Mars ZX3 User Manual V05

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 48

DownloadMars ZX3 User Manual V05
Open PDF In BrowserView PDF
Mars ZX3 SoC Module
User Manual
Purpose
The purpose of this document is to present the characteristics of Mars ZX3 SoC module to the user, and to
provide the user with a comprehensive guide to understanding and using the Mars ZX3 SoC module.

Summary
This document first gives an overview of the Mars ZX3 SoC module followed by a detailed description of its
features and configuration options. In addition, references to other useful documents are included.

Product Information

Number

Name

Product

MA-ZX3

Mars ZX3 SoC Module

Document Information

Reference

Version

Date

Reference / Version / Date

D-0000-424-004

05

21.08.2018

Approval Information

Name

Position

Date

Written by

DIUN, GKOE

Design Engineer

18.04.2016

Verified by

GLAC

Technical Expert

27.04.2016

Approved by

RPAU

Quality Manager

21.08.2018

Enclustra GmbH – Räffelstrasse 28 – CH-8045 Zürich – Switzerland
Phone +41 43 343 39 43 – www.enclustra.com

Copyright Reminder
Copyright 2018 by Enclustra GmbH, Switzerland. All rights are reserved.
Unauthorized duplication of this document, in whole or in part, by any means is prohibited without the prior
written permission of Enclustra GmbH, Switzerland.
Although Enclustra GmbH believes that the information included in this publication is correct as of the date
of publication, Enclustra GmbH reserves the right to make changes at any time without notice.
All information in this document is strictly confidential and may only be published by Enclustra GmbH,
Switzerland.
All referenced trademarks are the property of their respective owners.

Document History

Version

Date

Author

Comment

05

21.08.2018

DIUN

Minor corrections and style updates

04

04.05.2017

DIUN

Updated EEPROM map, block diagram and footprint information

03

27.12.2016

DIUN

Added tool support information and NAND flash programming information

02

11.08.2016

DIUN

Minor updates and clarifications

01

03.05.2016

DIUN

Version 01

D-0000-424-004

2 / 48

Version 05, 21.08.2018

Table of Contents
1
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5

Overview
General . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . .
Warranty . . . . . . . . . . . . . . . . . .
RoHS . . . . . . . . . . . . . . . . . . . .
Disposal and WEEE . . . . . . . . . . . .
Safety Recommendations and Warnings
Electrostatic Discharge . . . . . . . . . .
Electromagnetic Compatibility . . . . . .
Features . . . . . . . . . . . . . . . . . . .
Deliverables . . . . . . . . . . . . . . . .
Accessories . . . . . . . . . . . . . . . . .
Reference Design . . . . . . . . . . . . .
Enclustra Build Environment . . . . . . .
Mars PM3 Base Board . . . . . . . . . . .
Mars EB1 Base Board . . . . . . . . . . .
Xilinx Tool Support . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

5
5
5
5
5
5
5
6
6
6
6
7
7
7
7
7
8

2
2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.6
2.7
2.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.9.5
2.9.6
2.9.7
2.9.8
2.10
2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.11
2.12
2.13
2.14
2.14.1
2.14.2
2.14.3

Module Description
Block Diagram . . . . . . . . . . . . . . . .
Module Configuration and Product Codes
Article Numbers and Article Codes . . . .
Top and Bottom Views . . . . . . . . . . .
Top View . . . . . . . . . . . . . . . . . . .
Bottom View . . . . . . . . . . . . . . . . .
Top and Bottom Assembly Drawings . . .
Top Assembly Drawing . . . . . . . . . . .
Bottom Assembly Drawing . . . . . . . . .
Module Footprint . . . . . . . . . . . . . .
Mechanical Data . . . . . . . . . . . . . . .
Module Connector . . . . . . . . . . . . .
User I/O . . . . . . . . . . . . . . . . . . . .
Pinout . . . . . . . . . . . . . . . . . . . . .
Differential I/Os . . . . . . . . . . . . . . .
I/O Banks . . . . . . . . . . . . . . . . . . .
VREF Usage . . . . . . . . . . . . . . . . . .
VCC_IO Usage . . . . . . . . . . . . . . . .
Signal Terminations . . . . . . . . . . . . .
Multiplexed I/O (MIO) Pins . . . . . . . . .
Analog Inputs . . . . . . . . . . . . . . . .
Power . . . . . . . . . . . . . . . . . . . . .
Power Generation Overview . . . . . . . .
Power Enable/Power Good . . . . . . . . .
Voltage Supply Inputs . . . . . . . . . . . .
Voltage Supply Outputs . . . . . . . . . .
Power Consumption . . . . . . . . . . . . .
Heat Dissipation . . . . . . . . . . . . . . .
Clock Generation . . . . . . . . . . . . . .
Reset . . . . . . . . . . . . . . . . . . . . .
LEDs . . . . . . . . . . . . . . . . . . . . . .
DDR3 SDRAM . . . . . . . . . . . . . . . .
DDR3 SDRAM Type . . . . . . . . . . . . .
Signal Description . . . . . . . . . . . . . .
Termination . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

9
9
9
10
12
12
12
13
13
13
13
14
14
15
15
16
16
17
17
18
19
20
20
20
21
21
22
22
23
23
24
24
24
25
25
25

D-0000-424-004

3 / 48

Version 05, 21.08.2018

2.14.4
2.14.5
2.15
2.15.1
2.15.2
2.15.3
2.16
2.16.1
2.16.2
2.16.3
2.17
2.18
2.18.1
2.18.2
2.18.3
2.18.4
2.18.5
2.19
2.19.1
2.19.2
2.20
2.20.1
2.21
2.21.1
2.22

Parameters . . . . . . . . . . .
DDR3 Low Voltage Operation
QSPI Flash . . . . . . . . . . .
QSPI Flash Type . . . . . . . .
Signal Description . . . . . . .
Configuration . . . . . . . . .
NAND Flash . . . . . . . . . .
NAND Flash Type . . . . . . .
Signal Description . . . . . . .
Parameters . . . . . . . . . . .
SD Card . . . . . . . . . . . . .
Gigabit Ethernet . . . . . . . .
Ethernet PHY Type . . . . . . .
Signal Description . . . . . . .
External Connectivity . . . . .
MDIO Address . . . . . . . . .
PHY Configuration . . . . . . .
USB 2.0 . . . . . . . . . . . . .
USB PHY Type . . . . . . . . .
Signal Description . . . . . . .
Real-Time Clock (RTC) . . . . .
RTC Type . . . . . . . . . . . .
Secure EEPROM . . . . . . . .
EEPROM Type . . . . . . . . .
Revision Detection . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

25
26
26
27
27
27
28
28
28
28
29
29
29
30
30
30
31
31
31
31
31
32
32
32
32

3
3.1
3.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.5
3.6
3.7
3.8
3.9
3.10
3.11

Device Configuration
Configuration Signals . . . . . . . . . . . . . . . . . . . .
Pull-Up During Configuration . . . . . . . . . . . . . . .
Boot Mode . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Boot Mode . . . . . . . . . . . . . . . . . . . . . . .
NAND Flash Boot Mode . . . . . . . . . . . . . . . . . .
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG on Module Connector . . . . . . . . . . . . . . . .
External Connectivity . . . . . . . . . . . . . . . . . . . .
QSPI Boot Mode . . . . . . . . . . . . . . . . . . . . . . .
SD Card Boot Mode . . . . . . . . . . . . . . . . . . . . .
QSPI Flash Programming via JTAG . . . . . . . . . . . .
QSPI Flash Programming from an External SPI Master .
NAND Flash Programming . . . . . . . . . . . . . . . . .
FPGA and QSPI Flash Programming using Xilinx Impact
Enclustra Module Configuration Tool . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

33
33
34
34
35
35
35
36
36
36
36
36
37
37
38
38

4
4.1
4.2
4.3
4.4
4.4.1

I2C Communication
Overview . . . . . . .
Signal Description . .
I2C Address Map . .
Secure EEPROM . . .
Memory Map . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

39
39
39
40
40
40

5
5.1
5.2

Operating Conditions
43
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6
6.1
6.2

Ordering and Support
45
Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

D-0000-424-004

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

4 / 48

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

Version 05, 21.08.2018

1

Overview

1.1

General

1.1.1

Introduction

The Mars ZX3 SoC module combines the Xilinx Zynq®-7020 All Programmable SoC (System-on-Chip) device with fast DDR3 SDRAM, NAND flash, quad SPI flash, a Gigabit Ethernet PHY, USB 2.0 On-The-Go PHY
and a real-time clock, forming a complete and powerful embedded processing system.
The SO-DIMM form factor allows space-saving hardware designs and quick and simple integration of the
module into the target application.
The use of the Mars ZX3 SoC module, in contrast to building a custom SoC hardware, significantly reduces
development effort and redesign risk and improves time-to-market for the embedded system.
Together with Mars base boards, the Mars ZX3 SoC module allows the user to quickly build a system prototype and start with application development.
The Enclustra Build Environment [15] is available for the Mars ZX3 SoC module. This build system allows
the user to quickly set up and run Linux on any Enclustra SoC module. It allows the user to choose the
desired target and download all the required binaries, such as bitstream and FSBL (First Stage Boot Loader).
It downloads and compiles all required software, such as U-Boot, Linux, and BusyBox based root file system.

1.1.2

Warranty

Please refer to the General Business Conditions, available on the Enclustra website [1].

1.1.3

RoHS

The Mars ZX3 SoC module is designed and produced according to the Restriction of Hazardous Substances
(RoHS) Directive (2011/65/EC).

1.1.4

Disposal and WEEE

The Mars ZX3 SoC module must be properly disposed of at the end of its life.
The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) is not applicable for the Mars
ZX3 SoC module.

1.1.5

Safety Recommendations and Warnings

Mars modules are not designed to be “ready for operation” for the end-user. These can only be used in
combination with suitable base boards. Proper configuration of the hardware before usage is required.
Ensure that the power supply is disconnected from the board before inserting or removing the Mars ZX3
SoC module, connecting interfaces, replacing SD cards and batteries, or connecting jumpers.
Touching the capacitors of the DC-DC converters can lead to voltage peaks and permanent damage; overvoltage on power or signal lines can also cause permanent damage to the module.

D-0000-424-004

5 / 48

Version 05, 21.08.2018

Warning!
Use the Mars ZX3 SoC module only with base boards designed for the Enclustra Mars module family.
Inserting the Mars ZX3 SoC module into a SO-DIMM connector designed for memory (e.g. a computer
main board) may damage the module and the carrier board.

1.1.6

Electrostatic Discharge

Electronic boards are sensitive to electrostatic discharge (ESD). Please ensure that the product is handled
with care and only in an ESD-protected environment.

1.1.7

Electromagnetic Compatibility

The Mars ZX3 SoC module is a Class A product and is not intended for use in domestic environments. The
product may cause electromagnetic interference, for which appropriate measures must be taken.

1.2

Features

• Xilinx Zynq®-7020 All Programmable SoC, CLG484 package
• Dual ARM® Cortex™-A9 MPCore™with CoreSight™ and NEON™ extension
• Xilinx Artix-7 28 nm FPGA fabric
• 108 user I/Os up to 3.3 V
• 12 ARM peripheral I/Os (SPI, SDIO, CAN, I2C, UART) shared with FPGA I/Os
• 96 FPGA I/Os (single-ended, differential or analog)
•
•
•
•
•
•
•
•

1.3

Up to 1 GB DDR3 SDRAM
512 MB NAND flash
64 MB quad SPI flash
Gigabit Ethernet
USB 2.0 On-The-Go (OTG)
Real-time clock
SO-DIMM form factor (30 × 67.6 mm, 200 pins)
The module can be operated using a single 3.3 V supply voltage

Deliverables

• Mars ZX3 SoC module
• Mars ZX3 SoC module documentation, available via download:
•
•
•
•
•
•
•
•
•
•
•
•
•

Mars ZX3 SoC Module User Manual (this document)
Mars ZX3 SoC Module Reference Design [2]
Mars ZX3 SoC Module IO Net Length Excel Sheet [3]
Mars ZX3 SoC Module FPGA Pinout Excel Sheet [4]
Mars ZX3 SoC Module User Schematics (PDF) [5]
Mars ZX3 SoC Module Known Issues and Changes [6]
Mars ZX3 SoC Module Footprint (Altium, Eagle, Orcad and PADS) [7]
Mars ZX3 SoC Module 3D Model (PDF) [8]
Mars ZX3 SoC Module STEP 3D Model [9]
Module Pin Connection Guidelines [10]
Mars Master Pinout [11]
Enclustra Modules Heat Sink Application Note [17]
Enclustra Build Environment [15] (Linux build environment; refer to Section 1.4.2 for details)

D-0000-424-004

6 / 48

Version 05, 21.08.2018

1.4

Accessories

1.4.1

Reference Design

The Mars ZX3 SoC module reference design features an example configuration for the Zynq-7000 SoC device, together with an example top level HDL file for the user logic.
A number of software applications are available for the reference design, that show how to initialize the
peripheral controllers and how to access the external devices. Pre-compiled binaries are included in the
archive, so that the user can easily check that the hardware is functional.
The reference design can be downloaded from the Enclustra download page [2].

1.4.2

Enclustra Build Environment

The Enclustra Build Environment [15] enables the user to quickly set up and run Linux on any Enclustra SoC
module. It allows the user to choose the desired target, and download all the required binaries, such as
bitstream and FSBL. It downloads and compiles all required software, such as U-Boot, Linux, and BusyBox
based root file system.
The Enclustra Build Environment features a graphical user interface (GUI) and a command line interface (CLI)
that facilitates the automatic build flow.

1.4.3
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Mars PM3 Base Board

Mars 200-pin SO-DIMM socket
FMC LPC (Low Pin Count) connector (72 I/Os)
40-pin GPIO connector (optional, shared with FMC I/Os)
RJ45 Gigabit Ethernet connector
Mini HDMI connector for PCIe and LVDS applications (module dependent)
Cypress FX3 USB 3.0 device controller (16-bit Slave-FIFO interface or 32-bit Slave-FIFO interface shared
with FMC I/Os)
USB 3.0 B device connector
USB 2.0 A host connector
Micro USB 2.0 B device connector with FTDI USB device controller
Battery holder for the real-time clock
microSD card holder
Fan connector, various switches and LEDs
Single 12 V DC supply voltage or USB bus-powered (with restrictions)
Form factor: 100 × 72 mm (pico-ITX)

Please note that the available features depend on the equipped Mars module type.

1.4.4
•
•
•
•
•
•
•
•
•
•
•
•

Mars EB1 Base Board

Mars 200-pin SO-DIMM socket
2 × Mini Camera Link connectors (requires FPGA support)
HDMI 1.3 connector (requires FPGA support)
40-pin GPIO connector (Anios)
3 × 12-pin GPIO connector (two of the connectors with Pmod™ compatible pinout)
RJ45 Ethernet connector
USB 2.0 A host connector
Micro USB 2.0 device connector (shared)
FTDI USB 2.0 device controller with micro USB device connector
microSD card holder
Various switches and LEDs
Integrated Xilinx compatible JTAG adapter

D-0000-424-004

7 / 48

Version 05, 21.08.2018

• Single 12 V DC supply voltage or USB bus-powered (with restrictions)
• Form factor: 120 × 80 mm
Please note that the available features depend on the equipped Mars module type.

1.5

Xilinx Tool Support

The SoC devices equipped on the Mars ZX3 SoC module are supported by the Vivado HL WebPACK Edition
software, which is available free of charge. Please contact Xilinx for further information.

D-0000-424-004

8 / 48

Version 05, 21.08.2018

2

Module Description

2.1

Block Diagram

Figure 1: Hardware Block Diagram

The main component of the Mars ZX3 SoC module is the Xilinx Zynq-7000 SoC device. Most of its I/O pins
are connected to the Mars module connector, making 108 user I/Os available to the user.
The SoC device can boot from the on-board QSPI flash, NAND flash or from an external SD card. For development purposes, a JTAG interface is connected to Mars module connector.
The available standard configurations include 512 MB NAND flash, a 64 MB quad SPI flash and 512 MB or 1
GB DDR3 SDRAM.
Further, the module is equipped with a Gigabit Ethernet PHY and a USB 2.0 OTG PHY, making it ideal for
communication applications.
A real-time clock is available on the module and is connected to the global I2C bus.
On-board clock generation is based on a 33.33 MHz crystal oscillator.
The module can be operated using a single input supply of 3.3 V DC. All other necessary supply voltages are
generated on-board. Some of these voltages are available on the Mars module connector to supply circuits
on the base board.
Four LEDs are connected to the SoC pins for status signaling.

2.2

Module Configuration and Product Codes

Table 1 describes the available standard module configurations. Custom configurations are available; please
contact Enclustra for further information.

D-0000-424-004

9 / 48

Version 05, 21.08.2018

Product Code

SoC

DDR3/DDR3L SDRAM

Temperature Range

MA-ZX3-20-1C-D9

XC7Z020-1CLG484C

512 MB

0 to +70◦ C

MA-ZX3-20-2I-D10

XC7Z020-2CLG484I

1024 MB

-40 to +85◦ C

Table 1: Standard Module Configurations

The product code indicates the module type and main features. Figure 2 describes the fields within the
product code.

Figure 2: Product Code Fields

Please note that for the first revision modules or early access modules, the product code may not respect
entirely this naming convention. Please contact Enclustra for details on this aspect.

2.3

Article Numbers and Article Codes

Every module is uniquely labeled, showing the article number and serial number. An example is presented
in Figure 3.

Figure 3: Module Label

The correspondence between article number and article code is shown in Table 2. The article code represents the product code, followed by the revision; the R suffix and number represent the revision number.
The revision changes and product known issues are described in the Mars ZX3 SoC Module Known Issues
and Changes document [6].

D-0000-424-004

10 / 48

Version 05, 21.08.2018

Article Number

Article Code

EN100021

MA-ZX3-20-1C-D9-R2

EN100022

MA-ZX3-20-2I-D10-R2

EN100079

MA-ZX3-20-2I-D10-R3

EN100080

MA-ZX3-20-1C-D9-R3

EN100915

MA-ZX3-20-1C-D9-R4

EN100916

MA-ZX3-20-2I-D10-R4

EN101311

MA-ZX3-20-1C-D9-R5

EN101312

MA-ZX3-20-2I-D10-R5

EN101493

MA-ZX3-20-1C-D9-R6

EN101494

MA-ZX3-20-2I-D10-R6

EN101556

MA-ZX3-20-1C-D9-R6.1

EN101557

MA-ZX3-20-2I-D10-R6.1

Table 2: Article Numbers and Article Codes

D-0000-424-004

11 / 48

Version 05, 21.08.2018

2.4

Top and Bottom Views

2.4.1

Top View

Figure 4: Module Top View

2.4.2

Bottom View

Figure 5: Module Bottom View

Please note that depending on the hardware revision and configuration, the module may look slightly different than shown in this document.

D-0000-424-004

12 / 48

Version 05, 21.08.2018

2.5

Top and Bottom Assembly Drawings

2.5.1

Top Assembly Drawing

Figure 6: Module Top Assembly Drawing

2.5.2

Bottom Assembly Drawing

Figure 7: Module Bottom Assembly Drawing

Please note that depending on the hardware revision and configuration, the module may look slightly different than shown in this document.

2.6

Module Footprint

Figure 8 shows the dimensions of the module footprint on the base board.
The maximum component height under the module is dependent on the connector type - refer to Section
2.8 for detailed connector information.
D-0000-424-004

13 / 48

Version 05, 21.08.2018

Figure 8: Module Footprint - Top View

The footprint of the module connector is available for different PCB design tools (Altium, Eagle, Orcad, PADS)
[7].

2.7

Mechanical Data

Table 3 describes the mechanical characteristics of the Mars ZX3 SoC module. A 3D model (PDF) and a STEP
3D model are available [8], [9].
Symbol

Value

Size

67.6 × 30 mm

Component height top

2.0 mm

Component height bottom

1.2 mm

Weight

9g

Table 3: Mechanical Data

2.8

Module Connector

The Mars ZX3 SoC module fits into a 200-pin DDR2 SO-DIMM (1.8 V) socket. Up to four M2 screws may be
used to mechanically fasten the module to the base board. Do not use excessive force to tighten the screws,
as this could damage the module.
The pinout of the module connector is found in the Mars Master Pinout Excel Sheet [11]. The connector to
be mounted on the base board is available in different heights. Some examples are presented in Table 4.
Please refer to the connector datasheet for more information.

D-0000-424-004

14 / 48

Version 05, 21.08.2018

Height

Type

Description

Max component height under the module

4.0 mm

TE 292406-4

DDR2-SODIMM, 1.8 V

0 mm

5.2 mm

TE 1565917-4

DDR2-SODIMM, 1.8 V

1 mm

6.5 mm

TE 5-1746530-4

DDR2-SODIMM, 1.8 V

2 mm

8.0 mm

TE 1827341-4

DDR2-SODIMM, 1.8 V

4 mm

Table 4: Module Connector Types

2.9

User I/O

2.9.1

Pinout

Information on the Mars ZX3 SoC module pinout can be found in the Enclustra Mars Master Pinout [11], and
in the additional document Enclustra Module Pin Connection Guidelines [10].
The naming convention for the user I/Os is:
IO_B_L<_SPECIAL_FUNCTION>__.
For example, IO_B35_L1_AD0_F16_P is located on pin F16 of I/O bank 35, pair 1, it is an XADC auxiliary analog
input capable pin and it has positive polarity, when used in a differential pair.
For the signal lines shared between Programmable Logic (PL) and Processing System (PS), the naming convention is:
IO__B_L_
For example, IO_MIO44_B33_L16_U17 is connected to FPGA pin U17 and in parallel to the PS MIO pin 44.
Please note that for the shared pins only one of the driving pins (FPGA pin, MIO pin) may be active.
The multi-region clock capable pins are marked with “MRCC”, while the single region clock capable pins are
marked with “SRCC” in the signal name. For details on their function and usage, please refer to the Xilinx
documentation.
Table 5 includes information related to the total number of I/Os available in each I/O bank and possible
limitations.
Signal Name

Signals

Pairs

Differential

Single-ended

I/O Bank

IO__B33_<...>

12

6

In/Out

In/Out

33

IO_B34_<...>

48

24

In/Out

In/Out

34

IO_B35_<...>

48

24

In/Out

In/Out

35

Total

108

54

-

-

-

Table 5: User I/Os

Please note that for the 7 Series FPGAs there are restrictions on the VCCO voltage when using LVDS I/Os;
refer to Xilinx AR# 43989 for details.

D-0000-424-004

15 / 48

Version 05, 21.08.2018

2.9.2

Differential I/Os

When using differential pairs, a differential impedance of 100 Ω must be matched on the base board, and
the two nets of a differential pair must have the same length.
The information regarding the length of the signal lines from the SoC device to the module connector is
available in Mars ZX3 SoC Module IO Net Length Excel Sheet [3]. This enables the user to match the total
length of the differential pairs on the base board if required by the application.

2.9.3

I/O Banks

Table 6 describes the main attributes of the FPGA and PS I/O banks, and indicates which peripherals are
connected to each I/O bank. All I/O pins within a particular I/O bank must use the same I/O (VCC_IO) and
reference (VREF) voltages.
Bank

Connectivity

Bank 0

Configuration

VCC_IO
User selectable

VREF
-

VCC_CFG_PS_B13_B33
Bank 13

Bank 33

Bank 34

Bank 35

PS MIO0

Ethernet PHY

User selectable

Most pins shared with MIO 16-27

VCC_CFG_PS_B13_B33

Module connector

User selectable

Most pins shared with MIO 40-51

VCC_CFG_PS_B13_B33

Module connector

Module connector

QSPI and NAND flash

-

-

User selectable

IO_B34_L6_VREF_M16_N

VCC_IO_B34

IO_B34_L19_VREF_P15_N

User selectable

IO_B35_L6_VREF_F17_N

VCC_IO_B35

IO_B35_L19_VREF_H20_N

User selectable1

-

VCC_CFG_PS_B13_B33
PS MIO1

PS DDR

Ethernet PHY, USB PHY,

User selectable

Module connector

VCC_CFG_PS_B13_B332

DDR3 SDRAM

User selectable3

0.9 V

0.5 × VREF_DDR3L

VCC_DDR3L
Table 6: I/O Banks
2 3

1 For

modules of revision 4 or older, the MIO0 bank voltage is tied to 3.3 V.
modules of revision 4 or older, the name of this voltage supply signal is: VCC_CFG_MIO1_B13_B33.
3 The DDR3 SDRAM supports voltages of 1.5 or 1.35 V. Please refer to Section 2.14 for details.
2 On

D-0000-424-004

16 / 48

Version 05, 21.08.2018

Warning!
Some of the I/Os are connected to MIO pins and to user logic I/Os in parallel - make sure that at
least one of the two pins is configured to high impedance, and that pull-up or pull-down resistors are
disabled on both if they are not used.
Some of the system pins must be defined as input or high impedance. Please refer to the Mars ZX3
SoC module reference design for details [2].

2.9.4

VREF Usage

I/O standards referenced using VREF can be used on the Mars module connector. The reference voltage
has to be applied to all VREF pins of the respective I/O banks. If a bank is configured to use an I/O standard
that does not need a reference voltage, the VREF pins of this bank on the module connector are available
as user I/O pins.
The VREF pins are listed in the Mars Master Pinout Excel Sheet [11].
Warning!
Use only VREF voltages compliant with the equipped SoC device; any other voltages may damage the
equipped SoC device, as well as other devices on the Mars ZX3 SoC module.
Do not leave a VREF pin floating when the used I/O standard requires a reference voltage, as this may
damage the equipped SoC device, as well as other devices on the Mars ZX3 SoC module.

2.9.5

VCC_IO Usage

The VCC_IO voltages for the I/O banks located on the module connector are configurable by applying the
required voltage to the VCC_IO_B[x], respectively VCC_CFG_[x] pins. All VCC_IO_B[x] or VCC_CFG_[x] pins of
the same bank must be connected to the same voltage.
For compatibility with other Enclustra Mars base boards and modules, it is recommended to use a single
I/O voltage.
Signal Name

SoC Pins

Supported Voltages

Connector Pins

VCC_CFG_PS_B13_B33

VCCO_13,
VCCO_33,
VCC_MIO0, VCC_MIO1

1.8 V4 , 2.5 V - 3.3 V5 ±5%

137, 146

VCC_IO_B34

VCCO_34

1.8 V - 3.3 V6 ±5%

53, 62, 73

VCC_IO_B35

VCCO_35

1.8 V - 3.3 V7 ±5%

82, 117, 126

Table 7: VCC_IO Pins
4 5 6 7

4 1.8

V support is only available for modules of revision 5 and newer. NAND flash is disabled when VCC_CFG_PS_B13_B33 is 1.8 V.
RGMII Ethernet interface is specified only up to 2.5 V on the MIO pins by Xilinx. Please refer to Section 2.18 for details.
6 I/O bank 34 can run down to 1.2 V if I2C bus access from the PL is not required.
7 I/O bank 35 can run down to 1.2 V, but the FPGA LEDs will be always on in this case.
5 The

D-0000-424-004

17 / 48

Version 05, 21.08.2018

Note that the CFGBVS_0 pin is set automatically to GND (if VCC_CFG_PS_B13_B33 is less than or equal to 1.8
V) or to VCCO (if VCC_CFG_PS_B13_B33 is 2.5 V or 3.3 V).
Warning!
Use only VCC_IO voltages compliant with the equipped SoC device; any other voltages may damage
the equipped SoC device, as well as other devices on the Mars ZX3 SoC module.
Do not leave a VCC_IO pin floating, as this may damage the equipped SoC device, as well as other
devices on the Mars ZX3 SoC module.

Warning!
Do not power the VCC_IO pins when PWR_GOOD and PWR_EN signals are not active. If the module
is not powered, you need to make sure that the VCC_IO voltages are disabled (for example, by using
a switch on the base board, which uses PWR_GOOD as enable signal). Figure 9 illustrates the VCC_IO
power requirements.

Figure 9: Power-Up Sequence - VCC_IO in Relation with PWR_GOOD and PWR_EN Signals

2.9.6

Signal Terminations

Differential Inputs
There are no external differential termination resistors on the Mars ZX3 SoC module for differential inputs.
Differential input pairs on the module connector may be terminated either by external termination resistors
on the base board (close to the module pins), or by the SoC device’s internal termination resistors.
Internal differential termination is available only for certain VCCO voltages; please refer to Xilinx AR# 43989
for details.
Single-Ended Outputs
There are no series termination resistors on the Mars ZX3 SoC module for single-ended outputs. If required,
series termination resistors may be equipped on the base board (close to the module pins).
D-0000-424-004

18 / 48

Version 05, 21.08.2018

2.9.7

Multiplexed I/O (MIO) Pins

Details on the MIO/EMIO terminology are available in the Zynq-7000 All Programmable SoC Technical Reference Manual [18].
Some of the MIO pins on the Mars ZX3 SoC module are connected to on-board peripherals, while others
are available as GPIOs; the suggested functions below are for reference only - always verify your MIO pinout
with the Xilinx device handbook.
Table 9 gives an overview over the MIO pin connections on the Mars ZX3 SoC module. Only the pins marked
with “user functionality” are available on the module connector.
The MIO pins 52-53 have an external multiplexer that allows the pins to be switched either to the Ethernet
MDIO interface, or to the on-board I2C bus; by default, MDIO is selected. In order to switch to I2C operation,
MIO15 must be pulled low. Please refer to Table 8 for signal assignments.
It is recommended to use EMIO pins for I2C access. However, in situations where Ethernet is not used or
when I2C access is needed before a bitstream is loaded into the FPGA, MIO pins 52-53 may be used for I2C.
MIO Pin

Function

MIO15

MDIO select = 0

MDIO select = 1 (default)

MIO52

On-board I2C bus (I2C1.SCL)

Ethernet PHY MDC

MIO53

On-board I2C bus (I2C1.SDA)

Ethernet PHY MDIO

Table 8: Special MIO Pins

MIO Group

Function

Connection

0-14

QSPI and NAND flash

QSPI/NAND flash

15

MDIO select

I2C/MDIO multiplexer selection

16-27

Ethernet

Gigabit Ethernet PHY

28-39

USB

USB 2.0 OTG PHY

40-45

SD card/user functionality

Module connector

46

UART RX8 /user functionality

47

UART TX8 /user functionality

48-51

User functionality

Module connector
Module connector
Gigabit Ethernet PHY/

52-53

Ethernet MDIO/I2C

On-board I2C bus and module connector
via level shifter

Table 9: MIO Pins Connections Overview

8 UART

RX is an SoC input; UART TX is an SoC output.

D-0000-424-004

19 / 48

Version 05, 21.08.2018

2.9.8

Analog Inputs

The Zynq-7000 SoC devices provide a dual 12-bit ADC. The auxiliary analog inputs of the SoC device are
connected to the module connector; these I/Os have the abbreviation “AD” followed by the ADC channel in
the signal name.
The two dedicated ADC pins VP and VN are available on the module connector on pins 168 and 170
(FPGA_V_P/N). The ADC can also be used for internal voltage and temperature monitoring. For detailed
information, refer to the Xilinx 7 Series XADC User Guide [19].
The ADC lines are always used differentially; for single-ended applications, the *_N line must be connected
to GND.
Table 10 presents the ADC Parameters.
Parameter

Value

VCC_ADC

1.8 V

GND_ADC

0 V (connected to GND via ferrite)

VREF_ADC

1.25 V

ADC Range

0-1 V

Sampling Rate per ADC

1 MSPS

Total number of channels

17 (1 dedicated channel, 16 auxiliary inputs)

Table 10: ADC Parameters

2.10

Power

2.10.1

Power Generation Overview

The Mars ZX3 SoC module uses a 3.3 - 5.0 V DC power input for generating the on-board supply voltages
(1.0 V, 1.35 V/1.5 V, 1.8 V). These internally-generated voltages are accessible on the module connector. In
addition, a separate 3.3 V power input is used to supply peripherals, such as the Ethernet PHY, QSPI flash,
oscillator, RTC, EEPROM and LEDs.
The Mars ZX3 SoC module can be powered using a single power supply. In this case, the two voltage supply
inputs VCC_MOD and VCC_3V3 must be connected together to a 3.3 V supply. Please refer to Section 2.10.3
for details on the voltage supply inputs.
Table 11 describes the power supplies generated on the module.

D-0000-424-004

20 / 48

Version 05, 21.08.2018

Voltage

Voltage

Rated

Voltage

Shut down

Supply Name

Value

Current

Source

via PWR_EN

VCC_1V0

1.0 V

4A

VCC_MOD

Yes

VCC_DDR3L

1.35 V/1.5 V

2A

VCC_MOD

Yes

VCC_1V8

1.8 V

2A

VCC_MOD

Yes

Table 11: Generated Power Supplies

Please refer to the Enclustra Module Pin Connection Guidelines for general rules on the power pins [10].

2.10.2

Power Enable/Power Good

The Mars ZX3 SoC module provides a power enable input on the module connector. This input may be used
to shut down the DC/DC converters for 1.0 V, 1.35 V/1.5 V and 1.8 V, leaving the SoC device and the DDR3
SDRAM unpowered, and detaching the separate 3.3 V power input from the peripherals.
The PWR_EN input is pulled to VCC_3V3 on the Mars ZX3 SoC module with a 10 kΩ resistor. The PWR_GOOD
signal is pulled to VCC_3V3 on the Mars ZX3 SoC module with a 10 kΩ resistor.
PWR_GOOD is an open collector signal and must not be used to drive a load directly. This signal is pulled
to GND if any of the on-board regulators fail or if the module is disabled via PWR_EN.
Pin Name

Module Connector Pin

PWR_EN

13

Remarks
Floating/3.3 V: Module power enabled
Driven low: Module power disabled

PWR_GOOD

40

0 V: Module supply not ok
3.3 V: Module supply ok

Table 12: Module Power Status and Control Pins

Warning!
Do not apply any other voltages to the PWR_EN pin than 3.3 V or GND, as this may damage the Mars
ZX3 SoC module. PWR_EN pin can be left unconnected.
Do not power the VCC_IO pins when PWR_EN is driven low to disable the module. In this case, VCC_IO
needs to be switched off in the manner indicated in Figure 9.

2.10.3

Voltage Supply Inputs

Table 13 describes the power supply inputs on the Mars ZX3 SoC module. The VCC voltages used as supplies
for the I/O banks are described in Section 2.9.5.

D-0000-424-004

21 / 48

Version 05, 21.08.2018

Pin Name

Module Connector Pins

Voltage

Description

VCC_MOD

1, 3, 5, 7, 9, 11

3.3 - 5.0 V ±10%

Supply for the 1.0 V, 1.35 V/1.5 V and 1.8
V voltage regulators. The input current is
rated at 1.8 A (0.3 A per connector pin).

VCC_3V3

197, 199

3.3 V ±5%

Supply for Ethernet PHY, QSPI flash, oscillator, RTC, EEPROM and LEDs

VCC_BAT

200

2.0 - 3.6 V

Battery voltage for the RTC and SoC encryption key storage

Table 13: Voltage Supply Inputs

2.10.4

Voltage Supply Outputs

Table 14 presents the supply voltages generated on the Mars ZX3 SoC module, that are available on the
module connector.
Pin Name

Module Connector Pins

Voltage

Maximum Current9

VCC_1V0

42

1.0 V ±5%

0.3 A

VCC_DDR3L

41

1.35 V/1.5 V ±5%

0.3 A

VCC_1V8

89, 94, 101, 106

1.8 V ±5%

1 A (and max 0.3 A per connector pin)

Table 14: Voltage Supply Outputs

The voltage supply for the DDR3 SDRAM can be set to 1.35 V for low power operation - for details, please
refer to Section 2.14.5.
Warning!
Do not connect any power supply to the voltage supply outputs nor short circuit them to GND, as this
may damage the Mars ZX3 SoC module.

2.10.5

Power Consumption

Please note that the power consumption of any SoC device strongly depends on the application (on the
configured bitstream and I/O activity).
To estimate the power consumption of your design, please use the Xilinx Power Estimator available on the
Xilinx website.
Table 15 lists the power consumption of a Mars ZX3 SoC module, for several applications.
The measurements are based on the reference design using a CPU frequency of 666 MHz, and the DDR3
memory operating in low power mode at 333 MHz.

9 The

maximum available output current depends on your SoC design. See sections 2.10.1 and 2.10.5 for details.

D-0000-424-004

22 / 48

Version 05, 21.08.2018

Supply

Uninitialized

Bare Metal

Linux

U-Boot, no Ethernet

with Gigabit

Connection

Ethernet Connection

VCC_MOD (5 V)

950 mW

1300 mW

1565 mW

VCC_3V3

76 mW

116 mW

142 mW

VCC_IO (2.5 V)

17 mW

165 mW

200 mW

Total

1043 mW

1581 mW

1907 mW

Table 15: Power Consumption - Reference Values

2.10.6

Heat Dissipation

High performance devices like the Xilinx Zynq-7000 SoC need cooling in most applications; always make
sure the SoC is adequately cooled.
Information that may assist in selecting a suitable heat sink for the Mars ZX3 SoC module can be found in
the Enclustra Modules Heat Sink Application Note [17].
For Enclustra Mars modules an Enclustra heat sink is available for purchase along with the product. It
represents an optimal solution to cool the Mars ZX3 SoC module- it is low profile (less than 7 mm tall) and
covers the whole module surface. It comes with a gap pad for the SoC device and four screws to attach it
to the module PCB. With additional user configured gap pads, it is possible to cool other components on
board as well. For details, please refer to the Enclustra website.
Warning!
Depending on the user application, the Mars ZX3 SoC module may consume more power than can
be dissipated without additional cooling measures; always make sure the SoC is adequately cooled by
installing a heat sink and/or providing air flow.

2.11

Clock Generation

A 33.33 MHz oscillator is used for the Mars ZX3 SoC module clock generation. The 33.33 MHz clock is fed
to the PS and to the FPGA logic. Table 16 describes the clock connections.
Signal Name

Frequency

Package Pin

SoC Pin Type

CLK33

33.33 MHz

F7

PS_CLK

CLK33

33.33 MHz

Y6

IO_L13P_T2_MRCC_13

Table 16: Module Clock Resources

D-0000-424-004

23 / 48

Version 05, 21.08.2018

2.12

Reset

The power-on reset signal (POR) and the PS system reset signal (SRST) of the SoC device are available on
the module connector.
Pulling PS_POR# low resets the SoC device, the Ethernet and the USB PHYs, and the flash devices. Please
refer to the Enclustra Module Pin Connection Guidelines [10] for general rules regarding the connection of
reset pins.
Pulling PS_SRST# low resets the SoC device. For details on the functions of the PS_POR_B and PS_SRST_B
signals refer to the Zynq-7000 Technical Reference Manual [18].
Table 17 presents the available reset signals. Both signals, PS_POR# and PS_SRST#, have on-board 10 kΩ
pull-up resistors to VCC_CFG_PS_B13_B33.
Signal Name

Connector Pin

Package Pin

FPGA Pin Type

Description

PS_POR#

196

B5

PS_POR_B

Power-on reset

PS_SRST#

192

C9

PS_SRST_B

System reset

Table 17: Reset Resources

Please note that PS_POR# is automatically asserted if PWR_GOOD is low.

2.13

LEDs

The four LEDs on the Mars ZX3 SoC module are connected to the FPGA logic, and they are active-low.
Signal Name

FPGA Pin

Remarks

LED0#

H18

User function/active-low

LED1#

AA14

User function/active-low; shared with MIO15

LED2#

AA13

User function/active-low

LED3#

AB15

User function/active-low

Table 18: LEDs

LED1# is shared between the PL (pin AA14) and PS (MIO15); for a correct status signaling the LED signal
should be only driven from one side (PL or PS) low (for LED on) or set to high impedance (for LED off). Note
that MIO15 is a dual-function pin and by changing the value of this signal, the MDIO/I2C selection circuit is
also affected - please refer to Section 2.9.7 for details on the usage of this pin.

2.14

DDR3 SDRAM

There is a single DDR3 SDRAM channel on the Mars ZX3 SoC module attached directly to the PS side and
is available only as a shared resource to the PL side.
The DDR3 SDRAM is operated at 1.35 V (low power mode) or at 1.5 V, depending on a selection signal. Two
16-bit memory chips are used to build a 32-bit wide memory.
The maximum memory bandwidth on the Mars ZX3 SoC module is:
1066 Mbit/sec × 32 bit = 4264 MB/sec

D-0000-424-004

24 / 48

Version 05, 21.08.2018

2.14.1

DDR3 SDRAM Type

Table 19 describes the memory availability and configuration on the Mars ZX3 SoC module.
Module

SDRAM Type

Density

Configuration

Manufacturer

MA-ZX3-D9

MT41K128M16JT-125

2 Gbit

128 M × 16 bit

Micron

MA-ZX3-D10

MT41K256M16HA-125 IT

4 Gbit

256 M × 16 bit

Micron

MA-ZX3-D9

NT5CC128M16FP-DI

2 Gbit

128 M × 16 bit

Nanya

MA-ZX3-D10

NT5CC256M16CP-DII

4 Gbit

256 M × 16 bit

Nanya

Table 19: DDR3 SDRAM Types

Warning!
Other DDR3 memory devices may be equipped in future revisions of the Mars ZX3 SoC module. Please
check the user manual regularly for updates.

2.14.2

Signal Description

Please refer to the Mars ZX3 SoC Module FPGA Pinout Excel Sheet [4] for detailed information on the DDR3
SDRAM connections.

2.14.3

Termination

Warning!
No external termination is implemented on the Mars ZX3 SoC module. Therefore, it is strongly recommended to enable the on-die termination (ODT) feature of the DDR3 SDRAM device.

2.14.4

Parameters

Please refer to the Mars ZX3 SoC module reference design [2] for DDR3 settings guidelines. The DDR3
SDRAM parameters and the DDR3 board timing information to be set in Vivado project are presented in
Tables 20 and 21.
The values given in Table 20 are for reference only. Depending on the equipped memory device on the
Mars ZX3 SoC module and on the DDR3 SDRAM frequency, the configuration may be different to the one
in the reference design. Please refer to the memory device datasheet for details.

D-0000-424-004

25 / 48

Version 05, 21.08.2018

Parameter

Value

Memory type

DDR3/DDR3L

DRAM bus width

32 bit

Operating frequency

400-533 MHz

DRAM chip bus width

16 bit

DRAM chip capacity

2048-4096 Mbits

Speed bin

DDR3_1066F/DDR3L_1066F

Bank bits

3

Row bits

14-15 (depending on the module type)

Column bits

10

CAS latency

7

CAS write latency

6

RAS to CAS delay

7

Precharge time

7

tRC

50.625 ns

tRASmin

37.5 ns

tFAW

40.0 ns

Table 20: DDR3 SDRAM Parameters

Parameter

Byte 3

Byte 2

Byte 1

Byte 0

DQS to clock delay (ns)

0.0

0.0

0.012

0.0

Board delay (ns)

0.285

0.248

0.241

0.238

Table 21: DDR3 Board Timing

2.14.5

DDR3 Low Voltage Operation

The default voltage of the DDR3 is 1.5 V. In order to enable low voltage mode (1.35 V), DDR3_VSEL (pin AA22)
must be driven logic 0, and DDR3L memory type must be selected in the PS configuration parameters in
Vivado.
For 1.5 V operation, DDR3_VSEL must be set to high impedance (not driven logic 1).

2.15

QSPI Flash

The QSPI flash can be used to boot the PS, and to store the FPGA bitstream, ARM application code and
other user data.

D-0000-424-004

26 / 48

Version 05, 21.08.2018

2.15.1

QSPI Flash Type

Table 22 describes the memory availability and configuration on the Mars ZX3 SoC module.
The bigger flash device introduced starting with revision 4 has bigger erase sectors (256 kB instead of 4 kB)
and the 4 kB/32 kB/64 kB erase commands are not supported anymore. Further, the programming buffer
is 512 bytes instead of 256 bytes. This may require adjustments of the programming algorithm.
As there is one QSPI flash chip equipped on the Mars ZX3 SoC module, type “single” must be selected when
programming the flash from Vivado tools.
Module

Flash Type

Size

Manufacturer

MA-ZX3 - R1, R2 and R3

W25Q128FVEIG

128 Mbit

Winbond

MA-ZX3 - R4 and newer

S25FL512S

512 Mbit

Cypress (Spansion)

Table 22: QSPI Flash Types

Warning!
Other flash memory devices devices may be equipped in future revisions of the Mars ZX3 SoC module.
Please check the user manual regularly for updates.

2.15.2

Signal Description

The QSPI flash is connected to the PS MIO pins 1-6. Some of the signals are available on the module connector, allowing the user to program the QSPI flash from an external master.
Note that MIO pins 2-6 pins are shared between NAND flash and QSPI flash on the Mars ZX3 SoC module,
therefore only of the two memories may be used at once. However, it is possible to switch between them
at runtime.
Please refer to Section 3 for details on programming the flash memory.
Warning!
Special care must be taken when connecting the QSPI flash signals on the base board. These signals
are shared with the NAND flash and have to be high impedance during normal operation.
Long traces or high capacitance may disturb the data communication between the SoC and the flash
devices.
Note that on the Mars ZX3 SoC module revision 4 and newer, the equipped flash device (Cypress/Spansion)
has a reset signal, which is connected to PS_POR#. Hence, a new method to keep the FPGA in reset is
required during the QSPI flash programming from an external SPI master. Please refer to Section 3.8 for
details.

2.15.3

Configuration

The QSPI flash supports up to 50 MHz operation for standard read. For fast, dual and quad read speed
values, please refer to the flash device datasheet.

D-0000-424-004

27 / 48

Version 05, 21.08.2018

Note that the “Feedback Clk” option on pin MIO8 must be enabled in the Zynq configuration for clock rates
higher than 30 MHz.
24-bit Address Compatibility Mode
If the Zynq device boots from the QSPI flash and the 24-bit address compatibility mode of the QSPI flash is
used to access the range above 16 MB, then the compatibility mode must be disabled before a system reset
is executed. Otherwise, the Zynq device will not be able to boot from the QSPI flash again, as the address
register is not pointing to the lower addressed part of the memory, in which the boot image is located.
The reset of the QSPI flash is connected to the PS_POR# power-on reset signal in order to avoid this issue
after a power-on reset. The PS_SRST# signal should not be used in this setup.
Please refer to Zynq-7000 Technical Reference Manual [18] for details on booting from the QSPI flash.

2.16

NAND Flash

The NAND flash can be used to store ARM application code and other user data, and optionally to boot the
PS and to store the FPGA bitstream. Refer to Section 3.3.2 for details.
The NAND flash is disabled when VCC_CFG_PS_B13_B33 is 1.8 V. The NAND_ENABLE signal, which controls
the CE# pin of the NAND flash, is set automatically to GND (if VCC_CFG_PS_B13_B33 is less than or equal to
1.8 V) or to VCCO (if VCC_CFG_PS_B13_B33 is 2.5 V or 3.3 V).

2.16.1

NAND Flash Type

Table 23 describes the memory availability and configuration on the Mars ZX3 SoC module.
Flash Type

Size

Manufacturer

MT29F4G08ABADAWP

4 Gbit

Micron

Table 23: NAND Flash Type

2.16.2

Signal Description

The NAND flash is connected to the PS MIO pins 0, 2-14. The MIO pins 2-6 are shared between the QSPI
and NAND flash.
The write protect pin (WP#) of the NAND flash is connected to pin V13, available from the FPGA logic, and
has an on-board pull-up resistor.

2.16.3

Parameters

Please refer to the NAND flash memory device datasheet to extract the required parameter values. Reference values to be used in Vivado are given in Table 24.
The indicated parameter values may be used for booting from NAND flash memory on the Mars ZX3 SoC
module.

D-0000-424-004

28 / 48

Version 05, 21.08.2018

Nand Cycle Parameter

CS0

CS0 Cycles

Description

T_RC

30

4

Read cycle time

T_WC

30

4

Write cycle time

T_REA

0

1

RE assertion delay

T_WP

20

3

WE deassertion delay

T_CLR

20

3

Page cycle time

T_AR

20

3

ID read time

T_RR

30

4

Busy to RE

Table 24: NAND Flash Parameters

2.17

SD Card

An SD card can be connected to the PS MIO pins 40-45 or 46-51, or alternatively via EMIO pins to the PL.
The corresponding MIO pins are available on the module connector. Note that only MIO pins 40-45 allow
the Mars ZX3 SoC module to boot from the SD card. Information on this boot mode is available in Section
3.6.
Please note that external pull-ups are needed for SD card operation. Depending on the selected voltage
for VCC_CFG_PS_B13_B33, a level shifter to 3.3 V may be required (some level shifters also have built-in
pull-ups).

2.18

Gigabit Ethernet

A 10/100/1000 Mbit Ethernet PHY is available on the Mars ZX3 SoC module, connected to the PS and PL via
RGMII interface.
Please note that Xilinx recommends operation at 1.8 V/2.5 V for the RGMII interface for the MIO pins [18].
Enclustra tests have shown that the RGMII is functional with a 3.3 V I/O voltage on the MIO pins, as long
as the I/O voltage configured in Vivado matches the applied I/O voltage. However, in situations where a
voltage of 3.3 V for VCC_CFG_PS_B13_B33 is required, it is recommended to assign the Ethernet PHY signals
to FPGA logic and use the GMII to RGMII converter provided by Xilinx [21], instead of using 3.3 V on the
MIO pins.

2.18.1

Ethernet PHY Type

Table 25 describes the equipped Ethernet PHY device type on the Mars ZX3 SoC module.
Module

PHY Type

Manufacturer

Type

MA-ZX3 - R1

KSZ9021RN

Micrel

10/100/1000 Mbit

MA-ZX3 - R2 and newer

KSZ9031RNX

Micrel

10/100/1000 Mbit

Table 25: Gigabit Ethernet PHY Type

D-0000-424-004

29 / 48

Version 05, 21.08.2018

2.18.2

Signal Description

The RGMII interface is connected to MIO pins 16-27 for use with the hard macro MAC, and in parallel to PL
bank 13 pins for use with the FPGA logic. The interrupt output of the Ethernet PHY is connected to the I2C
interrupt line, available on an EMIO pin.
The Gigabit Ethernet connections are presented in Table 26. All listed pins are operated at
VCC_CFG_PS_B13_B33 I/O voltage.
Signal Name

MIO Pin

PL Pin

ETH_RST#

-

AB11

I2C_INT#

-

H17

ETH_MDC

MIO5210

AA12

ETH_MDIO

MIO5310

AB12

ETH_RXC

MIO22

Y9

ETH_RX_CTL

MIO27

Y8

ETH_RXD0

MIO23

U10

ETH_RXD1

MIO24

Y11

ETH_RXD2

MIO25

W11

ETH_RXD3

MIO26

U11

ETH_TXC

MIO16

W10

ETH_TX_CTL

MIO21

V10

ETH_TXD0

MIO17

V8

ETH_TXD1

MIO18

W8

ETH_TXD2

MIO19

U6

ETH_TXD3

MIO20

V9

Table 26: Gigabit Ethernet Signal Description

2.18.3

External Connectivity

The Ethernet signal lines can be connected directly to the magnetics. Please refer to the Enclustra Module
Pin Connection Guidelines [10] for details regarding the connection of Ethernet signals.

2.18.4

MDIO Address

The MDIO address assigned to the Gigabit Ethernet PHY is 3.
The MDIO interface is connected by default to MIO pins 52-53. These pins can also be used to access the
I2C bus - for details, please refer to Section 2.9.7.

10 MIO52

and MIO53 can be used for either MDIO or I2C. Please refer to Section 2.9.7 for details.

D-0000-424-004

30 / 48

Version 05, 21.08.2018

2.18.5

PHY Configuration

The configuration of the Ethernet PHY is bootstrapped when the PHY is released from reset. Make sure all
I/Os on the RGMII interface are initialized and all pull-up or pull-down resistors are disabled at that moment.
The bootstrap options of the Ethernet PHY are set as indicated in Table 27.
Please note that the RGMII delays in the Ethernet PHY need to be configured before the Ethernet interface
can be used. This is done in the source files within the First Stage Boot Loader (FSBL) application provided
in the Mars ZX3 SoC module reference design [2].
Pin

Signal Value

Description

MODE[3-0]

1110

RGMII mode: advertise all capabilities (10/100/1000, half/full duplex) except 1000Base-T half duplex.

PHYAD[2-0]

011

MDIO address 3

Clk125_EN

0

125 MHz clock output disabled

LED_MODE

1

Single LED mode

LED1/LED2

1

Active-low LEDs

Table 27: Gigabit Ethernet PHY Configuration

For the Ethernet PHY configuration via the MDIO interface, the MDC clock frequency must not exceed 1
MHz.

2.19

USB 2.0

The Mars ZX3 SoC module has an on-board USB 2.0 PHY connected to the SoC device. The USB interface
can be configured for USB host, USB device and USB On-The-Go (host and device capable) operations.

2.19.1

USB PHY Type

Table 28 describes the equipped USB PHY device type on the Mars ZX3 SoC module.
PHY Type

Manufacturer

Type

USB3320C

Microchip

USB 2.0 PHY

Table 28: USB 2.0 PHY Type

2.19.2

Signal Description

The ULPI interface is connected to MIO pins 28-39 for use with the integrated USB controller.

2.20

Real-Time Clock (RTC)

A real-time clock is connected to the I2C bus. The RTC features a battery-buffered 128 bytes user SRAM and
a temperature sensor. See Section 4 for details on the I2C bus on the Mars ZX3 SoC module.
VBAT pin of the RTC is connected to VCC_BAT on the module connector, and can be connected directly to
a 3 V battery. Please refer to the Enclustra Module Pin Connection Guidelines [10] for details.

D-0000-424-004

31 / 48

Version 05, 21.08.2018

Note that the frequency output mode of the RTC must be disabled when using I2C interrupt system. Otherwise, I2C_INT# is periodically pulled down by the RTC. The disabling of this function can be done by setting
bits [3:0] of the RTC register 8 to logic low.

2.20.1

RTC Type

Table 29 describes the equipped RTC device type on the Mars ZX3 SoC module.
Type

Manufacturer

ISL12020M

Intersil

Table 29: RTC Type

An example demonstrating how to use the RTC is included in the Mars ZX3 SoC module reference design
[2].

2.21

Secure EEPROM

The secure EEPROM is used to store the module type and serial number, as well as the Ethernet MAC address
and other information. It is connected to the I2C bus.
The secure EEPROM must not be used to store user data.
Please refer to Section 4.4 for details on the content of the EEPROM.

2.21.1

EEPROM Type

Table 30 describes the equipped EEPROM device type on the Mars ZX3 SoC module.
Type

Manufacturer

DS28CN01 (default)

Maxim

ATSHA204A-MAHDA-T (assembly option)

Atmel

Table 30: EEPROM Type

An example demonstrating how to read data from the EEPROM is included in the Mars ZX3 SoC module
reference design [2].

2.22

Revision Detection

Starting from revision 4 of Mars ZX3 SoC module, a pull-down resistor has been mounted to easily detect
the current revision.
The pin location of this resistor is noted in table 31.
Revision

Pin

4

AB21

5 and newer

Y21

Table 31: Pin Location of the Revision Detection Resistor

D-0000-424-004

32 / 48

Version 05, 21.08.2018

3

Device Configuration

3.1

Configuration Signals

The PS of the SoC needs to be configured before the FPGA logic can be used. Xilinx Zynq devices need
special boot images to boot from QSPI flash or SD card. For more information, please refer to the Xilinx
Zynq-7000: Concepts, Tools, and Techniques document [20].
Table 32 describes the most important configuration pins and their location on the module connector. These
signals allow the SoC to boot from QSPI flash or SD card, and can be used to program the QSPI flash from
an external master. Please refer to Section 3.8 for details.
Signal

SoC

Mod. Conn.

Comments

Name

Pin Type

Pin

Description

FLASH_CLK/NAND_IO1

MIO6

182

SPI CLK

20 kΩ pull-down

FLASH_DO/NAND_WE#

MIO3

184

SPI MISO

20 kΩ pull-down

FLASH_DI/NAND_ALE

MIO2

186

SPI MOSI

20 kΩ pull-down

FLASH_CS#

MIO1

188

SPI CS#

10 kΩ pull-up to
VCC_CFG_PS_B13_B33

FPGA_DONE

FPGA_CFGBVS

PS_POR#

DONE_0

CFGBVS_0

PS_POR_B

194

-

196

FPGA configuration

1 kΩ pull-up to

done

VCC_CFG_PS_B13_B33

Configuration bank

10 kΩ pull-up to

voltage select11

VCC_CFG_PS_B13_B33

Must be pulled to
GND for a short period before QSPI flash
programming.

10 kΩ pull-up to

PS_SRST# must be low
when PS_POR# is released.

PS_SRST#

PS_SRST_B

Must be pulled to
GND during QSPI
flash programming.

192

When released, all
other pins of the SPI
interface must be high
impedance.

BOOT_MODE

-

190

Boot mode selection

VCC_CFG_PS_B13_B33

10 kΩ pull-up to
VCC_CFG_PS_B13_B33

10 kΩ pull-up to
VCC_CFG_PS_B13_B33

Table 32: SoC Configuration Pins

D-0000-424-004

33 / 48

Version 05, 21.08.2018

Warning!
All configuration signals except for BOOT_MODE must be high impedance as soon as the device is
released from reset. Violating this rule may damage the equipped SoC device, as well as other devices
on the Mars ZX3 SoC module.

3.2

Pull-Up During Configuration

Figure 10 illustrates the configuration of the I/O signals during power-up.

Figure 10: Pull-Up During Configuration (PUDC)

The Pull-Up During Configuration signal (PUDC) is configured using a multiplexer to low state during FPGA
configuration, and to high impedance after this process is done.
If the user does not drive a high value on this signal during configuration, then the PUDC signal will be
pulled to GND via a 1 kΩ resistor. As PUDC is an active-low signal, all FPGA I/Os will have the internal pull-up
resistors enabled during device configuration.
If the application requires that all FPGA I/Os have the internal pull-up resistors disabled during device configuration, the user must attach to the module connector a driver capable to pull IO_B34_L3_PUDC#_K16_P
signal high.
For details on the PUDC signal please refer to the Zynq-7000 All Programmable SoC Technical Reference
Manual [18].

3.3

Boot Mode

The boot mode can be selected via a signal available on the module connector.
Table 33 describes the available boot modes on the Mars ZX3 SoC module.
BOOT_MODE

Description

0

Boot from QSPI flash

1

Boot from SD card

Table 33: Boot Modes

Additionally, JTAG and NAND flash boot modes are available. These are further presented in Sections 3.3.1
and 3.3.2.

11 The CFGBVS_0 pin is set automatically to GND (if VCC_CFG_PS_B13_B33 is less than or equal to 1.8 V) or to VCCO (if
VCC_CFG_PS_B13_B33 is 2.5 V or 3.3 V).

D-0000-424-004

34 / 48

Version 05, 21.08.2018

3.3.1

JTAG Boot Mode

For JTAG boot mode selection, the following steps must be followed:
• BOOT_MODE must be set to logic low
• MIO5 (NAND_IO0/FLASH_IO3) must be pulled to GND (refer to Table 34 for details)

Module

Hardware changes required to pull MIO5 to GND

MA-ZX3 - R1

R111 must be mounted

MA-ZX3 - R2 and R3

R111 must be short-circuited

MA-ZX3 - R4 and newer

R213 must be short-circuited

Table 34: Hardware Changes for JTAG and NAND Boot Modes

Figure 11: Boot Mode Resistor - Assembly Drawing Top View (Refer to Section 2.5 for the latest Assembly Drawing)

3.3.2

NAND Flash Boot Mode

For NAND flash boot mode selection, the following steps must be followed:
• BOOT_MODE must be set to logic high
• MIO5 (NAND_IO0/FLASH_IO3) must be pulled to GND (refer to Table 34 for details)
In the NAND boot mode, the PS boots from the NAND flash located on the module. The flash device is
connected to the PS MIO pins 0 and 2-14.
In order to boot from the NAND flash, the user must enable the NAND controller in the Vivado block design
and set the timing parameters as described in Section 2.16.3. After these changes, a new FSBL must be
generated and used for the Zynq boot image creation.

3.4

JTAG

The FPGA and the PS JTAG interfaces are connected into one single chain available on the module connector.
The SoC device, the QSPI flash, and the NAND flash can be configured via JTAG from Xilinx SDK or Xilinx
Vivado Hardware Manager.

D-0000-424-004

35 / 48

Version 05, 21.08.2018

3.4.1

JTAG on Module Connector

Signal Name

Module Connector Pin

Resistor

JTAG_TCK

158

22 kΩ pull-up to VCC_CFG_PS_B13_B33

JTAG_TMS

162

SoC internal pull-up

JTAG_TDI

160

SoC internal pull-up

JTAG_TDO

164

-

Table 35: JTAG Interface

3.4.2

External Connectivity

JTAG signals can be connected directly on the base board to a JTAG connector. No pull-up/pull-down resistors are necessary. The VREF pin of the programmer must be connected to VCC_CFG_PS_B13_B33.
It is recommended to add 22 Ω series termination resistors between the module and the JTAG header, close
to the source. Please refer to the Enclustra Module Pin Connection Guidelines for details on JTAG interface.

3.5

QSPI Boot Mode

In the QSPI boot mode, the PS boots from the QSPI flash located on the module. The flash device is connected to the PS MIO pins 1-6.
In order to boot from the QSPI flash, the user must enable the QSPI flash controller in the Vivado block
design and generate a new FSBL to be used for the Zynq boot image creation.

3.6

SD Card Boot Mode

In the SD card boot mode the PS boots from the SD card located on the base board.
For this operation, the following requirements must be met:
•
•
•
•

The SD card must be connected to MIO pins 40-45
A Zynq boot image must be generated from an SoC design having the SDIO controller enabled
The boot image must be named “boot.bin” and then copied to the SD card
In software versions older than Vivado 2014.4, the card detect check in the Xilinx FSBL must be disabled.
For details, please contact Enclustra Support team.
• The SDIO controller must be fed with a reasonable clock frequency. As some versions of the FSBL do
not configure the clock divider in the SDIO controller, a 50 MHz clock is used in the reference design.
For details on SD card boot, please refer to the Xilinx Zynq documentation [18] [20].

3.7

QSPI Flash Programming via JTAG

The Xilinx Vivado and SDK software offer QSPI flash programming support via JTAG. For more information,
please refer to the Xilinx documentation [22].

D-0000-424-004

36 / 48

Version 05, 21.08.2018

3.8

QSPI Flash Programming from an External SPI Master

The signals of the QSPI flash are directly connected to the module connector for flash access. As the flash
signals are connected to the SoC device as well, the SoC device pins must be tri-stated while accessing the
QSPI flash directly from an external device.
This is ensured by pulling the PS_SRST# signal to GND followed by a pulse on PS_POR#, which puts the SoC
device into reset state and tri-states all I/O pins. PS_SRST# must be low when PS_POR# is released and kept
low until the flash programming has finished. Afterwards, all SPI lines and PS_SRST# must be tri-stated and
another reset impulse must be applied to PS_POR#.
Figure 12 shows the signal diagrams corresponding to flash programming from an external master.

Figure 12: QSPI Flash Programming from an External SPI Master - Signal Diagrams

Warning!
Accessing the QSPI flash directly without putting the SoC device into reset may damage the equipped
SoC device, as well as other devices on the Mars ZX3 SoC module.

3.9

NAND Flash Programming

The NAND flash on the Mars ZX3 SoC module can be programmed via JTAG or from u-boot.
The Xilinx SDK software offers NAND flash programming support via JTAG. For the programming operation,
type “nand_8” must be selected. Please note that Vivado Hardware Manager does not support the NAND
flash type equipped on the Mars ZX3 SoC module.
When programming the NAND flash in u-boot, the user must make sure that the NAND controller is enabled; the u-boot available in the Enclustra Linux build environment includes a built-in command to switch
the current configuration to use NAND flash as storage:
zx_set_storage NAND
Note that for a successful programming the flash image must be written avoiding the bad sectors of the
flash (by using nand.jffs2 command).

D-0000-424-004

37 / 48

Version 05, 21.08.2018

3.10

FPGA and QSPI Flash Programming using Xilinx Impact

For Zynq-7000 devices, Xilinx Impact requires JTAG boot mode to be selected in order to download the
bitstream or program the QSPI flash.
As this operation on the Mars ZX3 SoC module requires hardware changes (please refer to Section 3.3.1), it
is recommended to use Xilinx SDK or Vivado for FPGA or QSPI flash programming.

3.11

Enclustra Module Configuration Tool

In combination with an Enclustra base board, the QSPI flash can be programmed using the Enclustra Module
Configuration Tool (MCT) [16].
Please note that the Xilinx Zynq devices do not support slave serial configuration, therefore only flash programming is supported by the Enclustra MCT for the Mars ZX3 SoC module.

D-0000-424-004

38 / 48

Version 05, 21.08.2018

4

I2C Communication

4.1

Overview

The I2C bus on the Mars ZX3 SoC module is connected to the SoC device, EEPROM and RTC, and is available
on the module connector. This allows external devices to read the module type and to connect more devices
to the I2C bus.
Please note that the RTC must be configured correctly to use I2C interrupts - for details, refer to Section 2.20.
The I2C clock frequency should not exceed 400 kHz.
Warning!
Maximum I2C speed may be limited by the routing path and additional loads on the base board.

Warning!
If the I2C traces on the base board are very long, 100 Ω series resistors should be added between
module and I2C device on the base board.

4.2

Signal Description

Table 36 describes the signals of the I2C interface. All signals have on-board pull-up resistors to VCC_3V3.
All signals must be connected to open collector outputs and must not be driven high from any source.
I2C_INT# is an input to the SoC and must not be driven from the SoC device.
For Mars ZX3 SoC module revision 4 and older, the I2C_INT# signal was inverted for the SoC device. It was
an active-low signal for the entire system but active-high for the SoC. Modules of revision 5 and newer do
not have this inversion, therefore I2C_INT# is also active-low at the SoC device. Refer to Section 2.22 on how
to detect the module revision. The Mars ZX3 SoC module reference design includes the HDL code section
for the revision detection and I2C_INT# inversion.
Level shifters are used between the I2C bus and the PS/PL pins, to allow I/O voltages lower than 3.3 V. Please
make sure that all pins are configured correctly and no pull-down resistors are enabled.
Signal Name

PS Pin

PL Pin

Connector Pin

Resistor

I2C_SDA

MIO5312

H15

176

2.2 kΩ pull-up

I2C_SCL

MIO5212

R15

178

2.2 kΩ pull-up

I2C_INT#

-

H17

174

10 kΩ pull-up

Table 36: I2C Signal Description

12 MIO52

and MIO53 are used for MDIO by default. Please refer to Section 2.9.7 for details.

D-0000-424-004

39 / 48

Version 05, 21.08.2018

4.3

I2C Address Map

Table 37 describes the addresses for several devices connected on I2C bus.
Address (7-bit)

Description

0x5C

Secure EEPROM

0x64

Secure EEPROM (assembly option, refer to Section 2.21)

0x57

RTC user SRAM

0x6F

RTC registers

Table 37: I2C Addresses

4.4

Secure EEPROM

The secure EEPROM is used to store the module serial number and configuration. In the future, the EEPROM
will be used for copy protection and licensing features. Please contact us for further information.
An example demonstrating how to read the module information from the EEPROM memory is included in
the Mars ZX3 SoC module reference design.
Warning!
The secure EEPROM is for Enclustra use only. Any attempt to write data to the secure EEPROM causes
the warranty to be rendered void.

4.4.1

Memory Map

Address

Length (bits)

Description

0x00

32

Module serial number

0x04

32

Module product information

0x08

40

Module configuration

0x0D

24

Reserved

0x10

48

Ethernet MAC address

0x16

48

Reserved

0x1C

32

Checksum (only for DS28CN01 EEPROM type)

Table 38: EEPROM Sector 0 Memory Map

Module Serial Number
The module serial number is a unique 32-bit number that identifies the module. It is stored using big-endian
byte order (MSB on the lowest address).

D-0000-424-004

40 / 48

Version 05, 21.08.2018

Module Product Information
This field indicates the type of module and hardware revision.
Module

Product Family

Reserved

Revision

Product Information

Mars ZX3 SoC module

0x0323

0x[XX]

0x[YY]

0x0323 [XX][YY]

Table 39: Product Information

Module Configuration
Addr.

Bits

Comment

Min. Value

Max. Value

7-4

SoC type

0

0

0x08

0x0B

0x0C

See SoC type
table (Table 41)

3-0

SoC device speed grade

1

3

7

Temperature range

0 (Commercial)

1 (Industrial)

6

Power grade

0 (Normal)

1 (Low power)

5-4

Ethernet port count

0

1

3

Ethernet speed

0 (Fast

1 (Gigabit

Ethernet)

Ethernet)

0x09

0x0A

Comment

2

RTC equipped

0

1

1-0

Reserved

-

-

7-2

Reserved

-

-

1-0

USB 2.0 port count

0

1

7-4

DDR3 RAM size (MB)

0 (0 MB)

8 (1 GB)

Resolution = 8 MB

3-0

QSPI flash memory size (MB)

0 (0 MB)

7 (64 MB)

Resolution = 1 MB

7-4

Reserved

-

-

3-0

NAND flash memory size (MB)

0 (0 MB)

10 (512 MB)

Resolution = 1 MB

Table 40: Module Configuration

The memory sizes are defined as Resolution×2(Value-1) (e.g. DRAM=0: not equipped, DRAM=1: 8 MB,
DRAM=2: 16 MB, DRAM=3: 32 MB, etc).
Table 41 shows the available SoC types.
Value

SoC Device Type

0

XC7Z020

Table 41: SoC Device Types

D-0000-424-004

41 / 48

Version 05, 21.08.2018

Ethernet MAC Address
The Ethernet MAC address is stored using big-endian byte order (MSB on the lowest address). Each module
is assigned two sequential MAC addresses; only the lower one is stored in the EEPROM.

D-0000-424-004

42 / 48

Version 05, 21.08.2018

5

Operating Conditions

5.1

Absolute Maximum Ratings

Table 42 indicates the absolute maximum ratings for Mars ZX3 SoC module. The values given are for reference only; for details please refer to the Zynq-7000 DC and AC Switching Characteristics Datasheet [23].
Symbol

Description

Rating

Unit

VCC_MOD

Supply voltage relative to GND

-0.5 to 6

V

VCC_3V3

3.3 V supply voltage relative to GND

-0.5 to 3.6

V

VCC_BAT

Supply voltage for the RTC and encryption key storage

-0.3 to 3.6

V

Output drivers supply voltage relative to GND

-0.5 to 3.6

V

V_IO

I/O input voltage relative to GND

-0.5 to VCCO +0.5

V

V_ADC

Analog I/O input voltage for the ADC

-0.5 to 2.3

V

Temperature range for commercial modules (C)*

0 to +70

◦

C

Temperature range for industrial modules (I)*

-40 to +85

◦

C

VCC_IO_[x]
VCC_CFG_[x]

Temperature

Table 42: Absolute Maximum Ratings

D-0000-424-004

43 / 48

Version 05, 21.08.2018

5.2

Recommended Operating Conditions

Table 43 indicates the recommended operating conditions for Mars ZX3 SoC module. The values given are
for reference only; for details please refer to the Zynq-7000 DC and AC Switching Characteristics Datasheet
[23].
Symbol

Description

Rating

Unit

VCC_MOD

Supply voltage relative to GND

3.0 to 5.5

V

VCC_3V3

3.3 V supply voltage relative to GND

3.15 to 3.45

V

VCC_BAT

Supply voltage for the RTC and encryption key storage

2.0 to 3.45

V

Output drivers supply voltage relative to GND

Refer to Section 2.9.5

V

V_IO

I/O input voltage relative to GND

-0.2 to VCCO +0.2

V

V_ADC

Analog I/O input voltage for the ADC

0 to 1.5

V

Temperature range for commercial modules (C)*

0 to +70

◦

C

Temperature range for industrial modules (I)*

-40 to +85

◦

C

VCC_IO_[x]
VCC_CFG_[x]

Temperature

Table 43: Recommended Operating Conditions

Warning!
*

The components used on the hardware are specified for the relevant temperature range. The user
must provide adequate cooling in order to keep the temperature of the components within the specified
range.

D-0000-424-004

44 / 48

Version 05, 21.08.2018

6

Ordering and Support

6.1

Ordering

Please use the Enclustra online request/order form for ordering or requesting information:
http://www.enclustra.com/en/order/

6.2

Support

Please follow the instructions on the Enclustra online support site:
http://www.enclustra.com/en/support/

D-0000-424-004

45 / 48

Version 05, 21.08.2018

List of Figures
1
2
3
4
5
6
7
8
9
10
11
12

Hardware Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product Code Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module Top Assembly Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module Bottom Assembly Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module Footprint - Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-Up Sequence - VCC_IO in Relation with PWR_GOOD and PWR_EN Signals . . . . . .
Pull-Up During Configuration (PUDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Boot Mode Resistor - Assembly Drawing Top View (Refer to Section 2.5 for the latest Assembly
Drawing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QSPI Flash Programming from an External SPI Master - Signal Diagrams . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

9
10
10
12
12
13
13
14
18
34

. 35
. 37

List of Tables
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Standard Module Configurations . . . . . . . . . . . .
Article Numbers and Article Codes . . . . . . . . . . .
Mechanical Data . . . . . . . . . . . . . . . . . . . . .
Module Connector Types . . . . . . . . . . . . . . . .
User I/Os . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O Banks . . . . . . . . . . . . . . . . . . . . . . . . .
VCC_IO Pins . . . . . . . . . . . . . . . . . . . . . . . .
Special MIO Pins . . . . . . . . . . . . . . . . . . . . .
MIO Pins Connections Overview . . . . . . . . . . . .
ADC Parameters . . . . . . . . . . . . . . . . . . . . .
Generated Power Supplies . . . . . . . . . . . . . . . .
Module Power Status and Control Pins . . . . . . . .
Voltage Supply Inputs . . . . . . . . . . . . . . . . . .
Voltage Supply Outputs . . . . . . . . . . . . . . . . .
Power Consumption - Reference Values . . . . . . . .
Module Clock Resources . . . . . . . . . . . . . . . . .
Reset Resources . . . . . . . . . . . . . . . . . . . . . .
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR3 SDRAM Types . . . . . . . . . . . . . . . . . . .
DDR3 SDRAM Parameters . . . . . . . . . . . . . . . .
DDR3 Board Timing . . . . . . . . . . . . . . . . . . .
QSPI Flash Types . . . . . . . . . . . . . . . . . . . . .
NAND Flash Type . . . . . . . . . . . . . . . . . . . . .
NAND Flash Parameters . . . . . . . . . . . . . . . . .
Gigabit Ethernet PHY Type . . . . . . . . . . . . . . .
Gigabit Ethernet Signal Description . . . . . . . . . .
Gigabit Ethernet PHY Configuration . . . . . . . . . .
USB 2.0 PHY Type . . . . . . . . . . . . . . . . . . . . .
RTC Type . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Type . . . . . . . . . . . . . . . . . . . . . . .
Pin Location of the Revision Detection Resistor . . . .
SoC Configuration Pins . . . . . . . . . . . . . . . . .
Boot Modes . . . . . . . . . . . . . . . . . . . . . . . .
Hardware Changes for JTAG and NAND Boot Modes
JTAG Interface . . . . . . . . . . . . . . . . . . . . . . .
I2C Signal Description . . . . . . . . . . . . . . . . . .
I2C Addresses . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Sector 0 Memory Map . . . . . . . . . . . .

D-0000-424-004

46 / 48

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

10
11
14
15
15
16
17
19
19
20
21
21
22
22
23
23
24
24
25
26
26
27
28
29
29
30
31
31
32
32
32
33
34
35
36
39
40
40

Version 05, 21.08.2018

39
40
41
42
43

Product Information . . . . . . . . . .
Module Configuration . . . . . . . . .
SoC Device Types . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . .
Recommended Operating Conditions

D-0000-424-004

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

47 / 48

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

41
41
41
43
44

Version 05, 21.08.2018

References
[1] Enclustra General Business Conditions
http://www.enclustra.com/en/products/gbc/
[2] Mars ZX3 SoC Module Reference Design
→ Ask Enclustra for details
[3] Mars ZX3 SoC Module IO Net Length Excel Sheet
→ Ask Enclustra for details
[4] Mars ZX3 SoC Module FPGA Pinout Excel Sheet
→ Ask Enclustra for details
[5] Mars ZX3 SoC Module User Schematics
→ Ask Enclustra for details
[6] Mars ZX3 SoC Module Known Issues and Changes
→ Ask Enclustra for details
[7] Mars ZX3 SoC Module Footprint
→ Ask Enclustra for details
[8] Mars ZX3 SoC Module 3D Model (PDF)
→ Ask Enclustra for details
[9] Mars ZX3 SoC Module STEP 3D Model
→ Ask Enclustra for details
[10] Module Pin Connection Guidelines
→ Ask Enclustra for details
[11] Mars Master Pinout
→ Ask Enclustra for details
[12] Mars PM3 User Manual
→ Ask Enclustra for details
[13] Mars EB1 User Manual
→ Ask Enclustra for details
[14] Mars Starter User Manual
→ Ask Enclustra for details
[15] Enclustra Build Environment
→ Ask Enclustra for details
[16] Enclustra Module Configuration Tool
http://www.enclustra.com/en/products/tools/module-configuration-tool/
[17] Enclustra Modules Heat Sink Application Note
→ Ask Enclustra for details
[18] Zynq-7000 All Programmable SoC Technical Reference Manual, UG585, Xilinx, 2015
[19] 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital
Converter User Guide, UG480, Xilinx, 2015
[20] Zynq-7000 All Programmable SoC: Concepts, Tools, and Techniques (CTT), UG873, Xilinx, 2013
[21] GMII to RGMII v4.0, PG160, Xilinx, 2015
[22] Vivado Design Suite User Guide, Programming and Debugging, UG908, Xilinx, 2016
[23] Zynq-7000 All Programmable SoC, DC and AC Switching Characteristics, DS187, Xilinx, 2015

D-0000-424-004

48 / 48

Version 05, 21.08.2018



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : No
Page Count                      : 48
Page Mode                       : UseOutlines
Author                          : 
Title                           : 
Subject                         : 
Creator                         : LaTeX with hyperref package
Producer                        : LuaTeX-1.7.0
Create Date                     : 2018:08:22 10:29:04+02:00
Modify Date                     : 2018:08:22 10:29:04+02:00
Trapped                         : False
PTEX Full Banner                : This is LuaTeX, Version 1.07.0 (MiKTeX 2.9.6700)
EXIF Metadata provided by EXIF.tools

Navigation menu