S 102 DG4PS 893 04

User Manual: S-102

Open the PDF directly: View PDF PDF.
Page Count: 11

DownloadS-102 DG4PS 893 04
Open PDF In BrowserView PDF
DG4PSA_894_04.qxd

11/1/06

1:24 PM

Page 24

Lesson 4.1 • Triangle Sum Conjecture
Name

Period

Date

In Exercises 1–9, determine the angle measures.
1. p  ______, q  ______

2. x  ______, y  ______
28⬚

53⬚ x

y

q

p

82⬚

3. a  ______, b  ______
79⬚

17⬚

98⬚

a 50⬚ b

23⬚

31⬚

4. r  ______, s  ______,

5. x  ______, y  ______

6. y  ______

t  ______

100 ⫺ x
85⬚

t
s

x

100⬚

r

30 ⫹ 4x

y

y

7x

31⬚

7. s  ______

8. m  ______

9. mP  ______
c

s

b

35⬚

c

a

P
m

76⬚

a

10. Find the measure of QPT.

11. Find the sum of the measures of

the marked angles.

P

T

Q

S

R

12. Use the diagram to explain why

A and B are complementary.

13. Use the diagram to explain why

mA  mB  mC  mD.

A

D

B
E

C
B

C

24

CHAPTER 4

A

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

DG4PSA_894_04.qxd

11/1/06

1:24 PM

Page 25

Lesson 4.2 • Properties of Isosceles Triangles
Name

Period

Date

In Exercises 1–3, find the angle measures.
1. mT  ______

2. mG  ______

T

3. x  ______

A
x

110⬚

R

58⬚

I

G

N

In Exercises 4–6, find the measures.
4. mA  ______, perimeter

of ABC  ______
A

5. The perimeter of LMO

6. The perimeter of QRS is

is 536 m. LM  ______ ,
mM  ______

344 cm. mQ  ______ ,
QR  ______

M

y⫹

13 cm
a ⫹ 7 cm

68⬚

y

Q

210 m

102⬚ B

R

m

31 c

S
39⬚

a

x ⫹ 30⬚
L
163 m

x

O

C

7. a. Name the angle(s) congruent to DAB.

C

B

b. Name the angle(s) congruent to ADB.

D

A

 and BC
? Why?
c. What can you conclude about AD

8. x  _____, y  _____
4y

9. PR  QR and QS  RS.

If mRSQ  120°, what is
mQPR?

10. Use the diagram to explain

why PQR is isosceles.
Q

Q

70⬚

T

R
2x ⫹ y

79⬚ ⫺ x

P

R

S

55⬚

P
S

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

CHAPTER 4

25

DG4PSA_894_04.qxd

11/1/06

1:24 PM

Page 26

Lesson 4.3 • Triangle Inequalities
Name

Period

Date

In Exercises 1 and 2, determine whether it is possible to draw a triangle
with sides of the given measures. If it is possible, write yes. If it is not
possible, write no and make a sketch demonstrating why it is not possible.
1. 16 cm, 30 cm, 45 cm

2. 9 km, 17 km, 28 km

3. If 17 and 36 are the lengths of two sides of a triangle, what is the range

of possible values for the length of the third side?
In Exercises 4–6, arrange the unknown measures in order from greatest
to least.
4.

c

5.

b
18

13

71⬚

a

a

c

6.
32⬚

c

40⬚

d

b

b

61⬚

28⬚

20
a

7. x  _____

8. x  _____

x

9. What’s wrong with

this picture?

x
142⬚

C

66⬚

B
160⬚

158⬚
120⬚

A

10. Explain why PQS is isosceles.

Q

P

x

2x
S

R

In Exercises 11 and 12, use a compass and straightedge to construct a
triangle with the given sides. If it is not possible, explain why not.
11. A

C

A

CHAPTER 4

Q

Q

C

B

26

12. P

B

P

R
R

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

DG4PSA_894_04.qxd

11/1/06

1:24 PM

Page 27

Lesson 4.4 • Are There Congruence Shortcuts?
Name

Period

Date

In Exercises 1–3, name the conjecture that leads to each congruence.
1. PAT  IMT
A

S

I

D

and MST  AST

8

6

T

P

 bisects MA
, MT
  AT
,
3. TS

2. SID  JAN

I
9

9

A
8

M

N

M

6

S

T

J
A

In Exercises 4–9, name a triangle congruent to the given triangle and
state the congruence conjecture. If you cannot show any triangles to be
congruent from the information given, write “cannot be determined” and
redraw the triangles so that they are clearly not congruent.

4. M is the midpoint of AB

5. KITE is a kite with KI  TI.

.
and PQ

KIE   _____

APM   _____
P

6. ABC  _____
Y

A
C

T
B

Z
E

I

M

X

B

K

A

Q

7. MON  _____
N

8. SQR  _____

9. TOP  _____
y

Q

T

U

G

R
M

10

O

D

8

S
T

O

6

T

4
P

2
2

4

6

8

x

10

In Exercises 10–12, use a compass and a straightedge or patty paper and a
straightedge to construct a triangle with the given parts. Then, if possible,
construct a different (noncongruent) triangle with the same parts. If it is
not possible, explain why not.
10. S

11.

T
T

B

U

U

S

Discovering Geometry Practice Your Skills

12.

X

Y
X

Z

A
B

©2008 Kendall Hunt Publishing

C
C

X
CHAPTER 4

27

DG4PSA_894_04.qxd

11/1/06

1:25 PM

Page 28

Lesson 4.5 • Are There Other Congruence Shortcuts?
Name

Period

Date

In Exercises 1–6, name a triangle congruent to the given triangle and state
the congruence conjecture. If you cannot show any triangles to be congruent
from the information given, write “cannot be determined” and explain why.
1. PIT   _____

2. XVW   _____

P

E

B

W

V

O

3. ECD   _____
C

X
I

Y

T

 is the angle bisector
4. PS

5. ACN   _____

of QPR.

GQ  EQ.

Q

EQL   _____

C

R

D

6. EFGH is a parallelogram.

P

PQS   _____
P

A

Z

S

Q
A

R

N

7. The perimeter of QRS is 350 cm.
L

70

x

2x
125

M

H

Is TUV  WXV? Explain.

x ⫹ 55

Q

L

E

8. The perimeter of TUV is 95 cm.

Is QRS  MOL? Explain.

O

G

K

F

⫹

15

R

2x ⫺ 10

T

U
x

x ⫹ 25
V

40

S

W

X

In Exercises 9 and 10, construct a triangle with the given parts. Then, if
possible, construct a different (noncongruent) triangle with the same parts.
If it is not possible, explain why not.
9.

P

Q

Q
P

10.

A

B

A
C

28

CHAPTER 4

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

DG4PSA_894_04.qxd

11/1/06

1:25 PM

Page 29

Lesson 4.6 • Corresponding Parts of Congruent Triangles
Name

Period

Date

1. Give the shorthand name for each of the four triangle

congruence conjectures.
In Exercises 2–5, use the figure at right to explain why
each congruence is true. WXYZ is a parallelogram.
2. WXZ  YZX

3. WZX  YXZ

4. WZX  YXZ

5. W  Y

Z

Y

W

X

For Exercises 6 and 7, mark the figures with the given information. To
demonstrate whether the segments or the angles indicated are congruent,
determine that two triangles are congruent. Then state which conjecture
proves them congruent.
 and
6. M is the midpoint of WX
. Is YW
  ZX
? Why?
YZ

 is the bisector
7. ABC is isosceles and CD
  BD
? Why?
of the vertex angle. Is AD

X

C

Y
M

Z
W
A

In Exercises 8 and 9, use the figure at right to
write a paragraph proof for each statement.
  CF

8. DE

  FD

9. EC

A

B

D

D

C

E

F

B

10. TRAP is an isosceles trapezoid with TP  RA and PTR  ART.

  RP
.
Write a paragraph proof explaining why TA
P

T

A

R

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

CHAPTER 4

29

DG4PSA_894_04.qxd

11/1/06

1:25 PM

Page 30

Lesson 4.7 • Flowchart Thinking
Name

Period

Date

Complete the flowchart for each proof.
  SR
 and PQ
  SR

1. Given: PQ

S

R

  QR

Show: SP
P

Flowchart Proof

Q

Given
PQ  SR
__________________

__________________

PQS  ______

SP  QR

_________________

__________________

QS  ______
__________________

  KI

2. Given: Kite KITE with KE

I

 bisects EKI and ETI
Show: KT

K

Flowchart Proof

T
E

KE  KI
ETK  ITK

______________

_______________

__________________

KET  ______

KITE is a kite
______________

________________

Definition
of bisect
__________________

______________

3. Given: ABCD is a parallelogram
Show: A  C

D
A

C
B

Flowchart Proof

AB  CD
ABCD is a parallelogram

_____________

Definition of
___________

_________________________

Same segment

____________

_____________

______________
_____________

30

CHAPTER 4

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

DG4PSA_894_04.qxd

11/1/06

1:25 PM

Page 31

Lesson 4.8 • Proving Special Triangle Conjectures
Name

Period

Date

In Exercises 1–3, use the figure at right.

C

 is a median, perimeter ABC  60, and AC  22. AD  _____
1. CD
 is an angle bisector, and mA  54°. mACD  _____
2. CD
 is an altitude, perimeter ABC  42, mACD  38°, and AD  8.
3. CD
mB  _____, CB  _____

A

4. EQU is equilateral.

D

B

5. ANG is equiangular

mE  _____

and perimeter ANG  51.
AN  _____

,
6. ABC is equilateral, ACD is isosceles with base AC
perimeter ABC  66, and perimeter ACD  82.
Perimeter ABCD  _____

C
B

D
A

7. Complete a flowchart proof for this conjecture: In an isosceles triangle,

C

the altitude from the vertex angle is the median to the base.
  BC
 and altitude CD

Given: Isosceles ABC with AC
 is a median
Show: CD
A

Flowchart Proof

D

B

__________________
CD is an altitude
____________________

ADC and BDC
are right angles
Definition of altitude
AC  BC
Given

ADC  BDC

•••

__________________
A  ________
__________________

8. Write a flowchart proof for this conjecture: In an isosceles triangle, the

C

median to the base is also the angle bisector of the vertex angle.
  BC
 and median CD

Given: Isosceles ABC with AC
 bisects ACB
Show: CD
A

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

D

CHAPTER 4

B

31

DG4PSA_894_ans.qxd

11/1/06

10:37 AM

Page 99

LESSON 3.8 • The Centroid

LESSON 4.2 • Properties of Isosceles Triangles
1. mT  64°

1.

2. mG  45°

3. x  125°
4. mA  39°, perimeter of ABC  46 cm

C

5. LM  163 m, mM  50°
6. mQ  44°, QR  125

2.

7. a. DAB  ABD  BDC  BCD
b. ADB  CBD
  BC
 by the Converse of the AIA Conjecture.
c. AD

G

8. x  21°, y  16°
3. CP  3.3 cm, CQ  5.7 cm, CR  4.8 cm
R

9. mQPR  15°

10. mPRQ  55° by VA, which makes mP  55° by
the Triangle Sum Conjecture. So, PQR is isosceles
by the Converse of the Isosceles Triangle Conjecture.

LESSON 4.3 • Triangle Inequalities
10 cm

6 cm

1. Yes

C

P

2. No

5. PC  16, CL  8, QM  15, CR  14
Incenter
Circumcenter
Orthocenter
Centroid

9 km
28 km

4. (3, 4)

6. a.
c.
e.
g.

17 km

Q

8 cm

b. Centroid
d. Circumcenter
f. Incenter

3. 19  x  53

4. b  a  c

5. b  c  a

6. a  c  d  b

7. x  76°

8. x  79°

9. The interior angle at A is 60°. The interior angle at
B is 20°. But now the sum of the measures of the
triangle is not 180°.

3. a  78°, b  29°

10. By the Exterior Angles Conjecture,
2x  x  mPQS. So, mPQS  x. So, by the
Converse of the Isosceles Triangle Conjecture,
PQS is isosceles.

4. r  40°, s  40°, t  100°

11. Not possible. AB  BC  AC

5. x  31°, y  64°

12.

LESSON 4.1 • Triangle Sum Conjecture
1. p  67°, q  15°

7. s  28°
9. mP  a

2. x  82°, y  81°

6. y  145°
1
8. m  722°
10. mQPT  135°

P

Q

R

11. 720°
12. The sum of the measures of A and B is 90°
because mC is 90° and all three angles must be
180°. So, A and B are complementary.
13. mBEA  mCED because they are vertical
angles. Because the measures of all three angles in
each triangle add to 180°, if equal measures are
subtracted from each, what remains will be equal.

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

LESSON 4.4 • Are There Congruence Shortcuts?
1. SAA or ASA

2. SSS

4. BQM (SAS)

5. TIE (SSS)

3. SSS

ANSWERS

99

DG4PSA_894_ans.qxd

11/1/06

10:37 AM

Page 100

6. Cannot be determined, as shown by the figure.

9. All triangles will be congruent by ASA. Possible
triangle:

Y

R

C

A
Z

Q

P
B

10. All triangles will be congruent by SAA. Possible
procedure: Use A and C to construct B and
.
then copy A and B at the ends of AB

X

7. TNO (SAS)
8. Cannot be determined, as shown by the figure.

C

Q
U
R

A

B

T
S

LESSON 4.6 • Corresponding Parts of Congruent
Triangles

9. DOG (SAS)
10. Only one triangle because of SSS.

1. SSS, SAS, ASA, SAA

T
U

S

11. Two possible triangles.
A

, AIA Conjecture
 WX


3. WZ

, AIA Conjecture
 XY

4. ASA

5. CPCTC

  ZX
 by CPCTC.
6. YWM  ZXM by SAS. YW
  BD
 by CPCTC.
7. ACD  BCD by SAS. AD

A
B


2. YZ

B

C

C

12. Only one triangle because of SAS.

  CF
 (see Exercise 8).
9. Possible answer: DE
DEF  CFE because both are right angles,
  FE
 because they are the same segment. So,
EF
  FD
 by CPCTC.
DEF  CFE by SAS. EC

Z

X

8. Possible answer: DE and CF are both the distance
 and AB
. Because the lines are parallel,
between DC
  CF
.
the distances are equal. So, DE

Y

LESSON 4.5 • Are There Other Congruence Shortcuts?
1. Cannot be determined

10. Possible answer: It is given that TP  RA and
  RT
 because they
PTR  ART, and TR
are the same segment. So PTR  ART
  RP
 by CPCTC.
by SAS and TA

LESSON 4.7 • Flowchart Thinking
1. (See flowchart proof at bottom of page 101.)
2. XZY (SAA)

3. ACB (ASA or SAA)

2. (See flowchart proof at bottom of page 101.)

4. PRS (ASA)

5. NRA (SAA)

3. (See flowchart proof at bottom of page 101.)

6. GQK (ASA or SAA)
7. Yes, QRS  MOL by SSS.
 and WV
 are not
8. No, corresponding sides TV
congruent.

100

ANSWERS

LESSON 4.8 • Proving Special Triangle Conjectures
1. AD  8

2. mACD  36°

3. mB  52°, CB  13

4. mE  60°

5. AN  17

6. Perimeter ABCD  104

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

DG4PSA_894_ans.qxd

11/1/06

10:37 AM

Page 101

7. (See flowchart proof at bottom of page 102.)

3. 170°; 36 sides

4. 15 sides

8. Flowchart Proof

5. x  105°

6. x  18°

7. mE  150°

CD is a median
Given

C
110°

AC  BC

AD  BD

CD  CD

Given

Definition of
median

Same segment

B

70° D
125°
85°

A

150°
E

ADC  BDC

LESSON 5.2 • Exterior Angles of a Polygon

SSS Conjecture
ACD  BCD

1. 12 sides

2. 24 sides

CPCTC

5. a  64°, b  13823°

3. 4 sides

4. 6 sides

6. a  102°, b  9°

7. a  156°, b  132°, c 108°

CD bisects
ACB

8. a  135°, b  40°, c  105°, d  135°

Definition of
bisect

9.

LESSON 5.1 • Polygon Sum Conjecture
1. a  103°, b  103°, c  97°, d  83°, e  154°
2. a  92°, b  44°, c  51°, d  85°, e  44°, f  136°
Lesson 4.7, Exercises 1, 2, 3

1.

PQ  SR
Given
PQ  SR

PQS  RSQ

PQS  RSQ

SP  QR

Given

AIA Conjecture

SAS Conjecture

CPCTC

QS  QS
Same segment

2.

KE  KI
Given

ETK  ITK

KITE is a kite

TE  TI

KET  KIT

CPCTC

KT bisects EKI
and ETI

Given

Definition of
kite

SSS Conjecture

EKT  IKT

Definition of
bisect

CPCTC
KT  KT
Same segment

3.

ABD  CDB

ABCD is a parallelogram

AB  CD

AIA Conjecture

Definition of
parallelogram

BD  DB

BDA  DBC

A  C

Same segment

ASA Conjecture

CPCTC

Given
AD  CB
Definition of
parallelogram

Discovering Geometry Practice Your Skills
©2008 Kendall Hunt Publishing

ADB  CBD
AIA Conjecture
ANSWERS

101



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.7
Linearized                      : No
Create Date                     : 2013:07:15 13:24:12-05:00
Modify Date                     : 2013:07:16 10:51:13-05:00
Has XFA                         : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:08:04
Metadata Date                   : 2013:07:16 10:51:13-05:00
Format                          : application/pdf
Title                           : untitled
Document ID                     : uuid:981ed3f8-af71-4213-ac28-1e1ef3e875de
Instance ID                     : uuid:fa069e50-1fe2-46c5-a06f-5fc293c74bb4
Producer                        : Acrobat Distiller 6.0 for Macintosh
Page Count                      : 11
EXIF Metadata provided by EXIF.tools

Navigation menu