Guide For Users User
User Manual:
Open the PDF directly: View PDF .
Page Count: 4
Download | |
Open PDF In Browser | View PDF |
Guide for Users Jingwen Yang 2018-11-07 Pacakge Installation AnceTran is an R package that performs analyses of transcriptome evolution based on RNA-seq expression data or ChIP-seq TF binding data. Here, we use HNF4A-binding data for 4 mice species as an example to show how AnceTran works. A convenient way to install package from github is through devtools package: install.packages('devtools') devtools::install_github("jingwyang/AnceTran") After installation, AnceTran can be loaded in the usual way: library('AnceTran') Input Format: AnceTran package takes binding score data in certain format: • Binding score file should be a text file in the matrix shape, Rows correspond to orthologous. Columns correspond to sample names. Sample names are in format of “TaxaName_SubtaxaName_ReplicatesName”. The example files are included in the AnceTran package, which can be found in extdata folder in the package. One can load them in to take a look: BindingScore.table =read.table(system.file('extdata','HNF4A_meanIntensity_4Mouse.txt',package = 'AnceTra head(BindingScore.table[,1:5]) ## ## ## ## ## ## ## 1 2 3 4 5 6 GeneID BL6_HNF4A CAST_HNF4A SPRET_HNF4A CAR_HNF4A ENSMUSG00000000001 244.6250 338.4167 159.0 96.5000 ENSMUSG00000000003 0.0000 41.0000 0.0 0.0000 ENSMUSG00000000028 184.5000 199.6875 289.4 107.0000 ENSMUSG00000000037 0.0000 0.0000 41.0 20.0000 ENSMUSG00000000049 224.2632 179.7917 191.5 120.1875 ENSMUSG00000000056 266.2500 317.0769 141.4 204.8333 Construction: The construction function TFconstruct loads in the BindingScore data file, and wraps them in a list of taxonTF objects (one taxaTF object). library('AnceTran') taxa.objects = tTFConstruct(BSFile=system.file('extdata','HNF4A_meanIntensity_4Mouse.txt',package = 'Anc 1 The construction process takes several minutes on a desktop computer depending on data size and hardware performance. Specify “taxa” and “subtaxa” options in the function when using partial of your data. The construction process will be faster. If you are hesitated to test the AnceTran, the package has already bundled a constructed object and you can load the object through: data(TF.objects) Data filtering and normalization We excluded genes whose TF binding score equals to 0 in all species. To account for differences in sequencing depths between species, we quantile-normalized these binding score values across species and also log-transformed the values for the further analysis. library('limma') TF_table = TFtab(objects = TF.objects, taxa = "all", tf = "all",rowindex = NULL, filtering = FALSE, norm keep<-rowSums((TF_table == 0)) < ncol(TF_table) TF_table<-TF_table[keep,] TF_table<-data.frame(log2(normalizeQuantiles(TF_table[,])+1)) Distance matrix First, we generate an TF-binding distance matrix of these mice species using sOU method: library('ape') dismat <- TFdist.sou(bsMat = TF_table) colnames(dismat)=colnames(TF_table) rownames(dismat)=colnames(dismat) dismat ## ## ## ## ## BL6_HNF4A CAST_HNF4A SPRET_HNF4A CAR_HNF4A BL6_HNF4A CAST_HNF4A SPRET_HNF4A CAR_HNF4A 0.0000000 0.0000000 0.0000000 0 0.3588558 0.0000000 0.0000000 0 0.4497102 0.4869901 0.0000000 0 0.6862219 0.7693106 0.6649105 0 TF-binding tree building After the TF-binding distance matrix is created, you can construct character tree by Neighbor-Joining method, and bootstrap values based on re-sampling orthologous genes with replacements can also be generated by boot.phylo function: tf_tree <- NJ(dismat) tf_tree <- root(tf_tree, outgroup = "CAR_HNF4A", resolve.root = T) tf_tree <- no0br(tf_tree) f <- function(xx) { mat <- TFdist.sou(t(xx)) # the distance metrics here should be the same as you specified # when you created the TF-binding distance matrix 2 colnames(mat) <- rownames(xx) rownames(mat) <- colnames(mat) root(NJ(mat), "CAR_HNF4A", resolve.root = T) } bs <- boot.phylo(tf_tree, t(TF_table), f, B = 100) ## Running bootstraps: 100 / 100 ## Calculating bootstrap values... done. tf_tree$node.label = bs plot(tf_tree, show.node.label = TRUE) CAR HNF4A CAST HNF4A 100 100 BL6 HNF4A 100 SPRET HNF4A By now, an TF-binding character tree is successfully constructed. Creating variance co-variance matrix var_mat <- varMatInv(dismat,TF_table,phy = tf_tree) Ancestral TF-binding state estimation Here, we extract the TF-binding values of gene MUP20 as an example: mup20_binding <- TF_table[which(rownames(TF_table) == "ENSMUSG00000078672"),] Then we infer the TF-binding scores at ancestral nodes of the TF-binding tree: mup20_anc <- aee(mup20_binding, tf_tree, var_mat, select = "all") Finally, we map these estimations on the 4 mice species tree to give a direct presentation of these values: 3 tf_tree$node.label <- sprintf("%.4f",mup20_anc$est) tf_tree$tip.label <- paste0(tf_tree$tip.label, " ", sprintf("%.4f", mup20_binding)) plot(tf_tree, edge.color = "grey80", edge.width = 4,show.node.label = T,align.tip.label = T,main="Ancest Ancestial HNF4A−Binding Estimation of Gene MUP20 CAR HNF4A 7.9461 CAST HNF4A 7.6619 7.6058 7.4973 BL6 HNF4A 7.3259 7.4697 SPRET HNF4A 7.1899 4
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 4 Page Mode : UseOutlines Author : Jingwen Yang Title : Guide for Users Subject : Creator : LaTeX with hyperref Producer : pdfTeX-1.40.19 Create Date : 2018:11:07 20:06:41+08:00 Modify Date : 2018:11:07 20:06:41+08:00 Trapped : False PTEX Fullbanner : This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) kpathsea version 6.3.0EXIF Metadata provided by EXIF.tools