Sentaurus.SProcess.User Guide
User Manual:
Open the PDF directly: View PDF .
Page Count: 1226
Download | |
Open PDF In Browser | View PDF |
Sentaurus™ Process User Guide Version I-2013.12, December 2013 Copyright and Proprietary Information Notice Copyright © 2013 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement. Destination Control Statement All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them. Disclaimer SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Trademarks Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at http://www.synopsys.com/Company/Pages/Trademarks.aspx. All other product or company names may be trademarks of their respective owners. Synopsys, Inc. 700 E. Middlefield Road Mountain View, CA 94043 www.synopsys.com ii Sentaurus™ Process User Guide I-2013.12 Contents About This Guide xxxi Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii Typographic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii Accessing SolvNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii Contacting Synopsys Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii Contacting Your Local TCAD Support Team Directly. . . . . . . . . . . . . . . . . . . . . xxxiv Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiv Chapter 1 Getting Started 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Setting Up the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Starting Sentaurus Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Starting Different Versions of Sentaurus Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Using a Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Example: 1D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Defining Initial 1D Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Defining Initial Simulation Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Initializing the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Choosing Process Models and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Setting Up a Meshing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Growing Screening Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Measuring Oxide Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Depositing Screening Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Tcl Control Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Saving the As-Implanted Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Annealing, Drive-in, Activation, and Screening Oxide Strip . . . . . . . . . . . . 11 Example: 2D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Defining Initial Structure and Mesh Refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Implanting Boron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Growing Gate Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Defining Polysilicon Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Working with Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Polysilicon Reoxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Saving Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Sentaurus™ Process User Guide I-2013.12 iii Contents Remeshing for LDD and Halo Implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Implanting LDD and Halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Forming Nitride Spacers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Remeshing for Source/Drain Implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Implanting Source/Drain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Transferring to Device Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Remeshing for Device Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Saving the Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Extracting 1D Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Adaptive Meshing: 2D npn Vertical BJT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Defining Initial Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Adaptive Meshing Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Buried Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Epi Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Sinker Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Base Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Emitter Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Full-Text Versions of Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1D NMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2D NMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2D npn Vertical Bipolar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 2 The Simulator Sentaurus Process 43 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Interactive Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Command-Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Interactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Fast Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Terminating Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 File Types Used in Sentaurus Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Syntax for Creating Input Command Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Tcl Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Material Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Default Simulator Settings: SPROCESS.models File. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Compatibility With Previous Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Parameter Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 iv Sentaurus™ Process User Guide I-2013.12 Contents Parameter Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Materials in Parameter Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Like Materials: Material Parameter Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Regionwise Parameters and Region Name-handling. . . . . . . . . . . . . . . . . . . . . . . . . . 58 Viewing the Defaults: Parameter Database Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Starting the Parameter Database Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Browser PDB Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 PDB Preferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Viewing Parameters Stored in TDR Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Creating and Loading Structures and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Understanding Coordinate Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Wafer Coordinate System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Simulation Coordinate System (Unified Coordinate System) . . . . . . . . . . . . . . . . 67 Visualization Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Defining the Structure: The line and region Commands . . . . . . . . . . . . . . . . . . . . . . . 70 Creating the Structure and Initializing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Defining the Crystal Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Automatic Dimension Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Saving and Visualizing Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Saving a Structure for Restarting the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Saving a Structure for Device Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Saving Doping Information in SiC and GaN for Device Simulations . . . . . . . . . . 79 Saving 1D Profiles for Inspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Saving 1D TDR Files from 2D and 3D Simulations . . . . . . . . . . . . . . . . . . . . . . . 79 The select Command (More 1D Saving Options) . . . . . . . . . . . . . . . . . . . . . . . . . 80 Loading 1D Profiles: The profile Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter 3 Ion Implantation 81 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Selecting Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Dios or Default Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Taurus Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 TSUPREM-4 Native Implant Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Multirotation Implantation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Energy Contamination Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Adaptive Meshing during Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Coordinates for Implantation: Tilt and Rotation Angles . . . . . . . . . . . . . . . . . . . . . . . 89 2D Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Sentaurus™ Process User Guide I-2013.12 v Contents Analytic Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Primary Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Gaussian Distribution: gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Pearson Distribution: pearson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Pearson Distribution with Linear Exponential Tail: pearson.s. . . . . . . . . . . . . . . . 96 Dual Pearson Distribution: dualpearson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Point-Response Distribution: point.response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Screening (Cap) Layer-dependent Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Lateral Straggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Depth-dependent Lateral Straggle: Sentaurus Process Formulation . . . . . . . . . . 100 Depth-dependent Lateral Straggle: Dios Formulation . . . . . . . . . . . . . . . . . . . . . 100 Depth-dependent Lateral Straggle: Taurus Formulation . . . . . . . . . . . . . . . . . . . 101 Analytic Damage: Hobler Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Implantation Table Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Multilayer Implantations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Lateral Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Local Layer Structure in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Primary Direction and Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Point-Response Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Analytic Damage and Point-Defect Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Implantation Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Point-Defect Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Backscattering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Multiple Implantation Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Preamorphization Implantation (PAI) Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 CoImplant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Profile Reshaping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Ge-dependent Analytic Implantation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Analytic Molecular Implantation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Molecular Implantation with Supplied Implant Tables . . . . . . . . . . . . . . . . . . . . 130 BF2 Implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Damage Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Performing 1D or 2D Analytic Implantation in 3D Mode. . . . . . . . . . . . . . . . . . . . . 131 Implantation on (110)/(111) Wafers Using (100) Implant Tables. . . . . . . . . . . . . . . 132 Monte Carlo Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Running Sentaurus MC or Crystal-TRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Structure of Target Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 vi Sentaurus™ Process User Guide I-2013.12 Contents Single-Crystalline Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Amorphous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Polycrystalline Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Molar Fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Sentaurus MC Physical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Binary Collision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Electronic Stopping Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Damage Accumulation and Dynamic Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 149 Crystal-TRIM Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Single-Crystalline Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Amorphous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Damage Buildup and Crystalline–Amorphous Transition . . . . . . . . . . . . . . . . . . 158 Internal Storage Grid for Implantation Damage. . . . . . . . . . . . . . . . . . . . . . . . . . 159 Molecular Implantations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 MC Implantation into Polysilicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 MC Implantation into Compound Materials with Molar Fractions. . . . . . . . . . . . . . 163 MC Implantation into Silicon Carbide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Recoil Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Plasma Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Simple Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Complex Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Deposition of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Knock-on and Knock-off Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Conformal Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Other Plasma Implantation–related Parameters and Procedures . . . . . . . . . . . . . 170 MC Implantation Damage and Point-Defect Calculation . . . . . . . . . . . . . . . . . . . . . 172 Sentaurus MC Damage Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Crystal-TRIM: Damage Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Point Defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Statistical Enhancement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Trajectory Splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Dose Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Trajectory Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Boundary Conditions and Domain Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Unified Implant Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Implant Boundary Conditions using PDB Commands . . . . . . . . . . . . . . . . . . . . . . . 181 Monte Carlo Implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Analytic Implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Smoothing Implantation Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Automatic Extraction of Implant Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Sentaurus™ Process User Guide I-2013.12 vii Contents Required Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Optional Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Utilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Loading External Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Loading Files Using load.mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Automated Monte Carlo Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Multithreaded Parallelization of 3D Analytic Implantation . . . . . . . . . . . . . . . . . . . . . . 191 Multithreaded Parallelization of Sentaurus MC Implantation . . . . . . . . . . . . . . . . . . . . 192 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Chapter 4 Diffusion 197 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Basic Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Obtaining Active and Total Dopant Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . 200 Transport Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Recombination and Reaction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Other Materials and Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Transport Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 ChargedReact Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 React Diffusion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 ChargedPair Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Pair Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 ChargedFermi Diffusion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Fermi Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Constant Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 NeutralReact Diffusion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Carbon Diffusion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Nitrogen Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Mobile Impurities and Ion-Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Solid Phase Epitaxial Regrowth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Level-Set Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Phase Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Flash or Laser Anneal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Dopant Diffusion in Melting Laser Anneal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Guideline for Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Saving a Thermal Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Structure Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 viii Sentaurus™ Process User Guide I-2013.12 Contents Intensity Models for Flash Anneal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Table Lookup Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 User-specified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Intensity Model for Scanning Laser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Diffusion in Polysilicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Isotropic Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Grain Shape and the Grain Growth Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Diffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Anisotropic Diffusion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Diffusion in Grain Interiors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Grain Boundary Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Diffusion along Grain Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Segregation Between Grain Interior and Boundaries . . . . . . . . . . . . . . . . . . . . . . 251 Grain Size Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Surface Nucleation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Grain Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Interface Oxide Breakup and Epitaxial Regrowth . . . . . . . . . . . . . . . . . . . . . . . . 255 Dependence of Polysilicon Oxidation Rate on Grain Size. . . . . . . . . . . . . . . . . . 257 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Boundary Conditions for Grain Growth Equation . . . . . . . . . . . . . . . . . . . . . . . . 258 Dopant Diffusion Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Dopant Diffusion in SiGe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Bandgap Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Potential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Effects on Point-Defect Equilibrium Concentrations . . . . . . . . . . . . . . . . . . . . . . . . 262 Effect of Ge on Point-Defect Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Impact of Ge on Extended-Defect Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Impact of Dopant Diffusivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 SiGe Strain and Dopant Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Germanium–Boron Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Initializing Germanium–Boron Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Diffusion in III–V Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Material Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Physical Parameter Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Dopant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 ChargedReact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Fermi Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Constant Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Sentaurus™ Process User Guide I-2013.12 ix Contents Activation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Point-Defect Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 MoleFractionFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Pressure-dependent Defect Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Electron Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Poisson Equation for Hetero-junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Bandgap Narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Using LKMC for Deposition Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Epi Doping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Initialization of Dopant Clusters in Epi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Epi Auto-Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Epi Doping Using Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Epi Growth Settings: Low-Temperature Epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Simulating Facet Growth during Selective Epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . 287 Controlling Where Facets Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Time-stepping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Other Effects on Dopant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Pressure-dependent Dopant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Diffusion Prefactors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 High-Concentration Effects on Dopant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Hydrogen Effects on Dopant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Dopant Activation and Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Dopant Active Model: None . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Dopant Active Model: Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Dopant Active Model: Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Initializing Precipitation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Dopant Active Model: Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Initializing Transient Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 Dopant Active Model: Cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Initializing Cluster Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Dopant Active Model: NeutralCluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Initializing NeutralCluster Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Carbon Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Nitrogen Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Dopant Active Model: FVCluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Initializing the FVCluster Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Dopant Active Model: Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Dopant Active Model: BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Initializing BIC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 x Sentaurus™ Process User Guide I-2013.12 Contents Dopant Active Model: ChargedCluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Initializing ChargedCluster Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Dopant Active Model: ComplexCluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Initializing ComplexCluster Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Dopant and Dopant-Defect Cluster Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Dopant Trapping at EOR Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 Initializing Dopant Trapping in EOR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Defect Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Defect Cluster Model: None . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Defect Cluster Model: Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Defect Cluster Model: 311. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Initializing 311 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Defect Cluster Model: Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Direct Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Size-dependent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Initializing Loop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Defect Cluster Model: LoopEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Initializing LoopEvolution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Defect Cluster Model: FRENDTECH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Initializing FRENDTECH Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 Defect Cluster Model: 1Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Interstitial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Vacancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Initializing 1Moment Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Defect Cluster Model: 2Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Interstitial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Vacancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Initializing 2Moment Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 Defect Cluster Model: Full . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 Interstitial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 Vacancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 Initializing Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 Ion Implantation to Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Initializing Solution Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 HomNeumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Surface Recombination Model: PDependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Surface Recombination Model: InitGrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 Surface Recombination Model: Simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 Surface Recombination Model: Normalized . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 Sentaurus™ Process User Guide I-2013.12 xi Contents Modifying Point-Defect Equilibrium Values at Surface . . . . . . . . . . . . . . . . . . . 361 Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Surface Recombination Model: Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 Surface Recombination Model: PairSegregation . . . . . . . . . . . . . . . . . . . . . . . . . 362 Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 ThreePhaseSegregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 Surface Recombination Model: Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Surface Recombination Model: PairSegregation . . . . . . . . . . . . . . . . . . . . . . . . . 368 Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 TrapGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Periodic Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Boundary Conditions at Moving Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Enhanced and Retarded Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Conserving Dose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Common Dopant and Defect Dataset Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Chapter 5 Atomistic Kinetic Monte Carlo Diffusion 381 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 KMC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 Atomistic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 Diffuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 Nonatomistic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 Atomistic/Nonatomistic Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 Sano Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 Simulation Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 Recommended Domain Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 Internal Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 How Parallelism Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Estimating CPU Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 Atomistic Diffusion Simulation with Sentaurus Process KMC . . . . . . . . . . . . . . . . . . . 395 Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 Space Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Materials and Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 xii Sentaurus™ Process User Guide I-2013.12 Contents Supported Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 Material Alloying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 Point Defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 Ambiguous Alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 Simulation and CPU Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 Parallelism and CPU Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 Movie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 Time Internal Representation and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 Particle Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 Particles in Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 Alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 Particles and Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 Undefining Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 Defect Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 Point Defects, Impurities, Dopants, and Impurity-paired Point Defects . . . . . . . . . . . . 415 Interstitials and Vacancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 Migration (Diffusion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 Breakup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Parameter Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 Hopping Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 The short Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 The long Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 The double Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 The longdouble Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 Enabling and Disabling Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 Interaction Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 Defining Nonstandard Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 Interaction Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 Stress Effects on Point Defects, Impurities, Dopants, and Impurity-Paired Point Defects 428 Migration Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Binding Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 Sentaurus™ Process User Guide I-2013.12 xiii Contents Alloy Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 Alloy Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 Introducing Alloys in the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 Damage Accumulation Model: Amorphous Pockets . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 Emission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 Amorphous Pockets Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 Interactions of Amorphous Pockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 Interaction with Point Defects: I and V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 Interaction with Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 Extended Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 {311} Defects (ThreeOneOne) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Dislocation Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 Voids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 Amorphization and Recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 Amorphous Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Diffusion in Amorphous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Direct diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 xiv Sentaurus™ Process User Guide I-2013.12 Contents Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 Indirect Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 Impurity Clusters in Amorphous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 Recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 KMC: Quasiatomistic Solid Phase Epitaxial Regrowth . . . . . . . . . . . . . . . . . . . . 460 LKMC: Fully Atomistic Modeling of Solid Phase Epitaxial Regrowth . . . . . . . 463 Defect Generation during SPER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Redistributing Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 Impurity Sweep/Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 Impurity Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Initial Seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 Emission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 Frank–Turnbull Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 Complementary Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 Complementary Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 Charge Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 Neutral Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 Nonneutral Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Complex Impurity Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 Setting Up Impurity Clusters in a Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 Fermi-Level Effects: Charge Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 Sentaurus Process KMC Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Formation Energies for Charged Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Binding Energies for Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Sentaurus™ Process User Guide I-2013.12 xv Contents Binding Energies for Impurity Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Temperature Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 Charge Attractions and Repulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 Fermi-Level Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 Updating Charged States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Electronic Concentrations and Charge-State Ratios. . . . . . . . . . . . . . . . . . . . . . . 497 Mobile Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Pairing and Breakup Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Electric Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 Bandgap Narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 Narrowing due to Dopant Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 Narrowing due to Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 Narrowing due to Presence of an Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 Bandgap Narrowing Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 Charge Model and Boron Diffusion Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 Charge Model and Arsenic Diffusion Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 Interfaces and Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 Different Interface Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 Interfaces for Self-Silicon Point Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 Oxidation-enhanced Diffusion (OED) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 Interfaces for Impurities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 Simple Material Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 Full Material Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 Epitaxial Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 Including New Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 Impurities Diffusing without Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 Normal Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 Diffusion without Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 Models Used Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 Particle Distribution Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 Cluster Distribution Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 xvi Sentaurus™ Process User Guide I-2013.12 Contents Defect Activity Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 Interactions Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 PointDefect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 AmorphousPocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 ThreeOneOne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 ImpurityCluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Event Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 PointDefect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 AmorphousPocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 ThreeOneOne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 ImpurityCluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 Amorphous Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Lattice Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Simple Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Extracting KMC-related Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 Transferring Fields from KMC to Continuum Information: deatomize . . . . . . . . . . 536 Smoothing Out Deatomized Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 Adding and Obtaining Defects in Simulations: add, defects.add, and defects.write . 539 Using the Sentaurus Process Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 The select, print, WritePlx, and plot Commands . . . . . . . . . . . . . . . . . . . . . . . . . 541 The init Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 The struct Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 The load Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 The deposit Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 The diffuse Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 Nonatomistic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 Atomistic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 Calling Directly the Sentaurus Process KMC Kernel . . . . . . . . . . . . . . . . . . . . . . . . 543 Writing and Displaying TDR Files with KMC Information . . . . . . . . . . . . . . . . 544 Inquiring about KMC Profiles, Histograms, and Defects . . . . . . . . . . . . . . . . . . . . . 547 The histogram Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 The profile Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 The supersaturation Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 The defects Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 The dose Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 The materials Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 The acinterface Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 Common Dopant and Point-Defect Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 Sentaurus™ Process User Guide I-2013.12 xvii Contents Advanced Calibration for Sentaurus Process KMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 Chapter 6 Alagator Scripting Language 571 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 Binary and Unary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 Simple Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 Differential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 Special Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 The diag Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 String Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574 Solution Names and Subexpressions: Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574 Constants and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 Alagator for Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576 Setting Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 Dirichlet Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 Segregation Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 Natural Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 Interface Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 External Boundary Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 Using Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 Callback Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 Callbacks during Execution of diffuse Command . . . . . . . . . . . . . . . . . . . . . . . . 583 Using Callback Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 Setup Procedure: InitProc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 Preprocessing and Postprocessing Data: diffPreProcess, UserDiffPreProcess, diffPostProcess, UserDiffPostProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 Complex Initialization Procedures: InitSolve and EquationInitProc . . . . . . . . . . 592 Diffusion Summary: pdb, TclLib, SPROCESS.models . . . . . . . . . . . . . . . . . . . . . . 594 Alagator for Generic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 Epi Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 Callback Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 Setup Procedure: InitGrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 Equation Procedure: EquationGrowthProc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 Epitaxy Growth Rate: GrowthRateProc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 Generic Growth Summary: pdb, TclLib, SPROCESS.models . . . . . . . . . . . . . . . . . 606 Modifying Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 UserAddEqnTerm and UserSubEqnTerm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 UserAddToTerm and UserSubFromTerm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 xviii Sentaurus™ Process User Guide I-2013.12 Contents References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610 Chapter 7 Advanced Calibration 611 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 Using Advanced Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 Additional Calibration by Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 Chapter 8 Oxidation and Silicidation 615 Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 Basic Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 Temperature Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 Ambients and Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617 Specifying Gas Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618 Computing Partial Pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619 In Situ Steam-generated Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 Oxidant Diffusion and Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 Transition to Linear and Parabolic Rate Constants . . . . . . . . . . . . . . . . . . . . . . . 622 Massoud Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 Orientation-dependent Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 Stress-dependent Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 Trap-dependent Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 Dopant-dependent Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 Diffusion Prefactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 Oxidation with Dielectric on Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 N2O Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 SiC Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 In Situ Steam-generated Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 Silicide Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 TiSi2 Growth Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 TiSi2 Formation Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 Tungsten-, Cobalt-, and Nickel-Silicide Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 Stress-dependent Silicidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 Oxygen-retarded Silicidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 Triple-Point Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 Dopants and Defects in Oxides and Silicides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 Outer Time Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 Inner Time Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 Sentaurus™ Process User Guide I-2013.12 xix Contents Chapter 9 Computing Mechanical Stress 643 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 Material Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 Viscoelastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Maxwell Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Standard Linear Solid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 Purely Viscous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 Shear Stress–dependent Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 Purely Elastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649 Anisotropic Elastic Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 Cubic Crystal Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 Orthotropic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 Plastic Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 Incremental Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 Deformation Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 Viscoplastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 Anand Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 Power Law Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658 Swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 Mole Fraction–dependent Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 Deprecated Syntax for Mole Fraction–dependent Mechanical Properties of Binary Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 Temperature-dependent Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 Deprecated Syntax for Temperature-dependent Mechanical Properties . . . . . . . 665 Plane Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 Equations: Global Equilibrium Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 Example: Applying Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 Pressure Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 Advanced Dirichlet Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 Periodic Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 Time Step Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 Stress-causing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 Stress Induced by Growth of Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 Densification-induced Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 Selectively Switching Off Grid Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 Stress Caused by Thermal Mismatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 Lattice Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 Using the Lattice Mismatch Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 Total Concentration Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 Reference Concentration Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 xx Sentaurus™ Process User Guide I-2013.12 Contents Strained Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 Edge Dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 Intrinsic Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 Stress Rebalancing after Etching and Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 Automated Tracing of Stress History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 Saving Stress and Strain Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 Description of Output Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 Tracking Maximum Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 Chapter 10 Mesh Generation 693 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 Viewing Mesh Refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 Static Refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 Standard Refinement Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 Interface Refinement Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 Interface Offsetting Refinement Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 Refinement Inside a Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 Refinement Near Mask Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698 Adaptive Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699 Adaptive Refinement Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700 Localizing Adaptive Meshing using refinebox Command. . . . . . . . . . . . . . . . . . 706 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707 Adaptive Meshing during Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707 Adaptive Meshing during Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708 Tips for Adaptive Meshing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709 Default Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 Refinement Box Manipulations: Using transform.refinement . . . . . . . . . . . . . . . . . 711 Mesh Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 Controlling Mesh during Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 TS4 Mesh Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 Control Parameters in TS4Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 Moving Mesh and Mechanics Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 Grid Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 Grid Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 Maximum-allowed Rate of Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718 Miscellaneous Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718 Meshing for 3D Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 MovingMesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 UseLines: Keeping User-defined Mesh Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722 Sentaurus™ Process User Guide I-2013.12 xxi Contents Using line Commands after init Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 Dimension within Current Spatial Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 Dimension Greater Than Current Spatial Dimension. . . . . . . . . . . . . . . . . . . . . . 723 Creating More Than One Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724 The UseLines and transform Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 The reflect Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 The stretch Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 The rotate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 The translate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 The cut Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 Testing line Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 Showing Clearing Lines for a New Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 Data Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 Chapter 11 Structure Generation 731 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 Deposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 Masks and Photoresist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 Geometry Creation and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 Etching and Deposition Types and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733 Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733 Etching Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 Etching Type: Isotropic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 Etching Types: Anisotropic and Directional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 Etching Types: Polygonal and CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 Etching Type: Fourier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 Etching Type: Crystallographic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 Etching Type: Trapezoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 Etching Type: Piecewise Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 Mask Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 Deposition Type: Isotropic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 Deposition Types: Fill and Polygonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 Deposition Type: Crystallographic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753 Deposition Type: Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 Deposition Type: Trapezoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 Selective Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 xxii Sentaurus™ Process User Guide I-2013.12 Contents Fields in Deposited Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 Stress Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 Shape Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 PolyHedronSTI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 PolyHedronSTIaccc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 PolyHedronSTIaccv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761 PolyHedronCylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 PolygonWaferMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 PolyHedronEpiDiamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 The mask and photo Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 Photoresist Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 Boolean Masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 Line Edge Roughness Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 Mirrored Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 Geometry Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 Refinement Handling during Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 773 Contact Handling during Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773 The transform reflect Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 Refinement Handling during Reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 The transform stretch Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 Refinement Handling during Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 The transform cut Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 Refinement Handling during Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 The transform flip Command and Backside Processing . . . . . . . . . . . . . . . . . . . . . . 776 Refinement Handling during Flip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777 The transform rotate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777 Refinement Handling during Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778 The transform translate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778 MGOALS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778 MGOALS Boundary-moving Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778 MGOALS Boundary-moving Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780 MGOALS 3D Boundary-moving Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 Summary of MGOALS Etching and Deposition Algorithms . . . . . . . . . . . . . . . . . . 783 MGOALS Backward Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 Boundary Repair Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 Inserting Segments in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 Inserting Polygons in Two Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 Inserting Polyhedra in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 Reading Polyhedra from a TDR Boundary File . . . . . . . . . . . . . . . . . . . . . . . . . . 786 Creating a Rectangular Prism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 Extruding a 2D Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 Sentaurus™ Process User Guide I-2013.12 xxiii Contents Creating a Polyhedron from Its Constituent Polygonal Faces . . . . . . . . . . . . . . . 788 Sentaurus Structure Editor Interface: External Mode. . . . . . . . . . . . . . . . . . . . . . 788 Inserting Polyhedra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789 Structure Assembly in MGOALS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790 Sentaurus Structure Editor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791 Sentaurus Topography Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794 Sentaurus Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794 Sentaurus Topography 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 Using Polygon and Rectangle Mask in 2D Simulation . . . . . . . . . . . . . . . . . . . . . . . 797 3D Etching after 2D LOCOS Simulation (Sentaurus Structure Editor Interface) . . . 797 Using Layout File for 3D Etching (Sentaurus Structure Editor Interface) . . . . . . . . 799 3D Trench Etching, Sloped Sidewall with Predefined Angle (Sentaurus Structure Editor Interface). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 3D Etching after 2D LOCOS Simulation using MGOALS. . . . . . . . . . . . . . . . . . . . 805 Structure Assembly in MGOALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 Polygon Creation and Insertion in MGOALS2D . . . . . . . . . . . . . . . . . . . . . . . . . . . 809 Polyhedron Creation and Insertion in MGOALS . . . . . . . . . . . . . . . . . . . . . . . . . . . 812 Reading a TDR file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812 Extruding a 2D Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813 Creating a Polyhedron using Polygons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 Defining a Brick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816 Chapter 12 ICWBEV Plus Interface for Layout-driven Simulations 817 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 ICWBEV Plus Introduction for TCAD Users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 Opening GDSII Layout Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 Graphical User Interface of ICWBEV Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819 Sentaurus Markups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 Stretch Utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 Renaming Markups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 Auxiliary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 Editing Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 Resizing a Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 Converting a Rectangle to a Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 Nonaxis-aligned Simulation Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 Files Relevant to ICWBEV Plus–TCAD Sentaurus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 Saving the Sentaurus Markup File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 Contents of Sentaurus Markup File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 xxiv Sentaurus™ Process User Guide I-2013.12 Contents Reloading the Markup File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 Saving the TCAD Layout File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 Contents of TCAD Layout File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 Reloading the TCAD Layout File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 ICWBEV Plus Batch Mode and Macros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 Starting ICWBEV Plus in Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 ICWBEV Plus Macros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 Tcl-based Macros for Layout Parameterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 TCAD Layout Reader of Sentaurus Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 Loading the TCAD Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836 Finding Simulation Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836 Finding Layer Names and Layer IDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836 Selecting the Simulation Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 Loading a GDSII Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 Finding Domain Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838 Finding Bounding Box of Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838 Interface with line Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839 Creating Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839 Layout-driven Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 Layout-driven Contact Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842 Aligning Wafer and Simulation Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844 Additional Query Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 Chapter 13 Extracting Results 849 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 Saving Data Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 Selecting Fields for Viewing or Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 Obtaining 1D Data Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851 Determining the Dose: Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 Extracting Values and Level Crossings: interpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 Extracting Values during diffuse Step: extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 Optimizing Parameters Automatically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 Fitting Routines: FitLine, FitArrhenius, FitPearson, and FitPearsonFloor. . . . . . . . . . . 856 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 Sheet Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 Chapter 14 Numerics 861 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 Sentaurus™ Process User Guide I-2013.12 xxv Contents Setting Parameters of the Iterative Solver ILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 Partitioning and Parallel Matrix Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 Matrix Size Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867 Node and Equation Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868 Time-Step Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 Time-Step Control for PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 Error Control for PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 Time-Step Control for Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872 Time-Step Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 Time-Step Cutback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 Appendix A Commands 877 Syntax Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877 Example of Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 Common Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879 alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881 ArrBreak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883 Arrhenius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884 beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888 contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889 contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894 CutLine2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896 define. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 defineproc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 DeleteRefinementboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 diffuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919 Enu2G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 Enu2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922 etch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930 extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931 xxvi Sentaurus™ Process User Guide I-2013.12 Contents fbreak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933 fcontinue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933 fexec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 fproc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 fset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 gas_flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935 graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940 help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950 icwb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951 icwb.contact.mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 icwb.create.all.masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956 icwb.create.mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 icwb.refine.mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961 init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982 integrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985 interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 interpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 KG2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993 KG2nu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994 kmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 KMC2PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008 line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 line_edge_roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013 load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 LogFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 mater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 math. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 mgoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037 optimize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046 pdbDelayDouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048 pdbdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 pdbDopantLike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 pdbExprDouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 pdbGet and Related Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 pdbIsAvailable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054 Sentaurus™ Process User Guide I-2013.12 xxvii Contents pdbLike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055 pdbSet and Related Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 pdbUnSet-related Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059 PDE2KMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060 photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 plot.1d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 plot.2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 plot.tec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 plot.xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 point.xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080 polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082 polyhedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 PowerDeviceMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 print.1d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 print.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092 profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 RangeRefineboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096 reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099 refinebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101 region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110 sde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114 select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117 SetAtomistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121 SetDFISEList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122 SetDielectricOxidationMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124 SetFastMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126 setMobilityModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127 SetPlxList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128 SetTDRList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 SetTemp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130 SetTS4ImplantMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131 SetTS4MechanicsMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132 SetTS4OxidationMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133 SetTS4PolyMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134 SheetResistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 simDelayDouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136 simGetBoolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137 simGetDouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 simSetBoolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139 simSetDouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140 xxviii Sentaurus™ Process User Guide I-2013.12 Contents slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141 smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 sptopo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 stdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149 strain_profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150 stressdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151 StressDependentSilicidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157 struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158 substrate_profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163 tclsel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164 temp_ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166 term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173 topo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176 transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177 transform.refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182 translate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186 UnsetAtomistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187 UnsetDielectricOxidationMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189 update_substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190 WritePlx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191 Sentaurus™ Process User Guide I-2013.12 xxix Contents xxx Sentaurus™ Process User Guide I-2013.12 About This Guide The Synopsys Sentaurus™ Process tool is an advanced 1D, 2D, and 3D process simulator suitable for silicon and nonsilicon semiconductor devices. It features modern software architecture and state-of-the-art models to address current and future process technologies. Sentaurus Process simulates all standard process simulation steps, diffusion, implantation, Monte Carlo (MC) implantation (Taurus MC or Crystal-TRIM), oxidation, etching, deposition, and silicidation. Capabilities in 3D include meshing of 3D boundary files through the MGOALS library, implantation through the Imp3D module from FhG Erlangen, mechanics (stress and strain), diffusion, a limited capability for 3D oxidation, and an interface to Sentaurus Structure Editor, which is the 3D geometry editing tool based on the ACIS solid modeling library. Sentaurus Process uses the Alagator scripting language that allows users to solve their own diffusion equations. Alagator can be used to solve any diffusion equation including dopant, defect, impurity, and oxidant diffusion equations. Simulation of 3D diffusion is handled exactly as for 1D and 2D. Therefore, all the advanced models and user programmability available in 1D and 2D can be used in 3D. In addition, a set of built-in calibrated parameters is available with Advanced Calibration. The main chapters are: ■ Chapter 1 describes how to run Sentaurus Process. ■ Chapter 2 presents an overview of how Sentaurus Process operates. ■ Chapter 3 presents the ion implantation technique used in Sentaurus Process. ■ Chapter 4 provides information on the dopant and defect diffusion models and parameters. ■ Chapter 5 describes atomistic kinetic Monte Carlo diffusion. ■ Chapter 6 discusses the Alagator scripting language for solving diffusion equations. ■ Chapter 7 provides details about using Advanced Calibration in Sentaurus Process. ■ Chapter 8 describes the oxidation models. ■ Chapter 9 describes the computation of mechanical stress. ■ ■ ■ ■ Chapter 10 describes the mesh algorithms and meshing parameters available in Sentaurus Process. Chapter 11 discusses etching and deposition, and other geometry manipulations available in Sentaurus Process. Chapter 12 presents strategies for using the IC WorkBench EV Plus–TCAD Sentaurus interface. Chapter 13 presents strategies for analysing simulation results. Sentaurus™ Process User Guide I-2013.12 xxxi About This Guide Audience Chapter 14 discusses numerics-related issues, time integration methods, and the linear solvers used in Sentaurus Process. ■ Appendix A lists the available commands, including descriptions, options, and examples. ■ Audience This user guide is intended for users of the Sentaurus Process software package. Related Publications For additional information about Sentaurus Process, see: The TCAD Sentaurus release notes, available on SolvNet® (see Accessing SolvNet on page xxxiii). ■ Documentation available through SolvNet at https://solvnet.synopsys.com/DocsOnWeb. ■ Typographic Conventions xxxii Convention Explanation <> Angle brackets {} Braces [] Brackets () Parentheses Blue text Identifies a cross-reference (only on the screen). Bold text Identifies a selectable icon, button, menu, or tab. It also indicates the name of a field or an option. Courier font Identifies text that is displayed on the screen or that the user must type. It identifies the names of files, directories, paths, parameters, keywords, and variables. Italicized text Used for emphasis, the titles of books and journals, and non-English words. It also identifies components of an equation or a formula, a placeholder, or an identifier. Menu > Command Indicates a menu command, for example, File > New (from the File menu, select New). NOTE: Identifies important information. Sentaurus™ Process User Guide I-2013.12 About This Guide Customer Support Customer Support Customer support is available through SolvNet online customer support and through contacting the Synopsys support center. Accessing SolvNet SolvNet includes an electronic knowledge base of technical articles and answers to frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide range of Synopsys online services, which include downloading software, viewing documentation, and entering a call to the Synopsys support center. To access SolvNet: 1. Go to the SolvNet Web page at https://solvnet.synopsys.com. 2. If prompted, enter your user name and password. (If you do not have a Synopsys user name and password, follow the instructions to register with SolvNet.) If you need help using SolvNet, click Help on the SolvNet menu bar. Contacting Synopsys Support If you have problems, questions, or suggestions, you can contact Synopsys support in the following ways: ■ ■ Go to the Synopsys Global Support Centers site on www.synopsys.com. There you can find e-mail addresses and telephone numbers for Synopsys support centers throughout the world. Go to either the Synopsys SolvNet site or the Synopsys Global Support Centers site and open a case online (Synopsys user name and password required). Sentaurus™ Process User Guide I-2013.12 xxxiii About This Guide Acknowledgments Contacting Your Local TCAD Support Team Directly Send an e-mail message to: ■ support-tcad-us@synopsys.com from within North America and South America. ■ support-tcad-eu@synopsys.com from within Europe. ■ support-tcad-ap@synopsys.com from within Asia Pacific (China, Taiwan, Singapore, Malaysia, India, Australia). ■ support-tcad-kr@synopsys.com from Korea. ■ support-tcad-jp@synopsys.com from Japan. Acknowledgments Sentaurus Process is based on the 2000 and 2002 releases of FLOOPS written by Professor Mark Law and coworkers at the University of Florida. Synopsys acknowledges the contribution of Professor Law and his advice in the development of Sentaurus Process. For more information about TCAD at the University of Florida, visit http://www.swamp.tec.ufl.edu. Sentaurus Process Kinetic Monte Carlo is based on DADOS written by Professor Martin Jaraiz and coworkers at the University of Valladolid, Spain. Synopsys acknowledges Professor Jaraiz’ contribution and advice. For more information, visit http://www.ele.uva.es/~simulacion/ KMC.htm. xxxiv Sentaurus™ Process User Guide I-2013.12 CHAPTER 1 Getting Started This chapter describes how to run Sentaurus Process and guides you through a series of examples. This chapter is not a comprehensive reference but is intended to introduce some of the more widely used features of Sentaurus Process in a realistic context. For new users, the sections Interactive Mode on page 46, Syntax for Creating Input Command Files on page 50, and Creating the Structure and Initializing Data on page 71 would be useful to refer to while reading this chapter. For more advanced users who need to adjust model parameters, Like Materials: Material Parameter Inheritance on page 57 would be useful. For the TCAD Sentaurus Tutorial and examples, go to: $STROOT/tcad/$STRELEASE/Sentaurus_Training/index.html where STROOT is an environment variable that indicates where the Synopsys TCAD distribution has been installed, and STRELEASE indicates the Synopsys TCAD release number. Overview Sentaurus Process is a complete and highly flexible, multidimensional, process modeling environment. With its modern software architecture and extensive breadth of capabilities, Sentaurus Process is a state-of-the-art process simulation tool. Calibrated to a wide range of the latest experimental data using proven calibration methodology, Sentaurus Process offers unique predictive capabilities for modern silicon and nonsilicon technologies. Sentaurus Process accepts as input a sequence of commands that is either entered from standard input (that is, at the command prompt) or composed in a command file. A process flow is simulated by issuing a sequence of commands that corresponds to the individual process steps. In addition, several commands allow you to select physical models and parameters, grid strategies, and graphical output preferences, if required. You should place parameter settings in a separate file, which is sourced at the beginning of input files using the source command. In addition, a special language (Alagator) allows you to describe and implement your own models and diffusion equations. Sentaurus™ Process User Guide H-2013.03 1 1: Getting Started Setting Up the Environment Setting Up the Environment The STROOT environment variable is the TCAD Sentaurus root directory, and you must set this variable to the installation directory of TCAD Sentaurus. The STRELEASE environment variable can be used to specify the release of the software to run, for example, H-2013.03. If STRELEASE is not set, the default version is used which is usually the last version installed. To set the environment variables: 1. Set the TCAD Sentaurus root directory environment variable STROOT to the TCAD Sentaurus installation directory, for example: * Add to .cshrc setenv STROOT* Add to .profile, .kshrc, or .bashrc STROOT= ; export STROOT 2. Add the /bin directory to the user path. For example: * Add to .cshrc: set path=( /bin $path) * Add to .profile, .kshrc, or .bashrc: PATH= /bin:$PATH export PATH Starting Sentaurus Process You can run Sentaurus Process in either the interactive mode or batch mode. In the interactive mode, a whole process flow can be simulated by entering commands line-by-line as standard input. To start Sentaurus Process in the interactive mode, enter the following on the command line: > sprocess Sentaurus Process displays version and host information, followed by the Sentaurus Process command prompt. You now can enter Sentaurus Process commands at the prompt: sprocess> 2 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Using a Command File This is a flexible way of working with Sentaurus Process to test individual process steps or short sequences, but it is inconvenient for long process flows. It is more useful to compile the command sequence in a command file, which can be run in batch mode or inside Sentaurus Workbench. To run Sentaurus Process in batch mode, load a command file when starting Sentaurus Process, for example: > sprocess input.cmd Starting Different Versions of Sentaurus Process You can select a specific release and version number of Sentaurus Process using the -rel and -ver options: > sprocess -rel -ver For example: > sprocess -rel H-2013.03 The command: > sprocess -rel H-2013.03 -ver 1.2 nmos_fps.cmd starts the simulation of nmos_fps.cmd using the 1.2 version of Release H-2013.03 as long as this version is installed. Using a Command File As an alternative to entering Sentaurus Process commands line-by-line, the required sequence of commands can be saved to a command file, which can be written entirely by users or generated using Ligament. To save time and reduce syntax errors, you can copy and edit examples of command files in this user guide or use Ligament to create a template. If a command file has been prepared, run Sentaurus Process by typing the command: sprocess Alternatively, you can automatically start Sentaurus Process through the Scheduler in Sentaurus Workbench. By convention, the command file name has the extension .cmd. (This is the convention adopted in Sentaurus Workbench.) Sentaurus™ Process User Guide H-2013.03 3 1: Getting Started Example: 1D Simulation The command file is checked for correct syntax and then the commands are executed in sequence until the simulation is stopped by the command exit or the end of the file is reached. Since Sentaurus Process is written as an extension of the tool command language (Tcl), all Tcl commands and functionalities (such as loops, control structures, creating and evaluating variables) are available in the command files. This results in some limitations in syntax control if the command file contains complicated Tcl commands. Syntax-checking can be switched off with the command-line option -n, for example: sprocess -n inputfile Sentaurus Process ignores character strings starting with # (although Sentaurus Workbench interprets # as a special character for conditional statements). Therefore, this special character can be used to insert comments in the simulation command file. A file with the extension .log is created automatically whenever Sentaurus Process is run from a command line, that is, outside the Sentaurus Workbench environment. This file contains the run-time output, which is generated by Sentaurus Process and is sent to standard output. When Sentaurus Process is run by using a command file _fps.cmd, the output file is named _fps.log. When Sentaurus Process is run in Sentaurus Workbench, no log file is created. Instead, the file _fps.out is generated as a copy of the standard output. For a complete list of all commands, see Appendix A on page 877. Example: 1D Simulation Many widely used process and control commands are introduced in the context of a nominal 0.18 µm n-channel MOSFET process flow. The MOSFET structure is simulated in 1D and 2D, and the processing of the isolation is excluded. In this section, a simple 1D process simulation is performed. Defining Initial 1D Grid The initial 1D grid is defined with the line command: line line line line line line 4 x x x x x x location=0.0 spacing= 1 tag=SiTop location= 10 spacing= 2 location= 50 spacing= 10 location=300 spacing= 20 location=0.5 spacing= 50 location=2.0 spacing=0.2 tag=SiBottom Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 1D Simulation The first argument of the line specifies the direction of the grid. For 1D, this is always x. The grid spacing is defined by pairs of the location and spacing keywords. The keyword spacing defines the spacing between two grid lines at the specified location. Sentaurus Process expands or compresses the grid spacing linearly in between two locations defined in the line command. NOTE Units in Sentaurus Process can be specified explicitly by giving the units in angle brackets. For most cases, the default unit of length is micrometer. Therefore, the statements location=2.0 and location=2.0 are equivalent. In this section, units are given explicitly. You can label a line with the tag keyword for later use in the region command. Defining Initial Simulation Domain The initial simulation domain is defined with the region command: region Silicon xlo=SiTop xhi=SiBottom The keyword Silicon specifies the material of the region. The keywords xlo and xhi take tags as arguments, which are defined in the line command. NOTE For 2D and 3D, the additional keywords ylo, yhi, zlo, and zhi are used to define rectangular or cuboidal regions. In general, the initial simulation domain can consist of several regions. Initializing the Simulation The simulation is initialized with the init command: init concentration=1.0e15 field=Boron Here, the initial boron concentration in the silicon wafer (as defined in the previous region 15 –3 command) is set to 10 cm . Sentaurus™ Process User Guide H-2013.03 5 1: Getting Started Example: 1D Simulation Choosing Process Models and Parameters The set of physical models and parameters to be used is declared with the AdvancedCalibration command: AdvancedCalibration I-2013.12 This command loads the Advanced Calibration set of models and parameters. This is recommended for accurate process simulation of all silicon and germanium technologies. For more information about the Advanced Calibration models and parameters, refer to the Advanced Calibration for Process Simulation User Guide. Setting Up a Meshing Strategy The initial grid is valid until the first command that changes the geometry, such as oxidation, deposition, and etching. For these steps, a remeshing strategy must be defined. The Sentaurus Mesh meshing engine tries to preserve the initial mesh as much as possible and only modifies the mesh in the new layers and in the vicinity of the new interfaces. To define a remeshing strategy, use: pdbSet Grid SnMesh min.normal.size 0.003 pdbSet Grid SnMesh normal.growth.ratio.2d 1.4 ;# this is for 1D and 2D where: ■ ■ ■ ■ The command pdbSet is used to set the parameter value in parameter database (PDB). The parameter min.normal.size determines the grid spacing of the first layer starting from the interface in micrometers. The parameter normal.growth.ratio.2d determines how fast the grid spacing can increase from one layer to another. This parameter is unitless. The semicolon hash mark (; #) indicates the end of the command line and starts the inline comments. Growing Screening Oxide The 1D process simulation is started by thermally growing a thin layer of sacrificial screening oxide: gas_flow name=O2_1_N2_1 pressure=1 flowO2=1.2 flowN2=1.0 diffuse temperature=900 time=40 gas_flow=O2_1_N2_1 6 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 1D Simulation The gas_flow statement is used to specify the gas mixture. The name keyword defines a gas_flow record for later use in a diffuse command. The pressure of the ambient gas is set to 1 atm, and the flows of oxygen and nitrogen are set to 1.2 l/minute and 1.0 l/minute, respectively. NOTE Other gas flow parameters, such as ambient gases and partial pressures, can be defined as well (see gas_flow on page 935 for details). The thermal oxidation step is started with the diffuse command. Here, the wafer is exposed to the oxidizing gases, defined in the gas_flow statement, for 20 minutes at an ambient temperature of 900°C . NOTE More options, such as temperature ramps and numeric parameters, are available (see Oxidation on page 615 for details). Sentaurus Process prints information about the progress of the oxidation step: Anneal step: Time=40min, Ramp rate=0C/s, Temperature=900.0C Temperature > minT. Diffusion: On Reaction: On Assembly: Serial SProcess parallel assembly thread count = 1 Reaction : 0s to 0.0001s step : 0.0001s temp: 900.0C SProcess Pardiso thread count = 1 Mechanics: 0s to 0.0001s step : 0.0001s temp: 900.0C --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -Initializing: --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -Initialization is done. --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -Diffusion: 0s to 0.0001s step (d): 0.0001s temp: 900.0C Reaction : 0.0001s to 0.0001712s step : 7.125e-05s temp: 900.0C Mechanics: 0.0001s to 0.0001712s step : 7.125e-05s temp: 900.0C Diffusion: 0.0001s to 0.0001712s step (d): 7.125e-05s temp: 900.0C Reaction : 0.0001712s to 0.0002387s step : 6.741e-05s temp: 900.0C Mechanics: 0.0001712s to 0.0002387s step : 6.741e-05s temp: 900.0C Diffusion: 0.0001712s to 0.0002387s step (d): 6.741e-05s temp: 900.0C ... Reaction : 37.29min to 40min step : 2.714min temp: 900.0C Mechanics: 37.29min to 40min step : 2.714min temp: 900.0C Diffusion: 37.29min to 40min step (d): 2.714min temp: 900.0C Elapsed time for diffuse 41.34s Sentaurus™ Process User Guide H-2013.03 7 1: Getting Started Example: 1D Simulation Measuring Oxide Thickness To measure the thickness of the thermally grown oxide, use: select z=1 layers The select command chooses a quantity for postprocessing. Selecting 1 is a way to obtain the material thicknesses. The layers command prints a list of regions with their respective top and bottom coordinates. This command also gives the integral over the selected quantity in each region. Having selected 1, the integral equals the thickness (in units of cm): { { { Top -6.178796082035e-03 3.676329713272e-03 Bottom 3.676329713272e-03 2.000000000000e+00 Integral Material } 9.855125795306e-07 Oxide } 1.996323670287e-04 Silicon } Here, 3.67 nm of silicon was consumed in the thermal oxidation process, and the final oxide thickness is 9.85 nm. NOTE Internally, Sentaurus Process uses centimeters (cm) as the unit for length. Selecting boron, the output of layers command would look like: { { { Top -6.178796082035e-03 3.676329713272e-03 Bottom 3.676329713272e-03 2.000000000000e+00 Integral Material } 3.012697967871e+09 Oxide } 1.969873116640e+11 Silicon } The integral boron concentration in the silicon layer is: 11 1.97 ×10 cm –2 15 –3 –4 –7 = 1 ×10 cm ( 2 ×10 cm – 3.67 ×10 cm ) (1) which is consistent with the specified wafer doping. Depositing Screening Oxide A faster alternative to the simulation of the oxide growth is to deposit an oxide layer and to simulate afterwards a thermal cycle to account for the thermal budget during the oxidation. This is an efficient way to emulate the creation of the screen oxide if oxidation-enhanced diffusion (OED) and the silicon consumption during the oxidation are not important. 8 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 1D Simulation To deposit a 10 nm layer of screening oxide and perform a thermal cycle in an inert environment, use: deposit Oxide type=isotropic thickness=10.0 diffuse temperature=900 time=40 The diffuse command assumes an inert environment if no gas flow is specified. When you want to omit the oxide growth but OED is not negligible, specification of a reacting ambient together with the following flag: pdbSetBoolean Grid Reaction.Modify.Mesh 0 switches on OED without applying velocities to the mesh nodes. This is often used in three dimensions. Tcl Control Statements Tcl constructs can be freely used in the command file of Sentaurus Process. (For an introduction to Tcl, refer to the Tool Command Language module in the TCAD Sentaurus Tutorial.) The following code segment simulates oxidation or performs a deposition depending on the value of the Tcl variable SCREEN: set SCREEN Grow if { $SCREEN == "Grow" } { #--- Growing screening oxide ----------------------------------------gas_flow name=O2_1_N2_1 pressure=1 flowO2=1.2 flowN2=1.0 diffuse temperature=900 time=40 gas_flow=O2_1_N2_1 } else { #--- Depositing screening oxide -------------------------------------deposit Oxide type=isotropic thickness=10.0 diffuse temperature=900 time=40 } Implantation To implant arsenic with an energy of 50 keV, a dose of 10 a wafer rotation 0° , use: 14 cm –2 , an implant tilt of 7° , and implant Arsenic energy=50 dose=1e14 tilt=7 \ rotation=0 Sentaurus™ Process User Guide H-2013.03 9 1: Getting Started Example: 1D Simulation where “\” immediately followed by a new line (without any space in between) is used to continue a command line. Sentaurus Process reports: Species = Dataset = Energy = Dose (WaferDose) = BeamDose = Tilt = Rotation = Temperature = Total implant time: - - - - - - - - - Dose in: Boron Arsenic Int Vac ICluster O2 B4 - - - - - Arsenic Arsenic 30keV 1e+14/cm2 1.0075e+14/cm2 7deg 0deg 300.00K 0.61sec - - - - - - - - - - - - - - - - - - - - - - - - - - - - Silicon_1 Oxide_1 Total Silicon Oxide 1.9699e+11 3.0127e+09 2.0000e+11 9.9703e+13 2.7722e+12 1.0247e+14 9.4629e+07 7.8031e+02 1.1463e+08 8.9179e+09 1.3391e+06 8.9393e+09 2.2353e+07 9.8551e+00 4.2353e+07 1.9963e-04 2.6215e+10 3.6215e+10 3.0629e-10 0.0000e+00 3.0629e-10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The report shows that due to the nonzero tilt angle, Sentaurus Process adapted the beam dose so that the total dose deposited on the wafer is as specified. The slice angle denotes the angle between the simulation plane and the normal to the wafer flat. By default, the simulation domain is parallel to the wafer flat. The report shows the integrated doping concentrations for each species and region. Saving the As-Implanted Profile To save the as-implanted profile, use: SetPlxList { BTotal Arsenic_Implant } WritePlx 1DasImpl.plx The SetPlxList command defines which solution variables are to be saved in the .plx file. Here, only the total (chemical) boron and the as-implanted arsenic concentrations are saved. If the SetPlxList command is omitted, all available solutions are saved in the .plx file by default. 10 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 1D Simulation Besides the file name, here 1DasImpl.plx, the WritePlx command also accepts a material specifier, which restricts the plot to the given material. For 2D and 3D structures, the x-, y-, or z-coordinates of the 1D cutline must be given. Figure 1 As-implanted arsenic profiles and background boron concentration Figure 1 shows the as-implanted arsenic profiles and the background boron concentration. The black vertical line marks the oxide–silicon interface. Note the boron depletion at the interface, which is caused by boron segregation during the oxide growth. Figure 1 is generated by loading the .plx file into Inspect with: > inspect 1DasImpl.plx Thermal Annealing, Drive-in, Activation, and Screening Oxide Strip To anneal the damage during implantation, or to drive the dopants deeper into the substrate, or to activate the implanted dopants in an inert environment, use: diffuse temperature=1000 time=30 strip Oxide SetPlxList { BTotal BActive AsTotal AsActive } WritePlx 1Danneal.plx Here, the structure is annealed at a constant temperature of 1000°C for 30 minutes. The annealing is performed in an inert gas because no particular environment is specified. Sentaurus™ Process User Guide H-2013.03 11 1: Getting Started Example: 2D Simulation The annealed profiles are written to the file 1Danneal.plx. The total (chemical) concentration of boron and arsenic, as well as the respective electrically active (substitutional) concentrations are saved. Figure 2 Comparison of as-implanted and annealed arsenic profiles Figure 2 compares the as-implanted and the annealed arsenic profiles. It is generated by loading both .plx files into Inspect with: > inspect 1DasImpl.plx 1Danneal.plx Example: 2D Simulation Many widely used process and control commands are introduced in the context of a nominal 0.18 µm n-channel MOSFET process flow. The MOSFET structure is simulated in 2D, and the processing of the isolation is excluded. A simplified treatment is presented using only default parameters and models. Defining Initial Structure and Mesh Refinement The command math coord.ucs is used to switch on the unified coordinate system (UCS). Using the UCS is recommended because the default behavior is to rotate the structure when saving and loading to the DF–ISE coordinate system. With the UCS, the structure is not rotated. Therefore, the axes in Tecplot SV match the axes in the Sentaurus Process command file. It is recommended to insert this as the first command in the command file. The line command is used to: ■ 12 Define the initial size of the structure. Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 2D Simulation ■ Subdivide the structure. Mesh refinement starts from the user-defined subdivisions; therefore, the specification of lines helps to compartmentalize mesh refinement. In turn, compartmentalization of the mesh prevents moving boundaries, and therefore, moving mesh refinement from affecting geometrically static areas. Whenever mesh lines move, interpolation must be used to obtain new field values, such as dopant concentrations, and this introduces errors in the simulation. During the polysilicon reoxidation step, the oxide–silicon and oxide–polysilicon boundaries move, and this interface movement may cause mesh lines to move. This could be prevented by inserting lines as follows: line line line line line line x x x y y y location= location= location= location= location= location= 0.0 3.0 10.0 0.0 85.0 0.4 ;# just deeper than reox in silicon ;# just deeper than reox in poly To minimize this effect, the silicon and polysilicon regions are isolated from the moving interfaces by introducing lines immediately inside the final oxide depth in both regions as shown in Figure 3. User-defined mesh lines X -0.1 0 0.1 0 0.1 0.2 0.3 Y Figure 3 Final structure showing placement of user-defined lines: these lines are used to isolate silicon and polysilicon regions from boundary movement at the oxide interfaces Sentaurus Process uses coordinate systems such that 1D, 2D, and 3D simulations are consistent. Independent of the current simulation dimension, the positive x is into the wafer; y is positive to the right, and z is positive out of the page. NOTE By default, the simulation dimension is promoted only when necessary. Therefore, until a mask is introduced, the simulation remains in 1D. Similarly, when going from 2D to 3D, until a 3D mask is introduced Sentaurus™ Process User Guide H-2013.03 13 1: Getting Started Example: 2D Simulation (one that varies in the z-direction in the defined simulation domain), the simulation remains in 2D. The initial simulation domain is defined with the region command. Many, if not most, simulations start with a block of silicon. The shorthand for this situation is to define a region of silicon that spans all defined lines: region Silicon The region command also can be used to define a new region between specified lines. To limit the size of the region to be less than all defined lines, the lines must be given a tag with the tag parameter. These tags are used in the region command with the xlo, xhi, ylo, yhi, zlo, and zhi parameters. Finally, the initial mesh and background doping is specified using the init command as follows: init concentration=1.0e+15 field=Phosphorus wafer.orient=100 Here, an n-doped substrate with a phosphorus concentration of 10 orientation is set to 100, which is the default. 15 cm –3 is used. The wafer The Advanced Calibration set of physical models and parameters is loaded (this is the recommended choice for accurate process simulation): AdvancedCalibration I-2013.12 Usually, localized refinement is defined by introducing refinement boxes. This strategy prevents excessive mesh that can result if mesh refinement is based solely on the line command (with the spacing parameter). Lines specified with the line command run the entire length (or breadth or depth) of the structure. The refinement boxes can be inserted at any time during the simulation. The simplest form of the refinement box, used in this example, consists of minimum and maximum coordinates where the refinement box is valid and local maximum mesh spacing in the x-, y- and z-directions. A refinement box specified for a 2D simulation will be applied to 1D if it is valid for y = 0.0. Similarly a 3D refinement box will be applied if it covers z = 0.0. The following refinement boxes specify refinement only in the x-direction for the 1D part of the simulation: #--- Refinement refinebox clear refinebox min = refinebox min = refinebox min = 14 in vertical direction --------------------------------;# remove all default refinement 0 max = 50.0 xrefine = {2.0 10.0 } 50.0 max = 2.0 xrefine = {10.0 0.1 0.2 } 2.0 max = 10.0 xrefine = {0.2 2.0 } Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 2D Simulation The other type of refinement box used in this example is the interface refinement type. Interface refinement is a graded refinement that is refined near an interface in the perpendicular direction and relaxed away from the interface. Using the refinebox command, you can specify interface refinement using the interface.materials or interface.mat.pairs parameter: ■ ■ Use interface.materials to indicate refinement will occur at all interfaces to the specified materials. Use interface.mat.pairs to choose interface refinement only at specific material interfaces. #--- Interface refinement --------------------------------------------refinebox interface.materials = { PolySilicon Silicon } For more details on mesh refinement, see Mesh Refinement on page 694. Implanting Boron First, three sets of boron implants are performed: implant Boron dose=2.0e13 energy=200 tilt=0 rotation=0 implant Boron dose=1.0e13 energy= 80 tilt=0 rotation=0 implant Boron dose=2.0e12 energy= 25 tilt=0 rotation=0 The first high-energy implant creates the p-well, the second medium-energy implant defines a retrograde boron profile to prevent punch-through, and the third low-energy implant is for a Vt adjustment. Growing Gate Oxide The gate oxide is grown at a temperature of 850°C for 10 minutes in pure oxygen using: diffuse temperature=850 time=10.0 O2 select z=Boron layers The layers command shows that the thickness of the grown oxide is 3.2 nm: { { { Top -2.500551327519e-03 7.862861879285e-04 Bottom 7.862861879285e-04 1.000000000000e+01 Integral Material } 1.247399405710e+10 Oxide } 3.197435354292e+13 Silicon } For details, see Measuring Oxide Thickness on page 8. Sentaurus™ Process User Guide H-2013.03 15 1: Getting Started Example: 2D Simulation Defining Polysilicon Gate The polysilicon gate is created using: deposit PolySilicon type=isotropic thickness=0.18 mask name=gate_mask left=-1 right=90 etch PolySilicon type=anisotropic thickness=0.2 mask=gate_mask etch Oxide type=anisotropic thickness=0.1 First, 0.18 µm of polysilicon is deposited over the entire structure. The keyword type=isotropic means that the layer is grown equally in all directions, but since the simulation is in 1D, it would be the same as type=anisotropic. A mask is defined to protect the gate area with the mask command. In this project, only half of the transistor is simulated. Therefore, the left edge of the gate mask is unimportant. In general, you should run the mask over the sides of the simulation to prevent round-off errors that could prevent complete mask coverage. The name gate_mask is associated with this mask for later reference. The first etch command refers to the previously defined mask and, therefore, only the exposed part of the polysilicon is etched. The requested etching depth ( 0.2 µm ) is larger than the deposited layer. This overetching ensures that no residual islands remain. The etching is specified to be anisotropic, that is, the applied mask is transferred straight down, without any undercut. The second etch statement does not refer to any masks. However, the polysilicon naturally acts as a mask for this selective etching process. Again, a considerable overetching is specified. Working with Masks Masks must be defined before they are used. For example, ex_mask blocks processing from –1 to 2 µm and from 4 to 20 µm : mask clear mask name=ex_mask segments = { -1.0 2.0 4.0 20.0 } segments specifies a list of coordinates of mask segments. Several mask segments can be specified at the same time. The first coordinate defines the beginning of a segment; the second defines the end of the segment; the third defines the beginning of the segment; and so forth. In 3D simulations, mask segments are extended across the entire structure in the z-direction. 16 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 2D Simulation Masks can be inverted using the negative option. For example, etch_mask prevents processing from 2 to 4 µm : mask clear mask name=etch_mask segments = { -1.0 2.0 4.0 20.0 } negative Commands that use masking include etch, photo, and deposit. Polysilicon Reoxidation To release stresses, a thin oxide layer is grown on the polysilicon before the spacer formation: diffuse temperature=900 time=10.0 O2 In all diffusion steps, Sentaurus Process automatically deposits a thin native oxide layer before starting oxidation. This layer is always present on silicon exposed to air and quickly forms on newly created interfaces. -0.15 -0.1 -0.05 0 0 Figure 4 0.05 0.1 0.15 Polysilicon reoxidation During oxidation, mesh movement is controlled by the TSUPREM-4 mesh library in 2D. In 1D and 3D, it is controlled by an internal moving-boundary mesh algorithm. Both of these movingboundary algorithms perform local atomic mesh operations (element removal, edge splitting, edge flipping, and so on) which leave the rest of the mesh untouched. Mesh points are moved with the material to maintain dopant dose conservation and the dopant segregation condition at oxide–silicon and oxide–polysilicon interfaces. Figure 5 shows a close-up of the mesh after the Sentaurus™ Process User Guide H-2013.03 17 1: Getting Started Example: 2D Simulation polysilicon reoxidation step has been performed. Note that the mesh in the brown oxide layer follows the growth contours. -0.01 -0.005 0 0.005 0.08 Figure 5 0.085 0.09 0.095 Mesh in thin oxide layer and in adjacent polysilicon and silicon Saving Snapshots To save a snapshot of the current structure, the struct command is used. For example: struct tdr= NMOS4 The keyword tdr specifies that the snapshot is saved in the TDR file format. The argument specifies the stem used for the file name. Here, the file NMOS4_fps.tdr is created. The figures in this section were generated from such snapshots. For more information about the TDR format, refer to the Sentaurus™ Data Explorer User Guide. Remeshing for LDD and Halo Implants Next, the LDD and halo implants are performed. Before that, however, the mesh must be refined to properly capture the implant. The previously defined refinement boxes specified vertical refinement with the xrefine parameter. Now, lateral refinement is required to resolve the source and drain extensions (also known as low-doped drain (LDD)) as well as the halo implants. This is accomplished by introducing a new refinebox command that specifies: 18 ■ Lateral refinement using the yrefine parameter. ■ Additional vertical refinement using the xrefine parameter. Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 2D Simulation NOTE When specifying multiple overlapping refinement, the most refined specification (smallest edge length) wins. refinebox silicon min= {0.0 0.045 } max= {0.1 0.125 } \ xrefine= 0.01 yrefine= 0.01 grid remesh The min and max keywords take x-, y-, and z-coordinates. Not all coordinates must be specified. For example, if only one number is given for minimum, it means that refinement applies to all y- and z-coordinates less than the max coordinate. NOTE The refinebox command only specifies a refinement criterion, but the mesh is not changed. The grid remesh command forces a remesh. -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.05 Figure 6 0.1 0.15 A combination of overlapping refinement boxes is used to define a finer mesh for LDD and halo; if multiple criteria overlap, the finest mesh specification wins Implanting LDD and Halo The LDD and halo implants are performed using: #--- LDD implantation ------------------------------------------------implant Arsenic dose=4e14 energy=10 tilt=0 rotation=0 #--- Halo implantation: Quad HALO implants ---------------------------implant Boron dose=1.0e13 energy=20 tilt=30 \ rotation=0 mult.rot=4 diffuse temperature=1050 time=5.0 Sentaurus™ Process User Guide H-2013.03 19 1: Getting Started Example: 2D Simulation 14 –2 The LDD implant uses a high dose of 4 × 10 cm and a relatively low energy of 10 keV. The halo is created by a quad implant using the mult.rot parameter, that is, the implant is performed in four steps. Each step is separated in rotation by 360/4 = 90° starting with the specified rotation of 0. This is performed to ensure that the boron penetrates well into the channel at the tips of the source–drain extensions. Again, a relatively high total dose of 14 –2 1 × 10 cm is used. The implants are activated with a short thermal cycle or rapid thermal anneal (RTA). Forming Nitride Spacers The nitride spacers are formed using: #--- Nitride spacer --------------------------------------------------deposit Nitride type=isotropic thickness=60etch Nitride type=anisotropic thickness=84 isotropic.overetch=0.01 etch Oxide type=anisotropic thickness=10 First, a uniform, 60-nm thick layer of nitride is deposited over the entire structure. The keyword type=isotropic ensures that the growth rate of the layer is the same in all directions. Then, the nitride is etched again; however, now an anisotropic etching is used. This means that the nitride deposited on the vertical sides of the gate is not fully removed and can serve as masks for the source/drain implants. For this step, an isotropic overetch is specified. Specifying a fraction of the etch thickness, 0.01 implies a 1% isotropic component. This is needed because the oxide formed during poly oxidation has a nonvertical sidewall. Without the small isotropic.overetch, a small nitride residual would remain. Finally, the thin oxide layer grown during the poly reoxidation step is removed. Remeshing for Source/Drain Implants Next the source/drain implants are performed. However, before that, the mesh is refined again. refinebox Silicon min= {0.04 0.11 } max= {0.18 0.4 } \ xrefine= 0.01 yrefine= {0.02 0.05 } grid remesh This refinement box ensures that the grid is fine enough in the vertical direction to resolve the junction depth. 20 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 2D Simulation Implanting Source/Drain The source and drain regions are created using: implant Arsenic dose=5e15 energy=40 tilt=7 \ rotation=-90 diffuse temperature=1050 time=10.0 To ensure a low resistivity of the source and drain regions, this implant step uses a very high 15 –2 dose of 5 × 10 cm . A tilt of 7° is used to reduce channeling and a rotation of – 90 ° ensures that the plane of incident is parallel to the gate stack, such that the 7° tilt angle does not lead to asymmetry between the source and drain. Transferring to Device Simulation To transfer from process simulation to device simulation, the normal steps are: ■ The structure bottom is cropped. ■ The full transistor is created by reflecting about the symmetry plane. ■ A new mesh strategy is specified appropriate for device simulation. ■ Contacts are specified. ■ The struct command is called which remeshes and saves the structure. Remeshing for Device Simulation The following example shows the standard technique used to produce a structure and mesh appropriate for device simulation. First, the structure bottom is truncated; then a new mesh strategy is introduced: #--Remove bottom of structure-----------------------------------------transform cut location= 1.00 down #--Change refinement strategy and remesh------------------------------refinebox clear line clear pdbSet pdbSet pdbSet pdbSet pdbSet Grid Grid Grid Grid Grid Adaptive 1 AdaptiveField Refine.Abs.Error 1e37 AdaptiveField Refine.Rel.Error 1e10 AdaptiveField Refine.Target.Length 100.0 SnMesh DelaunayType boxmethod refinebox name= Global refine.min.edge= {0.01 0.01} \ Sentaurus™ Process User Guide H-2013.03 21 1: Getting Started Example: 2D Simulation refine.max.edge= {0.1 0.1} refine.fields= { NetActive } \ def.max.asinhdiff= 0.5 adaptive refinebox name= SiGOX min.normal.size= 0.2normal.growth.ratio= 1.4 \ max.lateral.size= 5.0 min= {-0.01 -0.1} max= {0.01 0.1} \ interface.materials= {Silicon} refinebox name= GDpn1 min= {0.0 0.04} max= {0.06 0.1} xrefine= 0.005 \ yrefine= 0.005 silicon refinebox name= TopActive min= {0.0 0.0} max= {0.3 0.4} \ refine.min.edge= {0.02 0.02} refine.max.edge= {0.05 0.05} \ refine.fields= { NetActive } def.max.asinhdiff= 0.5 \ adaptive silicon grid remesh #--Reflect --------------------------------------------------------transform reflect left The new mesh strategy uses a combination of interface refinement, fixed boxwise refinement, and adaptive refinement on dopants. Contacts Next, contacts are added to the structure using the contact command. These contacts are added to structure files upon writing. They are not present in the internal Sentaurus Process structure, but are added only as required when writing the structure. There are two types of contact specification: ■ ■ Box: For these contacts, you specify a box and a material, and all interfaces of that material that are inside the box become the contact. Point: For this contact, you specify a point inside a chosen region. The chosen region is removed, and all interfaces between the chosen region and bulk materials become part of the contact. In the following example, only box-type contacts are used: #--- Contacts --------------------------------------------------------contact name= "substrate" bottom Silicon contact name= "source" box Silicon adjacent.material= Gas \ xlo= 0.0 xhi= 0.005 ylo= -0.4 yhi= -0.2 contact name= "drain" box Silicon adjacent.material= Gas \ xlo= 0.0 xhi= 0.005 ylo= 0.2 yhi= 0.4 22 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Example: 2D Simulation contact name= "gate" box PolySilicon xlo= -0.181 xhi= -0.05 \ ylo= -0.088 yhi= 0.088 Saving the Structure To save the structure, use: struct tdr=NMOS !Gas The file NMOS_fps.tdr is created with contacts and can be loaded into Sentaurus Device to obtain device electrical characteristics. -0.2 -0.1 0 0.1 0.2 -0.4 Figure 7 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 Final structure showing contacts and refinement appropriate for device simulation Extracting 1D Profiles You can save 1D profiles at any point in the process flow using: SetPlxList {BTotal NetActive} WritePlx NMOS_channel.plx y=0.0 silicon as well as: struct tdr=NMOS_channel.tdr y=0.0 For details, see Saving the As-Implanted Profile on page 10. Sentaurus™ Process User Guide H-2013.03 23 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT Adaptive Meshing: 2D npn Vertical BJT A simple 2D npn vertical bipolar transistor example is introduced to show how the adaptivemeshing capabilities in Sentaurus Process can be used to ease mesh setup and allow for mesh evolution during dopant diffusion. For examples, see 2D npn Vertical Bipolar on page 38. For all the applications involving long thermal diffusion steps or simulations of relatively large structures (in which doping profiles may evolve greatly), using static mesh criteria is impracticable because it requires using a fine mesh in many parts of the simulation domain. Moreover, the placement of the refinement boxes is not straightforward because often the location of gradients and junctions at the end of the thermal steps is not precisely known. For such purposes, adaptive meshing could be used. Using this feature, you only have to define some refinement criteria, more or less stringent depending on the level of accuracy required. The meshing engine checks the mesh and decides automatically where, when, and if the mesh needs to be refined. Overview Adaptive meshing can be switched on globally with: pdbSet Grid Adaptive 1 which creates a default adaptive box covering the entire structure. Adaptive refinement parameters can be set in the following ways: ■ Fieldwise in the PDB with the pdbSet command ■ Boxwise as parameters of the refinebox command ■ Materialwise, specifying a material in a box definition ■ Regionwise, specifying a region in a box definition To prevent the number of mesh points from growing too large, switch off the keep.lines option (which is switched on by default in silicon) when using adaptive meshing: refinebox !keep.lines Many different refinement criteria have been implemented in Sentaurus Process for flexibility in handling different types of field and structure. For a complete list and detailed descriptions of the refinement criteria, see Adaptive Refinement Criteria on page 700. 24 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT The criteria in the following example are the most commonly used and are referred to as relative difference and local dose error. Each computes the so-called desired edge length (DEL), which is defined formally as: DEL = min (l12 * MaxError/Error) where l12 is the length of the edge between two mesh points 1 and 2. Error (computed internally) is the error between points 1 and 2, and MaxError (set by users) is the maximum allowable error. The right-hand side of the expression is computed over all the fields that can be refined (by default, all the solution variables): the minimum value is the DEL for the corresponding criterion. The expression for Error and the name and the meaning of MaxError vary from criterion to criterion. For the relative difference criterion, these quantities have the form: Error = 2*|C1 - C2|/(C1 + C2 + alpha) MaxError = Rf where C 1 and C 2 are the concentration of the field in points 1 and 2, respectively, R f is the relative error that sets the maximum-allowed change of the field across an edge, and alpha is the absolute error, a type of cutoff threshold below which refinement is smoothed out. They can be set in the PDB as follows: pdbSet Grid Boron Refine.Abs.Error 1e15 pdbSet Grid Boron Refine.Rel.Error 0.5 or in the refinebox commands as: refinebox name=Active refine.fields= {Boron Arsenic} \ rel.error= {Boron=0.5 Arsenic=0.5} abs.error= {Boron=2e15 Arsenic=1e16} \ Adaptive min= {-1.0 -0.1} max= {2.0 16.0} For the definition of Error and MaxError for the local dose error criterion, see Local Dose Error Criteria on page 703. All the edges are compared to DEL to check the percentage of long edges by using the following additional parameter: pdbSetDoubleArray Grid Refine.Factor {X 2.0 Y 2.0} These coefficients can be set directionwise and act in the following way: An edge is defined as long when it is larger than Refine.Factor*DEL for at least one of the selected refinement criteria. When the percentage of long edges is larger than certain values, adaptive refinement is actually triggered. This value can be set as: pdbSet Grid Refine.Percent 0.01 When adaptive meshing is switched on, it automatically affects refinement whenever a mesh is generated (such as after geometry-changing operations). During the diffuse command, the Sentaurus™ Process User Guide H-2013.03 25 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT mesh is checked after a certain number of steps that can be separately set depending on the nature of the diffusion step: pdbSet Diffuse Compute.Regrid.Steps 10 ;# during inert annealings pdbSet Diffuse Growth.Regrid.Steps -1 ;# during oxidation and silicidation pdbSet Diffuse Epi.Regrid.Steps -1 ;# during epitaxy When the number of long edges is larger than Refine.Percent, remeshing is performed. The mesh quality check can be omitted by setting: pdbSet Grid Refinement.Check 0 which can save some CPU time when performing simulations on large meshes, where the mesh checking is time consuming. NOTE Formally, the adaptive-meshing feature consists of field-based and implant-based adaptation. There is a small difference in the way refinement criteria are applied. For details, see Adaptive Meshing during Implantation on page 708 and Interval Refinement on page 704. However, as the two modules use the same parameters, you do not need to define them twice. NOTE Adaptive-meshing syntax to set up parameters is the same in any dimension. The relative error criterion is effective in refining doping profiles in steep gradient regions. In the vicinity of maxima and minima, the profiles are almost flat and some loss of accuracy may occur there. Further reduction of Rel.Error would increase significantly the number of points in the steep slope with negligible improvements at the peaks. In that case, the max dose loss criterion can be used more effectively. This explains why the combination of these two criteria provides an optimum adaptive-remeshing strategy. Defining Initial Structure The command math coord.ucs is used to switch on the unified coordinate system (UCS). Using the UCS is recommended because the default behavior is to rotate the structure when saving and loading to the DF–ISE coordinate system. With the UCS, the structure is not rotated. Therefore, the axes in Tecplot SV match the axes in the Sentaurus Process command file. It is recommended to insert this as the first command in the command file. The line commands are used to compartmentalize the structure according to the meshing strategy described in the previous example: line x loc= 2.0 line x loc= 4.0 26 tag=SubTop Sentaurus™ Process User Guide H-2013.03 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT line line line line line line line line line line x x y y y y y y y y loc= 6.0 loc= 10.0 loc= 0.0 loc=1.5 loc=2.5 loc=8 loc=13 loc=22 loc=24 loc=30.0 tag=SubBottom tag=SubLeft tag=SubRight Along the x-axis, few lines are specified: the two tagged ones are needed to define the initial silicon substrate. The other two lines are defined to have uniform spacing within the box defined to refine the buried layer. Along the y-axis, more lines are defined because a coarse initial mesh would degrade the quality of the mesh resulting from adaptation during implantation. These lines are set corresponding to the mask edges: This information is usually known to users, especially if the simulation starts from a layout, and the process flow is set up in Ligament. Adaptive Meshing Settings As previously mentioned, adaptive parameters can be set in different ways, which lead to different refinement strategies: pdbSet Grid Adaptive 1 pdbSet Grid AdaptiveField Refine.Abs.Error 1e25 pdbSet Grid AdaptiveField Refine.Rel.Error 2.0 pdbSet Grid Damage Refine.Min.Value 1e25 pdbSet Grid Damage Refine.Max.Value 1e25 pdbSet Grid Damage Refine.Target.Length 1 Here the following strategy is used: ■ ■ ■ The default relative difference–type refinement is switched off by setting high values for absolute and relative errors and for the interval damage refinement. When parameters are set for AdaptiveField, they are applied to all the existing fields that can be refined. Actual refinement will be then controlled in specific regions by using refineboxes. Three refinement boxes are defined as the structure and the process flow clearly identifies three main significant areas: buried layer, collector region, and base-emitter region: refinebox name=BL refine.fields= {Antimony Phosphorus} \ rel.error= {Antimony=0.6 Phosphorus=0.6} \ Sentaurus™ Process User Guide H-2013.03 27 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT abs.error= {Antimony=1e16 Phosphorus=1e16} Adaptive min= {2.0 -0.1} \ max= {10.1 30.1} refine.min.edge= {0.2 0.4} max.dose.error= {Antimony=1e8} \ The min and max parameters set an xy pair of coordinates to define the extent of the box. The keyword all means that refinement must be applied to all materials. When using a material name, refinement is applied to the specified material only. NOTE More than one adaptive type can be specified in the same box. In the BL box, the relative difference and local dose loss criteria are selected by specifying the parameters rel.error or abs.error and max.dose.error, respectively. refinebox name=Sinker refine.fields= {Phosphorus Arsenic} \ rel.error= {Phosphorus=0.5 Arsenic=0.5} \ abs.error= {Phosphorus=5e15 Arsenic=1e16} Adaptive min= {-1.0 16} \ max= {2.0 30.1} refine.min.edge= {0.1 0.2} refinebox name=Active refine.fields= {Boron Arsenic} \ rel.error= {Boron=0.5 Arsenic=0.5} abs.error= {Boron=2e15 Arsenic=1e16} \ Adaptive min= {-1.0 -0.1} max= {2.0 16.0} refine.min.edge= {0.025 0.05} \ The BL box is defined to refine the buried layer: a high level of accuracy is not required here and the values are more relaxed than in the other boxes. The refine.min.edge parameter adds the additional directionwise constraint not to refine edges below the specified values (units in micrometers). The Sinker box is defined to refine the n-doped collector region, which contacts the buried layer. More restrictive values are used in it. The Active box is used to refine the base–emitter region. Higher accuracy is required here to properly catch the base length, which all the main electrical parameters of the device are a function of: pdbSet Diffuse Compute.Regrid.Steps 10 pdbSet Grid Refine.Percent 0.01 According to these last two commands, the mesh is checked every 10 diffusion steps in inert annealings, and remeshing is performed if there are more than 0.01% of long edges. Buried Layer The buried layer is obtained with high-energy and high-dose antimony implantation: deposit material= {Oxide} type=isotropic time=1 rate= {0.025} implant Antimony dose=1.5e15 energy=100 etch material= {Oxide} type=anisotropic time=1 rate= {0.03} 28 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT Before the implantation, 25 nm of a screening oxide is deposited. Here an alternate syntax is used to specify the deposit material. The deposited oxide thickness is determined by the product of rate and time. The implantation is performed with default angles (tilt of 7° and rotation of 90° ). After the implantation, the oxide is etched to clean the surface and to prepare it for the subsequent epi step. Epi Layer For speed and simplicity, an epitaxial regrowth step is not performed here. Instead, a simpler –3 15 deposition of a silicon layer with 1 ×10 cm arsenic concentration is followed by a diffusion step: deposit material= {Silicon} type=isotropic time=1 rate= {4.0} Arsenic \ concentration=1e15 diffuse temp=1100 time=60 maxstep=4 The maximum diffusion step is limited to 4 minutes to avoid having too much diffusion between two subsequent adaptive remeshing steps. An alternative would be to reduce Compute.Regrid.Steps, but this would lead to numerous remeshings at the beginning of the annealing when the time step is small. The following sections describe the process steps to create sinker, base, and emitter regions. At the end of each group of steps, results are saved in TDR files. Sinker Region This is the beginning of the 2D simulation. A 50-nm screening oxide is deposited before the phosphorus implantation to contact the buried layer. The Sinker mask protects the silicon area where the base will be created. The Photo command is used to deposit the photoresist (mask definition not shown here). The subsequent annealing is long (5 hours). For this reason, the maximum time step is allowed to increase up to 8 minutes. Figure 8 on page 30 shows the doping concentration distribution at this point of the simulation: deposit material= {Oxide} type=isotropic time=1 rate= {0.05} photo mask=Sinker thickness=1 implant Phosphorus dose=5e15 energy=200 strip Resist diffuse temp=1100 time=5
maxstep=8struct tdr=vert_npn2 Sentaurus™ Process User Guide H-2013.03 29 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT 0 5 10 0 Figure 8 5 10 15 20 25 30 Doping concentration after phosphorus implantation and diffusion to contact antimony buried layer Base Region 14 The p-doped base region is created with a 1 ×10 a 35-minute inert annealing: cm –2 dose of implanted boron followed by photo mask=Base thickness=1 implant Boron dose=1e14 energy=50 strip Resist diffuse temp=1100 time=35 maxstep=4 struct tdr=vert_npn3 Emitter Region 15 –2 The highly n-doped emitter region is created with a 5 ×10 cm dose of implanted arsenic followed by a 25-minute inert annealing. Emitter mask is designed such that arsenic is implanted also in the sinker region to increase the doping concentration at the collector contact. In addition to a TDR file, 1D profiles are extracted. Figure 9 on page 31 shows the final doping distribution: photo mask=Emitter thickness=1 implant Arsenic dose=5e15 energy=55 tilt=7 rotation=0 strip Resist diffuse temp=1100 time=25 maxstep=4 struct tdr=vert_npn4 30 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Adaptive Meshing: 2D npn Vertical BJT SetPlxList {BTotal SbTotal AsTotal PTotal} WritePlx Final.plx y=5.0 WritePlx Sinker.plx y=23.0 0 5 10 0 5 Figure 9 10 15 20 25 30 Final doping distribution Backend The real backend steps are not simulated here. A sequence of masked etching and deposition steps are used to define emitter, base, and collector contacts: etch material= {Oxide} type=anisotropic time=1 rate= {0.055} mask=Contact deposit material= {Aluminum} type=isotropic time=1 rate= {1.0} etch material= {Aluminum} type=anisotropic time=1 rate= {1.1} mask=Metal struct tdr=vert_npn5 Figure 10 shows some details of the final mesh. -1 -2 -0.5 0 0 0.5 2 1 4 1.5 6 2 0 Figure 10 1 2 3 18 20 22 24 26 28 Details of final mesh: (left) the emitter–base region and (right) the buried layer with collector contact Sentaurus™ Process User Guide H-2013.03 31 1: Getting Started Full-Text Versions of Examples The relative difference criterion refines the doping profiles, not the junctions. Obviously, if the profiles are reproduced correctly, the junctions also will be in the right place. To obtain a junction-like refinement with the relative difference criterion, set abs.error close to the doping level of the less-doped side of the junction. A more effective way is to select NetDoping as the field to be refined and apply to it the inverse hyperbolic sine (asinh) difference criterion (for details, see Inverse Hyperbolic Sine (asinh) Difference Criteria on page 702). Full-Text Versions of Examples The following full-text versions of the examples allow convenient electronic copying of text into Sentaurus Process command files. 1D NMOS # 1D Grid definition #------------------line line line line line line x x x x x x location=0.0 location= 10 location= 50 location=300 location=0.5 location=2.0 spacing= 1 tag=SiTop spacing= 2 spacing= 10 spacing= 20 spacing= 50 spacing=0.2 tag=SiBottom # Initial simulation domain #-------------------------region Silicon xlo=SiTop xhi=SiBottom # Initialize the simulation #-------------------------init concentration=1.0e15 field=Boron # Set of physical models and parameters # ---------------------------------------------AdvancedCalibration 2013.12 # Settings for automatic meshing in newly generated layers #--------------------------------------------------------pdbSet Grid SnMesh min.normal.size 0.003 32 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Full-Text Versions of Examples pdbSet Grid SnMesh normal.growth.ratio.2d 1.4 ;# this is for 1D and 2D set SCREEN Grow if { $SCREEN == "Grow" } { # Growing screening oxide #-----------------------gas_flow name=O2_1_N2_1 pressure=1 flowO2=1.2 flowN2=1.0 diffuse temperature=900 time=40 gas_flow=O2_1_N2_1 # Measuring the oxide thickness #-----------------------------select z=1 layers } else { # Depositing screening oxide #--------------------------deposit material= {Oxide} type=isotropic time=1.0 rate= {0.01} diffuse temperature=900 time=40 } # Implanting Arsenic #------------------implant Arsenic energy=30 dose=1e14 tilt=7 \ rotation=0 # Plotting out the "as implanted" profile #---------------------------------------SetPlxList { BTotal Arsenic_Implant } WritePlx 1DasImpl.plx # Thermal annealing #-----------------diffuse temperature=1000 time=30 strip Oxide SetPlxList { BTotal BActive AsTotal AsActive } WritePlx 1Danneal.plx 2D NMOS #---------------------------------------------------------------------# 2D nMOSFET (0.18um technology) #---------------------------------------------------------------------math coord.ucs Sentaurus™ Process User Guide H-2013.03 33 1: Getting Started Full-Text Versions of Examples pdbSet Oxide Grid perp.add.dist 1e-7 #--- Specify lines for outer boundary and to separate moving boundaries # from the rest of the structure-----------------------------------line line line line line line x x x y y y location= location= location= location= location= location= 0.0 3.0 ;# just deeper than reox in silicon 10.0 0.0 85.0 ;# just deeper than reox in poly 0.4 #--- Silicon substrate definition ------------------------------------region silicon #--- Initialize the simulation ---------------------------------------init concentration=1.0e+15 field=Phosphorus # Set of physical models and parameters # -----------------------AdvancedCalibration 2013.12 #--- Refinement refinebox clear refinebox min = refinebox min = refinebox min = in vertical direction --------------------------------0 max = 50.0 xrefine = {2.0 10.0 } 50.0 max = 2.0 xrefine = {10.0 0.1 0.2 } 2.0 max = 10.0 xrefine = {0.2 2.0 } #--- Interface refinement --------------------------------------------refinebox interface.materials = { PolySilicon Silicon } #--- Sentaurus Mesh settings for automatic meshing in newly generated layers pdbSet Grid SnMesh min.normal.size 1.0e-3 ;# in micrometers pdbSet Grid SnMesh normal.growth.ratio.2d 1.4 ;# used in 1D and 2D #--- Create starting mesh from lines and refinement grid remesh #--- p-well, anti-punchthrough & Vt adjustment implants --------------implant Boron dose=2.0e13 energy=200 tilt=0 rotation=0 implant Boron dose=1.0e13 energy= 80 tilt=0 rotation=0 implant Boron dose=2.0e12 energy= 25 tilt=0 rotation=0 #--- p-well: RTA of channel implants ---------------------------------diffuse temperature=1050 time=10.0 34 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Full-Text Versions of Examples #--- Saving structure ------------------------------------------------struct tdr=NMOS1 FullD; # p-Well #--- Gate oxidation --------------------------------------------------diffuse temperature=850time=10.0 O2 select z=Boron layers struct tdr=NMOS2 FullD; # GateOx #--- Poly gate deposition --------------------------------------------deposit poly type=isotropic thickness=0.18 #--- Poly gate pattern/etch ------------------------------------------# MGoals settings for etch/depo mgoals accuracy=2e-5 mask name=gate_mask segments = { -1 90 } etch poly type=anisotropic thickness=0.2 mask=gate_mask etch oxide type=anisotropic thickness=0.1 struct tdr=NMOS3 ; # PolyGate #--- For graphics, first run "tecplot_sv -s:ipc" and uncomment # the next line before running this file # graphics on #--- Poly reoxidation ------------------------------------------------diffuse temperature=900 time=10.0 O2 struct tdr=NMOS4 ; # Poly Reox #--- LDD implantation ------------------------------------------------refinebox silicon min= {0.0 0.045 } max= {0.1 0.125 } \ xrefine= 0.01 yrefine= 0.01 grid remesh implant Arsenic dose=4e14 energy=10 tilt=0 rotation=0 SetPlxList { BTotal Arsenic_Implant } WritePlx 1DasImpl.plx y= 0.25 diffuse temperature=1050 time=0.1 ; # Quick activation struct tdr=NMOS5 ; # LDD Implant #--- Halo implantation: Quad HALO implants ---------------------------implant Boron dose=1.0e13energy=20 \ tilt=30 rotation=0 mult.rot=4 #--- RTA of LDD/HALO implants ----------------------------------------diffuse temperature=1050 time=5.0 Sentaurus™ Process User Guide H-2013.03 35 1: Getting Started Full-Text Versions of Examples struct tdr=NMOS6 ; # Halo RTA #--- Nitride spacer --------------------------------------------------deposit nitride type=isotropic thickness=60etch nitride type=anisotropic thickness=84 isotropic.overetch=0.01 etch oxide type=anisotropic thickness=10 struct tdr=NMOS7 ; # Spacer #--- N+ implantation -------------------------------------------------refinebox silicon min= {0.04 0.11 } max= {0.18 0.4 } \ xrefine= 0.01 yrefine= {0.02 0.05 } grid remesh implant Arsenic dose=5e15 energy=40 \ tilt=7 rotation=-90 SetPlxList { BTotal Arsenic_Implant } WritePlx 1DasImpl2.plx y= 0.25 #---- N+ implantation & final RTA ------------------------------------diffuse temperature=1050 time=10.0 struct tdr=NMOS8 ; # S/D implants # - 1D cross sections SetPlxList {BTotal NetActive} WritePlx NMOS_channel.plx y=0.0 silicon SetPlxList {AsTotal BTotal NetActive} WritePlx NMOS_ldd.plx y=0.1 silicon SetPlxList {AsTotal BTotal NetActive} WritePlx NMOS_sd.plx y=0.35 silicon #----------------------------------------------------------------------# #Transfer to device simulation #----------------------------------------------------------------------# #--Remove bottom of structure-----------------------------------------transform cut location= 1.00 down #--Change refinement strategy and remesh------------------------------refinebox clear line clear pdbSet Grid Adaptive 1 pdbSet Grid AdaptiveField Refine.Abs.Error pdbSet Grid AdaptiveField Refine.Rel.Error 36 1e37 1e10 Sentaurus™ Process User Guide H-2013.03 1: Getting Started Full-Text Versions of Examples pdbSet Grid AdaptiveField Refine.Target.Length 100.0 pdbSet Grid SnMesh DelaunayType boxmethod refinebox name= Global \ refine.min.edge= {0.01 0.01} refine.max.edge= {0.1 0.1} \ refine.fields= { NetActive } def.max.asinhdiff= 0.5 adaptive refinebox name= SiGOX \ min.normal.size= 0.2normal.growth.ratio= 1.4 \ max.lateral.size= 5.0 min= {-0.01 -0.1} max= {0.01 0.1} \ interface.materials= {Silicon} refinebox name= GDpn1 \ min= {0.0 0.04} max= {0.06 0.1} xrefine= 0.005 yrefine= 0.005 \ silicon refinebox name= TopActive \ min= {0.0 0.0} max= {0.3 0.4} \ refine.min.edge= {0.02 0.02} refine.max.edge= {0.05 0.05} \ refine.fields= { NetActive } def.max.asinhdiff= 0.5 \ adaptive silicon grid remesh #--- Reflect --------------------------------------------------------transform reflect left #--- Contacts --------------------------------------------------------contact name= "substrate" bottom Silicon contact name= "source" box Silicon adjacent.material= Gas \ xlo= 0.0 xhi= 0.005 ylo= -0.4 yhi= -0.2 contact name= "drain" box Silicon adjacent.material= Gas \ xlo= 0.0 xhi= 0.005 ylo= 0.2 yhi= 0.4 contact name= "gate" box PolySilicon \ xlo= -0.181 xhi= -0.05 ylo= -0.088 yhi= 0.088 #--- Final --------------------------------------------------------struct tdr=NMOS !Gas Sentaurus™ Process User Guide H-2013.03 37 1: Getting Started Full-Text Versions of Examples 2D npn Vertical Bipolar # 2D NPN Vertical Bipolar Transistor #----------------------------------math coord.ucs line line line line line line line line line line line line x x x x y y y y y y y y loc= 2.0 loc= 4.0 tag=SubTop loc= 6.0 loc= 10.0 tag=SubBottom loc= 0.0 tag=SubLeft loc=1.5 loc=2.5 loc=8 loc=13 loc=22 loc=24 loc=30.0 tag=SubRight # Diffuse settings to speed up simulation #---------------------------------------pdbSet Diffuse IncreaseRatio 8.0 pdbSet Diffuse ReduceRatio 0.5 # Mesh settings #-------------mgoals normal.growth.ratio=2.0 accuracy=2e-5 min.normal.size=10