2.29 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. Ȳ.. = .22767, nT = 120, s{Ȳ.. } = .06177, t(.975; 5) = 2.571, .22767 ± 2.571(.06177), .0689 ≤ µ. ≤ .3865 25.6. a. F (.025; 5, 114) = .1646, F (.975; 5, 114) = 2.680, L = .22583, U = 4.44098 σ2 .1842 ≤ 2 µ 2 ≤ .8162 σµ + σ b. χ2 (.025; 114) = 90.351, χ2 (.975; 114) = 145.441, .02427 ≤ σ 2 ≤ .03908 c. s2µ = .02135 d. Satterthwaite: df = (ns2µ )2 ÷ [(M ST R)2 /(r − 1) + (M SE)2 /r(n − 1)] = [20(.02135)]2 ÷ [(.45787)2 /5 + (.03907)2 /6(19)] = 4.35, χ2 (.025; 4) = .484, χ2 (.975; 4) = 11.143 4.35(.02135) 4.35(.02135) .0083 = ≤ σµ2 ≤ = .192 11.143 .484 M LS: c1 = .05, c2 = −.05, M S1 = .45787, M S2 = .03907, df1 = 5, df2 = 114, F1 = F (.975; 5, ∞) = 2.57, F2 = F (.975; 114, ∞) = 1.28, F3 = F (.975; ∞, 5) = 6.02, F4 = F (.975; ∞, 114) = 1.32, F5 = F (.975; 5, 114) = 2.68, F6 = F (.975; 114, 5) = 6.07, G1 = .6109, G2 = .2188, G3 = .0147, G4 = −.2076, HL = .014, HU = .115, .02135 − .014, .02135 + .115, .0074 ≤ σµ2 ≤ .1364 25.7. a. Source SS df MS Between brands 854.52917 5 170.90583 Error 30.07000 42 .71595 Total 884.59917 47 25-1 H0 : σµ2 = 0, Ha : σµ2 > 0. F ∗ = 170.90583/.71595 = 238.71, F (.99; 5, 42) = 3.49. If F ∗ ≤ 3.49 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ b. Ȳ.. = 17.62917, nT = 48, s{Ȳ.. } = 1.8869, t(.995; 5) = 4.032, 17.62917 ± 4.032(1.8869), 10.021 ≤ µ. ≤ 25.237 25.8. a. F (.005; 5, 42) = .0795, F (.995; 5, 42) = 3.95, L = 7.4292, U = 375.20828 .8814 ≤ σµ2 ≤ .9973 σµ2 + σ 2 b. M SE = .71595, s2µ = 21.27374 c. χ2 (.005; 42) = 22.138, χ2 (.995; 42) = 69.336, .4337 ≤ σ 2 ≤ 1.3583 d. H0 : σµ2 ≤ 2σ 2 , Ha : σµ2 > 2σ 2 . F ∗ = [M ST R/(2n + 1)] ÷ M SE = 14.042, F (.99; 5, 42) = 3.49. If F ∗ ≤ 3.49 conclude H0 , otherwise Ha . Conclude Ha . e. c1 = .125, c2 = −.125, df1 = 5, df2 = 42, F1 = F (.995; 5, ∞) = 3.35, F2 = F (.995; 42, ∞) = 1.66, F3 = F (.995; ∞, 5) = 12.1, F4 = F (.995; ∞, 42) = 1.91, F5 = F (.995; 5, 42) = 3.95, F6 = F (.995; 42, 5) = 12.51, G1 = .7015, G2 = .3976, G3 = .0497, G4 = −1.2371, HL = 14.990, HU = 237.127, 21.2737 − 14.990, 21.2737 + 237.127, 6.284 ≤ σµ2 ≤ 258.401 25.9. a. Source SS df MS Between machines 602.5000 3 200.8333 Error 257.4000 36 7.1500 Total 859.9000 39 H0 : σµ2 = 0, Ha : σµ2 > 0. F ∗ = 200.8333/7.1500 = 28.09, F (.90; 3, 36) = 2.25. If F ∗ ≤ 2.25 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ b. Ȳ.. = 205.05, nT = 40, s{Ȳ.. } = 2.2407, t(.95; 3) = 2.353, 205.05 ± 2.353(2.2407), 199.778 ≤ µ. ≤ 210.322 25.10. a. F (.05; 3, 36) = .117, F (.95; 3, 36) = 2.87, L = .8787, U = 23.9073 .4677 ≤ b. σµ2 ≤ .9599 σµ2 + σ 2 H0 : σµ2 = σ 2 , Ha : σµ2 6= σ 2 . F ∗ = [M ST R/(n + 1)] ÷ M SE = 2.554, F (.05; 3, 36) = .117, F (.95; 3, 36) = 2.87. If .117 ≤ F ∗ ≤ 2.87 conclude H0 , otherwise Ha . Conclude H0 . c. χ2 (.05; 36) = 23.269, χ2 (.95; 36) = 50.998, 5.047 ≤ σ 2 ≤ 11.062 d. s2µ = 19.3683 e. Satterthwaite: df = [10(19.3683)]2 ÷ [(200.8333)2 /3 + (7.1500)2 /36] = 2.79, χ2 (.05; 3) = .352, χ2 (.95; 3) = 7.815, 25-2 2.79(19.3683) 2.79(19.3683) ≤ σµ2 ≤ = 153.516 7.815 .352 M LS: c1 = .10, c2 = −.10, df1 = 3, df2 = 36, F1 = F (.95; 3, ∞) = 2.60, F2 = F (.95; 36, ∞) = 1.42, F3 = F (.95; ∞, 3) = 8.53, F4 = F (.95; ∞, 36) = 1.55, F5 = F (.95; 3, 36) = 2.87, F6 = F (.95; 36, 3) = 8.60, G1 = .6154, G2 = .2958, G3 = .0261, G4 = −.6286, HL = 12.381, HU = 151.198, 19.3683 − 12.381, 19.3683 + 151.198, 6.987 ≤ σµ2 ≤ 170.566 6.915 = 25.13. a. b. E{M SA} = 115, E{M SB} = 185, E{M SAB} = 35 E{M SA} = 85, E{M SB} = 155, E{M SAB} = 5 25.15. a. Source SS df MS Factor A (driver) 280.28475 3 93.42825 Factor B (car) 94.71350 4 23.67838 AB interactions 2.44650 12 .20388 Error 3.51500 20 .17575 Total 380.95975 39 2 2 > 0. F ∗ = .20388/.17575 = 1.16, F (.95; 12, 20) = 2.28. = 0, Ha : σαβ H0 : σαβ If F ∗ ≤ 2.28 conclude H0 , otherwise Ha . Conclude H0 . P -value = .37 b. H0 : σα2 = 0, Ha : σα2 > 0. F ∗ = 93.42825/.20388 = 458.25, F (.95; 3, 12) = 3.49. If F ∗ ≤ 3.49 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : σβ2 = 0, Ha : σβ2 > 0. F ∗ = 23.67838/.20388 = 116.14, F (.95; 4, 12) = 3.26. If F ∗ ≤ 3.26 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. s2α = 9.3224, s2β = 2.9343 d. c1 = .10, c2 = −.10, M S1 = 93.42825, M S2 = .203875, df1 = 3, df2 = 12, F1 = F (.975; 3, ∞) = 3.12, F2 = F (.975; 12, ∞) = 1.94, F3 = F (.975; ∞, 3) = 13.9, F4 = F (.975; ∞, 12) = 2.72, F5 = F (.975; 3, 12) = 4.47, F6 = F (.975; 12, 3) = 14.3, G1 = .6795, G2 = .4845, G3 = −.0320, G4 = −2.6241, HL = 6.348, HU = 120.525, 9.3244 − 6.348, 9.3224 + 120.525, 2.974 ≤ σα2 ≤ 129.847 e. df = [8(2.9343)]2 ÷ [(23.678375)2 /4 + (.203875)2 /12] = 3.93 χ2 (.025; 4) = .484, χ2 (.975; 4) = 11.143, 1.03 = 25.16. a. 3.93(2.9343) 3.93(2.9343) ≤ σβ2 ≤ = 23.83 11.143 .484 2 2 > 0. F ∗ = 303.822/52.011 = 5.84, F (.99; 4, 36) = 3.89. = 0, Ha : σαβ H0 : σαβ If F ∗ ≤ 3.89 conclude H0 , otherwise Ha . Conclude Ha . P -value = .001 b. s2αβ = 50.362 c. H0 : σα2 = 0, Ha : σα2 > 0. F ∗ = 12.289/52.011 = .24, F (.99; 2, 36) = 5.25. If F ∗ ≤ 5.25 conclude H0 , otherwise Ha . Conclude H0 . d. H0 : all βj equal zero (j = 1, 2, 3), Ha : not all βj equal zero. 25-3 F ∗ = 14.156/303.822 = .047, F (.99; 2, 4) = 18.0. If F ∗ ≤ 18.0 conclude H0 , otherwise Ha . Conclude H0 . e. Ȳ.1. = 56.133, Ȳ.2. = 56.600, Ȳ.3. = 54.733, D̂1 = Ȳ.1. − Ȳ.2. = −.467, D̂2 = Ȳ.1. − Ȳ.3. = −1.400, D̂3 = Ȳ.2. − Ȳ.3. = 1.867, s{D̂i } = 6.3647 (i = 1, 2, 3), q(.95; 3, 4) = 5.04, T = 3.5638 −.467 ± 3.5638(6.3647) −1.400 ± 3.5638(6.3647) 1.867 ± 3.5638(6.3647) f. −23.150 ≤ D1 ≤ 22.216 −24.083 ≤ D2 ≤ 21.283 −20.816 ≤ D3 ≤ 24.550 µ̂.1 = 56.1333, M SA = 12.28889, M SAB = 303.82222, s2 {µ̂.1 } = (2/45)(303.82222)+ (1/45)(12.28889) = 13.7763, s{û.1 } = 3.712, df = (13.7763)2 ÷{[(2/45)(303.82222)]2 /4+ [(1/45)(12.28889)]2 /2} = 4.16, t(.995; 4) = 4.60, 56.1333 ± 4.60(3.712), 39.06 ≤ µ.1 ≤ 73.21 g. M SA = 12.28889, M SE = 52.01111, s2α = (M SA − M SE)/nb = −2.648, c1 = 1/15, c2 = −1/15, df1 = 2, df2 = 36, F1 = F (.995; 2, ∞) = 5.30, F2 = F (.995; 36, ∞) = 1.71, F3 = F (.995; ∞, 2) = 200, F4 = F (.995; ∞, 36) = 2.01, F5 = F (.995; 2, 36) = 6.16, F6 = F (.995; 36, 2) = 199.5, G1 = .8113, G2 = .4152, G3 = .1022, G4 = −35.3895, HL = 3.605, HU = 162.730,−2.648 − 3.605, −2.648 + 162.730, −6.253 ≤ σα2 ≤ 160.082 25.17. a. Source Factor A (coats) Factor B (batch) AB interactions Error Total SS df 150.3879 2 152.8517 3 1.8521 6 173.6250 36 478.7167 47 MS 75.1940 50.9506 .3087 4.8229 2 2 H0 : σαβ = 0, Ha : σαβ > 0. F ∗ = .3087/4.8229 = .06, F (.95; 6, 36) = 2.36. If F ∗ ≤ 2.36 conclude H0 , otherwise Ha . Conclude H0 . P -value = .999 b. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 75.1940/.3087 = 243.58, F (.95; 2, 6) = 5.14. If F ∗ ≤ 5.14 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : σβ2 = 0, Ha : σβ2 > 0. F ∗ = 50.9506/4.8229 = 10.56, F (.95; 3, 36) = 2.87. If F ∗ ≤ 2.87 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. Ȳ1.. = 73.10625, Ȳ2.. = 76.79375, Ȳ3.. = 76.92500, D̂1 = Ȳ2.. − Ȳ1.. = 3.68750, D̂2 = Ȳ3.. − Ȳ2.. = .13125, s{D̂i } = .1964 (i = 1, 2), B = t(.975; 6) = 2.447 3.68750 ± 2.447(.1964) .13125 ± 2.447(.1964) 3.2069 ≤ D1 ≤ 4.1681 −.3493 ≤ D2 ≤ .6118 d. µ̂2. = 76.79375, s2 {µ̂2. } = (2/48)(.30868) + (1/48)(50.95056) = 1.0743, s{µ̂2. } = 1.0365, df = (1.0743)2 ÷ {[(2/48)(.30868)]2 /6 + [(1/48)(50.95056)]2 /3} = 3.07, t(.975; 3) = 3.182, 76.79375 ± 3.182(1.0365), 73.496 ≤ µ2. ≤ 80.092 e. s2β = (M SB − M SE)/na = 3.844, c1 = 1/12, c2 = −1/12, df1 = 3, df2 = 36, F1 = F (.95; 3, ∞) = 2.60, F2 = F (.95; 36, ∞) = 1.42, F3 = F (.95; ∞, 3) = 8.53, 25-4 F4 = F (.95; ∞, 36) = 1.55, F5 = F (.95; 3, 36) = 2.87, F6 = F (.95; 36, 3) = 8.60, G1 = .6154, G2 = .2958, G3 = .0261, G4 = −.6286, HL = 2.631, HU = 31.989, 3.844 − 2.631, 3.844 + 31.989, 1.213 ≤ σβ2 ≤ 35.833 25.18. a. H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = 47.0450/.1150 = 409.09, F (.95; 1, 3) = 10.1. If F ∗ ≤ 10.1 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0003 25.19. a. eij : i j=1 1 −.175 2 .025 3 −.575 4 .025 5 .025 6 .025 7 −.175 8 .825 r = .985 c. j=2 j=3 −1.300 .325 4.900 −3.475 −1.700 .925 1.900 −1.475 −1.100 .525 −1.100 2.525 −.300 −.675 −1.300 1.325 j=4 j=5 −2.050 3.200 1.150 −2.600 −1.450 2.800 2.150 −2.600 −.850 1.400 −.850 −.600 2.950 −1.800 −1.050 .200 H0 : D = 0, Ha : D 6= 0. SSBL.T R∗ = 27.729, SSRem∗ = 94.521, F ∗ = (27.729/1) ÷ (94.521/27) = 7.921, F (.995; 1, 27) = 9.34. If F ∗ ≤ 9.34 conclude H0 , otherwise Ha . Conclude H0 . 25.20. a. Source SS Blocks 4, 826.375 Paint type 531.350 Error 122.250 Total 5, 479.975 b. df MS 7 689.48214 4 132.83750 28 4.36607 39 H0 : all τj equal zero (j = 1, ..., 5), Ha : not all τj equal zero. F ∗ = 132.83750/4.36607 = 30.425, F (.95; 4, 28) = 2.71. If F ∗ ≤ 2.71 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. d. 25.21. a. Ȳ.1 = 20.500, Ȳ.2 = 23.625, Ȳ.3 = 19.000, Ȳ.4 = 29.375, Ȳ.5 = 21.125, L̂1 = Ȳ.1 − Ȳ.2 = −3.125, L̂2 = Ȳ.1 − Ȳ.3 = 1.500, L̂3 = Ȳ.1 − Ȳ.4 = −8.875, L̂4 = Ȳ.1 − Ȳ.5 = −.625, s{L̂i } = 1.0448 (i = 1, ..., 4), B = t(.9875; 28) = 2.369 −3.125 ± 2.369(1.0448) −5.60 ≤ L1 ≤ −.65 1.500 ± 2.369(1.0448) −.98 ≤ L2 ≤ 3.98 −8.875 ± 2.369(1.0448) −11.35 ≤ L3 ≤ −6.40 −.625 ± 2.369(1.0448) −3.10 ≤ L4 ≤ 1.85 1 1 L̂ = (Ȳ.1 + Ȳ.3 + Ȳ.5 ) − (Ȳ.2 + Ȳ.4 ) = −6.29167, s{L̂} = .6744, t(.975; 28) = 2.048, 3 2 −6.29167 ± 2.048(.6744), −7.67 ≤ L ≤ −4.91 eij : 25-5 i j=1 j=2 1 −.1333 .4667 2 −.1333 −.5333 3 −.4667 1.1333 4 .8667 −.5333 5 −.4667 1.1333 6 1.2000 −1.2000 7 −.1333 1.4667 8 .8667 −1.5333 9 −2.1333 −.5333 10 .5333 .1333 r = .985 c. j=3 −.3333 .6667 −.6667 −.3333 −.6667 .0000 −1.3333 .6667 2.6667 −.6667 H0 : D = 0, Ha : D 6= 0. SSBL.T R∗ = 4.5365, SSRem∗ = 24.6635, F ∗ = (4.5365/1) ÷ (24.6635/17) = 3.127, F (.975; 1, 17) = 6.042. If F ∗ ≤ 6.042 conclude H0 , otherwise Ha . Conclude H0 . P -value = .095 25.22. a. Source SS df Blocks 1, 195.5000 9 Reagents 123.4667 2 Error 29.2000 18 Total 1, 348.1667 29 b. MS 132.8333 61.7333 1.6222 H0 : all τj equal zero (j = 1, 2, 3), Ha : not all τj equal zero. F ∗ = 61.7333/1.6222 = 38.055, F (.975; 2, 18) = 4.56. If F ∗ ≤ 4.56 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. Ȳ.1 = 15.3, Ȳ.2 = 19.7, Ȳ.3 = 19.5, B = t(.9875; 18) = 2.445, L̂1 = .2, L̂2 = 4.3, s{L̂1 } = .5696, s{L̂2 } = .4933 .2 ± 2.445(.5696) 4.3 ± 2.445(.4933) d. 25.23. a. −1.193 ≤ L1 ≤ 1.593 3.094 ≤ L2 ≤ 5.506 H0 : σρ2 = 0, Ha : σρ2 > 0. F ∗ = 132.8333/1.6222 = 81.885, F (.975; 9, 18) = 2.929. If F ∗ ≤ 2.929 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 2 2 H0 : σαβγ = 0, Ha : σαβγ > 0. F ∗ = M SABC/M SE = 1.49/2.30 = .648, F (.975; 8, 60) = 2.41. If F ∗ ≤ 2.41 conclude H0 , otherwise Ha . Conclude H0 . P -value=.27. b. 2 2 > 0. F ∗ = M SAB/M SABC = 2.40/1.49 = 1.611, = 0, Ha : σαβ H0 : σαβ F (.99; 2, 8) = 8.65. If F ∗ ≤ 8.65 conclude H0 , otherwise Ha . Conclude H0 . c. H0 : σβ2 = 0, Ha : σβ2 > 0. F ∗∗ = M SB/(M SAB +M SBC −M SABC) = 4.20/(2.40 + 3.13 − 1.49) = 1.04, df = 16.32161/5.6067 = 2.91, F (.99; 1, 3) = 34.1. If F ∗∗ ≤ 34.1 conclude H0 , otherwise Ha . Conclude H0 . d. s2α = (M SA −M SAB − M SAC +M SABC)/nbc = .126, df = [(8.650/30) − (2.40/30) − (3.96/30) + (1.49/30)]2 25-6 " # (8.65/30)2 (2.40/30)2 (3.96/30)2 (1.49/30)2 ÷ + + + = .336 2 2 8 8 χ2 (.025; 1) = .001, χ2 (.975; 1) = 5.02 .008 = 25.24. a. .336(.126) .336(.126) ≤ σα2 ≤ = 42.336 5.02 .001 F ∗ = M SAC/M SABC, F ∗ = M SB/M SE b. H0 : all (αγ)ik equal zero, Ha : not all (αγ)ik equal zero. F ∗ = 91.267/9.517 = 9.59, F (.95; 1, 2) = 18.5. If F ∗ ≤ 18.5 conclude H0 , otherwise Ha . Conclude H0 . c. H0 : σβ2 = 0, Ha : σβ2 > 0. F ∗ = 24, 659.817/858.042 = 28.74, F (.95; 2, 48) = 3.19. If F ∗ ≤ 3.19 conclude H0 , otherwise Ha . Conclude Ha . d. s2β = (M SB − M SE)/acn = (24, 659.817 − 858.042)/20 = 1, 190.09, c1 = .05, c2 = −.05, df1 = 2, df2 = 48, F1 = F (.975; 2, ∞) = 3.69, F2 = F (.975; 48, ∞) = 1.44, F3 = F (.975; ∞, 2) = 39.5, F4 = F (.975; ∞, 48) = 1.56, F5 = F (.975; 2, 48) = 3.99, F6 = F (.975; 48, 2) = 39.5, G1 = .7290, G2 = .3056, G3 = .0416, G4 = −3.6890, HL = 900.39, HU = 47, 468.09, 1,190.09 − 900.39, 1, 190.09 + 47, 468.09, 289.70 ≤ σβ2 ≤ 48, 658.18 F ∗∗ = M SA/(M SAB +M SAC − M SABC) 25.25. à (M SAB)2 (M SAC)2 (M SABC)2 df = (M SAB +M SAC −M SABC) ÷ + + dfAB dfAC dfABC ! 2 25.26. a. µ̂.. = 55.593, β̂ 1 = .641, β̂ 2 = .218, σ̂ 2α = 5.222, σ̂ 2αβ = 15.666, σ̂ 2 = 55.265, no (Note: Unrestricted estimators are same except that variance component for random effect A is zero.) b. Estimates remain the same. c. 2 2 H0 : σαβ = 0, Ha : σαβ > 0. z(.99) = 2.326, s{σ̂ 2αβ } = 13.333, z ∗ = 15.666/13.333 = 1.175. If z ∗ ≤ 2.326 conclude H0 , otherwise Ha . Conclude H0 . P -value = .12. d. H0 : β1 = β2 = β3 = 0, Ha : not all βj = 0 (j = 1, 2, 3). −2loge L(R) = 295.385, −2loge L(F ) = 295.253, X 2 = 295.385 − 295.253 = .132, χ2 (.99; 2) = 9.21. If X 2 ≤ 9.21 conclude H0 , otherwise Ha . Conclude H0 . P -value = .94. e. 2 z(.995) = 2.576, 15.666 ± 2.576(13.333), −18.680 ≤ ααβ ≤ 50.012 25.27. a. µ̂.. = 75.817, α̂1 = −2.398, α̂2 = .977, σ̂ 2β = 2.994, σ̂ 2αβ = 0, σ̂ 2 = 3.103, yes b. Estimates remain the same. c. H0 : σβ2 = 0, Ha : σβ2 > 0. −2loge L(R) = 214.034, −2loge L(F ) = 192.599, X 2 = 214.034−192.599 = 21.435, χ2 (.95; 1) = 3.84. If X 2 ≤ 3.84 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. H0 : α1 = α2 = α3 = 0, Ha : not all αi = 0 (i = 1, 2, 3). −2loge L(R) = 221.722, −2loge L(F ) = 192.599, X 2 = 221.722 − 192.599 = 29.123, χ2 (.95; 2) = 5.99. If X 2 ≤ 5.99 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. s{σ̂ 2β } = 2.309, z(.975) = 1.96, 2.994 ± 1.96(2.309), −1.532 ≤ σβ2 ≤ 7.520 25-7 (Note: Answers to parts (c) and (e) are not consistent; may be due to large-sample approximation not being appropriate here.) " P # 25.28. 1 n2 1 1 P n0 = ( ni ) − P i = (rn − rn2 /rn) = (rn − n) = n r−1 ni r−1 r−1 25.29. From (25.12), σ 2 {Ȳ.. } = (σµ2 /r) + (σ 2 /nT ). When nT is fixed, σ 2 {Ȳ.. } is minimized by making r as large as possible, i.e., r = nT . In that case, n = 1 since rn = nT . 25.30. L≤ σµ2 1 σ2 1 1 σ2 1 ≤ U or ≥ ≥ or + 1 ≥ + 1 ≥ + 1 or 2 2 2 σ L σµ U L σµ U σ 2 + σµ2 σµ2 1+L 1+U U L ∗ ≥ ≤ ≥ or L = ≤ = U∗ L σµ2 U 1+L σ 2 + σµ2 1+U σ 2 {Ȳi.. } = σ 2 {µ.. + αi + β̄ . + (αβ)i. + ²̄i.. } 25.31. = σα2 2 σβ2 σσβ σ2 + + + b b bn because of independence. σ 2 {Yij } = σ 2 {µ.. + ρi + τj + ²ij } = στ2 + σ 2 25.32. P 2 2 σ {Ȳ.j } = σ {µ.. + 25.33. a. b. 25.34. ρi nb + τj + ²̄.j } = στ2 + σ2 nb Yijk = µ... + ρi + αj + βk + (αβ)jk + ²ijk F ∗ = M SAB/M SBL.T R, F ∗ = M SA/M SBL.T R, F ∗ = M SB/M SBL.T R σ{Yij , Yij 0 } = E{(Yij − E{Yij })(Yij 0 − E{Yij 0 })} = E{[(µ.. + ρi + τj + ²ij ) − (µ.. + τj )][(µ.. + ρi + τj 0 + ²ij 0 ) − (µ.. + τj 0 )]} = E{(ρi + ²ij )(ρi + ²ij 0 )} = E{ρ2i } + E{ρi ²ij } + E{ρi ²ij 0 } + E{²ij ²ij 0 } = σρ2 since ρi , ²ij , and ²ij 0 are pairwise independent and have expectations equal to zero. 25.35. σ 2 {Ȳi... } = σ 2 {µ... + αi + β̄ . + γ̄ . + (αβ)i. + (αγ)i. + (βγ).. + (αβγ)i.. + ²̄i... } = σα2 + 25.36. e. 2 σ2 σ2 σ2 σβ2 σγ2 σαβ σ2 + + + αγ + βγ + αβγ + b c b c bc bc nbc E{M SA} = 248.5, E{M SAB} = 8.5 25.37. a. 1 2 3 4 5 137.4286 145.3571 131.2857 156.6429 158.5536 135.4286 167.1607 128.5714 148.4286 179.4107 25.38. a. 25-8 117.2143 121.6250 113.8571 133.2321 102.9821 1 37.5667 42.9889 40.8333 2 51.1222 47.3889 3 47.3889 25.39. a. µ̂.. = 30.051, σ̂ 2α = 7.439, σ̂ 2β = 2.757, σ̂ 2αβ = .011, σ̂ 2 = .183, s{σ̂ 2α } = 5.570, s{σ̂ 2β } = 1.958, s{σ̂ 2αβ } = .053, s{σ̂ 2 } = .059. 25-9 25-10 Chapter 26 NESTED DESIGNS, SUBSAMPLING, AND PARTIALLY NESTED DESIGNS 26.4. a. eijk : k 1 2 3 4 5 k 1 2 3 4 5 j=1 3.2 −3.8 1.2 −4.8 4.2 i=1 j=2 j=3 j=4 .2 −6.6 −7.6 −5.8 2.4 3.4 7.2 −4.6 1.4 −3.8 7.4 −4.6 2.2 1.4 7.4 j=1 −7.8 6.2 −2.8 1.2 3.2 i=3 j=2 j=3 j=4 −6.6 6.6 −6.4 .4 −2.4 5.6 2.4 −1.4 −.4 −1.6 1.6 3.6 5.4 −4.4 −2.4 k 1 2 3 4 5 r = .986 26.5. a. b. No Ȳij. : i 1 2 3 j=1 61.8 75.8 76.8 j=2 67.8 75.2 69.6 j=3 j=4 62.6 52.6 55.8 77.0 74.4 73.4 c. 26-1 j=1 −1.8 5.2 .2 4.2 −7.8 i=2 j=2 j=3 j=4 −6.2 −3.8 −4.0 .8 .2 1.0 4.8 6.2 6.0 2.8 2.2 −2.0 −2.2 −4.8 −1.0 Source SS df MS Machines (A) 1, 695.63 2 847.817 Operators, within mahcines [B(A)] 2, 272.30 9 252.478 Error (E) 1, 132.80 48 23.600 Total 5, 100.73 59 d. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 847.817/23.600 = 35.924, F (.99; 2, 48) = 5.075. If F ∗ ≤ 5.075 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. H0 : all βj(i) equal zero, Ha : not all βj(i) equal zero. F ∗ = 252.478/23.600 = 10.698, F (.99; 9, 48) = 2.802. If F ∗ ≤ 2.802 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ f. i SSB(Ai ) 1 599.20 2 1, 538.55 3 134.55 H0 : all βj(1) equal zero, Ha : not all βj(1) equal zero. F ∗ = (599.20/3) ÷ 23.600 = 8.46, F (.99; 3, 48) = 4.22. If F ∗ ≤ 4.22 conclude H0 , otherwise Ha . Conclude Ha . H0 : all βj(2) equal zero, Ha : not all βj(2) equal zero. F ∗ = (1, 538.55/3) ÷ 23.600 = 21.73, F (.99; 3, 48) = 4.22. If F ∗ ≤ 4.22 conclude H0 , otherwise Ha . Conclude Ha . H0 : all βj(3) equal zero, Ha : not all βj(3) equal zero. F ∗ = (134.55/3) ÷ 23.600 = 1.90, F (.99; 3, 48) = 4.22. If F ∗ ≤ 4.22 conclude H0 , otherwise Ha . Conclude H0 . g. 26.6. a. α ≤ .05 Ȳ1.. = 61.20, Ȳ2.. = 70.95, Ȳ3.. = 73.55, L̂1 = Ȳ1.. − Ȳ2.. = −9.75, L̂2 = Ȳ1.. − Ȳ3.. = −12.35, L̂3 = Ȳ2.. − Ȳ3.. = −2.60, s{L̂i } = 1.536 (i = 1, 2, 3), q(.95; 3, 48) = 3.42, T = 2.418 −9.75 ± 2.418(1.536) −12.35 ± 2.418(1.536) −2.60 ± 2.418(1.536) b. −13.46 ≤ L1 ≤ −6.04 −16.06 ≤ L2 ≤ −8.64 −6.31 ≤ L3 ≤ 1.11 Ȳ11. = 61.8, Ȳ12. = 67.8, Ȳ13. = 62.6, Ȳ14. = 52.6, L̂1 = Ȳ11. − Ȳ12. = −6.0, L̂2 = Ȳ11. − Ȳ13. = −.8, L̂3 = Ȳ11. − Ȳ14. = 9.2, L̂4 = Ȳ12. − Ȳ13. = 5.2, L̂5 = Ȳ12. − Ȳ14. = 15.2, L̂6 = Ȳ13. − Ȳ14. = 10.0, s{L̂i } = 3.0725 (i = 1, ..., 6), B = t(.99583; 48) = 2.753 26-2 −6.0 ± 3.0725(2.753) −.8 ± 3.0725(2.753) 9.2 ± 3.0725(2.753) 5.2 ± 3.0725(2.753) 15.2 ± 3.0725(2.753) 10.0 ± 3.0725(2.753) c. −14.46 ≤ L1 ≤ 2.46 −9.26 ≤ L2 ≤ 7.66 .74 ≤ L3 ≤ 17.66 −3.26 ≤ L4 ≤ 13.66 6.74 ≤ L5 ≤ 23.66 1.54 ≤ L6 ≤ 18.46 L̂ = 11.467, s{L̂} = 2.5087, t(.995; 48) = 2.682, 11.467 ± 2.682(2.5087), 4.74 ≤ L ≤ 18.20 26.7. a. βj(i) are independent N (0, σβ2 ); βj(i) are independent of ²k(ij) . b. σ̂ 2β = 45.7756 c. H0 : σβ2 = 0, Ha : σβ2 > 0. F ∗ = 252.478/23.600 = 10.698, F (.90; 9, 48) = 1.765. If F ∗ ≤ 1.765 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. c1 = .2, c2 = −.2, M S1 = 252.478, M S2 = 23.600, df1 = 9, df2 = 48, F1 = F (.95; 9, ∞) = 1.88, F2 = F (.95; 48, ∞) = 1.36, F3 = F (.95; ∞, 9) = 2.71, F4 = F (.95; ∞, 48) = 1.45, F5 = F (.95; 9, 48) = 2.08, F6 = F (.95; 48, 9) = 2.81, G1 = .4681, G2 = .2647, G3 = .00765, G4 = −.07162, HL = 23.771, HU = 86.258, 45.7756 − 23.771, 45.7756 + 86.258, 22.005 ≤ σβ2 ≤ 132.034 e. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 847.817/252.478 = 3.358, F (.90; 2, 9) = 3.01. If F ∗ ≤ 3.01 conclude H0 , otherwise Ha . Conclude Ha . P -value = .081 f. See Problem 26.6a. s{L̂i } = 5.025 (i = 1, 2, 3), q(.90; 3, 9) = 3.32, T = 2.348 −9.75 ± 2.348(5.025) −12.35 ± 2.348(5.025) −2.60 ± 2.348(5.025) g. 26.8. a. −21.55 ≤ L1 ≤ 2.05 −21.15 ≤ L2 ≤ −.55 −14.40 ≤ L3 ≤ 9.20 H0 : all σ 2 {βj(i) } are equal (i = 1, 2, 3), Ha : not all σ 2 {βj(i) } are equal. Ye1 = ∗ 62.2, Ye2 = 75.5, Ye3 = 73.9, M ST R = 11.6433, M SE = 38.0156, FBF = ∗ 11.6433/38.0156 = .31, F (.99; 2, 9) = 8.02. If FBF ≤ 8.02 conclude H0 , otherwise Ha . Conclude H0 . αi are independent N (0, σα2 ); βj(i) are independent N (0, σβ2 ); αi , βj(i) , and ²k(ij) are independent. b. σ̂ 2β = 45.7756, σ̂ 2α = 29.7669 c. H0 : σα2 = 0, Ha : σα2 > 0. F ∗ = 847.817/252.478 = 3.358, F (.95; 2, 9) = 4.26. If F ∗ ≤ 4.26 conclude H0 , otherwise Ha . Conclude H0 . P -value = .081 d. c1 = .2, c2 = −.2, M S1 = 252.478, M S2 = 23.600, df1 = 9, df2 = 48, F1 = F (.975; 9, ∞) = 2.11, F2 = F (.975; 48, ∞) = 1.44, F3 = (.975; ∞, 9) = 3.33, F4 = F (.975; ∞, 48) = 1.56, F5 = F (.975; 9, 48) = 2.39, F6 = F (.975; 48, 9) = 3.48, 26-3 G1 = .5261, G2 = .3056, G3 = .01577, G4 = −.1176, HL = 26.766, HU = 117.544, 45.7756 − 26.766, 45.7756 + 117.544, 19.01 ≤ σβ2 ≤ 163.32 e. 26.9. a. Ȳ... = 68.56667, s{Ȳ... } = 3.759, t(.975; 2) = 4.303, 68.56667 ± 4.303(3.759), 52.392 ≤ µ.. ≤ 84.742 eijk : k 1 2 3 4 5 j=1 1.8 15.8 −5.2 −.2 −12.2 i=1 j=2 j=3 −12.8 −9.6 −.8 7.4 3.2 16.4 −3.8 −14.6 14.2 .4 k 1 2 3 4 5 j=1 −5.8 11.2 −.8 −12.8 8.2 i=3 j=2 −9.8 12.2 −.8 3.2 −4.8 k 1 2 3 4 5 j=1 −7.2 3.8 −15.2 7.8 10.8 i=2 j=2 j=3 −2.6 8.8 −15.6 −8.2 6.4 −10.2 11.4 11.8 .4 −2.2 j=3 −12.0 0.0 17.0 2.0 −7.0 r = .987 26.10. a. Source SS df States (A) 6, 976.84 2 Cities within states [B(A)] 167.60 6 Error (E) 3, 893.20 36 Total 11, 037.64 44 MS 3, 488.422 27.933 108.144 b. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 3, 488.422/108.144 = 32.257, F (.95; 2, 36) = 3.26. If F ∗ ≤ 3.26 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. H0 : all βj(i) equal zero, Ha : not all βj(i) equal zero. F ∗ = 27.933/108.144 = .258, F (.95; 6, 36) = 2.36. If F ∗ ≤ 2.36 conclude H0 , otherwise Ha . Conclude H0 . P -value = .95 d. α ≤ .10 26.11. a. Ȳ11. = 40.2, s{Ȳ11. } = 4.6507, t(.975; 36) = 2.0281, 40.2 ± 2.0281(4.6507), 30.77 ≤ µ11 ≤ 49.63 b. Ȳ1.. = 40.8667, Ȳ2.. = 57.3333, Ȳ3.. = 26.8667, s{Ȳi.. } = 2.6851 (i = 1, 2, 3), t(.995; 36) = 2.7195 40.8667 ± 2.7195(2.6851) 57.3333 ± 2.7195(2.6851) 26.8667 ± 2.7195(2.6851) 33.565 ≤ µ1. ≤ 48.169 50.031 ≤ µ2. ≤ 64.635 19.565 ≤ µ3. ≤ 34.169 26-4 c. L̂1 = Ȳ1.. − Ȳ2.. = −16.4666, L̂2 = Ȳ1.. − Ȳ3.. = 14.0000, L̂3 = Ȳ2.. − Ȳ3.. = 30.4666, s{L̂i } = 3.7973 (i = 1, 2, 3), q(.90; 3, 36) = 2.998, T = 2.120 −16.4666 ± 2.120(3.7973) 14.0000 ± 2.120(3.7973) 30.4666 ± 2.120(3.7973) d. 26.12. a. −24.52 ≤ L1 ≤ −8.42 5.95 ≤ L2 ≤ 22.05 22.42 ≤ L3 ≤ 38.52 L̂ = 12.4, s{L̂} = 6.5771, t(.975; 36) = 2.0281, 12.4 ± 2.0281(6.5771), −.94 ≤ L ≤ 25.74 βj(i) are independent N (0, σβ2 ); βj(i) are independent of ²k(j) . b. σ̂ 2β = 0, yes. c. H0 : σβ2 = 0, Ha : σβ2 > 0. F ∗ = 27.933/108.144 = .258, F (.90; 6, 36) = 1.94. If F ∗ ≤ 1.94 conclude H0 , otherwise Ha . Conclude H0 . P -value = .95 d. H0 : all αi equal zero (i = 1, 2, 3), Ha : not all αi equal zero. F ∗ = 3, 488.422/27.933 = 124.885, F (.90; 2, 6) = 3.46. If F ∗ ≤ 3.46 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ e. See Problem 26.11c. s{L̂i } = 1.9299 (i = 1, 2, 3), q(.90; 3, 6) = 3.56, T = 2.5173 −16.4666 ± 2.5173(1.9299) 14.0000 ± 2.5173(1.9299) 30.4666 ± 2.5173(1.9299) f. −21.32 ≤ L1 ≤ −11.61 9.14 ≤ L2 ≤ 18.86 25.61 ≤ L3 ≤ 35.32 H0 : all σ 2 {βj(i) } are equal (i = 1, 2, 3), Ha : not all σ 2 {βj(i) } are equal. H ∗ = 37.27/16.07 = 2.32, H(.95; 3, 2) = 87.5. If H ∗ ≤ 87.5 conclude H0 , otherwise Ha . Conclude H0 . 26.13. a. αi are independent N (0, σα2 ); βj(i) are independent N (0, σβ2 ); αi , βj(i) , and ²k(ij) are independent. b. σ̂ 2β = 0, σ̂ 2α = 230.699 c. H0 : σα2 = 0, Ha : σα2 > 0. F ∗ = 3, 488.422/27.933 = 124.885, F (.99; 2, 6) = 10.9. If F ∗ ≤ 10.9 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. c1 = 1/15, c2 = −1/15, M S1 = 3488.422, M S2 = 27.933, df1 = 2, df2 = 6, F1 = F (.995; 2, ∞) = 5.30, F2 = F (.995; 6, ∞) = 3.09, F3 = F (.995; ∞, 2) = 200, F4 = F (.995; ∞, 6) = 8.88, F5 = F (.995; 2, 6) = 14.5, F6 = F (.995; 6, 2) = 199, G1 = .8113, G2 = .6764, G3 = −1.2574, G4 = −93.0375, HL = 187.803, HU = 46, 279.30, 230.699 − 187.803, 230.699 + 46, 279.30, 42.90 ≤ σα2 ≤ 46, 510.00 e. Ȳ... = 41.6889, s{Ȳ... } = 8.8046, t(.995; 2) = 9.925, 41.6889 ± 9.925(8.8046), −45.70 ≤ µ.. ≤ 129.07 26.14. a. Yijk = µ.. + α1 Xijk1 + α2 Xijk2 + β1(1) Xijk3 + β2(1) Xijk4 + β1(2) Xijk5 + β1(3) Xijk6 + ²ijk 1 if case from region 1 Xijk1 = −1 if case from region 3 0 otherwise 26-5 Xijk2 = Xijk3 1 if case for team 1 from region 1 −1 if case for team 3 from region 1 = 0 otherwise 1 if case for team 2 from region 1 −1 if case for team 3 from region 1 0 otherwise 1 if case for team 1 from region 2 −1 if case for team 2 from region 2 = 0 otherwise Xijk6 = b. 1 if case from region 2 −1 if case from region 3 0 otherwise Xijk4 = Xijk5 1 if case for team 1 from region 3 −1 if case for team 2 from region 3 0 otherwise Full model: Ŷ = 150.01667 − 9.21667X1 + 5.28333X2 + 6.60000X3 +.50000X4 + 3.70000X5 − 1.85000X6 eijk : k 1 2 3 j=1 4.20 −6.20 2.00 i=1 j=2 1.90 −1.90 i=2 i=3 j=3 j=1 j=2 j=1 j=2 −2.30 4.80 0.00 4.90 4.20 2.30 −4.80 −4.90 −4.20 r = .962 26.15. a. SSE(F ) = 207.2600 Reduced model: Ŷ = 147.60248+4.89938X3 +1.35031X4 +6.26584X5 −1.85000X6 SSE(R) = 838.7766 H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = (631.5166/2) ÷ (207.2600/7) = 10.664, F (.975; 2, 7) = 6.54. If F ∗ ≤ 6.54 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0075 b. Reduced model: Ŷ = 150.74206 − 8.99921X1 + 5.79127X2 SSE(R) = 483.2338 H0 : β1(1) = β2(1) = β1(2) = β1(3) = 0, Ha : not all βj(i) equal zero. F ∗ = (275.9738/4) ÷ (207.26/7) = 2.33, F (.975; 4, 7) = 5.52. If F ∗ ≤ 5.52 conclude H0 , otherwise Ha . Conclude H0 . c. 26.17. a. L̂ = α̂1 − α̂2 = −14.5, s2 {α̂1 } = 4.0057, s2 {α̂2 } = 6.2446, s{α̂1 , α̂2 } = −2.6197, s{L̂} = 3.9357, t(.99; 7) = 2.998, −14.5 ± 2.998(3.9357), −26.30 ≤ L ≤ −2.70 eijk : 26-6 k 1 2 i=1 j=1 j=2 j=3 j=4 j=5 −2.0 1.5 1.0 1.5 −1.0 2.0 −1.5 −1.0 −1.5 1.0 k 1 2 i=2 j=1 j=2 j=3 j=4 .5 1.0 1.5 −1.5 −.5 −1.0 −1.5 1.5 j=5 2.0 −2.0 i=3 k j=1 j=2 j=3 j=4 j=5 1 −2.0 −1.5 1.0 2.0 −1.5 2 2.0 1.5 −1.0 −2.0 1.5 r = .957 b. H0 : all σ 2 {²j(i) } are equal (i = 1, 2, 3), Ha : not all σ 2 {²j(i) } are equal. Ye1 = 30, ∗ Ye2 = 28, Ye3 = 27, M ST R = 2.2167, M SE = 6.8750, FBF = 2.2167/6.8750 = .32, ∗ F (.99; 2, 12) = 6.93. If FBF ≤ 6.93 conclude H0 , otherwise Ha . Conclude H0 . 26.18. a. Source SS df MS Treatments (colors) 3.2667 2 1.63335 Experimental error 369.4000 12 30.78333 Observational error 67.5000 15 4.50000 Total 440.1667 29 b. H0 : τ1 = τ2 = τ3 = 0, Ha : not all τi equal zero. F ∗ = 1.63335/30.78333 = .053, F (.95; 2, 12) = 3.89. If F ∗ ≤ 3.89 conclude H0 , otherwise Ha . Conclude H0 . P -value = .95 c. H0 : σ 2 = 0, Ha : σ 2 > 0. F ∗ = 30.78333/4.50000 = 6.841, F (.95; 12, 15) = 2.48. If F ∗ ≤ 2.48 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0004 d. Ȳ1.. = 29.2, s{Ȳ1.. } = 1.7545, t(.975; 12) = 2.179, 29.2 ± 2.179(1.7545), 25.38 ≤ µ1. ≤ 33.02 e. σ̂ 2 = 13.1417, σ̂ 2η = 4.5 f. For σ 2 : c1 = .5, c2 = −.5, M S1 = 30.7833, M S2 = 4.5000, df1 = 12, df2 = 15, F1 = F (.975; 12, ∞) = 1.94, F2 = F (.975; 15, ∞) = 1.83, F3 = F (.975; ∞, 12) = 2.72, F4 = F (.975; ∞, 15) = 2.40, F5 = F (.975; 12, 15) = 2.96, F6 = F (.975; 15, 12) = 3.18, G1 = .4845, G2 = .4536, G3 = −.05916, G4 = −.0906, HL = 7.968, HU = 26.434, 13.1417 − 7.968, 13.1417 + 26.434, 5.174 ≤ σ 2 ≤ 39.576 For ση2 : df = 15, χ2 (.025; 15) = 6.26, χ2 (.975; 15) = 27.49, 2.455 = 26.19. 15(4.5) 15(4.5) ≤ ση2 ≤ = 10.783 27.49 6.26 eijk : k 1 2 3 j=1 −.4000 .0000 .4000 i=1 j=2 .0333 .3333 −.3667 j=3 −.3667 .0333 .3333 k 1 2 3 26-7 j=1 .0667 −.2333 .1667 i=2 j=2 .4333 .0667 −.3667 j=3 −.2000 .3000 −.1000 k 1 2 3 j=1 −.4333 .1667 .2667 i=3 j=2 −.1333 .4667 −.3333 j=3 −.3667 .3333 −.0667 k 1 2 3 j=1 −.0667 .4333 −.3667 i=4 j=2 −.3000 .2000 .1000 j=3 .4000 .0000 −.4000 r = .972 26.20. a. Source SS df Plants 343.1789 3 Leaves, within plants 187.4533 8 Observations, within leaves 3.0333 24 Total 533.6655 35 b. MS 114.3930 23.4317 .1264 H0 : στ2 = 0, Ha : στ2 > 0. F ∗ = 114.3930/23.4317 = 4.88, F (.95; 3, 8) = 4.07. If F ∗ ≤ 4.07 conclude H0 , otherwise Ha . Conclude Ha . P -value = .03 c. H0 : σ 2 = 0, Ha : σ 2 > 0. F ∗ = 23.4317/.1264 = 185.38, F (.95; 8, 24) = 2.36. If F ∗ ≤ 2.36 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. Ȳ... = 14.26111, s{Ȳ... } = 1.7826, t(.975; 3) = 3.182, 14.26111 ± 3.182(1.7826), 8.59 ≤ µ.. ≤ 19.93 e. σ̂ 2τ = 10.1068, σ̂ 2 = 7.7684, σ̂ 2η = .1264 f. c1 = 1/9 = .1111, c2 = −1/9 = −.1111, M S1 = 114.3930, M S2 = 23.4317, df1 = 3, df2 = 8, F1 = F (.95; 3, ∞) = 2.60, F2 = F (.95; 8, ∞) = 1.94, F3 = F (.95; ∞, 3) = 8.53, F4 = F (.95; ∞, 8) = 2.93, F5 = F (.95; 3, 8) = 4.07, F6 = F (.95; 8, 3) = 8.85, G1 = .6154, G2 = .4845, G3 = −.1409, G4 = −1.5134, HL = 9.042, HU = 95.444, 10.1068−9.042, 10.1068+95.444, 1.065 ≤ στ2 ≤ 105.551 26.21. a. eijk : k 1 2 3 j=1 .1667 −.0333 −.1333 i=1 j=2 j=3 .0667 .0333 −.1333 −.1667 .0667 .1333 j=4 −.0333 .1667 −.1333 k 1 2 3 j=1 .0333 .1333 −.1667 i=2 j=2 j=3 j=4 .0333 −.0667 −.2000 −.1667 −.0667 .2000 .1333 .1333 .0000 k 1 2 3 j=1 .0000 .1000 −.1000 i=3 j=2 j=3 .1667 −.1333 .0667 −.0333 −.2333 .1667 j=4 .0667 −.2333 .1667 k 1 2 3 j=1 −.1333 .1667 −.0333 i=4 j=2 j=3 j=4 −.0333 .1667 −.0333 .1667 −.1333 .1667 −.1333 −.0333 −.1333 j=1 .0333 .1333 −.1667 i=5 j=2 j=3 .1000 .1333 .1000 −.0667 −.2000 −.0667 j=4 .2000 −.2000 .0000 k 1 2 3 26-8 r = .981 b. H0 : all σ 2 {²j(i) } are equal (i = 1, ..., 5), Ha : not all σ 2 {²j(i) } are equal. H ∗ = .100833/.014167 = 7.117, H(.99; 5, 3) = 151. If H ∗ ≤ 151 conclude H0 , otherwise Ha . Conclude H0 . 26.22. a. Source SS Batches 10.6843 Barrels, within batches .6508 Determinations, within barrels 1.0067 Total 12.3418 b. df MS 4 2.67108 15 .04339 40 .02517 59 H0 : στ2 = 0, Ha : στ2 > 0. F ∗ = 2.67108/.04339 = 61.56, F (.99; 4, 15) = 4.89. If F ∗ ≤ 4.89 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. H0 : σ 2 = 0, Ha : σ 2 > 0. F ∗ = .04339/.02517 = 1.724, F (.99; 15, 40) = 2.52. If F ∗ ≤ 2.52 conclude H0 , otherwise Ha . Conclude H0 . P -value = .085 d. Ȳ... = 2.9117, s{Ȳ... } = .21099, t(.995; 4) = 4.604, 2.9117 ± 4.604(.21099), 1.94 ≤ µ.. ≤ 3.88 e. σ̂ 2τ = .2190, σ̂ 2 = .0061, σ̂ 2η = .0252 f. c1 = .08333, c2 = −.08333, M S1 = 2.67108, M S2 = .04339, df1 = 4, df2 = 15, F1 = F (.975; 4, ∞) = 2.79, F2 = F (.975; 15, ∞) = 1.83, F3 = F (.975; ∞, 4) = 8.26, F4 = F (.975; ∞, 15) = 2.40, F5 = F (.975; 4, 15) = 3.80, F6 = F (.975; 15, 4) = 8.66, G1 = .6416, G2 = .4536, G3 = .1082, G4 = −1.0925, HL = .1432, HU = 1.6157, .2190 − .1432, .2190 + 1.6157, .076 ≤ στ2 ≤ 1.835 PPP 26.23. (Yijk − Ȳ... )2 = = PPP PPP [(Ȳi.. − Ȳ... ) + (Ȳij. − Ȳi.. ) + (Yijk − Ȳij. )]2 [(Ȳi.. − Ȳ... )2 + (Ȳij. − Ȳi.. )2 + (Yijk − Ȳij. )2 + 2(Ȳi.. − Ȳ... )(Ȳij. − Ȳi.. ) +2(Ȳi.. − Ȳ... )(Yijk − Ȳij. ) + 2(Ȳij. − Ȳi.. )(Yijk − Ȳij. )] = bn P (Ȳi.. − Ȳ... )2 + n PP (Ȳij. − Ȳi.. )2 + PPP (Yijk − Ȳij. )2 All cross products equal zero by arguments similar to that given in Section 16.8. P 26.24. 26.25. a. b. 26.26. PP P P 2 Y.j.2 Yij. Y.j.2 Y2 Yi..2 Y2 SSB + SSAB = − ... + − − + ... na nab n nb na nab PP 2 P 2 Yij. Yi.. − = SSB(A) = n nb σβ2 σ 2 + b bn 2 σ σ2 σ 2 {Ȳ... } = σ 2 {µ.. + β̄ .(.) + ²̄.(..) } = β + ab abn [M SB(A) − M SE]/n σ 2 {Ȳi.. } = σ 2 {µ.. + αi + β̄ .(i) + ²̄.(i.) } = σ 2 {Ȳi.. } = σ 2 {µ.. + τi + ²̄.(i) + η̄ .(i.) } 26-9 ση2 mσ 2 + ση2 σ2 = + = n mn mn σ 2 {Ȳ... } = σ 2 {µ.. + τ̄ . + ²̄.(.) + η̄ .(..) } 26.27. ση2 στ2 σ 2 = + + r rn rnm ½ ¾ n o ση2 + mσ 2 + nmστ2 M ST R 2 = = σ 2 {Ȳ... } E s {Ȳ... } = E rnm rnm à 2 σ2 2 σ 2 {Ȳ1j.. − Ȳ2j.. } = σβγ + + σγ2 c n 26.28. df = 26.29. a. b. ! [bM SBC(A) + M SC(A) − M SE]2 [bM SBC(A)]2 [M SC(A)]2 (M SE)2 + + a(b − 1)(c − 1) a(c − 1) abc(n − 1) Yijk = µ.. + αi + βj(i) + ²k(ij) , βj(i) and ²k(ij) random eijk : k 1 2 j=1 −.040 .040 k j=1 1 .025 2 −.025 r = .938 i=1 j=2 j=3 j=4 .045 .020 −.035 −.045 −.020 .035 k 1 2 j=1 .035 −.035 i=2 j=2 j=3 j=4 −.045 −.025 .040 .045 .025 −.040 i=3 j=2 j=3 j=4 .040 −.035 −.060 −.040 .035 .060 26.30. a. b. Source SS df A (lever press rate) .89306 2 D(A) (rats within A) .12019 9 Error .03555 12 Total 1.04880 23 H0 : α1 = α2 = α3 = 0, Ha : not all αi MS .44653 .01335 .00296 equal zero. ∗ F = .44653/.01335 = 33.448, F (.95; 2, 9) = 4.26. If F ∗ ≤ 4.26 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0001 c. H0 : σβ2 = 0, Ha : σβ2 > 0. F ∗ = .01335/.00296 = 4.510, F (.95; 9, 12) = 2.80. If F ∗ ≤ 2.80 conclude H0 , otherwise Ha . Conclude Ha . P -value = .009 d. Ȳ1.. = .53500, Ȳ2.. = .77375, Ȳ3.. = 1.00750, L̂1 = Ȳ1.. − Ȳ2.. = −.23875, L̂2 = Ȳ1.. − Ȳ3.. = −.47250, L̂3 = Ȳ2.. − Ȳ3.. = −.23375, s{L̂i } = .0578 (i = 1, 2, 3), q(.90; 3, 9) = 3.32, T = 2.3476 −.23875 ± 2.3476(.0578) −.47250 ± 2.3476(.0578) −.23375 ± 2.3476(.0578) −.374 ≤ L1 ≤ −.103 −.608 ≤ L2 ≤ −.337 −.369 ≤ L3 ≤ −.098 26-10 e. 26.31. a. b. σ̂ 2β = .005195, c1 = .5, c2 = −.5, M S1 = .013354, M S2 = .002963, df1 = 9, df2 = 12, F1 = F (.95; 9, ∞) = 1.88, F2 = F (.95; 12, ∞) = 1.75, F3 = F (.95; ∞, 9) = 2.71, F4 = F (.95; ∞, 12) = 2.30, F5 = F (.95; 9, 12) = 2.80, F6 = F (.95; 12, 9) = 3.07, G1 = .4681, G2 = .4286, G3 = −.05996, G4 = −.1210, HL = .003589, HU = .01138, .005195 − .003589, .005195 + .01138, .00161 ≤ σβ2 ≤ .0166 Yijk = µ.. + τi + ²j(i) + ηk(ij) , ²j(i) and ηk(ij) random eijk : k 1 2 k 1 2 j=1 −.035 .035 i=1 j=2 j=3 j=4 −.030 −.030 −.025 .030 .030 .025 j=1 −.050 .050 i=3 j=2 j=3 j=4 −.025 −.035 .045 .025 .035 −.045 k 1 2 j=1 .020 −.020 i=2 j=2 j=3 j=4 .030 −.035 −.020 −.030 .035 .020 r = .940 c. H0 : all σ 2 {²j(i) } are equal (i = 1, 2, 3), Ha : not all σ 2 {²j(i) } are equal. Ye1 = 1.9075, Ye2 = 2.2200, Ye3 = 2.4075, M ST R = .001431, M SE = .004204, ∗ FBF = .001431/.004204 = .34, F (.99; 2, 9) = 8.02. ∗ If FBF ≤ 8.02 conclude H0 , otherwise Ha . Conclude H0 . 26.32. a. Source SS df Treatments (lever press rates) 1.013125 2 Experimental error .182025 9 Observational error .025900 12 Total 1.221050 23 b. MS .50656 .02023 .00216 H0 : all τ1 = τ2 = τ3 = 0, Ha : not all τi equal zero. F ∗ = .50656/.02023 = 25.040, F (.99; 2, 9) = 8.02. If F ∗ ≤ 8.02 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0002 c. H0 : σ 2 = 0, Ha : σ 2 > 0. F ∗ = .02023/.00216 = 9.366, F (.99; 9, 12) = 4.39. If F ∗ ≤ 4.39 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0003 d. Ȳ1.. = 1.88750, Ȳ2.. = 2.21875, Ȳ3.. = 2.38125, L̂1 = Ȳ1.. − Ȳ2.. = −.33125, L̂2 = Ȳ1.. − Ȳ3.. = −.49375, L̂3 = Ȳ2.. − Ȳ3.. = −.16250, s{L̂i } = .071116 (i = 1, 2, 3), q(.95; 3, 9) = 3.95, T = 2.793 −.33125 ± 2.793(.071116) −.49375 ± 2.793(.071116) −.16250 ± 2.793(.071116) f. −.530 ≤ L1 ≤ −.133 −.692 ≤ L2 ≤ −.295 −.361 ≤ L3 ≤ .036 For σ 2 : σ̂ 2 = .00904, c1 = .5, c2 = −.5, M S1 = .020225, M S2 = .0021583, df1 = 9, df2 = 12, F1 = F (.95; 9, ∞) = 1.88, F2 = F (.95; 12, ∞) = 1.75, F3 = 26-11 F (.95; ∞, 9) = 2.71, F4 = F (.95; ∞, 12) = 2.30, F5 = F (.95; 9, 12) = 2.80, F6 = F (.95; 12, 9) = 3.07, G1 = .4681, G2 = .4286, G3 = −.05996, G4 = −.1210, HL = .00487, HU = .0173, .00904 − .00487, .00904 + .0173, .0042 ≤ σ 2 ≤ .0263 For ση2 : σ̂ 2η = .00216, df = 12, χ2 (.05; 12) = 5.23, χ2 (.95; 12) = 21.03, .0012 = 12(.00216) 12(.00216) ≤ ση2 ≤ = .0050 21.03 5.23 26-12 Chapter 27 REPEATED MEASURES AND RELATED DESIGNS 27.3. a. eij : i j=1 j=2 1 2.5556 −1.9444 2 −.1111 .3889 3 −2.9444 5.5556 4 −2.7778 .7222 5 −2.4444 −3.9444 6 −.1111 3.3889 7 −.9444 −2.4444 8 2.3889 −2.1111 9 −.6111 −5.1111 10 1.5556 1.0556 11 1.3889 .8889 12 2.0556 3.5556 j=3 −3.7778 −.4444 3.7222 −2.1111 1.2222 −.4444 −1.2778 4.0556 .0556 −3.7778 .0556 2.7222 j=4 2.4722 2.8056 −3.0278 1.1389 1.4722 −3.9944 −2.0278 −1.6944 −1.6944 3.4722 1.3056 −1.0278 j=5 −2.7778 −3.4444 −2.2778 1.8889 1.2222 .5556 2.7222 .0556 3.0556 −.7778 1.0556 −1.2778 j=6 3.4722 .8056 −1.0278 1.1389 2.4722 −.1944 3.9722 −2.6944 4.3056 −1.5278 −4.6944 −6.0278 r = .995 d. H0 : D = 0, Ha : D 6= 0. SST R.S = 467.3889, SST R.S ∗ = 8.7643, SSRem∗ = 458.6246, F ∗ = (8.7643/1) ÷ (458.6246/54) = 1.032, F (.995; 1, 54) = 8.567. If F ∗ ≤ 8.567 conclude H0 , otherwise Ha . Conclude H0 . P -value = .31 27.4. a. Source Subjects Doses Error Total SS df MS 1, 197.4444 11 108.8586 5, 826.2778 5 1, 165.2556 467.3889 55 8.4980 7, 491.1111 71 b. H0 : all τj equal zero (j = 1, ..., 6), Ha : not all τj equal zero. F ∗ = 1, 165.2556/8.4980 = 137.12, F (.99; 5, 55) = 3.37. If F ∗ ≤ 3.37 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. Ȳ.1 = 14.6667, Ȳ.2 = 19.1667, Ȳ.3 = 23.0000, Ȳ.4 = 28.7500, Ȳ.5 = 35.0000, Ȳ.6 = 40.7500, L̂1 = Ȳ.1 − Ȳ.2 = −4.5000, L̂2 = Ȳ.2 − Ȳ.3 = −3.8333, L̂3 = Ȳ.3 − Ȳ.4 = 27-1 −5.7500, L̂4 = Ȳ.4 − Ȳ.5 = −6.2500, L̂5 = Ȳ.5 − Ȳ.6 = −5.7500, s{L̂i } = 1.1901 (i = 1, ..., 5), B = t(.995; 55) = 2.668 −4.5000 ± 2.668(1.1901) −3.8333 ± 2.668(1.1901) −5.7500 ± 2.668(1.1901) −6.2500 ± 2.668(1.1901) −5.7500 ± 2.668(1.1901) d. 27.5. a. −7.6752 ≤ L1 −7.0085 ≤ L2 −8.9252 ≤ L3 −9.4252 ≤ L4 −8.9252 ≤ L5 ≤ −1.3248 ≤ −.6581 ≤ −2.5748 ≤ −3.0748 ≤ −2.5748 Ê = 2.83 Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + ρ3 Xij3 + ρ4 Xij4 + ρ5 Xij5 + ρ6 Xij6 + ρ7 Xij7 +ρ8 Xij8 + ρ9 Xij9 + ρ10 Xij10 + ρ11 Xij11 + γ1 xij + γ2 x2ij + γ3 x3ij + ²ij Xij1 1 if experimental unit from block 1 −1 if experimental unit from block 12 = 0 otherwise Xij2 , ..., Xij11 are defined similarly xij = −.97 −.77 −.57 −.07 .43 1.93 b. if if if if if if experimental experimental experimental experimental experimental experimental unit unit unit unit unit unit received received received received received received treatment treatment treatment treatment treatment treatment 1 2 3 4 5 6 Ŷ = 30.3903 + 3.7778X1 + 4.4444X2 + .2778X3 − 2.8889X4 − 5.2222X5 +3.4444X6 − 4.7222X7 + 2.9444X8 + 3.9444X9 − 8.2222X10 +1.9444X11 + 11.5329x − 4.0297x2 + .4353x3 c. eij : i 1 2 3 4 5 6 7 8 9 10 11 12 d. j=1 2.2076 −.4591 −3.2924 −3.1257 −2.7924 −.4591 −1.2934 2.0409 −.9591 1.2076 1.0409 1.7076 j=2 −1.6998 .6335 5.8002 .9668 −3.6998 3.6335 −2.1998 −1.8665 −4.8665 1.3002 1.1335 3.8002 j=3 −3.2045 .1288 4.2955 −1.5378 1.7955 .1288 −.7045 4.6288 .6288 −3.2045 .6288 3.2955 j=4 1.6591 1.9925 −3.8409 .3258 .6591 −4.0075 −2.8409 −2.5075 −2.5075 2.6591 .4925 −1.8409 j=5 −2.4167 −3.0834 −1.9167 2.2499 1.5833 .9166 3.0833 .4166 3.4166 −.4167 1.4166 −.9167 j=6 3.4543 .7877 −1.0457 1.1210 2.4543 −.2123 3.9543 −2.7123 4.2877 −1.5457 −4.7123 −6.0457 H0 : γ3 = 0, Ha : γ3 6= 0. SSE(F ) = 483.0053, SSE(R) = 484.8980, F ∗ = (1.8927/1) ÷ (483.0053/57) = .223, F (.95; 1, 57) = 4.01. If F ∗ ≤ 4.01 conclude H0 , otherwise Ha . Conclude H0 . P -value = .64 27-2 27.6. a. eij : i 1 2 3 4 5 6 7 8 j=1 j=2 −1.2792 −.2417 −.8458 .6917 .6208 .0583 .5542 .1917 .5208 −.3417 −.1458 .3917 .9875 −.7750 −.4125 .0250 j=3 1.5208 .1542 −.6792 −.7458 −.1792 −.2458 −.2125 .3875 r = .992 d. H0 : D = 0, Ha : D 6= 0. SST R.S = 9.5725, SST R.S ∗ = 2.9410, SSRem∗ = 6.6315, F ∗ = (2.9410/1) ÷ (6.6315/13) = 5.765, F (.99; 1, 13) = 9.07. If F ∗ ≤ 9.07 conclude H0 , otherwise Ha . Conclude H0 . P -value = .032 27.7. a. Source SS df MS Stores 745.1850 7 106.4550 Prices 67.4808 2 33.7404 Error 9.5725 14 .68375 Total 822.2383 23 b. H0 : all τj equal zero (j = 1, 2, 3), Ha : not all τj equal zero. F ∗ = 33.7404/.68375 = 49.346, F (.95; 2, 14) = 3.739. If F ∗ ≤ 3.739 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. Ȳ.1 = 55.4375, Ȳ.2 = 53.6000, Ȳ.3 = 51.3375, L̂1 = Ȳ.1 − Ȳ.2 = 1.8375, L̂2 = Ȳ.1 − Ȳ.3 = 4.1000, L̂3 = Ȳ.2 − Ȳ.3 = 2.2625, s{L̂i } = .413446 (i = 1, 2, 3), q(.95; 3, 14) = 3.70, T = 2.616 1.8375 ± 2.616(.413446) 4.1000 ± 2.616(.413446) 2.2625 ± 2.616(.413446) d. 27.8. .756 ≤ L1 ≤ 2.919 3.018 ≤ L2 ≤ 5.182 1.181 ≤ L3 ≤ 3.344 Ê = 48.08 H0 : all τj equal zero (j = 1, ..., 6), Ha : not all τj equal zero. M ST R = 39.8583, M ST R.S = .2883, FR∗ = 39.8583/.2883 = 138.24, F (.99; 5, 25) = 3.855. If FR∗ ≤ 3.855 conclude H0 , otherwise Ha . Conclude Ha . 27.9. H0 : all τj equal zero (j = 1, 2, 3), Ha : not all τj equal zero. M ST R = 8, M ST R.S = 0, FR∗ = 8/0. Note: Nonparametric F test results in SST R.S = 0 and therefore should not be used. 27.10. a. H0 : all τj equal zero (j = 1, ..., 5), Ha : not all τj equal zero. M ST R = 15.8500, M ST R.S = 1.0167, FR∗ = 15.8500/1.0167 = 15.59, F (.95; 4, 36) = 2.63. If FR∗ ≤ 2.63 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 27-3 b. R̄.1 = 4.0, R̄.2 = 1.4, R̄.3 = 2.1, R̄.4 = 3.1, R̄.5 = 4.4, B = z(.995) = 2.576, B[r(r + 1)/6n]1/2 = 1.82 Group 1: B, C, D Group 2: A, D, E c. 27.11. a. W = .634 eijk : i 1 2 3 4 5 6 j=1 k=1 k=2 −1.9167 1.9167 −.4167 .4167 1.5833 −1.5833 .0833 −.0833 1.0833 −1.0833 −.4167 .4167 j=2 k=1 k=2 −2.3333 2.3333 .6667 −.6667 −.3333 .3333 .6667 −.6667 −.3333 .3333 1.6667 −1.6667 r = .994 27.12. a. Source SS df MS A (incentive stimulus) 975.38 1 975.38 S(A) 148.75 10 14.875 B (problem type) 513.37 1 513.37 AB interactions 155.04 1 155.04 B.S(A)(Error) 34.08 10 3.408 Total 1826.63 23 b. Ȳ.11 = 12.667, Ȳ.12 = 16.833, Ȳ.21 = 20.333, Ȳ.22 = 34.667 c. H0 : all (αβ)jk equal zero, Ha : not all (αβ)jk equal zero. F ∗ = 155.04/3.408 = 45.49, F (.95; 1, 10) = 4.96. d. If F ∗ ≤ 4.96 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ √ T = q(.95; 2, 10)/ 2 = 2.227, s2 {D̂} = 2(3.408)/6 = 1.136, s{D̂} = 1.0658 −4.17 ± 2.227(1.0658) −14.33 ± 2.227(1.0658) e. dfadj = −6.54 ≤ L1 ≤ −1.80 −16.70 ≤ L2 ≤ −11.96 √ [34.08 + 148.75]2 = 14.35, T = q(.95; 2, 14)/ 2 = 2.143 2 2 34.08 /10 + 148.75 /10 M S(Within Treatments)=(34.08+148.75)/20=9.1415 s2 {D̂} = 2(9.1415)/6 = 3.0472, s{D̂} = 1.7456 −7.67 ± 2.143(1.7456) −17.83 ± 2.143(1.7456) 27.13. a. −11.41 ≤ L1 ≤ −3.93 −21.57 ≤ L2 ≤ −14.09 eijk : 27-4 j=1 j=2 i=1 i=2 i=3 i=4 i=1 i=2 i=3 i=4 k=1 9.250 −11.750 7.750 −5.250 3.625 15.375 −8.375 −10.625 k=2 −8.750 −2.750 −5.250 16.750 −3.125 6.625 −3.125 −.375 k=3 1.250 15.250 5.750 −22.250 −13.875 7.875 −3.875 9.875 k=4 −1.750 −.750 −8.250 10.750 13.375 −29.875 15.375 1.125 r = .981 27.14. a. H0 : σ 2 {ρi(1) } = σ 2 {ρi(2) }, Ha : σ 2 {ρi(1) } 6= σ 2 {ρi(2) }. SSS(A1 ) = 1, 478, 757.00, SSS(A2 ) = 1, 525, 262.25, H ∗ = (1, 525, 262.25/3) ÷ (1, 478, 757.00/3) = 1.03, H(.99; 2, 3) = 47.5. If H ∗ ≤ 47.5 conclude H0 , otherwise Ha . Conclude H0 . b. H0 : σ 2 {²1jk } = σ 2 {²2jk }, Ha : σ 2 {²1jk } 6= σ 2 {²2jk }. SSB.S(A1 ) = 1, 653.00, SSB.S(A2 ) = 2, 172.25, H ∗ = (2, 172.25/9) ÷ (1, 653.00/9) = 1.31, H(.99; 2, 9) = 6.54. If H ∗ ≤ 6.54 conclude H0 , otherwise Ha . Conclude H0 . 27.15. a. Source SS df MS A (type display) 266, 085.1250 1 266, 085.1250 S(A) 3, 004, 019.2500 6 500, 669.8750 B (time) 53, 321.6250 3 17, 773.8750 AB interactions 690.6250 3 230.2083 Error 3, 825.2500 18 212.5139 Total 3, 327, 941.8750 31 b. Ȳ.11 = 681.500, Ȳ.12 = 696.500, Ȳ.13 = 671.500, Ȳ.14 = 785.500, Ȳ.21 = 508.500, Ȳ.22 = 512.250, Ȳ.23 = 496.000, Ȳ.24 = 588.750 c. H0 : all (αβ)jk equal zero, Ha : not all (αβ)jk equal zero. F ∗ = 230.2083/212.5139 = 1.08, F (.975; 3, 18) = 3.95. If F ∗ ≤ 3.95 conclude H0 , otherwise Ha . Conclude H0 . P -value = .38 d. H0 : α1 = α2 = 0, Ha : not both αj equal zero. F ∗ = 266, 085.1250/500, 669.8750 = .53, F (.975; 1, 6) = 8.81. If F ∗ ≤ 8.81 conclude H0 , otherwise Ha . Conclude H0 . P -value = .49 H0 : all βk equal zero (k = 1, ..., 4), Ha : not all βk equal zero. F ∗ = 17, 773.8750/212.5139 = 83.636, F (.975; 3, 18) = 3.95. If F ∗ ≤ 3.95 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 27-5 e. Ȳ.1. = 708.750, Ȳ.2. = 526.375, Ȳ..1 = 595.000, Ȳ..2 = 604.375, Ȳ..3 = 583.750, Ȳ..4 = 687.125, L̂1 = 182.375, L̂2 = −9.375, L̂3 = 20.625, L̂4 = −103.375, s{L̂1 } = 250.1674, s{L̂i } = 7.2889 (i = 2, 3, 4), B1 = t(.9875; 6) = 2.969, Bi = t(.9875; 18) = 2.445 (i = 2, 3, 4) 182.375 ± 2.969(250.1674) −9.375 ± 2.445(7.2889) 20.625 ± 2.445(7.2889) −103.375 ± 2.445(7.2889) 27.16. a. −560.372 ≤ L1 ≤ 925.122 −27.196 ≤ L2 ≤ 8.446 2.804 ≤ L3 ≤ 38.446 −121.196 ≤ L4 ≤ −85.554 eijk : i 1 2 3 4 5 6 j=1 k=1 k=2 −.05833 .05833 −.05833 .05833 −.03333 .03333 −.00833 .00833 .21667 −.21667 −.05833 .05833 j=2 k=1 k=2 .05833 −.05833 .05833 −.05833 .03333 −.03333 .00833 −.00833 −.21667 .21667 .05833 −.05833 r = .9685 27.17. a. Source SS df MS Subjects 1.0533 5 .2107 A (problem) 16.6667 1 16.6667 B (model) 72.1067 1 72.1067 AB 3.6817 1 3.6817 AS .5983 5 .1197 BS .1783 5 .0357 ABS .2333 5 .0467 Total 94.5183 23 b. Ȳ.11 = 3.367, Ȳ.12 = 7.617, Ȳ.21 = 2.483, Ȳ.22 = 5.167 c. H0 : all (αβ)jk equal zero, Ha : not all (αβ)jk equal zero. F ∗ = 3.6817/.0467 = 78.84, F (.99; 1, 5) = 16.3. If F ∗ ≤ 16.3 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. L̂1 = 4.250, L̂2 = 2.684, L̂3 = −1.566, s{L̂i } = .1248 (i = 1, 2), s{L̂3 } = .1765, B = t(.9917; 5) = 3.538 4.250 ± 3.538(.1248) 2.684 ± 3.538(.1248) −1.566 ± 3.538(.1765) 27.18. a. 3.808 ≤ L1 ≤ 4.692 2.242 ≤ L2 ≤ 3.126 −2.190 ≤ L3 ≤ −.942 eijk : 27-6 i 1 2 3 4 5 6 7 8 9 10 j=1 k=1 k=2 −.045 .045 −.120 .120 .080 −.080 −.045 .045 .080 −.080 .055 −.055 .030 −.030 −.045 .045 .055 −.055 −.045 .045 j=2 k=1 k=2 .045 −.045 .120 −.120 −.080 .080 .045 −.045 −.080 .080 −.055 .055 −.030 .030 .045 −.045 −.055 .055 .045 −.045 r = .973 27.19. a. Source Subjects A B AB AS BS ABS Total SS df MS 154.579 9 17.175 3.025 1 3.025 14.449 1 11.449 .001 1 .001 2.035 9 .226 5.061 9 .562 .169 9 .019 176.319 39 b. Ȳ.11 = 3.93, Ȳ.12 = 5.01, Ȳ.21 = 4.49, Ȳ.22 = 5.55 c. H0 : all (αβ)jk equal zero, Ha : not all (αβ)jk equal zero. F ∗ = .001/.019 = .05, F (.995; 1, 9) = 13.6. If F ∗ ≤ 13.6 conclude H0 , otherwise Ha . Conclude H0 . P -value = .82 d. H0 : α1 = α2 = 0, Ha : not both αj equal zero. F ∗ = 3.025/.226 = 13.38, F (.95; 1, 9) = 5.12. If F ∗ ≤ 13.6 conclude H0 , otherwise Ha . Conclude Ha . P -value = .005 H0 : β1 = β2 = 0, Ha : not both βk equal zero. F ∗ = 11.449/.562 = 20.36, F (.95; 1, 9) = 5.12. If F ∗ ≤ 13.6 conclude H0 , otherwise Ha . Conclude Ha . P -value = .001 e. L̂1 = .56, L̂2 = 1.08, L̂3 = −.52, L̂4 = 1.62, s{L̂i } = .0613 (i = 1, ..., 4), B = t(.99375; 9) = 3.11 .56 ± 3.11(.0613) 1.08 ± 3.11(.0613) −.52 ± 3.11(.0613) 1.62 ± 3.11(.0613) 27.20. a. .37 ≤ L1 ≤ .75 .89 ≤ L2 ≤ 1.27 −.71 ≤ L3 ≤ −.33 1.43 ≤ L4 ≤ 1.81 eijk : 27-7 i 1 j 1 2 2 1 2 3 1 2 4 1 2 5 1 2 r = .981 k=1 −.6 −1.7 .4 1.3 −.6 .3 .4 −.2 .4 .3 k=2 .6 1.7 −.4 −1.3 .6 −.3 −.4 .2 −.4 −.3 27.21. a. Source SS Whole plots Irrigation method (A) 1, 394.45 Whole-plot error 837.60 Split plots Fertilizer (B) AB Interactions Split-plot error Total df MS 1 1, 394.45 8 104.70 68.45 1 .05 1 12.00 8 2, 312.55 19 68.45 .05 1.50 b. Ȳ.11 = 35.4, Ȳ.21 = 52.2, Ȳ.12 = 39.2, Ȳ.22 = 55.8 c. H0 : all (αβ)jk equal zero, Ha : not all (αβ)jk equal zero. F ∗ = .05/1.50 = .033, F (.95; 1, 8) = 5.32. If F ∗ ≤ 5.32 conclude H0 , otherwise Ha . Conclude H0 . P -value = .86 d. H0 : α1 = α2 = 0, Ha : not both αj equal zero. F ∗ = 1, 394.45/104.70 = 13.32, F (.95; 1, 8) = 5.32. If F ∗ ≤ 5.32 conclude H0 , otherwise Ha . Conclude Ha . P -value = .006 H0 : β1 = β2 = 0, Ha : not both βk equal zero. F ∗ = 68.45/1.50 = 45.63, F (.95; 1, 8) = 5.32. If F ∗ ≤ 5.32 conclude H0 , otherwise Ha . Conclude Ha . P -value = .0001 e. Ȳ.1. = 37.3, Ȳ.2. = 54.0, Ȳ..1 = 43.8, Ȳ..2 = 47.5, L̂1 = −16.7, L̂2 = −3.7, s{L̂1 } = 4.5760, s{L̂2 } = .5477, B1 = t(.975; 8) = 2.306, B2 = t(.975; 8) = 2.306 −16.7 ± 2.306(4.5760) −3.7 ± 2.306(.5477) −27.252 ≤ L1 ≤ −6.148 −4.963 ≤ L2 ≤ −2.437 27.22. XX (Yij − Ȳ.. )2 = = = XX XX XX [(Yij − Ȳi. ) + (Ȳi. − Ȳ.. )]2 (Yij − Ȳi. )2 + XX (Yij − Ȳi. )2 + r 27-8 X (Ȳi. − Ȳ.. )2 + 2 (Ȳi. − Ȳ.. )2 XX (Yij − Ȳi. )(Ȳi. − Ȳ.. ) Cross-product term equals zero by argument similar to that given in Section 16.5. 27.23. j 1 2 3 4 5 6 j0 27.3333 20.8788 23.0909 19.1818 29.4242 23.4545 14.3182 30.9091 14.7273 18.3864 16.7273 12.6364 18.2727 11.1818 17.4545 17.0909 11.0455 16.4545 15.0227 16.8182 27.8409 j0 27.24. 1 29.6084 33.0114 34.0598 j 2 37.5886 38.7000 3 40.6255 27.25. a. b. Yij = µ.. + ρi + τj + ²(ij) eij : i 1 2 3 4 5 6 7 8 9 10 11 12 j=1 .02083 .00083 .00083 .04083 −.03167 .01833 −.00167 −.00167 −.02417 −.00417 .03333 −.05167 j=2 −.00917 −.00917 .00083 .02083 .04833 −.03167 −.00167 .00833 −.00417 −.04417 −.01667 .03833 j=3 .00833 −.00167 .00833 −.02167 −.04417 .05583 −.02417 −.01417 .02333 .02333 −.03917 .02583 j=4 −.02000 .01000 −.01000 −.04000 .02750 −.04250 .02750 .00750 .00500 .02500 .02250 −.01250 r = .994 27.26. a. Source Subjects Dosage Error Total b. SS df 1.80012 11 .72615 3 .03220 33 2.55847 47 MS .163647 .242050 .000976 H0 : all τj equal zero (j = 1, ..., 4), Ha : not all τj equal zero. F ∗ = .242050/.000976 = 248.0, F (.95; 3, 33) = 2.89. If F ∗ ≤ 2.89 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. Ȳ.1 = 1.03833, Ȳ.2 = 1.05833, Ȳ.3 = 1.06083, Ȳ.4 = .76917, L̂1 = Ȳ.1 − Ȳ.2 = −.02000, L̂2 = Ȳ.2 − Ȳ.3 = −.00250, L̂3 = Ȳ.3 − Ȳ.4 = .29166, s{L̂i } = .01275 (i = 1, 2, 3), B = t(.983; 33) = 2.22 27-9 −.02000 ± 2.22(.01275) −.00250 ± 2.22(.01275) .29166 ± 2.22(.01275) d. −.048 ≤ L1 ≤ .008 −.031 ≤ L2 ≤ .026 .263 ≤ L3 ≤ .320 Yij = µ.. + ρ1 Xij1 + ρ2 Xij2 + ρ3 Xij3 + ρ4 Xij4 + ρ5 Xij5 + ρ6 Xij6 +ρ7 Xij7 + ρ8 Xij8 + ρ9 Xij9 + ρ10 Xij10 + ρ11 Xij11 + γ1 xij + γ2 x2ij + ²ij Xij1 1 if experimental unit from subject 1 = −1 if experimental unit from subject 12 0 otherwise Xij2 , ..., Xij11 are defined similarly −.825 if −.325 if xij = .175 if .975 if experimental experimental experimental experimental unit unit unit unit received received received received treatment treatment treatment treatment 1 2 3 4 Ŷ = 1.06647 − .24917X1 − .26917X2 − .23917X3 − .12917X4 + .02333X5 − .09667X6 −.05667X7 +.13333X8 +.18583X9 +.21583X10 +.15833X11 −.11341x−.19192x2 e. eij : i j=1 j=2 1 .02976 −.03389 2 .00976 −.03389 3 .00976 −.02389 4 .04976 −.00389 5 −.02274 .02361 6 .02726 −.05639 7 .00726 −.02639 8 .00726 −.01639 9 −.01524 −.02889 10 .00476 −.06889 11 .04226 −.04139 12 −.04274 .01361 f. j=3 .02842 .01842 .02842 −.00158 −.02408 .07592 −.00408 .00592 .04342 .04342 −.01908 .04592 j=4 −.02429 .00571 −.01429 −.04429 .02321 −.04679 .02321 .00321 .00071 .02071 .01821 −.01679 H0 : γ2 = 0, Ha : γ2 6= 0. SSE(F ) = .0456, SSE(R) = .2816, F ∗ = (.2360/1) ÷ (.0456/34) = 175.96, F (.99; 1, 34) = 7.44. If F ∗ ≤ 7.44 conclude H0 , otherwise Ha . Conclude Ha . Note: The subscript for subjects here is l instead of the usual i and the subscripts for factors A, B, and C are i, j, and k, respectively. 27.27. a. Yijklm = µ.... + αi + βj + γk + ρl(ik) + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ²m(ijkl) b. r = .990 27.28. a. 27-10 Source SS df MS A (initial lever press rate) 7.99586 2 3.99793 B (dosage level) 25.90210 3 8.63403 C (reinforcement schedule) 59.74172 1 59.74172 AB interactions .35167 6 .05861 AC interactions .09465 2 .04733 BC interactions 12.36104 3 4.12035 ABC interactions .37040 6 .06173 S(AC) (rats, within AC) 1.64179 18 .09121 Error .36711 150 .00245 Total 108.82634 191 E{M SA} E{M SB} E{M SC} E{M SS(AC)} E{M SAB} E{M SAC} E{M SBC} E{M SABC} E{M SE} b. = = = = = = = = = P 64 αi2 /2 + 8σρ2 + σ 2 P 48 βj2 /3 + σ 2 P 96 γk2 /1 + 8σρ2 + σ 2 8σρ2 + σ 2 PP 16 (αβ)2ij /6 + σ 2 PP 32 (αγ)2ik /2 + 8σρ2 + σ 2 PP 24 (βγ)2jk /3 + σ 2 PPP 8 (αβγ)2ijk /6 + σ 2 σ2 H0 : all (αβγ)ijk equal zero, Ha : not all (αβγ)ijk equal zero. F ∗ = .06173/.00245 = 25.196, F (.99; 6, 150) = 2.92. If F ∗ ≤ 2.92 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. Ȳijk.. : k 1 i 1 2 3 j=1 j=2 j=3 .81375 .82375 .83625 1.05375 1.06625 1.05625 1.25500 1.25625 1.27125 j=4 .53500 .77375 1.00750 2 1 2.15125 2.33625 1.88750 2 2.59250 2.58375 2.21875 3 3.04750 2.75125 2.38125 .88125 1.01250 1.29250 27.29. a. FR∗ 0 .25 1.00 1.60 7.00 Undefined b. P (FR∗ ) 12/216 90/216 36/216 36/216 36/216 6/216 F (.90; 2, 4) = 4.32, P (FR∗ ≤ 7.00) = .972, P (FR∗ ≤ 1.60) = .806 27-11 27-12 Chapter 28 BALANCED INCOMPLETE BLOCK, LATIN SQUARE, AND RELATED DESIGNS 28.3. One such design, for which nb = 3, n = 2, and np = 1: 1 1 2 28.4. 2 3 3 For r = 7, rb = 5, a BIBD exists for nb = 7! = 21. 5!(7 − 5)! Since nb rb = nr, n = 21(5)/7 = 15. Since np (r − 1) = n(rb − 1), np = 15(5 − 1)/(7 − 1) = 10. 28.5. For r = 8, rb = 3, a BIBD exists for nb = 8! = 56. 3!(8 − 3)! Since nb rb = nr, n = 56(3)/8 = 21. Since np (r − 1) = n(rb − 1), np = 21(3 − 1)/(8 − 1) = 6. 28.6. eij : i j=1 j=2 j=3 1 −.704 2 .222 3 .556 4 −.481 5 −.926 6 7 8 .222 9 −.111 10 −.222 11 1.444 12 .370 .926 −1.296 j=4 .185 −.111 j=5 j=6 j=7 j=8 .519 −.111 .444 .741 −1.000 −.259 −.519 .481 .296 .037 .630 .815 −.667 .444 .667 .444 −.667 28-1 j=9 .259 −.556 −.222 −.778 −1.074 r = .990 28.7. a. µ̂.. = 19.36, τ̂ 1 = .33, τ̂ 2 = −2.22, τ̂ 3 = −6.00, τ̂ 4 = −12.89, τ̂ 5 = 6.11, τ̂ 6 = 3.56, τ̂ 7 = 1.22, τ̂ 8 = −.22, τ̂ 9 = 10.11. µ̂.1 = 19.69, µ̂.2 = 17.14, µ̂.3 = 13.36, µ̂.4 = 6.47, µ̂.5 = 25.47, µ̂.6 = 22.92, µ̂.7 = 20.58, µ̂.8 = 19.14, µ̂.9 = 29.47. b. H0 : all τj equal zero (j = 1, 2, . . . , 8), Ha : not all τj equal zero. SSE(F ) = 14.519, SSE(R) = 1097.33, F ∗ = (1082.811/8) ÷ (14.519/16) = 149.2, F (.95; 8, 16) = 2.59. If F ∗ ≤ 2.59 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ c. H0 : all ρi equal zero (j = 1, 2, . . . , 11), Ha : not all ρi equal zero. SSE(F ) = 14.519, SSE(R) = 25.25, F ∗ = (10.731/11) ÷ (14.519/16) = 1.08, F (.95; 11, 16) = 2.46. If F ∗ ≤ 2.46 conclude H0 , otherwise Ha . Conclude H0 . P -value = .43 d. µ̂.5 = 25.47, s2 (µ̂.5 ) = s2 (µ̂.. ) + s2 (τˆ5 ) = (.02778 + .29630).907 = .2939, B = t(.975; 16) = 2.120, 25.47 ± 2.120(.542), 24.32 ≤ µ.5 ≤ 26.62 e. 28-2 95% C.I. µ.1 − µ.2 µ.1 − µ.3 µ.1 − µ.4 µ.1 − µ.5 µ.1 − µ.6 µ.1 − µ.7 µ.1 − µ.8 µ.1 − µ.9 µ.2 − µ.3 µ.2 − µ.4 µ.2 − µ.5 µ.2 − µ.6 µ.2 − µ.7 µ.2 − µ.8 µ.2 − µ.9 µ.3 − µ.4 µ.3 − µ.5 µ.3 − µ.6 µ.3 − µ.7 µ.3 − µ.8 µ.3 − µ.9 µ.4 − µ.5 µ.4 − µ.6 µ.4 − µ.7 µ.4 − µ.8 µ.4 − µ.9 µ.5 − µ.6 µ.5 − µ.7 µ.5 − µ.8 µ.5 − µ.9 µ.6 − µ.7 µ.6 − µ.8 µ.6 − µ.9 µ.7 − µ.8 µ.7 − µ.9 µ.8 − µ.9 28.8. a. lower −.21 3.57 10.46 −8.54 −5.99 −3.66 −2.21 −12.54 1.01 7.90 −11.10 −8.54 −6.21 −4.77 −15.10 4.12 −14.88 −12.32 −9.99 −8.54 −18.88 −21.77 −19.21 −16.88 −15.43 −25.77 −.21 2.12 3.57 −6.77 −.43 1.01 −9.32 −1.32 −11.66 −13.10 center 2.56 6.33 13.22 −5.78 −3.22 −.89 .56 −9.78 3.78 10.67 −8.33 −5.78 −3.44 −2.00 −12.33 6.89 −12.11 −9.56 −7.22 −5.78 −16.11 −19.00 −16.44 −14.11 −12.67 −23.00 2.56 4.89 6.33 −4.00 2.33 3.78 −6.56 1.44 −8.89 −10.33 upper 5.32 9.10 15.99 −3.01 −.46 1.88 3.32 −7.01 6.54 13.43 −5.57 −3.01 −.68 .77 −9.57 9.66 −9.35 −6.79 −4.46 −3.01 −13.35 −16.23 −13.68 −11.35 −9.90 −20.23 5.32 7.66 9.10 −1.23 5.10 6.54 −3.79 4.21 −6.12 −7.57 eij : i 1 2 3 4 j=1 13.2083 −7.9167 −5.2917 j=2 8.8333 4.7083 −13.5417 j=3 −22.0417 −1.5417 23.5833 r = .995 28-3 j=4 3.2083 6.8333 −10.0417 28.9. a. µ̂.. = 297.667, τ̂ 1 = −45.375, τ̂ 2 = −41.000, τ̂ 3 = 30.875, τ̂ 4 = 55.500 µ̂.1 = 252.292, µ̂.2 = 256.667, µ̂.3 = 328.542, µ̂.4 = 353.167 b. H0 : τ1 = τ2 = τ3 = 0, Ha : not all τj equal zero. SSE(F ) = 1750.9, SSE(R) = 22480, F ∗ = (20729.1/3) ÷ (1750.9/5) = 19.73, F (.95; 3, 5) = 5.41. If F ∗ ≤ 5.41 conclude H0 , otherwise Ha . Conclude Ha . P -value = .003 c. H0 : ρ1 = ρ2 = ρ3 = 0, Ha : not all ρi equal zero. SSE(F ) = 14.519, SSE(R) = 22789, F ∗ = (21038.1/3) ÷ (1750.9/5) = 20.03, F (.95; 3, 5) = 5.41. If F ∗ ≤ 5.41 conclude H0 , otherwise Ha . Conclude Ha . P -value = .003 d. µ̂.1 = 252.292, s2 (µ̂.1 ) = s2 (µ̂.. ) + s2 (τˆ1 ) = (.08333 + .28125)350.2 = 127.68, B = t(.975; 5) = 2.571, 252.292 ± 2.571(11.30), 223.240 ≤ µ.1 ≤ 281.344 e. 95% C.I. µ.1 − µ.2 µ.1 − µ.3 µ.1 − µ.4 µ.2 − µ.3 µ.2 − µ.4 µ.3 − µ.4 28.10. lower center −64.19 −4.375 −136.07 −76.250 −160.69 −100.875 −131.70 −71.87 −156.30 −96.50 −84.44 −24.63 upper 55.44 −16.43 −41.06 −12.06 −36.68 35.19 r = 4, and rb = 3, dfe = 4n − 4 − 4n/3 + 1 = 8n/3 − 3. Since np = n(3 − 1)/(4 − 1) = 2n/3, σ 2 {D̂j } = 2σ 2 (3)/(4np ) = 9σ 2 /(4n) s 9σ 2 1 T σ{D̂j } = √ q[.95; 4, 8n/3 − 3] 4n 2 For σ 2 = 2.0 and T σ{D̂j } ≤ 1.5, so we need to iterate to find n so that n ≥ q 2 [.95; 4, 8n/3 − 3] We iteratively find n ≥ 15. Since design 2 in Table 28.1 has n = 3, we require that design 2 be repeated 5 times. Thus, n = 15, and nb = 20. 28.11. r = 5, and rb = 4, dfe = 5n − 5 − 5n/4 + 1 = 15n/4 − 4. Since np = n(4 − 1)/(5 − 1) = 3n/4, σ 2 {D̂j } = 2σ 2 (4)/(5np ) = 32σ 2 /(15n) s 32σ 2 1 T σ{D̂j } = √ q[.90; 5, 15n/4 − 4] 15n 2 2 For σ = 1.5 and T σ{D̂j } ≤ 1.25, so we need to iterate to find n so that n ≥ 1.024q 2 [.90; 5, 15n/4 − 4] We iteratively find n ≥ 14. Since design 5 in Table 28.1 has n = 4, we require that design 2 be repeated 4 times. Thus, n = 16, and nb = 20. 28.14. eijk : i 1 2 3 4 j=1 −.1375 −.0125 .1375 .0125 j=2 j=3 .0875 −.0125 −.0125 .1625 −.0875 −.0625 .0125 −.0875 j=4 .0625 −.1375 .0125 .0625 28-4 r = .986 28.15. a. Ȳ..1 = 1.725, Ȳ..2 = 1.900, Ȳ..3 = 2.175, Ȳ..4 = 2.425 b. Source SS df MS Rows (sales volumes) 5.98187 3 1.99396 Columns (locations) .12188 3 .04062 Treatments (prices) 1.13688 3 .37896 Error .11875 6 .01979 Total 7.35938 15 H0 : all τk equal zero (k = 1, ..., 4), Ha : not all τk equal zero. F ∗ = .37896/.01979 = 19.149, F (.95; 3, 6) = 4.76. If F ∗ ≤ 4.76 conclude H0 , otherwise Ha . Conclude Ha . P -value = .002 c. L̂1 = Ȳ..1 − Ȳ..2 = −.175, L̂2 = Ȳ..1 − Ȳ..3 = −.450, L̂3 = Ȳ..1 − Ȳ..4 = −.700, L̂4 = Ȳ..2 − Ȳ..3 = −.275, L̂5 = Ȳ..2 − Ȳ..4 = −.525, L̂6 = Ȳ..3 − Ȳ..4 = −.250, s{L̂i } = .09947 (i = 1, ..., 6), q(.90; 4, 6) = 4.07, T = 2.8779 −.175 ± 2.8779(.09947) −.450 ± 2.8779(.09947) −.700 ± 2.8779(.09947) −.275 ± 2.8779(.09947) −.525 ± 2.8779(.09947) −.250 ± 2.8779(.09947) −.461 ≤ L1 −.736 ≤ L2 −.986 ≤ L3 −.561 ≤ L4 −.811 ≤ L5 −.536 ≤ L6 28.16. a. Ê1 = 21.1617, Ê2 = 1.2631, Ê3 = 25.9390 28.17. eijk : i j=1 1 −.88 2 .32 3 .52 4 −.68 5 .72 r = .993 28.18. a. j=2 −.68 .12 −.68 1.92 −.68 j=3 .92 −.28 −1.08 .52 −.08 ≤ .111 ≤ −.164 ≤ −.414 ≤ .011 ≤ −.239 ≤ .036 j=4 j=5 .32 .32 .92 −1.08 .12 1.12 −.08 −1.68 −1.28 1.32 Ȳ..1 = 7.0, Ȳ..2 = 7.4, Ȳ..3 = 15.0, Ȳ..4 = 19.0, Ȳ..5 = 13.4 b. Source SS df MS Rows (executives) 220.16 4 55.040 Columns (months) 10.96 4 2.740 Treatments (reports) 527.36 4 131.840 Error 19.28 12 1.607 Total 777.76 24 H0 : all τk equal zero (k = 1, ..., 5), Ha : not all τk equal zero. F ∗ = 131.840/1.607 = 82.04, F (.99; 4, 12) = 5.41. If F ∗ ≤ 5.41 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ 28-5 c. L̂1 = Ȳ..1 − Ȳ..2 = −.4, L̂2 = Ȳ..1 − Ȳ..3 = −8.0, L̂3 = Ȳ..1 − Ȳ..4 = −12.0, L̂4 = Ȳ..1 − Ȳ..5 = −6.4, L̂5 = Ȳ..2 − Ȳ..3 = −7.6, L̂6 = Ȳ..2 − Ȳ..4 = −11.6, L̂7 = Ȳ..2 − Ȳ..5 = −6.0, L̂8 = Ȳ..3 − Ȳ..4 = −4.0, L̂9 = Ȳ..3 − Ȳ..5 = 1.6, L̂10 = Ȳ..4 − Ȳ..5 = 5.6, s{L̂i } = .8017 (i = 1, ..., 10), q(.95; 5, 12) = 4.51, T = 3.189 −.4 ± 3.189(.8017) −8.0 ± 3.189(.8017) −12.0 ± 3.189(.8017) −6.4 ± 3.189(.8017) −7.6 ± 3.189(.8017) −11.6 ± 3.189(.8017) −6.0 ± 3.189(.8017) −4.0 ± 3.189(.8017) 1.6 ± 3.189(.8017) 5.6 ± 3.189(.8017) −2.96 ≤ L1 ≤ 2.16 −10.56 ≤ L2 ≤ −5.44 −14.56 ≤ L3 ≤ −9.44 −8.96 ≤ L4 ≤ −3.84 −10.16 ≤ L5 ≤ −5.04 −14.16 ≤ L6 ≤ −9.04 −8.56 ≤ L7 ≤ −3.44 −6.56 ≤ L8 ≤ −1.44 −.96 ≤ L9 ≤ 4.16 3.04 ≤ L10 ≤ 8.16 28.19. a. Ê1 = 6.66, Ê2 = 1.14, Ê3 = 7.65 28.20. φ = 3.399, 1 − β ∼ = .99 28.21. φ = 2.202, 1 − β ∼ = .69 28.22. eijkl : i 1 2 3 4 j=1 .01625 .00625 −.00875 −.01375 j=2 −.01875 .01875 −.03125 .03125 j=3 .01625 −.05375 .03375 .00375 j=4 −.01375 .02875 .00625 −.02125 r = .980 28.23. a. Yijkl = µ... + ρi + κj + αk + βl + (αβ)kl + ²(ijkl) b. Source SS df Rows (subjects) .03462 3 Columns (periods) .00592 3 Treatments .43333 3 X .22801 1 Y .19581 1 XY interactions .00951 1 Error .00904 6 Total .48291 15 MS .01154 .00197 .14444 .22801 .19581 .00951 .00151 H0 : all (αβ)kl equal zero, Ha : not all (αβ)kl equal zero. F ∗ = .00951/.00151 = 6.298, F (.90; 1, 6) = 3.78. If F ∗ ≤ 3.78 conclude H0 , otherwise Ha . Conclude Ha . P -value = .046 c. Ȳ..1 = .0050, Ȳ..2 = .1950, Ȳ..3 = .1775, Ȳ..4 = .4650, L̂ = −.0975, s{L̂} = .03886, t(.95; 6) = 1.943, −.0975 ± 1.943(.03886), −.1730 ≤ L ≤ −.0220 28-6 28.24. a. Yijk = µ... + ρ1 Xijk1 + ρ2 Xijk2 + ρ3 Xijk3 + κ1 Xijk4 + κ2 Xijk5 +κ3 Xijk6 + τ1 Xijk7 + τ2 Xijk8 + τ3 Xijk9 + ²(ijk) Xijk1 1 if experimental unit from row blocking class 1 = −1 if experimental unit from row blocking class 4 0 otherwise Xijk2 and Xijk3 are defined similarly Xijk4 1 if experimental unit from column blocking class 1 = −1 if experimental unit from column blocking class 4 0 otherwise Xijk5 and Xijk6 are defined similarly Xijk7 1 if experimental unit received treatment 1 −1 if experimental unit received treatment 4 = 0 otherwise Xijk8 and Xijk9 are defined similarly b. Full model: Ŷ = 2.05625 − .70625X1 − .45625X2 + .34375X3 + .14375X4 −.05625X5 − .00625X6 − .33125X7 − .15625X8 + .11875X9 SSE(F ) = .1188 Reduced model: Ŷ = 2.05625 − .70625X1 − .45625X2 + .34375X3 + .14375X4 − .05625X5 − .00625X6 SSE(R) = 1.2556 H0 : all τk equal zero (k = 1, 2, 3), Ha : not all τk equal zero. F ∗ = (1.1368/3) ÷ (.1188/6) = 19.138, F (.95; 3, 6) = 4.76. If F ∗ ≤ 4.76 conclude H0 , otherwise Ha . Conclude Ha . c. L̂ = τ̂ 3 − (−τ̂ 1 − τ̂ 2 − τ̂ 3 ) = 2τ̂ 3 + τ̂ 1 + τ̂ 2 = −.250, s2 {τ̂ i } = .00371 (i = 1, 2, 3), s{τ̂ 1 , τ̂ 2 } = s{τ̂ 1 , τ̂ 3 } = s{τ̂ 2 , τ̂ 3 } = −.00124, s{L̂} = .09930, t(.975; 6) = 2.447, −.250 ± 2.447(.09930), −.493 ≤ L ≤ −.007 d. (i) Full model: Ŷ = 2.02917 − .67917X1 − .53750X2 + .37083X3 + .17083X4 − .02917X5 −.08750X6 − .30417X7 − .23750X8 + .14583X9 SSE(F ) = .0483 Reduced model: Ŷ = 2.05556 − .70556X1 − .45833X2 + .34444X3 + .14444X4 − .05556X5 − .00833X6 SSE(R) = 1.2556 H0 : all τk equal zero (k = 1, 2, 3), Ha : not all τk equal zero. F ∗ = (1.2073/3) ÷ (.0483/5) = 41.66, F (.95; 3, 5) = 5.41. If F ∗ ≤ 5.41 conclude H0 , otherwise Ha . Conclude Ha . 28-7 (ii) L̂ = τ̂ 1 − τ̂ 2 = −.06667, s2 {τ̂ 1 } = .00191, s2 {τ̂ 2 } = .00272, s{τ̂ 1 , τ̂ 2 } = −.00091, s{L̂} = .0803, t(.975; 5) = 2.571, −.06667 ± 2.571(.0803), −.273 ≤ L ≤ .140 28.25. a. Full model: Ŷ = 12.54286 + 1.91429X1 − 3.54286X2 + 3.25714X3 − 3.28571X4 + 1.11429X5 −.34286X6 − .94286X7 − .74286X8 − 5.54286X9 −5.14286X10 + 3.11329X11 + 6.71429X12 SSE(F ) = 12.6286 Reduced model: Ŷ = 11.96471 + .44706X1 − 2.96471X2 + 3.83529X3 − 3.55294X4 − .35294X5 +.23529X6 − .36471X7 − .16471X8 SSE(R) = 494.2353 H0 : all τk equal zero (k = 1, ..., 4), Ha : not all τk equal zero. F ∗ = (481.6067/4) ÷ (12.6286/10) = 95.340, F (.99; 4, 10) = 5.99. If F ∗ ≤ 5.99 conclude H0 , otherwise Ha . Conclude Ha . b. 28.26. L̂ = τ̂ 4 − τ̂ 1 = 12.25715, s2 {τ̂ 1 } = .20927, s2 {τ̂ 4 } = .28144, s{τ̂ 1 , τ̂ 4 } = −.06134, s{L̂} = .7832, t(.995; 10) = 3.169, 12.25715 ± 3.169(.7832), 9.775 ≤ L ≤ 14.739 eijkm : i 1 2 3 4 m 1 2 1 2 1 2 1 2 j=1 −1.9375 1.0625 −3.6875 2.3125 −4.0625 2.9375 −.3125 3.6875 j=2 −1.5625 3.4375 6.0625 .0625 1.1875 −4.8125 .3125 −4.6875 j=3 .6875 −2.3125 −1.1875 −5.1875 −.6875 4.3125 .1875 4.1875 j=4 1.3125 −.6875 3.8125 −2.1875 4.0625 −2.9375 −2.6875 −.6875 r = .990 28.27. a. Yijklm = µ... + ρi + κj + αk + βl + (αβ)kl + ²m(ijkl) b. Source SS df Rows (ages) 658.09375 3 Columns (education levels) 18.34375 3 Treatments 1, 251.34375 3 Volumes 399.03125 1 Products 850.78125 1 Volume-product interactions 1.53125 1 Error 285.43750 22 Total 2, 213.21875 31 28-8 MS 219.36458 6.11458 417.11458 399.03125 850.78125 1.53125 12.97443 H0 : all (αβ)kl equal zero, Ha : not all (αβ)kl equal zero. F ∗ = 1.53125/12.97443 = .118, F (.99; 1, 22) = 7.95. If F ∗ ≤ 7.95 conclude H0 , otherwise Ha . Conclude H0 . P -value = .73 c. H0 : α1 = α2 = 0, Ha : not both α1 and α2 equal zero. F ∗ = 399.03125/12.97443 = 30.755, F (.99; 1, 22) = 7.95. If F ∗ ≤ 7.95 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : β1 = β2 = 0, Ha : not both β1 and β2 equal zero. F ∗ = 850.78125/12.97443 = 65.574, F (.99; 1, 22) = 7.95. If F ∗ ≤ 7.95 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ d. Ȳ..1. = 61.750, Ȳ..2. = 69.250, Ȳ..3. = 72.500, Ȳ..4. = 79.125, µ..1 + µ..3 µ..2 + µ..4 L1 = − 2 2 µ..1 + µ..2 µ..3 + µ..4 L2 = − 2 2 L̂1 = −7.0625, L̂2 = −10.3125, s{L̂1 } = s{L̂2 } = 1.2735, B = t(.9875; 22) = 2.4055 −7.0625 ± 2.4055(1.2735) −10.3125 ± 2.4055(1.2735) 28.28. −10.126 ≤ L1 ≤ −3.999 −13.376 ≤ L2 ≤ −7.249 eijkm : i=1 i=2 i=3 m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3 j=1 4.3704 −3.6296 −2.2963 −.9630 1.0370 2.0370 −3.5185 .1481 2.8148 j=2 −2.7407 1.2593 3.5926 −1.1852 −1.1852 1.8148 −.8519 3.8148 −4.5185 j=3 −1.6296 2.3704 −1.2963 2.1481 .1481 −3.8519 4.3704 −3.9630 1.7037 r = .986 28.29. a. Source SS df MS Patterns 14.2963 2 7.1481 Order positions 1, 803.6296 2 901.8148 Questionnaires 3, 472.0741 2 1, 736.0370 Subjects (within patterns) 159.5556 6 26.5926 Error 194.9630 14 13.9259 Total 5, 644.5185 26 H0 : all ρi equal zero (i = 1, 2, 3), Ha : not all ρi equal zero. F ∗ = 7.1481/26.5926 = .269, F (.95; 2, 6) = 5.14. If F ∗ ≤ 5.14 conclude H0 , otherwise Ha . Conclude H0 . P -value = .77 28-9 H0 : all κj equal zero (j = 1, 2, 3), Ha : not all κj equal zero. F ∗ = 901.8148/13.9259 = 64.758, F (.95; 2, 14) = 3.74. If F ∗ ≤ 3.74 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ H0 : all τk equal zero (k = 1, 2, 3), Ha : not all τk equal zero. F ∗ = 1, 736.0370/13.9259 = 126.66, F (.95; 2, 14) = 3.74. If F ∗ ≤ 3.74 conclude H0 , otherwise Ha . Conclude Ha . P -value = 0+ b. Ȳ..1. = 22.3333, Ȳ..2. = 22.4444, Ȳ..3. = 46.4444, L̂1 = Ȳ..1. − Ȳ..2. = −.1111, L̂2 = Ȳ..1. − Ȳ..3. = −24.1111, L̂3 = Ȳ..2. − Ȳ..3. = −24.0000, s{L̂i } = 1.75916 (i = 1, 2, 3), q(.90; 3, 14) = 3.16, T = 2.234 −.1111 ± 2.234(1.75916) −24.1111 ± 2.234(1.75916) −24.0000 ± 2.234(1.75916) −4.0411 ≤ µ..1 − µ..2 ≤ 3.8189 −28.0411 ≤ µ..1 − µ..3 ≤ −20.1811 −27.9300 ≤ µ..2 − µ..3 ≤ −20.0700 28-10 Chapter 29 EXPLORATORY EXPERIMENTS – TWO-LEVEL FACTORIAL AND FRACTIONAL FACTORIAL DESIGNS 29.1. Yi = β0 Xi0 + β1 Xil + β2 Xi2 + β3 Xi3 + β4 Xi4 + β12 Xi12 + β13 Xi13 +β14 Xi14 + β23 Xi23 + β24 Xi24 + β34 Xi34 + β123 Xi123 +β124 Xi124 + β134 Xi134 + β234 Xi234 + β1234 Xi1234 + ²i 6, 4, 1 29.2. Fractional factorial designs can be used. 29.3. a. Six factors, two levels, 64 trials b. 29.4. a. b. No Seven factors, two levels, 8 trials; no Yes, no 29.5. X0 1 1 1 1 1 1 1 1 X1 −1 1 −1 1 −1 1 −1 1 X2 −1 −1 1 1 −1 −1 1 1 X3 −1 −1 −1 −1 1 1 1 1 X12 X13 X23 X123 1 1 1 −1 −1 −1 1 1 −1 1 −1 1 1 −1 −1 −1 1 −1 −1 1 −1 1 −1 −1 −1 −1 1 −1 1 1 1 1 29-1 0 X X = 29.6. a. 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 = 8I = nT I σ 2 {b1 } = σ 2 /nT = 52 /64 = .391. Yes, yes b. z(.975) = 1.96, nT = [1.96(5)/(.5)]2 = 384.16, 384.16/64 = 6 replicates 29.7. a. Yi = β0 Xi0 + β1 Xi1 + · · · + β5 Xi5 + β12 Xi12 + · · · + β45 Xi45 + β123 Xi123 + · · · +β345 Xi345 + β1234 Xi1234 + · · · + β2345 Xi2345 + β12345 Xi12345 + ²i Coef. b0 b1 b2 b3 b4 b5 b12 b13 29.8. a. bq 6.853 1.606 −.099 1.258 −1.151 −1.338 −.033 .455 Coef. b14 b15 b23 b24 b25 b34 b35 b45 bq −.239 .611 −.134 −.127 −.045 −.311 .912 −.198 Coef. b123 b124 b125 b134 b135 b145 b234 b235 bq .070 .020 −.118 −.378 −.138 −.183 .233 .055 Coef. b245 b345 b1234 b1235 b1245 b1345 b2345 b12345 bq .076 −.576 .062 .323 .357 −.122 −.292 .043 Yi = β0 Xi0 + β1 Xi1 + · · · + β5 Xi5 + β12 Xi12 + · · · + β45 Xi45 + ²i Coef. b0 b1 b2 b3 b4 b5 b12 b13 bq 6.853 1.606 −.099 1.258 −1.151 −1.338 −.033 .455 P -value .000 .689 .000 .000 .000 .892 .080 Coef. b14 b15 b23 b24 b25 b34 b35 b45 bq P -value −.239 .340 .611 .023 −.134 .589 −.127 .610 −.045 .855 −.311 .219 .912 .002 −.198 .426 b. H0 : Normal, Ha : not normal. r = .983. If r ≥ .9656 conclude H0 , otherwise Ha . Conclude H0 . c. H0 : βq = 0, Ha : βq 6= 0. s{bq } = .2432. If P -value ≥ .0034 conclude H0 , otherwise Ha . Active effects (see part a): β1 , β3 , β4 , β5 , β35 29.9. a. Yi = β0 + β1 Xi1 + · · · + β4 Xi4 + β12 Xi12 + · · · + β34 Xi34 + β123 Xi123 + · · · +β234 Xi234 + β1234 Xi1234 + ²i 29-2 Coef. b0 b1 b2 b3 b4 b12 b13 b14 bq 3.7784 −.3113 −.0062 −.1463 .0837 .0050 .0400 .0025 P -value .020 .903 .083 .204 .922 .468 .961 Coef. b23 b24 b34 b123 b124 b134 b234 b1234 bq P -value −.0925 .176 .0125 .807 −.2175 .040 −.0087 .865 .0538 .354 −.0363 .505 −.0138 .788 .0050 .922 (Note: P -values based on M SP E; see part d.) d. q H0 : βq = 0, Ha : βq 6= 0. M SP E = .0324, s{bq } = .0324/16 = .0450. If P -value ≥ .05 conclude H0 , otherwise Ha . Active effects (see part a): β1 , β34 29.10. a. Coef. b0 b1 b3 b4 b34 bq 3.778 −.3112 −.1462 .0838 −.2175 P -value .000 .006 .084 .000 b. H0 : Normal, Ha : not normal. r = .970. If r ≥ .9485 conclude H0 , otherwise Ha . Conclude H0 . c. H0 : βq = 0, Ha : βq 6= 0. s{bq } = .0449. If P -value ≥ .01 conclude H0 , otherwise Ha . Active effects (see part a): β1 , β3 , β34 . d. H0 : No lack of fit, Ha : lack of fit. SSLF = SSE − SSP E = .45248 − .25617 = .19631. F ∗ = [.19631/4] ÷ (.25617/10) = 1.92, F (.95; 4, 10) = 3.48. If F ∗ ≤ 3.48 conclude H0 , otherwise Ha . Conclude H0 . e. Set X1 , X3 , X4 at high levels to minimize failure rate. 29.11. a. b. 0 = −234, resolution = III 0 = −234, 1 = −1234, 2 = −34, 3 = −24, 4 = −23, 12 = −134, 13 = −124, 14 = −123 29.12. a. X1 −1 1 −1 1 −1 1 −1 1 X2 −1 −1 1 1 −1 −1 1 1 X3 −1 −1 −1 −1 1 1 1 1 X4 −1 1 1 −1 1 −1 −1 1 Resolution = IV 29-3 b. 29.13. For example, dropping X1 and arranging in standard order: X2 X3 X4 −1 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 No 29.14. X1 1 −1 −1 1 1 −1 −1 1 Yes; X2 X3 X4 −1 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 use 0 = 1234 for resolution IV. 29.15. Defining relation: 0 = 123 = 245 = 1345 Confounding scheme: 0 = 123 = 245 = 1345 1 = 23 = 1245 = 345 2 = 13 = 45 = 12345 3 = 12 = 2345 = 145 4 = 1234 = 25 = 135 5 = 1235 = 24 = 134 14 = 234 = 125 = 35 15 = 235 = 124 = 34 Resolution = III, no 29.16. Defining relation: 0 = −145 = −234 = 1235 Confounding scheme: 0 = −145 = −234 = 1235 1 = −45 = −1234 = 235 2 = −1245 = −34 = 135 3 = −1345 = −24 = 125 4 = −15 = −23 = 12345 5 = −14 = −2345 = 123 12 = −245 = −134 = 35 13 = −345 = −124 = 25 29-4 No 29.17. Defining relation: 0 = 124 = 135 = 2345 = 236 = 1346 = 1256 = 456 X1 −1 1 −1 1 −1 1 −1 1 X2 −1 −1 1 1 −1 −1 1 1 X3 −1 −1 −1 −1 1 1 1 1 X4 1 −1 −1 1 1 −1 −1 1 X5 1 −1 1 −1 −1 1 −1 1 X6 1 1 −1 −1 −1 −1 1 1 Resolution = III 29.18. a. Defining relation: 0 = 1235 = 2346 = 1247 = 1456 = 3457 = 1367 = 2567, resolution = IV, no b. Omitting four-factor and higher-order interactions: 1 2 3 4 5 6 7 12 13 14 15 16 17 26 c. = = = = = = = = = = = = = = 235 135 125 127 123 137 124 35 25 27 23 37 24 34 = = = = = = = = = = = = = = 247 147 167 156 146 145 136 47 67 56 46 45 36 57 = = = = = = = 367 346 246 236 267 234 256 = = = = = = = 456 567 457 357 347 257 345 Yi = β0 Xi0 + β1 Xi1 + · · · + β7 Xi7 + β12 Xi12 + β13 Xi13 + β14 Xi14 +β15 Xi15 + β16 Xi16 + β17 Xi17 + β26 Xi26 + ²i Coef. b0 b1 b2 b3 b4 e. bq 8.028 .127 .003 .021 −2.077 Coef. b5 b6 b7 b12 b13 bq .724 −.467 −.766 .354 −.066 Coef. b14 b15 b16 b17 b26 bq −.316 .318 .117 .021 −.182 H0 : β12 = · · · = β17 = β26 = 0, Ha : not all βq = 0. F ∗ = (6.046/7) ÷ (.1958/1) = 4.41, F (.99; 7, 1) = 5, 928. If F ∗ ≤ 5, 928 conclude H0 , otherwise Ha . Conclude H0 . 29.19. a. 29-5 Coef. b0 b1 b2 b3 bq 8.028 .127 .003 .021 P -value .581 .989 .928 Coef. b4 b5 b6 b7 bq −2.077 .724 −.467 −.766 P -value .000 .011 .067 .008 b. H0 : Case i not an outlier, Ha : case i an outlier (i = 3, 14). t3 = 2.70, t14 = −4.09, t(.99844; 7) = 4.41. If | ti |≤ 4.41 conclude H0 , otherwise Ha . Conclude H0 for both cases. c. H0 : Normal, Ha : not normal. r = .938. If r ≥ .929 conclude H0 , otherwise Ha . Conclude H0 . d. H0 : βq = 0, Ha : βq 6= 0. s{bq } = .2208. If P -value ≥ .02 conclude H0 , otherwise Ha . Active effects (see part a): β4 , β5 , β7 e. Set X4 = −1, X5 = 1, X7 = −1 to maximize extraction. 29.20. a. Yi = β0 Xi0 + β1 Xi1 + · · · + β9 Xi9 + ²i Coef. b0 b1 b2 b3 b4 d. 29.21. a. bq P -value 70.11 13.52 .060 −.99 .870 1.32 .829 2.36 .701 Coef. b5 b6 b7 b8 b9 bq 13.49 .12 −21.58 −4.07 3.07 P -value .060 .984 .010 .512 .618 H0 : βq = 0, Ha : βq 6= 0. s{bq } = 5.841. If P -value ≥ .10 conclude H0 , otherwise Ha . Active effects (see part a): β1 , β5 , β7 . b0 = 70.11, b1 = 13.52, b5 = 13.49, b7 = −21.58 b. H0 : Normal, Ha : not normal. r = .951. If r ≥ .941 conclude H0 , otherwise Ha . Conclude H0 . c. H0 : No lack of fit, Ha : lack of fit. SSLF = SSE−SSP E = 3, 824−1, 068 = 2, 756, F ∗ = (2, 756/4) ÷ (1, 068/8) = 5.16, F (.95; 4, 8) = 3.84. If F ∗ ≤ 3.84 conclude H0 , otherwise Ha . Conclude Ha . 29.22. a. Yi = β0 Xi0 + β1 Xi1 + β5 Xi5 + β7 Xi7 + β15 Xi15 + β17 Xi17 +β57 Xi57 + β157 Xi157 + ²i Coef. b0 b1 b5 b7 bq 70.11 13.52 13.49 −21.58 P -value .000 .000 .000 Coef. b15 b17 b57 b157 bq P -value 11.68 .004 −1.32 .660 5.83 .078 .12 .968 H0 : βq = 0, Ha : βq = 6 0. s{bq } = 2.889. If P -value ≥ .01 conclude H0 , otherwise Ha . Active effects: β1 , β5 , β7 , β15 29.23. a. Defining relation: 0 = 134 Confounding scheme: 29-6 0 1 2 3 = = = = 134 34 1234 14 4 12 23 24 = 13 = 234 = 124 = 123 Yes. Defining relation 0 = 1234 would yield a resolution IV design. b. Yi = β0 Xi0 + β1 Xi1 + β2 Xi2 + β3 Xi3 + β4 Xi4 + β12 Xi12 +β23 Xi23 + β24 Xi24 + ²i Coef. b0 b1 b2 b3 bq 747.50 −207.25 −17.00 108.00 Coef. b0 b1 b2 b3 b4 bq 747.50 −207.25 −17.00 108.00 88.25 Coef. b4 b12 b23 b24 bq 88.25 −24.75 −29.00 −18.75 29.24. a. P -value .003 .538 .022 .037 H0 : βq = 0, Ha : βq = 6 0. s{bq } = 24.53. If P -value ≥ .05 conclude H0 , otherwise Ha . Active effects: β1 , β3 , β4 b. 29.25. Set X1 = −1, X3 = 1, X4 = 1 to maximize defect-free moldings. Confounding scheme for design: 0 1 2 3 4 5 23 25 = = = = = = = = 124 = 135 = 2345 24 = 35 = 12345 14 = 1235 = 345 1234 = 15 = 245 12 = 1345 = 235 1245 = 13 = 234 134 = 125 = 45 145 = 123 = 34 Design: Block 1 1 1 1 2 2 2 2 X1 −1 1 −1 1 −1 1 −1 1 X2 1 1 −1 −1 −1 −1 1 1 X3 −1 −1 1 1 −1 −1 1 1 X4 −1 1 1 −1 1 −1 −1 1 X5 1 −1 −1 1 1 −1 −1 1 29-7 = Block effect 29.26. b. The seven block effects are confounded with the following interaction terms: β135 , β146 , β236 , β245 , β1234 , β1256 , β3456 No, no c. Yi = β0 Xi0 + β1 Xi1 + · · · + β6 Xi6 + β12 Xi12 + · · · + β56 Xi56 + β123 Xi123 + · · · +β456 Xi456 + β1235 Xi1235 + · · · + β2456 Xi2456 + β12345 Xi12345 + · · · +β23456 Xi23456 + β123456 Xi123456 + α1 Zi1 + · · · + α7 Zi7 + ²i where α1 , ..., α7 are the block effects Coef. b0 b1 b2 b3 b4 b5 b6 b12 b13 b14 b15 b16 b23 b24 b25 b26 bq 63.922 2.297 5.797 2.172 2.359 2.828 2.922 .547 −.266 −.203 −.797 −.141 −.641 −1.141 .891 .047 Coef. b0 b1 b2 b3 b4 b5 b6 b12 b13 b14 b15 b16 b23 b24 b25 bq 63.922 2.297 5.797 2.172 2.359 2.828 2.922 .547 −.266 −.203 −.797 −.141 −.641 −1.141 .891 Coef. b34 b35 b36 b45 b46 b56 b123 b124 b125 b126 b134 b136 b145 b156 b234 b235 bq .297 .266 .984 −.422 −.141 .516 .422 .172 1.391 .984 .297 −.641 −.109 −.547 .234 .266 Coef. b246 b256 b345 b346 b356 b456 b1235 b1236 b1245 b1246 b1345 b1346 b1356 b1456 b2345 b2346 bq −.391 .078 −.672 .734 −.734 −.234 .578 .922 .453 .109 −.797 .547 −1.109 −.109 .328 −.578 Coef. b2356 b2456 b12345 b12346 b12356 b12456 b13456 b23456 b123456 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 bq .766 .203 −.297 −.391 −.734 −.422 −.109 .203 .016 −4.172 −.422 1.203 6.703 −.797 −1.047 −9.547 29.27. a. b. P -value .000 .000 .001 .000 .000 .000 .346 .645 .725 .172 .807 .270 .054 .128 Coef. b26 b34 b35 b36 b45 b46 b56 Block Block Block Block Block Block Block 1 2 3 4 5 6 7 bq .047 .297 .266 .984 −.422 −.141 .516 −4.172 −.422 1.203 6.703 −.797 −1.047 −9.547 P -value .935 .607 .645 .094 .466 .807 .373 .009 .782 .432 .000 .602 .494 .000 H0 : Normal, Ha : not normal. r = .989. If r ≥ .9812 conclude H0 , otherwise Ha . Conclude H0 . 29-8 c. H0 : βq = 0, Ha : βq 6= 0. s{α̂i } = 1.513 for block effects, s{bq } = .5719 for factor effects. If P -value ≥ .01 conclude H0 , otherwise Ha . Active effects (see part a): Block effects 1, 4, 7, all main effects 29.28. a. See Problem 29.27a for estimated factor and block effects. (These do not change with subset model.) b. Maximum team effectiveness is accomplished by setting each factor at its high level. c. Ŷh = 82.297, s{pred} = 4.857, t(.975; 50) = 2.009, 82.297 ± 2.009(4.857), 72.54 ≤ Yh(new) ≤ 92.05 29.29. a. b. Defining relation: 0 = 12345, resolution = V Yi = β0 Xi0 + β1 Xi1 + · · · + β5 Xi5 + β12 Xi12 + · · · + β35 Xi35 + α1 Zi1 + ²i where α1 is the block effect Coef. Coef. bq b0 113.18 b14 b1 26.69 b15 b2 −10.94 b23 b3 5.69 b24 b4 4.44 b25 b5 14.69 b34 b12 21.94 b35 b13 .56 Block effect d. bq −1.44 −2.94 1.44 5.19 2.94 −3.44 −.94 2.27 H0 : α1 = 0, Ha : α1 6= 0. s{α̂1 } = 3.673, t∗ = 2.27/3.673 = .62, (.975; 6) = 2.447. If | t∗ |≤ 2.447 conclude H0 , otherwise Ha . Conclude H0 . e. Coef. b0 b1 b2 b3 b4 b5 b12 b13 bq 113.18 26.69 −10.94 5.69 4.44 14.69 21.94 .56 P -value .000 .011 .094 .169 .003 .001 .847 Coef. b14 b15 b23 b24 b25 b34 b35 bq P -value −1.44 .625 −2.94 .336 1.44 .625 5.19 .119 2.94 .336 −3.44 .268 −.94 .748 (Note: P -values based on M SP E; see part f.) H0 : No lack of fit, Ha : lack of fit. SSLF = SSE − SSP E = 1, 894.4 − 609.5 = 1, 284.9, F ∗ = (1, 284.9/2)÷(609.5/5) = 5.270, F (.95; 2, 5) = 5.786. If F ∗ ≤ 5.786 conclude H0 , otherwise Ha . Conclude H0 . f. q H0 : βq = 0, Ha : βq 6= 0. M SP E = 121.90, s{bq } = 121.90/16 = 2.760. If P -value ≥ .025 conclude H0 , otherwise Ha . Active effects (see part a): β1 , β2 , β5 , β12 29.30. a. 29-9 Coef. b0 b1 b2 bq 113.18 26.69 −10.94 Coef. b5 b12 bq 14.69 21.94 b. H0 : Normal, Ha : not normal. r = .961. If r ≥ .954 conclude H0 , otherwise Ha . Conclude H0 c. Set factors 1, 2, 5 at their high levels to maximize whippability. d. Ŷh = 165.56, s{Ŷh } = 8.03, t(.975; 17) = 2.110, 165.56 ± 2.110(8.03), 148.62 ≤ E{Yh } ≤ 182.50 29.31. a. i 1 2 3 s2i 1.244 1.299 1.103 loge s2i .218 .261 .098 i s2i loge s2i 4 5 6 7 8 .992 1.966 1.916 1.589 1.576 −.008 .676 .650 .463 .455 9 10 11 12 13 14 2.201 1.818 1.901 1.547 1.681 1.020 .789 .598 .642 .437 .520 .020 15 16 1.033 1.151 .033 .141 b. ds2 = .3746−.0553X −.0919X −.0048X +.0229X +.0289X +.0021X − log i1 i2 i3 i4 i12 i13 e i .0432Xi14 −.0048Xi23 +.0077Xi24 −.2142Xi34 +.0493Xi123 +.0453Xi124 −.0016Xi134 − .0024Xi234 + .0284Xi1234 X34 appears to be active. c. v̂i = 1.17395 (for i = 1, 2, 3, 4, 13, 14, 15, 16) v̂i = 1.80173 (for i = 5, . . . , 12) d. Ŷi = 3.7082 − .3754Xi1 e. From location model: X1 = +1; and from location model: (X3 , X4 ) = (−1, −1) or (+1, +1) From dispersion model: sˆ2 = exp(.3746 − .2142) = 1.17395, f. and a 95% P.I. is (exp(.0453), exp(.2755)), or (1.0463, 1.3172). g. Md SE = 1.17395 + 3.3332 = 12.284 29.32. a. i 1 s2i .0164 loge s2i −4.109 2 .0173 −4.058 3 4 .0804 .1100 −2.521 −2.207 5 6 .0010 .0079 −6.949 −4.838 7 .0953 −2.351 8 .1134 −2.176 b. ds2 = −3.651 + .331X + 1.337X − .427X − .275X − .209X + .240X + log i1 i2 i3 i4 i12 i13 e i .477Xi14 . X2 appears to be active. c. v̂i = .00682 (for i = 1, 2, 5, 6) v̂i = .0989 (for i = 3, 4, 7, 8) d. Ŷi = 7.5800 + .0772Xi1 29-10 e. f. From the location model: X1 = +1; from the dispersion model: X2 = −1 From dispersion model: sˆ2 = exp(−3.651 + 1.337(−1)) = .006819, and a 95% P.I. is (exp(−6.169), exp(−3.808)), or (.0021, .0222). g. Md SE = .00682 + (8 − 7.657)2 = .124 From (2.51), SSR(Xq ) = b2q 29.33. SSR(Xq ) = b2q P P Xiq2 = b2q (Xiq − X̄q )2 . For coding in (29.2a), X̄q = 0. Then: n T P (±1)2 = nT b2q i=1 29.34. a. E{β̂ 1 } b. Let: = E{(X01 X1 )−1 X01 Y} = (X01 X1 )−1 X01 E{Y} = (X01 X1 )−1 X01 (X1 β 1 + X2 β 2 ) = β 1 + (X01 X1 )−1 X01 X2 β 2 = β 1 + Aβ 2 β1 = Then: X1 = and: A= β0 β1 β2 β3 β12 β 2 = β13 β23 1 1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 X2 = The results follow from E{b1 } = β 1 + Aβ 2 . 29-11 −1 −1 1 −1 1 −1 1 −1 −1 1 1 1 29-12 Chapter 30 RESPONSE SURFACE METHODOLOGY Second block: 30.2. X1 X2 X3 X4 2 0 0 0 −2 0 0 0 0 2 0 0 0 −2 0 0 0 0 2 0 0 0 −2 0 0 0 0 2 0 0 0 −2 Any number of center points may be added to the second block. 30.7. a. 21 b. 5, 5, 10 c. 21, 27 30.8. 30-1 X1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 X2 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 X3 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 X4 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 X1 X2 X3 2 0 0 −2 0 0 0 2 0 0 −2 0 0 0 2 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X5 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 30.9. No, base design is resolution III. 30.10. α = [29−3 (1)/(1)]1/4 = 2.828 X4 0 0 0 0 0 0 2 −2 0 0 0 0 0 X5 0 0 0 0 0 0 0 0 2 −2 0 0 0 30.11. b. Coef. b0 b1 b2 b3 b12 d. Coef. b13 b23 b11 b22 b33 bq P -value 1.868 .190 .007 .195 .006 −.120 .039 .162 .020 bq −.038 −.062 .228 −.047 .028 P -value .471 .251 .044 .602 .757 H0 : βq = 0, Ha : βq 6= 0. s{bq } = .0431 (for linear effects), s{bq } = .0481 (for interaction effects), s{bq } = .0849 (for quadratic effects). If P -value ≥ .05 conclude H0 , otherwise Ha . Active effects (see part b): β1 , β2 , β3 , β12 , β11 30.12. a. Coef. b0 b1 b2 b. bq 1.860 .190 .195 Coef. b3 b12 b11 bq −.120 .162 .220 H0 : Normal, Ha : not normal. r = .947. If r ≥ .938 conclude H0 , otherwise Ha . Conclude H0 . 30.13. a. Coef. b0 b1 b2 bq 189.750 28.247 −.772 Coef. b12 b11 b22 bq 13.750 −18.128 −6.875 30-2 c. H0 : No lack of fit, Ha : lack of fit. SSLF = SSE − SSP E = 978.9 − 230.75 = 748.15, F ∗ = (748.15/3) ÷ (230.75/3) = 3.24, F (.99; 3, 3) = 29.5. If F ∗ ≤ 29.5 conclude H0 , otherwise Ha . Conclude H0 . e. (1.22, 1.16) f. Ŷh = 206.54, s{Ŷh } = 13.70, t(.975; 6) = 2.447, 206.54 ± 2.447(13.70), 173.0 ≤ E{Yh } ≤ 240.1. 30.14. a. Corner Points: X1 X2 −.707 −.707 .707 −.707 −.707 .707 .707 .707 Design Matrix: X1 X2 −.707 −.707 .707 −.707 −.707 .707 .707 .707 −1 0 1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b. 0 −1 (X X) = .125 0 0 −.125 −.125 0 0 .250 0 0 0 0 0 0 .250 0 0 0 −.125 0 0 .5 0 0 −.125 0 0 0 .5 0 0 0 0 0 0 1 30.15. a. X1 −1 1 −1 1 −1.414 1.414 0 0 X2 −1 −1 1 1 0 0 −1.414 1.414 X1 0 0 0 0 0 n0 = 5 30-3 X2 0 0 0 0 0 b. Variance function: .20 − .075X12 − .075X22 + .14375X14 + .14375X24 + .2875X12 X22 30.16. a. " b∗ = −2.077 .724 # s = 2.200 b. t X1 X2 1.5 −1.416 .494 2.5 −2.361 .823 3.5 −3.304 1.152 30.17. a. 13.519 ∗ b = 13.494 −21.581 s = 28.820 b. t X1 −1 −.469 −2 −.938 −3 −1.407 X2 X3 −.468 .749 −.936 1.498 −1.404 2.246 30.18. a. Design 1 2 3 Variance Function .6788 − .5116X + .1710X 2 − .02264X 3 + .001029X 4 .5266 − .4048X + .1475X 2 − .02012X 3 + .000914X 4 .6615 − .4504X + .1393X 2 − .01788X 3 + .0008129X 4 Design 1 2 3 V̄ .1993 .2037 .1869 b. Design 3 preferred c. Comparison EV Design 1 relative to design 2 1.02 Design 1 relative to design 3 .94 Design 2 relative to design 3 .92 1/.94 = 1.06 times d. Design 1 2 3 | (X0 X)−1 | 6.35057 x 10−7 4.70419 x 10−7 5.57533 x 10−7 30-4 Design 2 preferred e. Comparison ED Design 1 relative to design 2 .90 Design 1 relative to design 3 .96 Design 2 relative to design 3 1.06 1/.90 = 1.11 times 30.19. a. Design 2 is D-optimal b. Design 3 is V -optimal 30.20. a. c. d. e. f. Irregular Design V̄ 1 .5235 2 .8962 Design 1 preferred EV = 1.712, 1/1.712 = .584 times Design | (X0 X)−1 | 1 .393 2 1.567 Design 1 preferred ED = .794, 1/.794 = 1.26 times D-optimal design: | (X0 X)−1 |= .2998 X1 X2 Number of Replicates −1 −1 1 −.5 −1 1 −.5 0 1 .25 0 1 0 1 2 1 1 1 .5 1 2 No b. V -optimal design: V̄ = .4765 X1 X2 Number of Replicates −1 −1 1 −.5 −1 1 −.5 0 1 .25 0 1 0 1 1 .5 1 1 1 1 1 0 .25 2 30.21. a. 30-5 No 30-6 Appendix D: RULES FOR DEVELOPING ANOVA MODELS AND TABLES FOR BALANCED DESIGNS D.1. αi βj (αβ)ij ²k(ij) D.2. i R a 1 a 1 1 j R b b 1 1 1 k R n n n n 1 Variance σα2 σβ2 2 σαβ σ2 E{MSA} E{MSB} i j bn 0 0 an n n 1 1 E{MSAB} E{MSE} ij (ij)k 0 0 0 0 n 0 1 1 a. Model Term Coefficient Symbolic Product Term to be Squared Degrees of Freedom αi βj γk (αβ)ij (αγ)ik (βγ)jk (αβγ)ijk bcn acn abn cn bn an n i−1 j−1 k−1 ij − i − j + 1 ik − i − k + 1 jk − j − k + 1 ijk − ij − ik −jk + i + j + k − 1 ijkm − ijk Ȳi··· − Ȳ···· Ȳ·j·· − Ȳ···· Ȳ··k· − Ȳ···· Ȳij·· − Ȳi··· − Ȳ·j·· + Ȳ···· Ȳi·k· − Ȳi··· − Ȳ··k· + Ȳ···· Ȳ·jk· − Ȳ·j·· − Ȳ··k· + Ȳ···· Ȳijk· − Ȳij·· − Ȳi·k· − Ȳ·jk· +Ȳi··· + Ȳ·j·· + Ȳ··k· − Ȳ···· Yijkm − Ȳijk a−1 b−1 c−1 (a − 1)(b − 1) (a − 1)(c − 1) (b − 1)(c − 1) (a − 1)(b − 1)(c − 1) Yijkm − Ȳ···· abcn − 1 ²m(ijk) 1 Total D.1 abc(n − 1) b. αi βj γk (αβ)ij (αγ)ik (βγ)jk (αβγ)ijk ²m(ijk) D.3. i j k m R a 1 a a 1 1 a 1 1 R b b 1 b 1 b 1 1 1 R c c c 1 c 1 1 1 1 R n n n n n n n n 1 Variance σα2 σβ2 σγ2 2 σαβ 2 σαγ 2 σβγ 2 σαβγ σ2 A i bcn 0 0 nc nb 0 n 1 B j 0 nac 0 nc 0 na n 1 Expected Mean Square of −− C AB AC BC ABC k ij ik jk ijk 0 0 0 0 0 0 0 0 0 0 abn 0 0 0 0 0 nc 0 0 0 nb 0 nb 0 0 na 0 0 na 0 n n n n n 1 1 1 1 1 E (ijk)m 0 0 0 0 0 0 0 1 a. See Problem D.2a. b. αi βj γk (αβ)ij (αγ)ik (βγ)jk (αβγ)ijk ²m(ijk) D.4. i j k m F a 0 a a 1 1 a 1 1 R b b 1 b 1 b 1 1 1 R c c c 1 c 1 1 1 1 R n n n n n n n n 1 Vari- A ance i 2 σα bcn σβ2 0 2 σγ 0 2 σαβ nc 2 σαγ nb 2 σβγ 0 2 σαβγ n σ2 1 B j 0 nac 0 0 0 na 0 1 Expected Mean Square of −− C AB AC BC ABC k ij ik jk ijk 0 0 0 0 0 0 0 0 0 0 abn 0 0 0 0 0 nc 0 0 0 0 0 nb 0 0 na 0 0 na 0 0 n n 0 n 1 1 1 1 1 a. Model Symbolic Term Product βj αi(j) ²k(ij) j−1 ij − j ijk − ij Sum of Squares P an (Ȳ·j· − Ȳ··· )2 PP n (Ȳ − Ȳ·j· )2 P P P ij· (Yijk − Ȳij· )2 PPP Total (Yijk − Ȳ··· )2 Degrees of Freedom b−1 b(a − 1) ab(n − 1) abn − 1 b. βj αi(j) ²k(ij) j F b 0 1 1 i R a a 1 1 k R n n n 1 Vari- E{MSB} E{MSA(B)} ance j i(j) 2 an 0 σβ n n σα2 σ2 1 1 D.2 E{MSE} (ij)k 0 0 1 E (ijk)m 0 0 0 0 0 0 0 1 P E{MSB} = an βj2 b−1 2 + nσα2 + σ 2 E{MSE} = σ E{MSA(B)} = nσα2 + σ 2 c. MSA(B) D.5. a. Model Coef- Symbolic Term ficient Product ρi τj Error r nb i−1 j−1 Term to be Squared Degrees of Freedom Ȳi· − Ȳ·· Ȳ·j − Ȳ·· Remainder = Yij − Ȳi· − Ȳ·j + Ȳ·· n−1 r−1 Remainder = (r − 1)(nb − 1) Yij − Ȳ·· rnb − 1 Total b. ρi τj ²(ij) D.6. i F nb 0 nb 1 j F r r 0 1 Vari- E{MSBL} ance i 2 σρ r στ2 0 σ2 1 E{MSTR} E{MSE} j (ij) 0 0 nb 0 1 1 a. See Problem D.5a. b. ρi τj ²(ij) D.7. i F nb 0 nb 1 j R r r 1 1 Vari- E{MSBL} E{MSTR} ance i j 2 σρ r 0 στ2 0 nb σ2 1 1 E{MSE} (ij) 0 0 1 a. See Problem D.5a. b. ρi τj ²(ij) i R nb 1 nb 1 j F r r 0 1 Vari- E{MSBL} ance i 2 r σρ 0 στ2 σ2 1 E{MSTR} E{MSE} j (ij) 0 0 nb 0 1 1 D.3 D.8. a. Model Coef- Symbolic Term ficient Product ρi τj ²(ij) rm nb m m i−1 j−1 ηk(ij) 1 ijk − ij Term to be Squared Degrees of Freedom Ȳi·· − Ȳ··· Ȳ·j· − Ȳ··· Remainder = Ȳij· − Ȳi·· − Ȳ·j· + Ȳ··· Yijk − Ȳij· nb − 1 r−1 Remainder = (nb − 1)(r − 1) nb r(m − 1) Yijk − Ȳ··· nb rm − 1 Total P SSBL = rm (Ȳi·· − Ȳ··· )2 PP SSEE = m (Ȳ − Ȳi·· − Ȳ·j· + Ȳ··· )2 P ij· SSTR = nb m (Ȳ·j· − Ȳ··· )2 PPP SSOE = (Yijk − Ȳij· )2 b. ρi τj ²(ij) ηk(ij) i R nb 1 nb 1 1 j F r r 0 1 1 k R m m m m 1 Variance σρ2 στ2 σ2 ση2 E{MSBL} i rm 0 m 1 E{M ST R} j 0 nb m m 1 2 2 2 E{MSBL} = rmσP ρ + mσ + ση E{MSTR} = D.9. nb m r−1 τj2 E{MSEE} (ij) 0 0 m 1 E{MSOE} (ij)k 0 0 0 1 E{MSEE} = mσ 2 + ση2 + mσ 2 + ση2 E{MSOE} = ση2 a. Model Term Symbolic Product Sum of Squares Degrees of Freedom αi βj(k) γk (αγ)ik (αβ)ij(k) ²m(ijk) i−1 jk − k k−1 ik − i − k + 1 ijk − ik − jk + k ijkm − ijk bcn (Ȳi··· − Ȳ···· )2 PP an (Ȳ·jk· − Ȳ··k· )2 P abn (Ȳ··k· − Ȳ···· )2 PP bn (Ȳ − Ȳi··· − Ȳ··k· + Ȳ···· )2 P P P i·k· n (Ȳ − Ȳi·k· − Ȳ·jk· + Ȳ··k· )2 P P P P ijk· (Yijkm − Ȳijk· )2 a−1 c(b − 1) c−1 (a − 1)(c − 1) (a − 1)(b − 1)c abc(n − 1) Total P PPPP (Yijkm − Ȳ···· )2 D.4 abcn − 1 b. i αi βj(k) γk (αγ)ik (αβ)ij(k) ²m(ijk) j F a 0 a a 0 0 1 k R b b 1 b b 1 1 bcn P R c c 1 1 1 1 1 m R n n n n n n 1 Expected Mean Square of −− Vari- A B(C) C AC AB(C) E ance i j(k) k ik ij(k) m(ijk) σα2 bcn 0 0 0 0 0 σβ2 0 an an 0 0 0 2 σγ 0 0 abn 0 0 0 2 σαγ bn 0 0 bn 0 0 2 σαβ n 0 0 n n 0 2 σ 1 1 1 1 1 1 α2 2 2 E{MSA} = a−1 i + bnσαγ + nσαβ + σ2 E{MSB(C)} = anσβ2 + σ 2 2 E{MSC} = anσβ2 + abnσγ2 + σ E{MSAB(C)} = nσαβ + σ2 2 2 E{MSAC} = bnσαγ + nσαβ + σ2 E{MSE} = σ 2 D.10. eijk : k k k k k k k k k i=1 i=2 i=3 =1 =2 =3 =1 =2 =3 =1 =2 =3 j=1 −2.3333 1.6667 .6667 −.3333 1.6667 −1.3333 −1.6667 1.3333 .3333 j=2 j=3 .3333 −1.6667 −1.6667 .3333 1.3333 1.3333 2.3333 −1.0000 −.6667 .0000 −1.6667 1.0000 −1.6667 −1.3333 1.3333 .6667 .3333 .6667 r = .981 D.11. a. Source SS df MS Blocks 520.963 2 260.4815 Treatments 103.185 2 51.5925 Experimental error 5.259 4 1.3148 Observation error 45.333 18 2.5185 Total 674.741 26 b. H0 : all τj equal zero (j = 1, 2, 3), Ha : not all τj equal zero. F ∗ = 51.5925/1.3148 = 39.24, F (.95; 2, 4) = 6.94. If F ∗ ≤ 6.94 conclude H0 , otherwise Ha . Conclude Ha . P −value = .002. c. Ȳ·1· = 24.77778, Ȳ·2· = 20.00000, Ȳ·3· = 22.66667, L̂1 = Ȳ·1· − Ȳ·2· = 4.77778, L̂2 = Ȳ·1· − Ȳ·3· = 2.11111, L̂3 = Ȳ·2· − Ȳ·3· = −2.66667, s{L̂i } = .5405 (i = 1, 2, 3), q(.90; 3, 4) = 3.98, T = 2.8143 4.77778 ± 2.8143(.5405) D.5 3.257 ≤ L1 ≤ 6.299 2.11111 ± 2.8143(.5405) −2.66667 ± 2.8143(.5405) .590 ≤ L2 ≤ 3.632 − 4.188 ≤ L3 ≤ −1.146 d. σ̂ 2 = 0, σ̂ 2η = 2.5185 D.12. a. Model Term ρi αj βk (αβ)jk Error Coefficient ab sb sa s Symbolic Product i−1 j−1 k−1 jk − j − k + 1 Term to Be Squared Ȳi·· − Ȳ··· Ȳ·j· − Ȳ··· Ȳ··k − Ȳ··· Ȳ·jk − Ȳ·j· − Ȳ··k + Ȳ··· Remainder = Yijk − Ȳi·· − Ȳ·jk + Ȳ··· Degrees of Freedom s−1 a−1 b−1 (a − 1)(b − 1) Remainder = (s − 1)(ab − 1) Yijk − Ȳ··· abs − 1 Total b. i D.13. j F a a 0 a 0 1 k F b b b 0 0 1 Expected Mean Square of −− Vari- S A B AB Rem ance i j k jk (ijk) σρ2 ab 0 0 0 0 2 σα 0 sb 0 0 0 σβ2 0 0 sa 0 0 2 σαβ 0 0 0 s 0 2 σ 1 1 1 1 1 ρi αj βk (αβ)jk ²(ijk) R s 1 s s s 1 Model Term Coefficient Symbolic Product Term to Be Squared Degrees of Freedom αj βk (αβ)jk ρi(j) Error bs as s b j−1 k−1 jk − j − k + 1 ij − j Ȳ·j· − Ȳ··· Ȳ··k − Ȳ··· Ȳ·jk − Ȳ·j· − Ȳ··k + Ȳ··· Ȳij· − Ȳ·j· Remainder = Yijk − Ȳ·jk − Ȳij· + Ȳ·j· a−1 b−1 (a − 1)(b − 1) a(s − 1) Remainder = a(s − 1)(b − 1) Yijk − Ȳ··· abs − 1 a. Total D.6 b. αj βk (αβ)jk ρi(j) ²(ijk) j k i F a 0 a 0 1 1 F b b 0 0 b 1 R s s s s 1 1 Expected Mean Square of −− Vari- A B AB S(A) Rem ance j k jk i(j) (ijk) 2 σα bs 0 0 0 0 σβ2 0 as 0 0 0 2 σαβ 0 0 s 0 0 2 σρ b 0 0 b 0 σ2 1 1 1 1 1 D.14. Note: The subscript for subjects here is l instead of the usual i and the subscripts for factor A, B, and C are i, j, and k, respectively. a. Yijklm = µ···· + αi + βj + γk + ρl(ik) + (αβ)ij + (αγ)ik + (βγ)jk +(αβγ)ijk + ²m(ijkl) b. Model Term Coefficient Symbolic Product αi βj γk ρl(ik) (αβ)ij (αγ)ik (βγ)jk (αβγ)ijk bcrn acrn abrn abcn crn brn arn rn i−1 j−1 k−1 ikl − ik ij − i − j + 1 ik − i − k + 1 jk − j − k + 1 ijk − ik − jk −ij + i + j + k − 1 Error Term to Be Squared Ȳi···· − Ȳ····· Ȳ·j··· − Ȳ····· Ȳ··k·· − Ȳ····· Ȳi·kl· − Ȳi·k·· Ȳij··· − Ȳi···· − Ȳ·j··· + Ȳ····· Ȳi·k·· − Ȳi···· − Ȳ··k·· + Ȳ····· Ȳ·jk·· − Ȳ·j··· − Ȳ··k·· + Ȳ····· Ȳijk·· − Ȳi·k·· − Ȳ·jk·· − Ȳij··· +Ȳi···· + Ȳ·j··· + Ȳ··k·· − Ȳ····· Remainder = Yijklm − Ȳi·kl· − Ȳijk·· + Ȳi·k·· Total Yijklm − Ȳ····· SSA = bcrn SSB = acrn SSC = abrn etc. D.7 X (Ȳi···· − Ȳ····· )2 X X (Ȳ·j··· − Ȳ····· )2 (Ȳ··k·· − Ȳ····· )2 Degrees of Freedom a−1 b−1 c−1 ac(r − 1) (a − 1)(b − 1) (a − 1)(c − 1) (b − 1)(c − 1) (a − 1)(b − 1)(c − 1) Remainder = abcrn − acr − abc + ac abcrn − 1 c. αi βj γk ρl(ik) (αβ)ij (αγ)ik (βγ)jk (αβγ)ijk ²m(ijkl) αi βj γk ρl(ik) (αβ)ij (αγ)ik (βγ)jk (αβγ)ijk ²m(ijkl) i F a=3 0 a a 1 0 0 a 0 1 A i bcrn 0 0 bn 0 0 0 0 1 j F b=4 b 0 b b 0 b 0 0 1 B j 0 acrn 0 0 0 0 0 0 1 k F c=2 c c 0 1 c 0 0 0 1 l R r=4 r r r 1 r r r r 1 m R n=2 n n n n n n n n 1 Variance σα2 σβ2 σγ2 σρ2 2 σαβ 2 σαγ 2 σβγ 2 σαβγ σ2 Expected Mean Square of −− C S(AC) AB AC BC ABC k l(ik) ij ik jk ijk 0 0 0 0 0 0 0 0 0 0 0 0 abrn 0 0 0 0 0 bn bn 0 bn 0 0 0 0 crn 0 0 0 0 0 0 brn 0 0 0 0 0 0 arn 0 0 0 0 0 0 rn 1 1 1 1 1 1 E{MSA} = 64 X αi2 2 + 8σρ2 + σ 2 X βj2 + σ2 3 X γk2 E{MSC} = 96 + 8σρ2 + σ 2 1 E{MSS(AC)} = 8σρ2 + σ 2 E{MSB} = 48 E{MSAC} = E{MSBC} = E{MSABC} = E{MSE} = X X (αβ)2ij + σ2 6 X X (αγ)2ik 32 + 8σρ2 + σ 2 2 X X (βγ)2jk 24 + σ2 3 X X X (αβγ)2ijk 8 + σ2 6 σ2 E{MSAB} = 16 D.8 E m(ijkl) 0 0 0 0 0 0 0 0 1 D.15. ρi κj τk ²(ijk) i F r 0 r r 1 j F r r 0 r 1 k F r r r 0 1 Vari- E{MSROW} ance i 2 σρ r σκ2 0 στ2 0 2 σ 1 E{MSCOL} j 0 r 0 1 E{MSTR} k 0 0 r 1 E{MSE} (ijk) 0 0 0 1 D.16. ρi κj τk ²m(ijk) i F r 0 r r 1 j F r r 0 r 1 k F r r r 0 1 m R n n n n 1 Vari- E{MSROW} ance i 2 σρ rn 0 σκ2 2 στ 0 2 σ 1 P rn ρ2i E{MSROW} = σ + r−1 P rn κ2j 2 E{MSCOL} = σ + r−1 2 E{MSCOL} E{MSTR} j k 0 0 rn 0 0 rn 1 1 P rn τk2 E{MSTR} = σ + r−1 2 E{MSRem} = σ 2 D.17. ρi κj τk ηm(i) ²(ijkm) i j k m F r 0 r r 1 1 F r r 0 r r 1 F r r r 0 r 1 R n n n n 1 1 Variance σρ2 σκ2 στ2 ση2 σ2 Expected Mean Square of −− P O T R S(P ) Rem i j k m(i) (ijkm) rn 0 0 0 0 0 rn 0 0 0 0 0 rn 0 0 r 0 0 r 0 1 1 1 1 1 D.9 E{MSRem} m(ijk) 0 0 0 1
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf Linearized : No Create Date : 2004:06:24 17:50:04-06:00 Creator : TeX output 2004.06.24:1749 Modify Date : 2017:11:20 19:47:23-08:00 PDF Version : 1.6 XMP Toolkit : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39 Producer : dvipdfm 0.13.2c, Copyright © 1998, by Mark A. Wicks Metadata Date : 2011:10:01 10:46:45-05:00 Creator Tool : TeX output 2004.06.24:1749 Format : application/pdf Document ID : uuid:f800d8b8-92ba-4d58-b37b-af493fc7082b Instance ID : uuid:c216ab71-9123-42c2-b95a-5954cc547b9e Page Count : 298EXIF Metadata provided by EXIF.tools