NANO B Operator’s Manual And C Ba 351

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 285

DownloadNANO-B Operator’s Manual Nano B And C Ba 351
Open PDF In BrowserView PDF
PROCESS-PLC

NANO B and C

Operator's Manual

Article # 608 602 83
Edition 3.5

January 2002 / Printed in Germany

PROCESS-PLC

Edition 3.5
Jetter AG reserves the right to make alterations to its products in the interest of
technical progress. These alterations need not be documented in every single case.
This manual and the information contained herein have been compiled with due
diligence. However, Jetter AG assumes no liability for printing or other errors or
damages arising from such errors.
The brand names and product names used in this manual are trade marks or
registered trade marks of the respective title owner.

2

Jetter AG

NANO-B

How to Contact us:
Jetter AG
Gräterstrasse 2
D-71642 Ludwigsburg
Germany
Phone - Switchboard:
Phone - Sales:
Phone - Technical Hotline:

++49 7141/2550-0
++49 7141/2550-530
++49 7141/2550-444

Telefax:
E-Mail - Sales:
E-Mail - Technical Hotline:
Internet Address:

++49 7141/2550-425
sales@jetter.de
hotline@jetter.de
http://www.jetter.de

This Manual is an Integral Part of the
PROCESS-PLC Systems NANO-B and
NANO-C:
Model:
Serial No:
Year of Manufacture:
Order No:

To be entered by the customer:

Inventory No:
Place of operation:

© Copyright 2002 by Jetter AG. All rights reserved.
Jetter AG

3

PROCESS-PLC

Significance of this Operator's Manual
This manual is an integral part of the PROCESS-PLC NANO-B
•
•

and must be kept in a way that it is always at hand until the PROCESS-PLC
NANO-B will be disposed.
If the PROCESS-PLC NANO-B is sold, transferred or lent, this manual must be
handed over.

In any case you encounter difficulties to clearly understand the manual, please
contact the manufacturer.
We would appreciate any kind of suggestion and contributions on your part and
would ask you to inform or write us. This will help us to produce manuals that are
more user-friendly and to address your wishes and requirements.
From this PROCESS-PLC NANO-B may result unavoidable residual risks to persons
and property. For this reason, any person who has to deal with the operation,
transport, installation, maintenance and repair of the PROCESS-PLC NANO-B must
have been familiarised with it and must be aware of these dangers.
Therefore, this person must carefully read, understand and observe this manual, and
especially the safety instructions.
Missing or inadequate knowledge of the manual results in the loss of any claim of
liability on part of Jetter AG. Therefore, the operating company is recommended to
have the instruction of the persons concerned confirmed in writing.

4

Jetter AG

NANO-B

Table of Contents

Table of Contents

Jetter AG

1

Safety Instructions

11

2

Installing the NANO-B Controller

16

2.1

Mechanical Connection

16

2.2

Electrical Connection

18

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8

Power Supply
Interfaces
Digital Inputs
Digital Outputs
Single- and Dual-Channel Counter
Analog Inputs
Analog Output
Stepper Motor Control

18
19
31
32
33
34
35
36

2.3

Description of LEDs

39

2.4

Description of the STOP/RUN Switch

40

3

Basic Unit

41

3.1

Physical Dimensions

41

3.2

Technical Data

41

4
5

Operating Conditions
Software Programming

44
48

5.1

Addressing Digital Inputs/Outputs

48

5.1.1
5.1.2

Basic Controller
Expansion Modules

48
48

5.2

Access to Flags

50

5.2.1
5.2.2

User Flags
Special Flags

50
52

5.3

Register Description

55

5.3.1
5.3.2
5.3.3
5.3.4

User Registers
Programming with the Aid of Registers
Calculating with the Aid of Registers
Special Registers

55
55
58
61

6

User Interfaces, Operator Guidance

74

6.1

Technical Data

74

6.2

Description of Connections

76

6.3

Multi-Display Mode

76

6.4

Programming the User Interfaces

78

6.4.1
6.4.2

Display of Texts
Text Output Parameters

78
78

5

Table of Contents

PROCESS-PLC

6.4.3
6.4.4
6.4.5

Control Characters for Text Output
Displaying Register Contents
Query of Register Values

80
81
82

6.5

Fixed-point Numbers

83

6.5.1
6.5.2
6.5.3

Display of Fixed-point Numbers
Input of Fixed-point Numbers
USER_INPUT: Suggested Value

83
84
86

6.6

Registers for User Interfaces

87

6.7

User Interface-related Flags

100

6.8

Controlling the Keys and LEDs of the User Interface

101

7

Network Operation

107

7.1

JETWay-H: JETTER Data Highway

107

7.2

JETWay-R: Process Level

108

7.3

N-SEND Registers and N-GET Registers

109

7.3.1
7.3.2
7.3.3

N-SEND REGISTER
N-GET REGISTER
Access to slave inputs, slave outputs and slave flags

109
110
110

7.4

Registers for Network Operation

112

8

Single-/Dual-Channel Counter

117

8.1

Description of Connections

117

8.2

Register Description

117

9

Analog I/Os

120

9.1

Description of Connections

120

9.2

Register Description

120

10

Stepper Motor Control

123

10.1

Overview and Technical Data

123

10.2

Firmware of Stepper Motor Control

124

10.2.1 Register Assignment
10.2.2 Register Description

126
127

10.3

Sample Programs

137

11

User-Programmable Interface

140

11.1

Description of Connections, Activation

140

11.2

Register Description

143

11.3

Programming

145

11.3.1 Program Listing
11.3.2 Symbol Listing

12

6

Real-Time Clock

145
147

148

Jetter AG

NANO-B

Jetter AG

Table of Contents

13

Expansion Modules

150

13.1

Topology of the JETTER System Bus

150

13.1.1 Centralised Arrangement on the JETTER System Bus
13.1.2 Decentralised Arrangement on the JETTER System Bus
13.1.3 Direct Connection of FESTO CP Modules
to the JETTER System Bus

151
151
152

13.2

N-ID 8 Module, 8 Digital Inputs

153

13.2.1
13.2.2
13.2.3
13.2.4

Physical Dimensions
Overview and Technical Data
Description of Connections
Description of LEDs

153
154
157
157

13.3

N-OD 4.2 Module, 4 Digital Outputs

158

13.3.1
13.3.2
13.3.3
13.3.4

Physical Dimensions
Overview and Technical Data
Description of Connections
Description of LEDs

158
159
162
162

13.4

N-OD 8 Module, 8 Digital Outputs

163

13.4.1
13.4.2
13.4.3
13.4.4

Physical Dimensions
Overview and Technical Data
Description of Connections
Description of LEDs

163
164
167
167

13.5

N-IO 16 Module - Digital Inputs and Outputs

168

13.5.1 Physical Dimensions of the N-IO 16 Module
13.5.2 Overview and Technical Data
13.5.3 Description of Connections

168
169
172

13.6

N-IA 4 Module - Analog Inputs

176

13.6.1
13.6.2
13.6.3
13.6.4

Physical Dimensions of the N-IA 4 Module
Overview and Technical Data
Description of Connections
Register Description - N-IA 4 Module

176
177
181
185

13.7

N-OA 2 and N-OA 4 Modules - Analog Outputs

187

13.7.1
13.7.2
13.7.3
13.7.4

Physical Dimensions of the N-OA 2, and N-OA 4 Modules
Overview and Technical Data
Description of Connections
Register Description - N-OA 2, and N-OA 4 Modules

187
189
192
195

13.8

N-CNT 1 Module - Single and Dual-Channel Counter

197

13.8.1
13.8.2
13.8.3
13.8.4

Physical Dimensions of the N-CNT 1 Module
Overview and Technical Data
Description of Connections
Register Description - N-CNT 1 Module

197
198
201
207

13.9

Serial Interface Module N-SER 1

212

13.9.1
13.9.2
13.9.3
13.9.4

Physical Dimensions of the N-SER 1 Module
Overview and Technical Data
Description of Connections
Register Description - N-SER 1 Module

212
213
216
219

7

Table of Contents

PROCESS-PLC

13.9.5 Hardware and Software Flow Control of the N-SER 1 Module
13.9.6 Sample Program

223
224

13.10 Parallel Interface Module N-PRN 1

227

13.10.1
13.10.2
13.10.3
13.10.4
13.10.5

227
228
231
233
235

Physical Dimensions of the N-PRN 1 Module
Overview and Technical Data
Description of Connections
Register Description - N-PRN 1 Module
Sample Program

13.11 N-PS1 Module - Power Supply Unit for Remote Modules 237
13.11.1 Physical Dimensions of the N-PS 1, and N-PS 1CP Modules
13.11.2 Technical Data
13.11.3 Description of Connections of the
N-PS 1 Module 242
13.11.4 Description of Connections of the
N-PS 1CP Module 243

14

237
239

NANO Network Topology and
FESTO CP Modules

244

14.1

FESTO CP Modules, FESTO Tee Connector

244

14.2

Networking of NANO and FESTO CP Modules

245

14.3

FESTO CP Modules Attached to a NANO-B Controller

246

14.3.1 Commissioning a PROCESS-PLC NANO-B/C
equipped with FESTO CP Modules
14.3.2 Comparing Set/Actual Configuration

248
249

14.4

Register Description of the FESTO CP Module

251

14.5

Example: Register Assignment of FESTO CP Modules

255

15

Error Handling

258

15.1

Hardware Errors

258

15.2

Application Program Errors

259

15.3

OS Error Messages

262

16

NANO-C: Differences from NANO-B

264

List of Appendices
Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:

8

Downloading the Operating System
Multitasking Operating System
Glossary
List of Abbreviations
List of Illustrations
Index

268
269
273
278
281
283

Jetter AG

NANO-B

1 Safety Instructions

Table
Contents
of
1
Safety Instructions
The NThe PROCESS-PLCs NANO-B or NANO-C are in line with the current state of the
art. The PROCESS-PLCs NANO-B or NANO-C fulfil the valid safety regulations and
PID 1
standards. Special emphasis was given to the safety of the users. In the following
module is text, the term NANO-B is used for both PROCESS-PLCs NANO-B or NANO-C.
Differences between these controllers are described explicitly.
in line
Of course, the following regulations apply to the user:
with the
• relevant accident prevention regulations;
current
• accepted safety rules;
• EC guidelines and other country-specific regulations.
state of
the art.
Usage as Agreed Upon
This NUsage as agreed upon includes operation in accordance with the operating
instructions
PID 1
The PROCESS-PLC NANO-B is used to control machinery, such as conveyors,
module
production machines, and handling machines.
supply of the PROCESS-PLC NANO-B must be made through the SELV
complies Power
module exclusively.
The use of other power supply modules is not admissible.
with the
safety
Usage Other Than Agreed Upon
regulatio The PROCESS-PLC NANO-B must not be used in technical systems which to a high
degree have to be fail-save, e.g. ropeways and aeroplanes.l
ns and
standard If the PROCESS-PLC NANO-B is to be run under surrounding conditions, which
differ from the conditions mentioned in chapter 4: "Operating Conditions, page 44, ,
s in
the manufacturer is to be contacted beforehand.
effect.
Who is permitted to operate the PROCESS-PLC
Special
NANO-B?
emphasis Only instructed, trained and authorised persons are permitted to operate the
was given PROCESS-PLC NANO-B.
Mounting and backfitting may only be carried out by specially trained personnel, as
to the
specific know-how in the field of electrical engineering will be required.
safety of Maintenance of the PROCESS-PLC NANO-B
the users.
The PROCESS-PLC NANO-B is maintenance-free. Therefore, for the operation of
the module no inspection or maintenance are required.

Shutting down and disposing of the PROCESS-PLC
NANO-B
The environmental regulations for the respective country apply to shutting down and
disposing of the PROCESS-PLC NANO-B on the operating company’s premises.

Jetter AG

11

1 Safety Instructions

PROCESS-PLC

Descriptions of Symbols

This sign is to indicate a possible impending danger of serious physical damage
or death.

Danger

This sign is to indicate a possible impending danger of light physical damage.
This sign is also to warn you of material damage.

Caution
This sign is to indicate a possible impending situation which might bring damage
to the product or to its surroundings.

Important!

You will be informed of various possible applications, e.g. with regard to
installation, and will receive further useful suggestions.

Note!

· / -

Enumerations are marked by full stops, strokes or scores.

Operating instructions are marked by this arrow.

Automatically running processes or results to be achieved are marked by this
arrow.

Illustration of PC and user interface keys.

12

Jetter AG

NANO-B

1 Safety Instructions

Ensure Your Own Safety
Disconnect the PROCESS-PLC NANO-B from the electricity mains to carry out
maintenance work. By doing so, you will prevent accidents resulting from electric
voltage and moving parts.

Instructions on EMI
The noise immunity of a system corresponds to the weakest component of the
system. For this reason, correct wiring and shielding of the cables is important.

Important!
Measures for increasing immunity to interference:

Shielding must be done on both ends of the applicable cables.
The entire shield must be drawn behind the isolation, and then be
clamped under a strain relief with the greatest possible surface area.
When the signal is connected to terminal screws: The strain relief must
directly and with the greatest possible surface area be connected with a
grounded surface.
When male connectors are used: Only use metallised connectors, e.g.
SUB-D with metallised housing. Please take care of direct connection
here as well.
On principle, physical separation should be maintained between signal
and voltage lines.

Jetter AG

13

1 Safety Instructions

PROCESS-PLC

Male/female SUB-D connectors (9, 15 or 25 pins) with metallised
housing.

Fig. 1: Shielding in conformity with the EMC standards

Important!
To avoid malfunctions the following must be ensured:

The shielding must be clamped under a strain relief with the greatest
possible surface area.
The connection between the housing and the shielding must be
electrically conducting.
The distance between unshielded conductor ends must be as short as
possible.

Modifications and Alterations to the Module
For safety reasons, no modifications and changes to the PROCESS-PLC NANO-B
and its functions are permitted. Any modifications to the PROCESS-PLC NANO-B
not expressly authorised by the manufacturer will result in a loss of any liability claims
to Jetter AG.
The original parts are specially designed for the PROCESS-PLC NANO-B. Parts and
equipment of other manufacturers are not tested on our part, and are, therefore, not
released by us. The installation of such parts may impair the safety and the proper
functioning of the PROCESS-PLC NANO-B.
For any damages resulting from the use of non original parts and equipment any
claims with respect to liability of Jetter AG are excluded.

14

Jetter AG

NANO-B

1 Safety Instructions

Malfunctions
Malfunctions or other damages are to be reported to an authorised person
immediately. The PROCESS-PLC NANO-B must be protected from improper or
inadvertent use. Only qualified experts are allowed to carry out repairs.
Safety and protective devices, e.g. the barrier and cover of the terminal box, must
never be shunted or by-passed.
Dismantled protective equipment must be reattached prior to commissioning and
checked for proper functioning.

Information Signs and Labels
Writings, information signs, and labels always have to be observed and kept
readable.
Damaged or unreadable information signs and labels are to be exchanged.

Residual Dangers

Danger resulting from electric shock!
If the PROCESS-PLC NANO-B is not isolated from the mains, for example during
maintenance and repair works, you can suffer from an electric shock.
Please, observe the following precautions in order to avoid injuries such as
muscle cramps, burns, unconsciousness, respiratory standstill:

Isolate the PROCESS-PLC NANO-B from the mains (pull out the mains
plug) when working on the control system.
Have works on the electric and electronic system performed by
qualified personnel only.

Jetter AG

15

2 Installing the NANO-B Controller

PROCESS-PLC

2

Installing the NANO-B Controller

2.1

Mechanical Connection

Scope of Supply
•
•

PROCESS-PLC NANO-B
Operator's Manual

Installation Sequence
Check the shipment for completeness.
Choose the place of the DIN rail for mounting the PROCESS-PLC NANOB and, if necessary, the expansion modules in your electric cabinet in
accordance with chapter 13 "Expansion Modules", page 150.
Mount the NANO-B module and any expansion modules to the DIN rail
according to chapter 13 "Expansion Modules", page 150.
Connect a user interface to your controller (LCD port) using the interface
cable DK-422.
Connect the NANO-B controller to your computer using the programming
cable EM-PK.
Switch the controller on and download a SYMPAS program from your
computer to your user interface.
Check the controller for proper functioning.

User Interface Cable DK-422

Programming Cable EM-PK

Fig. 2: Example: Connecting a LCD display to the PROCESS-PLC NANO-B

16

Jetter AG

NANO-B

2.1 Mechanical Connection

Installation Accessories (not included in the scope of delivery)
•
•
•
•
•

DIN rail with mounting screws
Programming cable EM-PK; 0.5 m, 2.5 m, or 5 m long
User interface cable DK-422; 2.5 m or 5 m long
Expansion modules according to chapter 13 "Expansion Modules", page 150
Computer

Notes on safety as regards the installation
Caution: Electric Shock!
If the PROCESS-PLC NANO-B and any expansion modules according to chapter
13 "Expansion Modules", page 150 are not isolated from the mains, for example
during installation, maintenance, and repair, you can get an electric shock.
Please, observe the following precautions in order to avoid injuries such as
muscle cramps, burns, unconsciousness, etc.

Have works on the electric and electronic system performed by
qualified personnel only.
Isolate the PROCESS-PLC NANO-B and associated peripheral
devices from the mains when working on the control system.
Prior to putting the PROCESS-PLC NANO-B into operation:

Jetter AG

•

reattach dismantled protective equipment and check it for proper
functioning;

•

secure the PROCESS-PLC NANO-B against accidental contact with
conductive parts and components;

•

connect only devices or electrical components to the signal lines of
the PROCESS-PLC NANO-B that have been sufficiently separated
from the connected electric circuits;

•

a durable connection to the PROCESS-PLC and the expansion
modules must be provided.

17

2 Installing the NANO-B Controller

PROCESS-PLC

2.2

Electrical Connection

2.2.1

Power Supply

Fig. 3: Power Supply Terminals

Power supply is to be made through a 24 V DC power supply unit with SELV output.
The power supply must meet the following requirements:

Voltage range:

DC 20 .... 30 V

Filtration:

Residual ripple 5 %

Rating:

approx. 100 W (fully equipped)

Important!
If the NANO CPU is not supplied with sufficient power (under-voltage),
malfunctions may occur.

In case of centralised arrangement, the digital expansion modules are also supplied
through the basic controller. In case of decentralised arrangement, the digital
expansion modules are supplied through the power supply unit N-PS1, see chapter
13 "Expansion Modules", page 150. The intelligent expansion modules have got their
own connection for the 24 V power supply.

18

Jetter AG

NANO-B

2.2 Electrical Connection

2.2.2

Interfaces

On the basic controller there are three female connectors for various interfaces; see
fig. 17, page 41.
Assignment of these interfaces is shown in the following illustration:

Fig. 4: Block Diagram of NANO-B Interfaces

Interface

Jetter AG

Function

Specification

9 pin SUB-D port
(front panel)

•
•
•

Programming
Visualising
JETWay-H, -R

– RS232
– RS232
– RS485

15 pin SUB-D port
(front panel)

•
•
•
•

Programming
User Interfaces
Visualising
JETWay-R, -H

–
–
–
–

9 pin SUB-D port

•

Expansion by modules
connected to system bus

RS232
RS422
RS232
RS485

19

2 Installing the NANO-B Controller

PROCESS-PLC

Note!

Please note that simultaneous use of all interfaces is not possible. For more
information, please refer to the following table:

*)

RS232
9-pin

RS232
15-pin

RS485*)
9-/15-pin

RS 422
15-pin

RS 232
9-pin

—

yes

yes

yes

RS232
15-pin

yes

—

yes

no

RS485 *)
9-/15-pin

yes

yes

—

yes

RS 422
15-pin

yes

no

yes

—

RS485 short-circuited on both plug connectors

Pin Assignment - 9 pin male SUB-D connector

20

PIN

Signal

Interface

1

—

—

2

TXD

3

RXD

Programming interface or
VIADUKT: RS 232

4

24 V

—

5

—

—

6

—

—

7

GND

Ground

8

Data +

JETWay H, or JETWay R

9

Data -

Jetter AG

NANO-B

2.2 Electrical Connection

Pin Assignment - 15 pin male SUB-D connector
PIN

Signal

Interface

1

—

—

2

TXD

3

RXD

Programming interface or
VIADUKT: RS 232

4

24 V

—

5

—

—

6

—

—

7

GND

Ground

8

Data +

JETWay H, or JETWay R

9

Data -

10

SDB

11

SDA

12

RDB

13

RDA

14

—

—

15

—

—

LCD:
RS 422

Important!
Power consumption through pin 4 of the 9 pin SUB-D connector, or pin 4 of the
15-pin SUB-D connector is limited to a maximum of 750 mA.
In case both connectors are used simultaneously, power consumption of the 9pin and 15-pin SUB-D connectors is limited to a maximum of 750 mA.

Jetter AG

21

2 Installing the NANO-B Controller

Programming
Interface RS232
to PC

PROCESS-PLC

Please refer to “Programming Interface JETWay-H/PC" on page 24.

Programming Cable EM-PK
PROCESS-PLC

Shield

PC

Shield

9 pin male SUB-D
connector
Connect shield with the greatest
possible surface area!
Use metallised housing only!
PIN

9-pin
female SUB-D
connector

Signal

PIN

2

TXD

RXD

2

3

RXD

TXD

3

7

Gnd

5

For hardware-handshake, pins 7 and 8, as well as pins 1, 4 and 6 have to be shortcircuited on the PC side (COM1).

Important!
•

The connection cable EM-PK can be obtained from JETTER AG.

•

In case you prefer to fabricate your own cable, the following minimum
requirements, also with a view to EMC, must be met:

•

22

1. Number of cores:

3

2. Core cross-sectional area:

0.25 mm²

3. Connector (male):

SUB-D, metallised

4. Maximum cable length:

15 m

5. Shield:

complete shielding, no paired shielding

The shield must be connected to the metallised connector housings on both
ends of the cable with the greatest possible surface area.

Jetter AG

NANO-B

2.2 Electrical Connection

Interface for
LCD Displays

EM-DK Cable for LCD 9, LCD 10 and LCD 12
PROCESS-PLC

Shield

LCD Display

Shield

15 pin male SUBD connector

Connect shield with the greatest
possible surface area!
Use metallised housing only!

15 pin female SUB-D
connector

PIN

Signal

PIN

4

DC 24 V

15

7

Gnd

12

10

TXD

RXD

9

12

RXD

TXD

11

Important!
•

The connection cable EM-DK can be obtained from JETTER AG.

•

In case you prefer to fabricate your own cable, the following minimum
requirements, also with a view to EMC, must be met:

•

Jetter AG

1. Number of cores:

4

2. Core cross-sectional area:

0.25 mm²

3. Connector (male):

SUB-D, metallised

4. Maximum cable length:

30 m

5. Shield:

complete shielding, no paired shielding

The shield must be connected to the metallised connector housings on both
ends of the cable with the greatest possible surface area.

23

2 Installing the NANO-B Controller

Programming
Interface
JETWay-H/PC

PROCESS-PLC

Use of the JETWay-H interface demonstrates the following advantages over the
RS232 interface:
•
•

99 PROCESS-PLCs can be addressed from a SYMPAS workstation.
Transfer rates of up to 115 KBaud can be realised.

JETWay-H Cable
PROCESS-PLC

Shield

Specification
RS485

9 pin male SUB-D
connector

Shield

or
15 pin male SUBD connector

Connect shield with the greatest
possible surface area!
Use metallised housing only!
PIN

Signal

JETWay card

7

Gnd

7

8

Data +

8

9

Data -

9

Important!
•

•

24

Also with a view to EMC, the following minimum requirements apply to the
JETWay-H cable fabrication:
1. Number of cores:

3

2. Core cross-sectional area:

0.25 mm²

3. Connector (male):

SUB-D, metallised

4. Maximum cable length:

400 m

5. Shield:

complete shielding, no paired shielding

The shield must be connected to the metallised connector housings on both
ends of the cable with the greatest possible surface area.

Jetter AG

NANO-B

JETWay-H board
for PCs

2.2 Electrical Connection

Connection between the SYMPAS program and up to 99 Process PLC control
systems via JETWay-H is realised with the help of the PC board shown below.

Fig. 5: JETWay-H PC Board

The DIP-switch is used to define the port address. The default address "340h" must
be inserted into the AUTEXEC.BAT as follows:
SET JETWAY_PORT = 340h

Note!
If it is intended to use the SYMPAS program together with the operating system
Windows NT and the JETWay port, the program "SETUP JETWAY BOARD"
must be installed.

Jetter AG

25

2 Installing the NANO-B Controller

DIP Switch

PROCESS-PLC

A different port address can be selected using the DIP-switch on the JETWay-H
board as shown above, cf. fig. 5, page 25.

DIP-switch (S) on the JETWay-H board

*)

Port X

S7

S6

S5

S4

S3

S2

S1

300h

OFF

OFF

ON

ON

ON

ON

ON

310h

OFF

OFF

ON

ON

ON

OFF

ON

320h

OFF

OFF

ON

ON

OFF

ON

ON

330h

OFF

OFF

ON

ON

OFF

OFF

ON

340h*)

OFF

OFF

ON

OFF

ON

ON

ON

350h

OFF

OFF

ON

OFF

ON

OFF

ON

360h

OFF

OFF

ON

OFF

OFF

ON

ON

Default setting

The AUTEXEC.BAT entry must be changed in accordance with the table as shown
above:
SET JETWAY_PORT = X

During system configuration selection is made between programming interface
RS232 and JETWay-H in the SYMPAS menu [menu item: Special -> Interface].

Fig. 6: SYMPAS Menu [Special -> Interface]

26

Jetter AG

NANO-B

Network Interface
JETWay-R

2.2 Electrical Connection

The network interface JETWay-R serves for networking PROCESS-PLC's and/or
networking of devices, such as remote I/Os, valve terminals etc.; cf. chapter 7
"Network Operation", page 107.

JETWay-R Cable
PROCESS-PLC

Shield

Specification
RS485

9 pin male SUB-D
connector (PC)

Shield

or
15 pin male SUBD connector
(LCD)
Connect shield with the greatest
possible surface area!
Use metallised housing only!
PIN

Signal

Comment

7

Gnd

-

8

Data +

-

9

Data -

-

Important!
•

•

Jetter AG

Also with a view to EMC, the following minimum requirements apply to the
JETWay-R cable fabrication:
1. Number of cores:

3

2. Core cross-sectional area:

0.25 mm²

3. Connector (male):

SUB-D, metallised

4. Maximum cable length:

400 m

5. Shield:

complete shielding, no paired shielding

The shield must be connected to the metallised connector housings on both
ends of the cable with the greatest possible surface area.

27

2 Installing the NANO-B Controller

User Interface
Port

PROCESS-PLC

User Interface Cable DK-422
PROCESS-PLC

Shield

User Interface

Shield

15 pin male SUBD connector

Connect shield with the greatest
possible surface area!
Use metallised housing only!

15 pin male SUBD connector

PIN

Signal

PIN

4

DC 24 V

15

7

Gnd

12

10

SDB

RDB

6

11

SDA

RDA

7

12

RDB

SDB

4

13

RDA

SDA

5

Important!
•
•

•

28

The connection cable DK-422 can be obtained from JETTER AG.
In case you prefer to fabricate your own cable the following minimum
requirements, also with a view to EMC, must be met:
1. Number of cores:

6

2. Core cross-sectional area:

0.25 mm²

3. Connector (male):

SUB-D, metallised

4. Maximum cable length:

400 m

5. Shield:

complete shielding, no paired shielding

The shield must be connected to the metallised connector housings on both
ends of the cable with the greatest possible surface area.

Jetter AG

NANO-B

2.2 Electrical Connection

Important!
When the DK-422 cable is used, care must be taken that the end marked with
"CPU" is connected to the basic controller NANO-B. The other end of the cable
must be connected to the user interface. If the cable is connected the other way
round, the port of the user interface will be destroyed.

Important!
If you prefer to manufacture the cables yourself, be sure to unambiguously mark
the cable ends with "CPU" and "LCD" to prevent incorrect connection. If the cable
is connected the other way round, the port of the user interface will possibly be
destroyed.

Visualisation
Interface

The process visualisation system VIADUKT can optionally be connected to the
PROCESS-PLC by two different types of connectors. Connector selection
depends on the slot available and free to use on the NANO-B. For cable
specification see “Programming Interface RS232 to PC" on page 22.

VIADUKT Cable
PROCESS-PLC

Shield

VIADUKT
RS232

9-pin male SUB-D
connector

Shield

or
15-pin male SUBD connector

Connect shield with the greatest
possible surface area!
Use metallised housing only!
PIN

Signal

PIN

2

TXD

RXD

2

3

RXD

TXD

3

7

Gnd

5

For hardware-handshake, pins 7 and 8, as well as pins 1, 4 and 6 have to be shortcircuited on the PC side (COM1).

Jetter AG

29

2 Installing the NANO-B Controller

PROCESS-PLC

System Bus Cable for NANO Expansion Modules

CAN-BUS

9-pin male or
female SUB-D
connector

Signal

Contact # (pin)

Contact # (socket)

CMODE0

1

1

CL

2

2

GND

3

3

CMODE1

4

4

TERM

5

5

unused

6

6

CH

7

7

unused

8

8

Do not connect

9

9

A detailed description of the CAN bus and of the expansion modules will be given in
chapter 13.1 "Topology of the JETTER System Bus", page 150.

Important!
Also with a view to EMC, the following minimum requirements apply to the system
bus (CAN-BUS) cable fabrication:
1.

Number of cores:

5

2.

Core cross-sectional area:

0.25 mm²

3.

Connector (male):

SUB-D, metallised

4.

Shield:

complete shielding, no paired shielding

5.

Cable capacitance:

maximum 60

ρF
------m

6.

Resistivity:

maximum 70

Ω
-------km

7.

Cable length:

a maximum of 30 m for a maximum
transfer rate of 1MBit/s

8.

The shield must be connected to the connector housings on both ends of the
cable with the greatest possible surface area.

Shield

30

Jetter AG

NANO-B

2.2 Electrical Connection

2.2.3

Digital Inputs

On the basic controller, 8 terminals have been provided for digital inputs (24 V
signals). The 0 V signal is to be connected to the 0 V terminal of the electric cabinet.

Technical Data of Digital Inputs
Amount of inputs

8

Rated input voltage

DC 24 V

Voltage range

20 .. 30 V

Input current

approx. 8mA

Input resistance

3.0 kΩ

Input delay time

approx. 3 ms

Signal voltage ON

min. 15 V

Signal voltage OFF

max. 10 V

Electrical isolation

None

Numbering System of Basic Controller Inputs*)

*)

Input

Number

Input # 1

101

...

...

Input # 8

108

cf. chapter 5.1 "Addressing Digital Inputs/Outputs", page 48.

Fig. 7: Connection Details for Digital Inputs

Jetter AG

31

2 Installing the NANO-B Controller

2.2.4

PROCESS-PLC

Digital Outputs

On the basic controller, 8 terminals have been provided for digital outputs (24 V
signals). The 0 V signal is to be connected to the 0 V terminal of the electric cabinet.

Technical Data of Digital Outputs
Amount of outputs

8

Type of outputs

Transistor, pnp

Rated voltage

DC 24 V

Voltage range

20 .. 30 V

Load current

Max. 0.5 A per output

Electrical isolation

None

Protective circuit

Short-circuit, overload, overvoltage,
overtemperature protection

Protection against inductive loads

Yes

Signal voltage ON

Typ. VSupply -1.5 V

Numbering system of Basic Controller Outputs*)
Output

*)

Number

Output # 1

101

...

...

Output # 8

108

cf. chapter 5.1 "Addressing Digital Inputs/Outputs", page 48.

Fig. 8: Connecting Digital Outputs

32

Jetter AG

NANO-B

2.2 Electrical Connection

2.2.5

Single- and Dual-Channel Counter

– In register 2900 the counter can be set to single- or dual-channel operation.
– The count value is stored to register 2901. It is possible to count events with a
pulse frequency of up to 10 kHz.
– With dual-channel operation, in register 2901 four-fold evaluation with a counting
frequency of 40 kHz is carried out.
– When using the single-channel counter with channel A, the rising as well as the
falling edge will be counted. With single-channel operation, the counting
frequency in register 2901 is 20 kHz.

Fig. 9: Connection Details for Single-/Dual-Channel Counter

Technical Data - Single-/Dual-Channel Counter (X4)
Signal Voltage

DC 24 V

Operating Point:

•
•

Pulse Frequency

10 kHz

Low level
High level

up to 2.0 V
20 ... 30 V

Connection of Counter (X4)
COUNTER A

Channel # 1

COUNTER B

Channel # 2

0V

Ground

Note!
As a rule, use only 24 V sensors, since 5 V sensors cannot be evaluated.

Jetter AG

33

2 Installing the NANO-B Controller

2.2.6

PROCESS-PLC

Analog Inputs

On the basic controller, four terminals for voltage signals and one 0 V terminal have
been provided for analog inputs (X5).

Technical Data of Analog Inputs

*)

Amount of Analog Inputs

4 (IN 1 through IN 4)

Ground

0 V (IN 0 V)

Voltage Range

0 .. 10 V

Input Resistance

20 kΩ

Resolution

10 Bit

Accuracy

1%

Delay Time

< 10 ms*)

cf. register 2920 in chapter 5.3.4 "Special Registers", page 61.

Note!

Bit 0 of register 2900 is set to 1 using the SYMPAS program or following a reset.
This way, analog inputs are enabled.

Fig. 10: Connection Details for Analog Inputs

34

Jetter AG

NANO-B

2.2 Electrical Connection

2.2.7

Analog Output

On the basic controller, one terminal for voltage signals and one 0 V terminal have
been provided for analog outputs (X5).

Technical Data of Analog Outputs
Number of Analog Outputs

1 (OUT)

Ground

0 V (OUT 0 V)

Voltage Range

0 .. 10 V

Frequency

0.5 Hz

Ripple

±10 mV

Resolution

8 Bit

Delay Time

< 120 ms

Load Current Carrying Capability

10 mA

Fig. 11: Connection Details for Analog Output

Jetter AG

35

2 Installing the NANO-B Controller

2.2.8

PROCESS-PLC

Stepper Motor Control

For stepper motor control, 2 terminals for the DIR and STEP signal and one 0 V
terminal have been provided on the basic controller (X3).

Technical Data - Stepper Motor Control
Positioning Range

-8388608 .. +8388607

Positioning Speed

Max. 5 kHz

Acceleration/Deceleration Ramp

Linear, rate programmable

Acceleration/Deceleration Frequency

Programmable

Frequency Setting Accurary

1 Hz resolution, crystal-calibrated

Interface (outputs) to Power Amplifier

Open collector:
•

DIR - direction

•

STEP - stepping pulse

Load Current Carrying Capability of
Outputs

I max. = 300 mA

Inputs

Limit switch LH side/RH side
(24 V, NC or NO)
Reference switch
(24 V, NC or NO)

Note!
The stepper motor control functions without any feedback, e.g. from an
incremental encoder. Consequently, the operator must ensure that the axis is
smoothly moving and that settings for acceleration and deceleration ramps are
not to steep, otherwise the motor will skip steps.

Fig. 12: Connection Details for Stepper Motor Control

36

Jetter AG

NANO-B

2.2 Electrical Connection

Stepper Motor Control Connection (X3, X4)
DIR (X3) (open collector)

Directional signal

STEP (X3) (open collector)

Stepping signal

0 V (X3)

Ground

IN 2 (X4)

Reference switch

IN 3 (X4)

Negative limit switch

IN 4 (X4)

Positive limit switch

Note!
The limit and reference switches are physically identical with the digital inputs
102 (IN 2), 103 (IN 3), and 104 (IN 4) located on the basic control unit. Definition
of their function is made in register 11104.

Note!
If, in spite of correct wiring, the axis cannot be positioned, polarity reversal of limit
switches can be a possible cause. If the limit switches have been defined as NC's
and if no signal is present, the stepper motor will interpret this as if the axis had
actuated the limit switch. In this case, positioning in direction of the limit switch is
not possible.

Important!
Usually, the power amplifier includes pull-up resistors for STEP and DIR signals.
In case there are no pull-up resistors, an external circuitry with pull-up
resistors must be set up. When doing so, the maximum current is limited to
300 mA, or else the transistors of the controller will be destroyed.
For this purpose, it is mandatory to read the description of connections given
in the operator's manual of the relevant stepper motor and power amplifier
manufacturer.Malfunctions during operation of your plant can only be avoided if
the connection is correct.
Connection according to fig. 13, page 38 is only one option for connecting a
specific stepper motor controller, and is not universally applicable.

Jetter AG

37

2 Installing the NANO-B Controller

STEP and DIR
Signals

PROCESS-PLC

STEP and DIR outputs are open collector outputs. The 0 V potential is applied to
the terminals through these outputs. The voltage is determined by the power
circuitry of the stepper motor drive. As a rule, switching voltage is supplied by the
power unit via pull-up resistors, thus enabling direct connection of motors.

Stepper Motor
Driving Circuit

Fig. 13: NANO-B Stepper Motor Driving Circuit

Possible Internal
Circuitry
DIR and STEP

Fig. 14: Exemple: Internal Circuitry of a DIR and STEP Signal

38

Jetter AG

NANO-B

2.3 Description of LEDs

2.3

Description of LEDs

Fig. 15: Arrangement of LEDs

LED

Jetter AG

Meaning

24 V

Output supply OK

5V

Internal logic voltage OK

RUN lit

Application program is running

RUN flashing

1. Application program is not running. Switch is set to
STOP.
2. Application program was stopped. Switch is set to
RUN. (To restart the program press Shift-F2 in the
Setup window)
3. Program transfer -> Flash

ERR

Error. Details of the error state are specified in registers
2008 through 2012.

DIR

Direction signal for stepper motor

STEP

Stepping signal for stepper motor

A

Channel # 1 of single/dual-channel counter

B

Channel # 2 of single/dual-channel counter

39

2 Installing the NANO-B Controller

2.4

PROCESS-PLC

Description of the STOP/RUN Switch

Fig. 16: STOP/RUN Switch

40

STOP Position

If, at the time of applying the power supply voltage to the control system, the switch
is in STOP position, the application program will not start. It can be activated by
pressing SHIFT-F2 in the SYMPAS program, or through transfer of a program.

RUN Position

If, at the time of applying the power supply voltage to the control system, the switch
is in RUN position, the application program will start.

Jetter AG

NANO-B

3.1 Physical Dimensions

3

Basic Unit

3.1

Physical Dimensions

Fig. 17: Mounting Dimensions of the NANO-B Basic Unit

3.2

Technical Data
Technical Data of the NANO-B Basic Unit

Jetter AG

Program memory

16 KByte Flash-EPROM

User register 24 bits

2000 register in the RAM The RAM is batterybacked. The battery has a service life of approx. 10
years

Data format

24 Bit Integer: - 8.388.608 ... + 8.388.607

Internal intermediate
results

32 Bit

Quantity of flags

255 buffered, and 1800 overlapped
(from register 0 ... 74)

Digital inputs, cf. page 31

DC 24 V

Digital outputs, cf. page 32

Transistor DC 24 V, 0.5 A, pnp

Analog inputs, cf. page 34

4 10-bit inputs: 0 -10 V

Analog outputs, cf. page 35

1 8-bit output: 0 -10 V

41

3 Basic Unit

PROCESS PLC

Technical Data of the NANO-B Basic Unit
Stepper motor controller
cf. page 36 and page 123

1 (STEP, DIR) Open Collector

Real-time clock,
cf. page 148

1

Single-/dual-channel
counter 24 V
cf. page 148

10 kHz

User programmable serial
interface; refer to page 148

RS 232 / RS 485 / RS 422 *)

Programming interface

RS 232 *)

Interface for connecting
user interface and
visualisation equipment

RS 232 / RS 422 *)

Fieldbus interface
JETWay

RS485 *)

System bus interface

JETTER System Bus Interface

Power supply unit
requirements

DC 24 V (20 - 30 V) at the terminals X1,
residual ripple < 5%, filtered; double isolation
between output (SELV or PELV) and input.

Power loss

•
•

•

Time Interval ≤ 10 ms
Time interval
between two voltage
dips ≥ 1 s
Severity level PS2

to DIN EN 61131-2

Heat loss of CPU logic
circuit

2.5 Watt

CPU power consumption
incl. 8 digital outputs, but
without expansion modules

96 Watt (8 x 0.5 A x 24 V)

Enclosure

Aluminium, powder coated, black

Dimensions
(H x W x D in mm)

114 x 110 x 70

Weight

720 g

Mounting

DIN Rail

*) Not

all of the four interfaces are available at the same time, see chapter 2.2.2
"Interfaces", page 19.

42

Jetter AG

NANO-B

3.2 Technical Data

NANO-B Basic Unit - Terminals
Power supply

Screw terminals

Digital inputs and outputs

Screw terminals

Analog I/O’s

Screw terminals

Fast dual-channel counter

Screw terminals

Stepper motor control with

Screw terminals

DIR, STEP

Jetter AG

Programming interface

Female connector SUB-D, 9 pins

User programmable serial interface

Female connector SUB-D, 9 or 15 pins
depending on configuration

Field bus interface JETWAY

Female connector SUB-D, 9 or 15 pins

JETTER System Bus Interface

Female connector SUB-D, 9 pins, with
additional mechanical guiding for
expansion modules

Interface for connecting user interface and visualisation equipment

Female connector SUB-D, 9 or 15 pins

43

4 Operating Conditions

PROCESS-PLC

4

Operating Conditions

Note!
The general technical specifications listed below apply to all modules of the
PROCESS-PLC NANO-B.
In addition to this, in the description of the expansion modules, beginning from
chapter 3 "Basic Unit", page 41 and chapter 13 "Expansion Modules", page 150,
further technical data and operating conditions are specified.

Operating Parameters
Condition

44

Comment

Ambient Temperature

0 .. 50 °C

Storage
temperature

-25 °C .. 70 °C

to

Air Humidity

5% - 95%
No condensing

to DIN EN 61131-2

Pollution Degree

2

to DIN EN 61131-2

Corrosion Immunity /
Chemical Resistance

No special protection
against corrosion.
Ambient air must be free
from higher concentrations of acids, alcaline solutions, salts, metal vapours, or other corrosive
or electroconductive contaminants.

to DIN EN 61131-2

Operating Altitude

Up to 2,000 m above sea
level.

to

DIN EN 61131-2,
DIN EN 60068-2-1
DIN EN 60068-2-2

DIN EN 61131-2

Jetter AG

NANO-B

4 Operating Conditions

Operating Parameters
Vibration
Resistance

•

•

•

10 Hz ... 57 Hz: with an
amplitude of 0.0375
mm for continuous
operation and a peak
amplitude of 0.075 mm
57 Hz ... 150 Hz: 0,5 g
constant acceleration
for continuous
operation and 1.0 g
constant acceleration
as peak value
1 octave per minute,
10 frequency sweeps
(sinusoidal), all three
spatial axes

to

DIN EN 61131-2
IEC 68-2-6

Free Falls
Withstanding Test

Height of fall (units within
packing): 1 m

to

DIN EN 61131-2,
DIN EN 60068-2-32

Shock Resistance

15 g occasionally for
11 ms

to

DIN EN 61131-2
IEC 68-2-27

Degree of
Protection

•
•

to

DIN EN 60529

Mounting Position

Any position, snapped on
DIN Rail

DIN Rail acc. to DIN EN
50022

Class of Protection

III

to

DIN EN 61131-2

Dielectric Test
Voltage

Functional ground is
connected to chassis
ground internally.

to

DIN EN 61131-2

Overvoltage
Category

II

to

DIN EN 61131-2

Power Loss

•
•

to

DIN EN 61131-2

•

IP 20
IP 10 (bottom side of
enclosure)

Time period ≤ 10 ms
Time intervall between
two voltage dips ≥ 1 s
Severity level PS2

Important!
Measures to avoid damages in transit and storage:

The packing material and the storage place are to be chosen in a way
that the values given in the above table "Operating Parameters" are
kept to.

Jetter AG

45

4 Operating Conditions

PROCESS-PLC

EMC - NANO-B Basic Unit
Emitted Interference
Parameter
Enclosure

Value
•

•

Frequency band
30 - 230 MHz, limit 30 dB (µV/m)
at 10 m
Frequency band
230 - 1000 MHz, limit 37 dB
(µV/m) at 10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000 MHz;
test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV (Humidity
Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

46

Value

Reference

Asymmetric
RF, amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Jetter AG

NANO-B

4 Operating Conditions

EMC - NANO-B Basic Unit
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, measuring and control lines,
long bus lines and long control lines
Parameter

Value

Reference

Asymmetric
RF, amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

Jetter AG

Value

Reference

Asymmetric
RF, amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

47

5 Software Programming

PROCESS-PLC

5

Software Programming

5.1

Addressing Digital Inputs/Outputs

5.1.1

Basic Controller

Numbering System of Basic Controller Inputs
Input

Number

Input # 1

101

Input # 2

102

...

...

Input # 8

108

Numbering System of Basic Controller Outputs

5.1.2

Output

Number

Output # 1

101

Output # 2

102

...

...

Output # 8

108

Expansion Modules

The address is made up of the module number and the number of the respective
input or output:

Coding of Input / Output Number: xyz

Note!
When determining the module number, only digital input or output modules are
counted. Intelligent modules, such as N-SV 1, N-SM 1, N-PID 1, etc., located
among the digital input and output modules, are not taken into consideration.
Module number 1 is assigned to the basic control unit. Starting from there, the
module numbers are counted left to right.

48

Jetter AG

NANO-B

5.1 Addressing Digital Inputs/Outputs

Example 1:
The table below shows the input/output numbering for a basic controller with two
N-ID 8 modules and one N-OD 8 output module, arranged as follows:

NANO-B
Basic
Controller

N-OD 8
Output
Module

N-ID 8
Input
Module

N-ID 8
Input
Module

Module # 1

Module # 2

Module # 3

Module # 4

Inputs and Outputs
101 .. 108

Output
201 .. 208

Input
301 .. 308

Input
401 .. 408

Example 2:

Basic controller with with a digital output module N-OD 8, an intelligent expansion
module N-SV 1, a power supply module N-PS1 and digital input module N-ID 8.

NANO-B
Basic
Controller

N-OD 8
Output
Module

N-SV 1
Servo
Module

N-ID 8
Input
Module

Module # 1

Module # 2

Module # 3

Module # 4

Inputs and Outputs
101 .. 108

Output
201 .. 208

SV-Module

! ! !
Input
301 .. 308

Note!

Jetter AG

-

From example 2 can be seen that the module N-SV 1 is not taken into
account when assigning numbers to digital inputs and outputs.

-

The N-PS1 module is required as voltage supply module for the nonintelligent N-ID8 module. Please refer to chapter “N-PS1 Module Power Supply Unit for Remote Modules” on page 237.

-

When assigning input and output numbers, the N-PS1 module is not
taken into account.

49

5 Software Programming

PROCESS-PLC

5.2

Access to Flags

5.2.1

User Flags

Flags 0 through 255 are freely available to the user. These flags are overlaid on
registers 2600 through 2610 such that whole flag ranges can be accessed through
registers. Logic operations are carried out using the word-processing instructions
W-AND, W-OR and W-XOR.

Note!
All flags of the PROCESS-PLC NANO-B are remanent.

Overlaying of
Flags on
Registers

Register

Flag

2600

0 -23

2601

24 - 47

2602

48 - 71

2603

72 - 95

2604

96 - 119

2605

120 - 143

2606

144 - 167

2607

168 - 191

2608

192 - 215

2609

216 - 239

2610

240 - 255*)

For the complete list of flags overlaid on registers please refer to page 72.

*)Note!

Bits 16 through 23 of register 2610 are 0.

Example:

Overlaying of flags on registers
by the example of register 2609
Bit #

0

1

2

3

4

...

21

22

23

Reg. 2609

1

0

0

0

1

...

0

1

0

216

217

218

219

220

...

237

238

239

Flag

50

Jetter AG

NANO-B

Programming with
the Aid of Flags

5.2 Access to Flags

Example 1:
A program is to start execution of a process when the start button is pressed and
automatic mode is enabled through the corresponding flag being set, e.g. in
another task.

WHEN
E eStartButton
Flag mAutomaticMode
THEN
...

Example 2:
Execution of a second task -- the automatic task -- is to be started in the main task
using a flag.

TASK tMainTask---------------------------------------------...
IF
E eStartButton
THEN
Flag mAutomaticMode
...
THEN
GOTO tMainTask--------------------------------------------TASK tAutomaticMode--------------------------------------------WHEN
Flag mAutomaticMode
THEN
...
THEN
GOTO mAutomaticMode

Jetter AG

51

5 Software Programming

PROCESS-PLC

5.2.2

Special Flags

The operating system of the Process PLC makes various special flags available
which can be used to control and modify functions.
The functions of these special flags are listed in the following table.

Note!
As a rule, setting a flag means enabling the corresponding function.
Exceptions will be referred to separately.

Functions of Special Flags
Control of User Interface LEDs
2224

LED of

2230

LED of

2225

LED of

2231

LED of

2226

LED of

2232

LED of

2227

LED of

2233

LED of

2228

LED of

2234

LED of

2229

LED of

2235

LED of

Scanning of user interface keys

52

2181

2201

2182

2202

2183

2203

2184

2204

2185

2205

Jetter AG

NANO-B

5.2 Access to Flags

Functions of Special Flags

Jetter AG

2186

2206

2187

2207

2188

2208

2189

2209

2190

2210

2191

2211

2192

2212

2193

2214

2194

2213

2195

2215

2196

2216

2197

2217

2198

2218

2199

2219

2221

2220

2223

2222

2170

2160

2171

2161

53

5 Software Programming

PROCESS-PLC

Functions of Special Flags
2172

2162

2173

2163

2174

2164

2175

2165

2176

2166

2177

2167

2178

2168

2179

2169

2200

2060

Display Format
DISPLAY_REG hexadecimal
Prioritisation of System Tasks

2056

PC task after each user task.

2057

LCD task after each user task.

2058

JETWay task

2059

Time-out monitoring of I/O modules after each task
(particularly, polling of FESTO CP modules).

2061

Reading out of output states (not from RAM, but from the
module).
Network Control via Special Flags

54

2062

Multimaster mode signals readiness to receive tokens on the
network.

2063

Master in multimaster mode.

Jetter AG

NANO-B

5.3 Register Description

5.3

Register Description

5.3.1

User Registers

•

In the register range 0 through 1999, 2000 remanent user registers are
available to the user. They serve as buffers for storage of comparison and
measured values, as well as of setpoints.

•

These registers are 24 Bit wide and have got a value range from +8,388,607
through -8,388,608.

•

For example, registers are loaded using the instruction REGISTER_LOAD.

Note!

The contents of the 2000 NANO-B user registers are maintained after switching
off the power supply.

5.3.2

Programming with the Aid of Registers

The instruction
REGISTER_LOAD [x with a]

serves for loading of numeric values or contents of other registers into a register.
In the instruction above, "x" represents the number of the register value "a" is to be
written into by analogy with Fig. 18 and Fig. 19.

Fig. 18: REGISTER_LOAD with
numeric parameters

Jetter AG

Fig. 19: REGISTER_LOAD with
symbolic parameters

55

5 Software Programming

Indirect and
Double Indirect
Addressing

PROCESS-PLC

For the x and the a in the instruction shown above, not only a number can be
written, but a register can be specified as well. By pressing the space key an R is
placed in front of the register number.
If R(y) is written instead of x, value a is written into the register the number of
which is contained in register y.
If R(b)is written instead of a, not the value itself, but the content of the specified
register is loaded into register x or R(y).
If, instead of a, RR (press space key twice) is entered and then a number b, first, the
value contained in the register with the number b is read.
REGISTER_LOAD [x with RR(b)]

This value then serves as register number. This means, a new value is read in the
register with the specified number, and then stored to register x.

Fig. 20: Indirect and Double Indirect Addressing

Examples:
1. Loading of a number into a register
REGISTER_LOAD [rNewPosition with 1280]

Value 1280 is loaded into the register rNewPosition.

2. Copying one register into another register
REGISTER_LOAD [rVoltage with R(rVoltage1)]

The value which is contained in the register rVoltage1 will be
loaded into register rVoltage. In other words, the contents of
register rVoltage1 is copied into register rVoltage.

56

Jetter AG

NANO-B

5.3 Register Description

3. Loading by double indirect addressing
REGISTER_LOAD [rVoltage with RR(rV Pointer)]

The value of the register, the number of which is specified in register
r(V Pointer), is loaded into register rVoltage.

4.Double indirect addressing: Numerical example

Register Number

Value

REG 64

111

REG 111

70035

REG 150

11

REG 11

any value

The following instruction will be carried out with the given parameters:
REGISTER_LOAD [R(150) with RR(64)]

This instruction will result in the following register values and the
graphic representation shown in Fig. 21:
Register 64 = 111

remains unchanged

Register 64 = 70035

remains unchanged

Register 64 = 11

remains unchanged

Register 64 = R150

= RR64 =

R111 = 70035

Fig. 21: Example for Double Indirect Addressing

Jetter AG

57

5 Software Programming

PROCESS-PLC

5.3.3

Calculating with the Aid of Registers

The following instructions are used for calculations:
• REG 
• REGNULL 
• REGDEC 
• REGINC 

The register number can indirectly be specified for all four instructions.

Fig. 22: Example of Register Arithmetic

Programming
Instruction REG

This instruction obtains direct access to the value of a register and can be dealt
with like a variable. In an output instruction, a certain value is assigned to the
register above the equals sign. In an input condition, the content of a register is
read. In both cases, the register accesses below the equals sign result in reading
the register content.
Examples:
1. THEN
REG 1
=
REG 105
*
25

In this example an assignment (output instruction) is shown, which is initiated by
THEN. Register 105 is read and its contents multiplied by 25. The result of this
arithmetic operation will be stored in register 1. The contents of register 105 will
remain unchanged.

58

Jetter AG

NANO-B

5.3 Register Description

2. IF
REG 1
=
REG 105
*
25
THEN

In this case the expression REG 1 = REG 105 * 25 is not part of an output
instruction, but of an input condition. In this part of the program the value of register
1 remains unchanged. It will only be compared with the product REG 105 * 25.
Programming
Instruction
REGNULL

This instruction obtains direct access to the value of a register and can be dealt
with like a variable. In an output instruction, a certain value is assigned to the
register above the equals sign. In an input condition, the content of a register is
read. In both cases, the register accesses below the equals sign result in reading
the register content.
By using the instruction REGZERO a register value is set to 0, or a register is sensed
whether its value is 0:
REGNULL 

The meaning of this instruction as an input condition following IF or WHEN is
explained in the example below:

Example: REGZERO compared with REG
IF
REGZERO 49
THEN

IF
REG 49
=
0
THEN

These two program parts have the same functions. On the righthand
side of the example the comparison is carried out as a general
arithmetic comparison. On the lefthand side of the example the
special instruction REGZERO is used. Using REGZERO speeds up
program execution.

Jetter AG

59

5 Software Programming

Programming Instruction REGDEC
and REGINC

PROCESS-PLC

These two instructions serve for decreasing (decrementing), respectively
increasing (incrementing) a register value by 1. Such functions are frequently
used in loops for increasing or decreasing counters and pointers.

Example: REGDEC compared with REG
THEN
REGDEC 100

THEN
REG 100
=
REG 100
1

These two program parts have the same functions. With both of
them, the value of register 100 is decremented by 1.

Example: REGINC compared with REG
THEN
REGDEC 88

THEN
REG 88
=
REG 88
+
1

These two program parts have the same functions. With both of
them, the value of register 88 is incremented by 1.

Example: REGDEC and REGZERO
REGISTER_LOAD [1 with 10]
Label 55
...
REGDEC 1
IF
REGZERO 1
THEN
ELSE
GOTO 55
THEN

This way, a loop can be realised which executes a certain number of
iterations. During each run of the loop, the value of the "counting
register" is decremented by one and is being checked whether it is 0
(REGZERO 1). If the value is 0, the first THEN will be ignored and the
loop will go to the second THEN to continue execution of the program
there. If the value of register 1 is not 0, the program will return to the
starting point of the loop.

60

Jetter AG

NANO-B

5.3 Register Description

5.3.4

Special Registers

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

Operating System and Error Messages

Jetter AG

2000

Software version

1)
2)

0 .. 65535
Version

2001

Status register

1)
2)
3)

-8388608 .. +8388607
Status
chapter 15 "Error
Handling", page 258

2002

Run Time Register: Operating time
since reset in 0.1 s. The unit is
dependent on register 2003.

1)
2)

0 .. +8388607
0

2003

Time base for DELAY, as well as
START-TIMER and TIMER-END?

1)
2)

0 .. 255
10 (100 ms)

2006

Cycle time of all tasks in ms

1)
2)

0 .. 255
not defined

2008

Operating system error

1)
2)
3)

0 .. 65535
0
chapter 15 "Error
Handling", page 258

2009

Number of the erroneous task

1)
2)
3)

0 .. 255
-1 and -2
chapter 15 "Error
Handling", page 258

2010

Program address of the error for
internal use

1)
2)

0 .. 65535
0

2011

Time-out of I/O module # 2, 3, 4, 5,
... , 15

1)
2)
3)

0 .. 255
0
chapter 15 "Error
Handling", page 258

2012

Time-out of slave module
specifying module #

1)
2)
3)

0 .. 255
0
chapter 15 "Error
Handling", page 258

2013

Quantity of connected nonintelligent modules

1)
2)

0 .. 255
Quantity

2014

Quantity of connected intelligent
modules

1)
2)

0 .. 255
Quantity

2015

Pointer on module array

1)
2)

0 .. 255
0

61

5 Software Programming

PROCESS-PLC

Special
Register
Number
2016

Function
Module array:

1) Value Range
2) Reset Value
3) Cross Reference
1)
2)

0 .. 255
Qty. of modules

2015 means pointer
2015
2016
2015
2016
2015
2016

= 0 ->
= Qty. of modules
= 1 ->
= Code of the first module
= 2 ->
= Code of the second
module etc.

Codes:
0=
1=
2=
3=
4=
5=
6=
7=
32 =
33 =
128 =
129 =
130 =
131 =
132 =
133 =
253 =
254 =
255 =

62

N-OD8
N-ID8
N-IO16
N-IA4
N-OA4
N-CNT 1
N-PRN 1
N-SER 1
Outputs of FESTO CP
Modules
Inputs of FESTO CP
Modules
N-SV1
CAN-DIMA
N-SM2
N-SM1D
N-PID 1
N-Profi 1
Dummy
Dummy I/O
not identified

2022

Version of the application program
of non-intelligent modules

2023

Bit-coded list:
– non-intelligent modules
– dummy modules

1)
2)

0 .. 65535
last setting

2024

Bit-coded list:
– non-intelligent modules
– dummy modules

1)
2)

0 .. 255
last setting

2027

Error of output driver

1)

one bit per module

2028

Monitoring interval for I/O modules

1)
2)

0 .. 255
20 (200 ms)

Jetter AG

NANO-B

5.3 Register Description

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

Task Control
2004

Task switch conditions
Task switching always if
• DELAY
• USER_INPUT
• WHEN (not fulfilled), and also if
• Bit 0 = 1 AND Task switch timeout (2005)
• Bit 1 = 1 AND GOTO
• Bit 2 = 1 AND IF (not fulfilled)

1)
2)
3)

0 .. 255
3
Please refer to chapter
“Principle of Operation”
on page 270.

2005

Time-out period for a task:
Period after which a task is exited
at the latest,
refer to register 2004

1)
2)
3)

0 .. 255
20 (20 ms)
Please refer to chapter
“Principle of Operation”
on page 270.

2006

Cycle time of all tasks in ms

1)
2)

0 .. 255
not defined

2007

Number of the highest user task

1)
2)

0 .. 31
Number

2025

Present task

2026

Prioritized task

1)
2)

0 .. 31, 255
255 (no priorities
assigned)

2091

Reserve capacity of the stack in
which the query is carried out.

2100 .. 2131

Task status:

1)
2)
3)

0 .. 255
Status
SYMPAS:
Index window

255 =
254 =
253 =
250 =
1=
0=

Jetter AG

Task is being processed
DELAY
USER_INPUT
WHEN_MAX
TASKBREAK
not existing

2200 .. 2231

Task index

1)
2)
3)

0 .. 65535
TASK Start
SYMPAS:
Index window

2300 .. 2331

Task time register for delay

1)
2)

0 .. +8388607
0

63

5 Software Programming

PROCESS-PLC

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

Control of User Interfaces (LCD display)
2804

Number of characters

1)
2)
3)

0 .. 255
48
chapter 6.6 "Registers
for User Interfaces",
page 87

2805

Number of characters per line

1)
2)
3)

0 .. 255
24
chapter 6.6 "Registers
for User Interfaces",
page 87

2806

Text choice for DISPLAY_TEXT_2

1)
2)
3)

0 .. 255
0
chapter 6.6 "Registers
for User Interfaces",
page 87

0 = Text 1
1 = Text 2

64

2807

DIVISOR (USER_INPUT)

1)
2)
3)

0 .. 65535
1
chapter 6.5 "Fixedpoint Numbers", page
83

2808

Number of decimal places
(USER_INPUT)

1)
2)
3)

0 .. 255
0
chapter 6.5 "Fixedpoint Numbers", page
83

2809

Divisor (DISPLAY_REG)

1)
2)
3)

0 .. 65535
1
chapter 6.5 "Fixedpoint Numbers", page
83

2810

Number of decimal places
(DISPLAY_REG)

1)
2)
3)

0 .. 255
0
chapter 6.5 "Fixedpoint Numbers", page
83

2812

Field length for integer display
register

1)
2)
3)

0 .. 255
8
chapter 6.6 "Registers
for User Interfaces",
page 87

Jetter AG

NANO-B

5.3 Register Description

Special
Register
Number

Function

2813

Field length USER_INPUT

1)
2)
3)

0 .. 255
8
chapter 6.6 "Registers
for User Interfaces",
page 87

2814

Indirect cursor position

1)
2)
3)

0 .. 255
0
chapter 6.6 "Registers
for User Interfaces",
page 87

2815

Default value
USER_INPUT

1)
2)
3)

-8388608 .. +8388607
0
chapter 6.6 "Registers
for User Interfaces",
page 87

2816

Sign suppression

1)
2)
3)

0 .. 255
0
chapter 6.6 "Registers
for User Interfaces",
page 87

2817

Status USER_INPUT

1)
2)
3)

0 .. 255
Status
chapter 6.6 "Registers
for User Interfaces",
page 87

2818

Restrictions of monitor functions
0 = OFF
1 = ON

1)
2)
3)

0 .. 255
255
chapter 6.6 "Registers
for User Interfaces",
page 87

2819

Display time of monitor functions

1)
2)
3)

0 .. 65535
350
chapter 6.6 "Registers
for User Interfaces",
page 87

2820

Switch to monitor display

1)
2)
3)

0 .. 255
0
chapter 6.6 "Registers
for User Interfaces",
page 87

2821

Dialog language:

1)
2)
3)

0 .. 255
0
chapter 6.6 "Registers
for User Interfaces",
page 87

0 = German
1 = English

Jetter AG

1) Value Range
2) Reset Value
3) Cross Reference

65

5 Software Programming

Special
Register
Number

66

PROCESS-PLC

Function

1) Value Range
2) Reset Value
3) Cross Reference

2822

LCD interface baud rate

1)
2)
3)

0 .. 7
6
chapter 6.6 "Registers
for User Interfaces",
page 87

2823

PC interface baud rate

1)
2)
3)

0-7
6
chapter 6.6 "Registers
for User Interfaces",
page 87

2824

Indirect buffer number when
device 0 is specified

1)
2)
3)

0-4
2
chapter 6.6 "Registers
for User Interfaces",
page 87

2825

Text buffer for display 1

1)
2)
3)

1-4
1
chapter 6.6 "Registers
for User Interfaces",
page 87

2826

Text buffer for display 2

1)
2)
3)

1-4
2
chapter 6.6 "Registers
for User Interfaces",
page 87

2827

Text buffer for display 3

1)
2)
3)

1-4
3
chapter 6.6 "Registers
for User Interfaces",
page 87

2828

Text buffer for display 4

1)
2)
3)

1-4
4
chapter 6.6 "Registers
for User Interfaces",
page 87

2829

Basic key flag number for display 1

1)
2)
3)

-161 - 1824. 2000
2000
chapter 6.6 "Registers
for User Interfaces",
page 87

2830

Basic key flag number for display 2

1)
2)
3)

-161 - 1824. 2000
2000
chapter 6.6 "Registers
for User Interfaces",
page 87

Jetter AG

NANO-B

5.3 Register Description

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

2831

Basic key flag number for display 3

1)
2)
3)

-161 - 1824. 2000
2000
chapter 6.6 "Registers
for User Interfaces",
page 87

2832

Basic key flag number for display 4

1)
2)
3)

-161 - 1824. 2000
2000
chapter 6.6 "Registers
for User Interfaces",
page 87

2833

Register number for controlling
LEDs of display 1

1)

1 - 1999, 2622 - 2637,
2649
2649
chapter 6.6 "Registers
for User Interfaces",
page 87

2)
3)

2834

Register number for controlling
LEDs of display 2

1)
2)
3)

2835

Register number for controlling
LEDs of display 3

1)
2)
3)

2836

Register number for controlling
LEDs of display 4

1)
2)
3)

1 - 1999, 2622 - 2637,
2649
2649
chapter 6.6 "Registers
for User Interfaces",
page 87
1 - 1999, 2622 - 2637,
2649
2649
chapter 6.6 "Registers
for User Interfaces",
page 87
1 - 1999, 2622 - 2637,
2649
2649
chapter 6.6 "Registers
for User Interfaces",
page 87

Network Control

Jetter AG

2700

Network number

1)
2)
3)

0 .. 255
2
chapter 7.4 "Registers
for Network
Operation", page 112

2701

Baud Rate

1)
2)
3)

0 .. 255
10
chapter 7.4 "Registers
for Network
Operation", page 112

67

5 Software Programming

PROCESS-PLC

Special
Register
Number

68

Function

1) Value Range
2) Reset Value
3) Cross Reference

2702

Register offset

1)
2)
3)

0 .. 65535
0
chapter 7.4 "Registers
for Network
Operation", page 112

2703

Flag offset

1)
2)
3)

0 .. 65535
0
chapter 7.4 "Registers
for Network
Operation", page 112

2704

Input offset

1)
2)
3)

0 .. 65535
100
chapter 7.4 "Registers
for Network
Operation", page 112

2705

Output offset

1)
2)
3)

0 .. 65535
100
chapter 7.4 "Registers
for Network
Operation", page 112

2706

Output mask

1)
2)
3)

0 .. 65535
1000
chapter 7.4 "Registers
for Network
Operation", page 112

2707

Indirect network number

1)
2)
3)

0 .. 126
0
chapter 7.4 "Registers
for Network
Operation", page 112

2708

Time-out period for network

1)
2)

0 .. 65535 ms
250 ms

2709

Network response time

1)
2)
3)

0 .. 65535 ms
0
chapter 7.4 "Registers
for Network
Operation", page 112

2710

Quantity of network errors

1)
2)
3)

0 .. 255
0
chapter 7.4 "Registers
for Network
Operation", page 112

Jetter AG

NANO-B

5.3 Register Description

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

2711

Error code of the last access to the
network

1)
2)
3)

0 .. 255
0
chapter 7.4 "Registers
for Network
Operation", page 112

2712

Next master
(Multimaster mode)

1)
2)

0 .. 255
0

2713

Maximum network number
(Multimaster mode)

1)
2)

0 .. 255
0

2716

Token transfer time
(Multimaster mode)

1)
2)

-8388608 .. +8388607
0

Time Registers
2002

Register runtime with an increment
of 0.1 s. This register is linked with
register 2003.

1)
2)

0 .. +8388607
0

2003

Time base for DELAY, as well as
START-TIMER and TIMER-END?

1)
2)

0 .. 255
10 (100ms)

2006

Cycle time of all tasks in ms

1)
2)

0 .. 255
not defined

2300 .. 2331

Task time register for delay

1)
2)

0 .. +8388607
0

Single-/Dual-Channel Counter
2901

Count value

1)
2)
3)

-8388608 .. +8388067
0
chapter 8 "Single-/
Dual-Channel
Counter", page 117

2918

Counting rate

1)
2)

-32768 .. +32767
0

2919

Time base for counting rate

1)
2)

0 .. 255
10 (100 ms)

1)
2)
3)

0 .. 65535
1
chapter 8 "Single-/
Dual-Channel
Counter", page 117
and chapter 9 "Analog
I/Os", page 120

Other Registers
2900

Jetter AG

Peripheral devices monitoring
register:

69

5 Software Programming

PROCESS-PLC

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

AD/DA Register
2902

Analog OUT

1)
2)
3)

0 .. 255 (0 .. 10 V)
2
chapter 9 "Analog I/
Os", page 120

2903 .. 2906

Analog IN 1 .. 4

1)
2)

0 .. 1023
depending on input
value
chapter 9 "Analog I/
Os", page 120

3)
2920

Slew rate limitation AD

1)
2)
3)

2 .. 2000
2
chapter 9 "Analog I/
Os", page 120

RTC-Registers
2911

Seconds

3)

chapter 12 "Real-Time
Clock", page 148

2912

Minutes

3)

chapter 12 "Real-Time
Clock", page 148

2913

Hours

3)

chapter 12 "Real-Time
Clock", page 148

2914

Day of the week 0 .. 6

3)

chapter 12 "Real-Time
Clock", page 148

2915

Day

3)

chapter 12 "Real-Time
Clock", page 148

2916

Month

3)

chapter 12 "Real-Time
Clock", page 148

2917

Year 0 .. 99

3)

chapter 12 "Real-Time
Clock", page 148

24 Combined Inputs
2400

101..108, 201..208, 301..308

2401

201..208, 301..308, 401..408

...
2413

70

1401..1408, 1501..1508,
1601..1608

Jetter AG

NANO-B

5.3 Register Description

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

16 Combined Inputs
2420

101..108, 201..208

2421

201..208, 301..308

...
2434

1501..1508, 1601..1608
8 Combined Inputs

2440

101..108

2441

201..208

...
2455

1601..1608
24 Combined Outputs

2500

101..108, 201..208, 301..308

2501

201..208, 301..308, 401..408

...
2513

1401..1408, 1501..1508,
1601..1608
16 Combined Outputs

2520

101..108, 201..208

2521

201..208, 301..308

...
2534

1501..1508, 1601..1608
8 Combined Outputs

2540

101..108

2541

201..208

...
2555

Jetter AG

1601..1608

71

5 Software Programming

PROCESS-PLC

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

Flags Overlaid on Registers
0

256 .. 279

1

280 .. 303

...
74

2032 .. 2047

2600

0 .. 23

2601

24 .. 47

...
2610

240 .. 255

2611

2048 .. 2071

2612

2072 .. 2095

...
2620

2264 .. 2287

2621

2288 .. 2303

2622

0 .. 15

2623

16 .. 31

...
2637

240 .. 255

2638

2048 .. 2063

2639

2064 .. 2079

...
2655

72

2320 .. 2335

Jetter AG

NANO-B

5.3 Register Description

Special
Register
Number

Function

1) Value Range
2) Reset Value
3) Cross Reference

Festo CP Valve Terminals

Jetter AG

2017

Quantity of Festo CP modules

1)
2)
3)

0 .. 7
0
chapter 14 "NANO
Network Topology and
FESTO CP Modules",
page 244

2018

Index to configuration table

1)
2)
3)

1 .. 8
1
chapter 14 "NANO
Network Topology and
FESTO CP Modules",
page 244

2019

Check number

1)
2)
3)

0 .. 65535
Check number
chapter 14 "NANO
Network Topology and
FESTO CP Modules",
page 244

2020

Type of the Festo CP module

1)
2)
3)

0 .. 65535
Type
chapter 14 "NANO
Network Topology and
FESTO CP Modules",
page 244

2021

I/O configuration

1)
2)
3)

0 .. 65535
I/O configuration
chapter 14 "NANO
Network Topology and
FESTO CP Modules",
page 244

73

6 User Interfaces, Operator Guidance

PROCESS-PLC

6

User Interfaces,
Operator Guidance

6.1

Technical Data
Overview: User Interfaces

Type

74

Display

Keys

Comment

Interface
Cable

LCD 9

2 lines of 24
characters
each

– 12 F keys (with
LED)
– Special Function
Keys
– Numeric keypad

OpenColl
EM-DK

LCD 10

2 lines of 24
characters
each

– 12 F keys (with
LED)
– Special Function
Keys
– Numeric keypad

9 mm character
height
backlit

OpenColl
EM-DK

LCD 110

4 lines of 20
characters
each

– 12 F keys (with
LED)
– Special Function
Keys
– Numeric keypad

backlit

RS422
DK-422

LCD 12

2 lines of 16
characters
each

– 4 F keys
– Special Function
Keys
– Numeric keypad

designed for
installation in
hand-held operator
consoles

OpenColl
EM-DK

LCD 16

4 lines of 20
characters
each

– 5 F keys (with
LED)

allows modular
expansion by
keyboard (NUM25)
and handwheel
(HR1) modules

RS422
DK-422

LCD 17

Graphic
Display 128 x
240 Pixels

– 6 F keys (with
LED)
– Special Function
Keys
– Numeric keypad
Cursor keypad

Visualisation with:
– Numeric
objects
– Text variables
– Bargraph
D/A transfer

RS422
DK-422

LCD 19

Graphic
Display 240 x
120 Pixels

– 6 F keys (with
LED)
– Special function
keys with
alphanumeric
function
– Numeric keypad
– Cursor keypad

Visualisation with:
– Numeric
objects
– Text variables
– Bargraph
D/A transfer

RS422
DK-422

LCD 23

2 lines of 24
characters
each

– Cursor left
– Cursor right
– ENTER

5 mm character
height

RS422
DK-422

Jetter AG

NANO-B

6.1 Technical Data

Overview: User Interfaces
Type

Jetter AG

Display

Keys

Comment

Interface
Cable

LCD 23L

1 line of 16
characters

– Cursor left
– Cursor right
– ENTER

8 mm character
height

RS422
DK-422

LED 23

1 line of 8
characters

–

12 mm character
height
7-segment LED

RS422
DK-422

LCD 25

2 lines of 24
characters
each

– 5 F keys (with
LED)

5 mm character
height, backlit

RS422
DK-422

LCD 25L

1 line of 16
characters

–

8 mm character
height, backlit

RS422
DK-422

LED 25

1 line of 8
characters
(LED)

–

12 mm character
height
7-segment LED

RS422
DK-422

LCD 27

2 lines of 24
characters
each

–
–
–
–

LCD 34

2 lines of 24
characters
each

– 5 F keys
– Special Function
Keys
– Numeric keypad

5 F keys
Cursor keypad
Clear
ENTER

RS422
DK-422

backlit

RS422
DK-422

75

6 User Interfaces, Operator Guidance

6.2

PROCESS-PLC

Description of Connections

The user interface cables DK-422, resp. EM-DK are used to connect user interfaces
to the LCD input of the NANO-B basic control unit. Refer to specification for user
interface cables on page 28 and page 23.

6.3

Multi-Display Mode

Multi-display mode allows a PROCESS-PLC NANO-B to be operated with up to four
LCD user interfaces. When doing so, the same or different texts and/or register
contents can be displayed on the various user interfaces.
Specific parameters for the LCD user interface used are described in the
corresponding Operator's Manual.
To each user interface a specific number has to be assigned.
If only one LCD user interface is used, value 0 is assigned to it always.
If more than one LCD user interface is used, a value between 1 and 4 is
assigned to each LCD user interface starting with 1. In this case, a display
with # 1 must be existing.

The display, to which # 1 was assigned, is the master LCD. After power-up only the
first LCD user interface is synchronised with the PROCESS-PLC. The other LCDs
remain inactive until they receive command signals.

Note!
User input and monitor mode can be activated at the same time only for one
display.

Note!
•
•
•
•
•
•

76

Power supply of several LCD user interfaces cannot be performed by the
controller itself.
LCD user interfaces have to be supplied by a separate 15 V to 30 V DC power
supply unit.
Power consumption of individual LCD user interfaces has to be taken into
account during system design and for using the system.
For connecting several user interfaces to the LCD port of the PROCESS-PLC
you need an adaptor or modified connecting cables.
The originally shipped cables have to be modified according to Fig. 23, page 77.
In multi-display mode only user interfaces with RS 422 interface can be used.

Jetter AG

NANO-B

6.3 Multi-Display Mode

Fig. 23: Pin Assignment of Connecting Cable for Several LCD User Interfaces

Important!
•

•

Jetter AG

Also with a view to EMC, the following minimum requirements apply to the
connecting cable fabrication:
1. Number of cores:

6

2. Core cross-sectional area:

0.25 mm²

3. Connector (male):

SUB-D, metallised

4. Maximum cable length:

100 m

5. Shield:

complete shielding, no paired shielding

The shield must be connected to the metallised connector housings on both
ends of the cable with the greatest possible surface area.

77

6 User Interfaces, Operator Guidance

6.4

PROCESS-PLC

Programming the User Interfaces

This chapter gives a description of such instructions necessary for programming
display and keyboard modules. For programming, the following instructions will be
used:
• DISPLAY_TEXT
• DISPLAY_REG
• USER_INPUT

6.4.1

Display of Texts

The following instruction is used to display text on the user interface:
DISPLAY_TEXT [#, cp= ]

6.4.2
Device Number

78

Text Output Parameters

The parameter "Device Number" is specified by entering numerals from 0 through 9.

#0 through #4

Selection of a user interface.

#5 through #8

Not assigned

#9

Selection of the user-programmable interface PRIM.

Jetter AG

NANO-B

Cursor Position

6.4 Programming the User Interfaces

By this parameter, the cursor position is defined, where the first character of the text
is to appear.

Cursor Positions of various User Interfaces
Type

Cursor
Position 0

Jetter AG

Cursor Positions

LCD 9

1. line:
2. line:

1 through 24
25 through 48

LCD 10

1. line:
2. line:

1 through 24
25 through 48

LCD 12

1. line:
2. line:

1 through 16
17 through 32

LCD 16

1. line:
2. line:
3. line:
4. line:

1 through 20
21 through 40
41 through 60
61 through 80

LCD 17

Status line:

1 through 40

LCD 19

Status line:

1 through 40

LCD 23

1. line:
2. line:

LCD 23L

1 through 16

1 through 16

LED 23

1 through 7

1 through 7

LCD 25

1. line:
2. line:

LCD 25L

1 through 16

1 through 16

LED 25

1 through 7

1 through 7

LCD 27

1. line:
2. line:

1 through 24
25 through 48

LCD 34

1. line:
2. line:

1 through 24
25 through 48

1 through 24
25 through 48

1 through 24
25 through 48

The cursor position 0 has a special meaning: If cursor position 0 is set, new text will
be attached to the text displayed last. The cursor is located at exactly the same
position, where it had been positioned after execution of the last instruction
"DISPLAY_TEXT".

79

6 User Interfaces, Operator Guidance

6.4.3

PROCESS-PLC

Control Characters for Text Output

The two characters "_" and "$" serve as control characters for text output.
DELSCR

„_" When this character is used, first, the displayed text is deleted and then,
irrespective of the specified parameter, the given text is displayed starting from
cursor position 1. This character does only make sense, when it is placed at the
beginning of the text, as otherwise the first part of the text would be displayed first,
and then would be deleted immediately. This character has got the meaning DELSCR
(Delete Screen). If this character is to be displayed, the character code for DELSCR
can be changed in the special register.

DELEOL

„$" This character deletes the rest of a line from the present cursor position on. It is
also referred to as DELEOL (Delete End Of Line).

Examples:
DISPLAY_TEXT [#0, cp=0, "_Actual Position:"]

By using this instruction the entire LCD display is deleted first, and "Actual position:"
is then displayed on the upper line of the display (cursor position = 1). Any numeral
displayed previously will be ignored following DELSCR. The following display will
appear:

Actual Position:

DISPLAY_TEXT [#0, cp=25, "_Set Position:$"]

After issuing this instruction, the text "Set Position:" is written at the given cursor
position, i.e. at the beginning of the second line of the display. Then, the rest of this
line is deleted.
DISPLAY_TEXT [#0, cp=0, "ERROR"]

After issuing this instruction, the text "ERROR" is written, starting from the present
cursor position.
While doing so, this text is simply attached to any already existing text.
Register 2814

The cursor position is indirectly specified by register 2814.

Note!
If register 2814 is containing a value ≠ 0, this value is interpreted as cursor
position and the text "ERROR" is written at the given position, e.g. with the following
instruction:
DISPLAY_TEXT [#0, cp=1, "Error"]

80

Jetter AG

NANO-B

6.4 Programming the User Interfaces

6.4.4

Displaying Register Contents

A register value can be output on a user interface using the following instruction:
DISPLAY_TEXT [#, cp= Reg=]

The parameters "DeviceNo" and "CursorPos" have got exactly the same function as
described for the DISPLAY_TEXT instruction, refer to chapter 6.4.3: "Control
Characters for Text Output", page 80. Additionally, a register number is to be
specified. Of course, this is the number of the register, the contents of which are to
be displayed. For this purpose, indirect addressing can be applied as well.

Examples:
DISPLAY_REG [#0, cp=17, Reg=100]

Through this instruction, register 100 is displayed on the LCD. If register 2812 has
not been changed since reset, the register value is displayed at the end of the first
display line, as shown below (assumption: the display was empty before the
instruction was issued, and register 100 = -3567):

.............................................- 3567
.............................................................

The dots are to represent the positions which have still got the „previous“ contents
after issuing the instruction.

DISPLAY_TEXT [#0, cp=25, "Actual Position:$"]
DISPLAY_REG [#0, cp=41, Reg=12109]

From this example can be seen how the two DISPLAY instructions can be combined
usefully.
First, the text "Actual Position:" is written into the second line (on the left), while the
rest of the second line is deleted (dollar sign "$"). The second instruction is used to
display the contents of register 12109 on the bottom right of the display. With a servo
controller module which is plugged onto module 2, the actual position is stored to this
register. For example, the actual position of axis 21 has got the value 5400.

.........................................................
Actual Position:
5400

The dots are to represent the positions which have still got the „previous“ contents
after issuing the instruction.

Jetter AG

81

6 User Interfaces, Operator Guidance

6.4.5

PROCESS-PLC

Query of Register Values

The instruction:

USER_INPUT [#, cp= Reg=]

serves to read in register values which can be input using a user interface.
To both of the parameters "Device Number" and "Cursor Position" the same
conditions apply as to the DISPLAY_TEXT instruction. If cursor position 0 is entered,
the value contained in register 2814 is taken as cursor position for user input. If the
value of register 2814 is 0 (default value following reset), the present cursor position
is used for user input.
The register number is the number of the register to which the value that has been
entered is to be assigned. Here, simple indirect register addressing is possible as
well.

Important!
As a rule, for USER_INPUT 8 characters available. This value which is stored to
register 2813 can also be altered.

Example:
DISPLAY_TEXT [#0, cp=1, "_New Position?"]
USER_INPUT [#0, cp=17, Reg=100]

To provide meaningful user guidance, the USER_INPUT instruction usually is
combined with the DISPLAY_TEXT instruction. The effect of these two instructions is
that the text "New Position?" is displayed on the top left of the display. Then, the
controller is waiting for a numeral to be entered. This numeral will be stored to
register 100 and will serve as new set position for positioning purposes.

82

Jetter AG

NANO-B

6.5 Fixed-point Numbers

6.5

Fixed-point Numbers

Fixed-point numbers can be displayed and entered with the help of the user
interface. While doing so, the functions of register 2812: "Field length for
DISPLAY_REG" and register 2813: "Field length for USER_INPUT" remain unchanged.
These registers are specified as mentioned above.

6.5.1

Display of Fixed-point Numbers

For this purpose, two additional special registers are available, namely the registers
2809 and 2810.

Register 2809: Divisor for Value Output DISPLAY_REG
Register Value

Decimal Positions

1

0

10

1

100

2

1000

3

10000

4

The number of decimal positions is defined through the value of this register. As an
alternative, instead of register 2810, register 2809 can also be used. A maximum of
four decimal positions is possible.

Register 2810: Decimal Positions for DISPLAY_REG
Register Value

Decimal Positions

0

0

1

1

2

2

3

3

4

4

The number of decimal positions is defined through the value of this register. As an
alternative, instead of register 2810, register 2809 can also be used. A maximum of
four decimal positions is possible.

Jetter AG

83

6 User Interfaces, Operator Guidance

PROCESS-PLC

Example:
The instruction
DISPLAY_REG [#0, cp=1, reg=200]

is used to display the contents of register 200 on the LCD.
The number 20.00, for example, is displayed by the following register definitions:

Register 200 = 2000
Register 2809 = 100

[Divisor for Value Output DISPLAY_REG]

Register 2810 = 2

[Decimal Positions for DISPLAY_REG]

Note!
The numeric value of register 200 remains unchanged. For representation
purposes on the display, a decimal point is added only.

6.5.2

Input of Fixed-point Numbers

For this purpose, two additional special registers are available, namely the registers
2807 and 2808.

Register 2807: Divisor for Value Input USER_INPUT
Register Value

Decimal Positions

1

0

10

1

100

2

1000

3

10000

4

The number of decimal positions for data input is defined through the value of this
register.
As an alternative, instead of register 2807, register 2808 can also be used. A
maximum of four decimal positions is possible.

84

Jetter AG

NANO-B

6.5 Fixed-point Numbers

Register 2808: Decimal Positions for USER_INPUT
Register Value

Decimal Positions

0

0

1

1

2

2

3

3

4

4

The number of decimal positions for data input is defined through the value of this
register.
As an alternative, instead of register 2808, register 2807 can also be used. A
maximum of four decimal positions is possible.

Example:
Data is downloaded from the user interface to register 200 using the following
instruction:
USER_INPUT [#0, cp=1, reg=200]

Once the value 20.00 is entered by the operator, the following values appear in the
relevant registers:

Register 200 = 2000
Register 2807 = 100

[Divisor for value output USER_INPUT]

Register 2808 = 2

[Decimal positions for USER_INPUT]

Note!
The numerical value of register 200 is 2000. For representation purposes, on the
display a decimal point is added only. The operator has to input the value for
register 200 only, together with the desired decimal places. From this input the
values of register 2807 and register 2808 will result.

Jetter AG

85

6 User Interfaces, Operator Guidance

6.5.3
Default Value in
Register 2815

PROCESS-PLC

USER_INPUT: Suggested Value

An additional special register, i.e. register 2815, has been provided to suggest a
value (default value) to the user when issuing the USER_INPUT instruction.
The value contained in register 2815 will be shown on the display followed by the
cursor, instead of 0. The operator may either confirm this value (default value) by
pressing ENTER, or alter it. The altered value is accepted by pressing ENTER.
By pressing C (clear), the input is deleted; then the suggested value contained in
register 2815 will appear again.
Example 1:
USER_INPUT [#0, cp=1, Reg=100]

Display Text:

0_

The displayed value 0 is the default value of register 2815.
Example 2:
Reg2815=88
USER_INPUT [#0, cp=1, Reg=100]

Display Text:

88_

The displayed value 88 is the defined value contained in register 2815.

86

Jetter AG

NANO-B

6.6 Registers for User Interfaces

6.6

Registers for User Interfaces

Register 2804: Amount of Characters of the User
Interface*)
Function
Read

Description
Present value of the amount of user interface characters.
Value following reset: 48

Write

New value specifying the amount of characters for the
connected user interface.

Value range

1 - 127

*)This

register gets initialised by the connected user interface.

Register 2805: Amount of Characters per Line*)
Function
Read

Description
Present value: Amount of characters per line of user interface.
Value following reset: 24

*)

Write

New value specifying the amount of characters for the
connected user interface.

Value range

1 - 127

This register gets initialised by the connected user interface.

Register 2806: Text Choice for the DISPLAY_TEXT_2
Instruction
Function
Read

Description
Present value for the text to be displayed in connection with
the DISPLAY_TEXT_2 instruction.
Value 0: Text 1
Value 1: Text 2
Value following reset: 0

Write

New value for text choice:
Value 0: Text 1
Value 1: Text 2

Value range
Bilingual Text
Output

Jetter AG

0-1

Using the DISPLAY_TEXT_2 instruction a choice can be made between two texts to
be displayed, e.g. for bilingual operator guidance. Additional example: Text 1 for the
customer, text 2 for the service staff.
In this register choice is made which one of the two texts is to be displayed.
87

6 User Interfaces, Operator Guidance

PROCESS-PLC

Register 2807: Divisor for USER_INPUT of Fixed-point
Numbers
Function
Read

Description
Present value for the divisor to define the amount of decimal
positions for user inputs:
Value 0: No decimal position
Value 10: 1 decimal position
......
Value 10000: 4 decimal positions
Value following reset: 1

Write

Illegal

Value range

0 - 10000

The data being supplied by the NANO-B controller are integer values. When data are
input with decimal positions by the user, these data are read out of register 2807 or
2808.
Register 2807 represents a divisor from which the amount of decimal positions
results. For example, if the divisor value is 10, the resulting amount of decimal
positions will be 1 (1/10 = 0.1).

Register 2808: Amount of Decimal Positions for
USER_INPUT of Fixed-point Numbers
Function
Read

Description
Present amount of decimal positions for user inputs:
Value 0: No decimal position
Value 1: 1 decimal position
......
Value 4: 4 decimal positions
Value following reset: 0

Write

-

Value range

0-4

Unlike register 2807 where the number of decimal positions is represented by a
divisor, in register 2808the number of decimal positions is specified directly.

88

Jetter AG

NANO-B

6.6 Registers for User Interfaces

Register 2809: Divisor for Displaying Fixed-point
Numbers for DISPLAY_REG Instruction
Function
Read

Description
Present value for the divisor to define the amount of decimal
positions for DISPLAY_REG:
Value 0: No decimal position
Value 10: 1 decimal position
......
Value 10000: 4 decimal positions
Value following reset: 0

Write

New value for the divisor to define the amount of decimal
positions for DISPLAY_REG.

Value range

0 - 10000

The data being supplied by the NANO-B controller are integer values. If these are to
be displayed with decimal positions on the user interface using the DISPLAY_REG
instruction, this can be achieved by using either register 2809 or 2810.
Register 2809 represents a divisor from which the amount of decimal positions
results. For example, if the divisor value is 10, the resulting amount of decimal
positions will be 1 (1/10 = 0.1).

Register 2810: Amount of Decimal Positions for
Displaying Fixed-point Numbers for DISPLAY_REG
Function
Read

Description
Present value of the amount of decimal positions for
DISPLAY_REG:
Value 0: No decimal position
Value 1: 1 decimal position
......
Value 4: 4 decimal positions
Value following reset: 0

Write

Present value of the amount of decimal positions for
DISPLAY_REG.

Value range

0-4

Unlike register 2809 where the amount of decimal positions is defined by a divisor,
in register 2810 the amount of decimal positions can be specified directly.
If, for example, 3 decimal positions are to be displayed, the value 3 can directly be
input into register 2810. In register 2809, though, the divisor to be input would be
1000.

Jetter AG

89

6 User Interfaces, Operator Guidance

PROCESS-PLC

Register 2812: Field Length for DISPLAY_REG
Instruction
Function

Description
Present field length for the DISPLAY_REG instruction

Read

Value following reset: 8
Write

New field length for the DISPLAY_REG instruction

Value range

0-9

Definition of the number of positions to be displayed. A maximum of 8 positions can
be assigned to register display.
If values of two or three characters are to be displayed only, the actually required
number of positions can be assigned to the display by using register 2812. This is of
special importance if a great number of texts and values are to be displayed on a user
interface.
The following rule applies: Contents of register 2812 = Number of positions to be
displayed + sign
For example, value of register 2812 = 4 corresponds to 3 positions +1 sign
e.g. - 1 2 3

Note!
It should be considered that one position each is occupied by the sign and the
decimal point. If a 6-digit value is to be displayed, into register 2812 the value 7,
resp. 8 is to be entered.

Register 2813: Field Length for USER_INPUT
Instruction
Function
Read

Description
Present field length for the USER_INPUT instruction
Value following reset: 0

Write

New field length for the USER_INPUT instruction

Value range

1-8

A maximum of 8 positions can be assigned to a user input. This also applies to the
suggested value contained in register 2815.
If values of two or three characters are to be entered only, the actually required
number of positions can be assigned to the display by using register 2813. This is of
special importance if a great number of texts and values are to be displayed on a user
interface.

90

Jetter AG

NANO-B

6.6 Registers for User Interfaces

Note!
It should be considered that one position is occupied by the sign. If a 6-digit value
is to be input, the value 7 is to be entered into register 2813.

Register 2814: Indirect Cursor Position for
DISPLAY_TEXT, DISPLAY_REG and USER_INPUT
Function
Read

Description
Present value for indirect cursor position.
Value following reset: 0

Write

New value for indirect cursor position.

Value range

0 - 127

If for the DISPLAY_TEXT, DISPLAY_REG and USER_INPUT instructions the cursor
position 0 is specified, the cursor position contained in register 2814 will be used. If
the value in this register is 0 as well, the text or value to be displayed will be attached
the texts or values that have already been displayed.

Register 2815: Suggested (default) Value for the
USER_INPUT instruction
Function
Read

Description
Present default value at the cursor position defined by the
USER_INPUT instruction.
Value following reset: 0

Write

New default value for the USER_INPUT instruction.

Value range

- 8388608 .. + 8388607

Once a USER_INPUT instruction is activated, a default value will appear at the
defined cursor position. This value is 0 by default. If another value is to be displayed
at this position, the position is to be specified in 2815.

Jetter AG

91

6 User Interfaces, Operator Guidance

PROCESS-PLC

Register 2816: Sign Suppression with the
DISPLAY_REG Instruction
Function
Read

Description
Present value for sign suppression.
Value following reset: 0

Write

New value for sign suppression.
Value 0: Sign will be displayed
Value 1: Sign will not be displayed

Value range

0-1

Register values can be displayed either with or without sign. Values are displayed
with sign by default. By using register 2816 it is possible to suppress display of signs .

Register 2817: User Input Status
Function
Read

Description
Present user input status:
Value 0: User input has not been activated
Value 1: User input has been activated
Value following reset: 0

Write

New user input status:
Value 0: Termination without transfer of value
Value 2: Termination with transfer of value

Value range

0-2

From this register can be seen whether a user input is activated at the moment. Thus,
for example, proceeding from another task the time of the user input can be
monitored. Once a defined period is expired, the user input can be terminated and
the value shown on the display can be accepted by writing value 2 into register 2817.
If value 0 has been written into register 2817, the user input is terminated without
accepting the displayed value.

Register 2818: Keyboard Enable for User Interfaces
Function
Read

Description
Present status of keyboard enable
Value following reset: 255

Write

New status of keyboard enable, bit-coded

Value range

0 - 255

To allow the user to have access to defined operating functions, certain keyboard
areas can be enabled, or disabled, by register 2818.
If keyboard functions disabled for service staff are to be enabled again, this can also
be carried out through this register.
92

Jetter AG

NANO-B

6.6 Registers for User Interfaces

Bit-specific Functions of Register 2818
Bit

Jetter AG

Function

Bit 0 = 1

Key with monitor function for displaying
register contents.

Bit 0 = 0

Key "Display of register contents"
disabled, but bits are set.

Bit 1 = 1

Key "Entry of flags"

Bit 1 = 0

Key "Entry of flags" disabled

Bit 2 = 1

Key "Access to outputs"

Bit 2 = 0

Key "Access to outputs" disabled

Bit 3 = 1

Key "Access to inputs"

Bit 3 = 0

Key "Access to inputs" disabled

Bit 4 = 1

Key "Change of register contents"

Bit 4 = 0

Key "Change of register contents" disabled

Bit 5 = 1

Key "Change of flags"

Bit 5 = 0

Key "Change of flags" disabled Flag
"Change of state" is disabled.

Bit 6 = 1

Key "Change of outputs"

Bit 6 = 0

Key "Change of outputs" disabled

Bit 7 = 1

Key "Display of inputs"

Bit 7 = 0

Key "Display of inputs" disabled

93

6 User Interfaces, Operator Guidance

PROCESS-PLC

Register 2819: Switch-over Time between Monitor
Screen and Normal Display
Function
Read

Description
Present value for switch-over time between monitor screen
and normal display:
A multiple of the time base specified in register 2003.
Value following reset: 35

Write

New value for switch-over time between monitor screen and
normal display.

Value range

0 - 65536

If the monitoring functions for registers, flags, display or change of outputs and inputs
have been activated, the display of the user interface will be in monitor screen mode.
In register 2819 the switching-over time between monitor screen and normal display
is specified. Switching-over is carried out upon completion of inputs in monitor mode
of the user interface.

Example:
A value of 35 in register 2819 stands for a switch-over time of 3.5 seconds.

Register 2820: Switching over to Monitor Display
Function
Read

Description
Present state: Switching over to monitor screen by pressing
the ENTER key:
Value 0: Switching over by pressing ENTER enabled
Value 1: Switching over by pressing ENTER disabled
Value following reset: 0

Write

New state for switching over to monitor screen mode:
Value 0: Switching over by pressing ENTER enabled
Value 1: Switching over by pressing ENTER disabled

Value range

0-1

By pressing the ENTER key, direct switching over to monitor screen can be carried
out. This function can be enabled or disabled using register 2820.

94

Jetter AG

NANO-B

6.6 Registers for User Interfaces

Register 2821: Display Language
Function
Read

Description
Present setting for the language of integrated user interface
functions:
Value 0: German
Value 1: English
Value following reset: 0

Write

New setting for the language of integrated user interface
functions:
Value 0: German
Value 1: English

Value range

0-1

By using this register the language for communication functions between user
interface and operator is set. The language setting refers to operating system
functions of the user interface, but not to texts output by the user. Such operating
system functions are, for example, the monitor functions for registers, flags, inputs
and outputs.

Register 2822: User Interface Baud Rate
Function
Read

Description
Present user interface baud rate:
0 = 150
1 = 300
2 = 600
3 = 1200
4 = 2400
5 = 4800
6 = 9600
7 = 19200
Value following reset: 6

Write

New user interface baud rate:
0 = 150
1 = 300
2 = 600
3 = 1200
4 = 2400
5 = 4800
6 = 9600
7 = 19200

Value range

Jetter AG

0-7

95

6 User Interfaces, Operator Guidance

PROCESS-PLC

Register 2823: PC Interface Baud Rate
Function
Read

Description
Present PC interface baud rate:
Value following reset: 6

Write

New PC interface baud rate:
0 = 150
1 = 300
2 = 600
3 = 1200
4 = 2400
5 = 4800
6 = 9600
7 = 19200

Value range

0-7

Register 2824: Indirect Buffer Number with Device 0
Function
Read

Description
Set buffer number
Value following reset: 2

Write

New value for indirect buffer number

Value range

0-4

The NANO controller provides 4 text buffers for multi-display mode. Using the
DISPLAY_TEXT or DISPLAY_REG commands data can be written into this buffer.
When using these commands, the device number defines the buffer which is
activated by the corresponding command. If a device number between 1 and 4 is
used, the buffer is addressed directly. If device number 0 is used, that buffer is
addressed at which register 2824 points. This way it is possible to divert a text, for
which device number 0 was specified, to several displays.
With the help of registers 2825 through 2828 a buffer can be assigned to each
display.

Register 2825: Text Buffer for Display 1
Function
Read

Description
Set number of text buffer
Value following reset: 1

96

Write

A new text buffer is assigned to display 1

Value range

1-4

Jetter AG

NANO-B

6.6 Registers for User Interfaces

Register 2826: Text Buffer for Display 2
Function
Read

Description
Set number of text buffer
Value following reset: 2

Write

A new text buffer is assigned to display 2

Value range

1-4

Register 2827: Text Buffer for Display 3
Function
Read

Description
Set number of text buffer
Value following reset: 3

Write

A new text buffer is assigned to display 3

Value range

1-4

Register 2828: Text Buffer for Display 4
Function
Read

Description
Set number of text buffer
Value following reset: 4

Write

A new text buffer is assigned to display 4

Value range

1-4

Register 2829: Basic Key Flag Number for Display 1
Function
Read

Description
Set basic number
Value following reset: 2000

Write

Basic number of flags which are used for display 1 to
recognize keystrokes.

Value range

-161 ... 1824, 2000

Register 2830: Basic Key Flag Number for Display 2
Function
Read

Description
Set basic number
Value following reset: 2000

Jetter AG

Write

Basic number of flags which are used for display 2 to
recognize keystrokes.

Value range

-161 ... 1824, 2000

97

6 User Interfaces, Operator Guidance

PROCESS-PLC

Register 2831: Basic Key Flag Number for Display 3
Function
Read

Description
Set basic number
Value following reset: 2000

Write

Basic number of flags which are used for display 3 to
recognize keystrokes.

Value range

-161 ... 1824, 2000

Register 2832: Basic Key Flag Number for Display 4
Function
Read

Description
Set basic number
Value following reset: 2000

Write

Basic number of flags which are used for display 4 to
recognize keystrokes.

Value range

-161 ... 1824, 2000

Registers 2829 through 2832 make possible to shift the flag area, reflecting the key
status of the displays, within the whole flag range of the NANO controller.

Note!
The value following a reset maps the keys of all displays into the standard flag
area for single-display mode, i.e. from flag 2160 through 2223.

The flag area for keys is calculated by the following formula:
Flag area for keys = Basic number + (160..223)
If, for example, the basic number is set to -161, the F1 key is mapped to flag 40.

Example:
Following a reset the F1 key is mapped to flag 2201 since the basic number is 2000.

Register 2833: Register Number for Controlling LEDs
of Display 1
Function
Read

Description
Set register number for controlling LEDs of display 1
Value following reset: 2649

98

Write

New register number defining which of the flags resp. register
bits are for controlling LEDs of display 1

Value range

1 ... 1999, 2622 ... 2637, 2649

Jetter AG

NANO-B

6.6 Registers for User Interfaces

Register 2834: Register Number for Controlling LEDs
of Display 2
Function
Read

Description
Set register number for controlling LEDs of display 2
Value following reset: 2649

Write

New register number defining which of the flags resp. register
bits are for controlling LEDs of display 2

Value range

1 ... 1999, 2622 ... 2637, 2649

Register 2835: Register Number for Controlling LEDs
of Display 3
Function
Read

Description
Set register number for controlling LEDs of display 3
Value following reset: 2649

Write

New register number defining which of the flags resp. register
bits are for controlling LEDs of display 3

Value range

1 ... 1999, 2622 ... 2637, 2649

Register 2836: Register Number for Controlling LEDs
of Display 4
Function
Read

Description
Set register number for controlling LEDs of display 4
Value following reset: 2649

Write

New register number defining which of the flags resp. register
bits are for controlling LEDs of display 4

Value range

1 ... 1999, 2622 ... 2637, 2649

These registers are for assigning flags, which control LEDs of displays, to several
address areas. Following a reset the LEDs of all displays are assigned to those flags
to which they are assigned in single-display mode, i.e. to the flags 2224 through
2235.
With the help of registers 2833 through 2836 a register can be assigned to each
display. The lower 12 bits of these registers, then, control the LEDs.
If a given register is overlaid by flags, LEDs can also be addressed via these flags
and not only via register bits.
Example: Flags 2224 through 2239 are overlaid on register 2649.

Jetter AG

99

6 User Interfaces, Operator Guidance

6.7

PROCESS-PLC

User Interface-related Flags
Flag 2057: LCD operation after each user task

Function
Read

Description
Present user interface priority:
Flag = 0: The user interface will be serviced upon completion
of all user tasks, low priority
Flag = 1: The user interface will be serviced after each user
task, high priority
Value following reset: 0

Write

User Interface
Priority

Set flag for high user interface priority, delete flag for low user
interface priority

Definition of the user interface priority. The user interface is serviced by a kind of
background task. In most cases, the user interface has got a priority lower than the
priority of the application program. In this case, the user interface will not be
serviced before complete processing of all user tasks. Usually, this is absolutely
sufficient, since processing will happen in the range of milliseconds which will not
be regarded by the user as waiting time.
This waiting time increases if, especially on four-line displays, a great number of
values is being displayed and the system is waiting for user inputs. Once the priority
of the user interface is raised by setting flag 2057, the user interface is serviced after
each user task. The operating system is then servicing sequentially: Task 0, user
interface, task 1, user interface, task 2, user interface etc.
For further details on task processing refer to register description for task control.

Note!
For normal operation, the user interface priority should be set to low, i.e. flag 2057 = 0.
If during user input there are remarkable delays, the user interface priority can be
raised by setting flag 2057 to 1.
In most cases, more complex user and display functions are required in manual
and setting-up mode of the machinery. Thus, it is possible to set this flag in manual
mode (high priority) and to delete it again in automatic mode (low priority).

100

Jetter AG

NANO-B

6.8 Controlling the Keys and LEDs of the User Interface

6.8

Controlling the Keys and LEDs of the
User Interface

Note!
All keys and LEDs mentioned below in the tables "Control of User Interfaces,
Keys, and LEDs", and "Scanning of User Interface Keys" apply to user interfaces
according to table "Overview: User Interfaces" of chapter 6.1: "Technical Data",
page 74.

Control of User Interfaces, Keys, and LEDs
Special Flags

Jetter AG

LED, Key

Special Flags

LED, Key

2224

LED

2230

LED

2225

LED

2231

LED

2226

LED

2232

LED

2227

LED

2233

LED

2228

LED

2234

LED

2229

LED

2235

LED

101

6 User Interfaces, Operator Guidance

PROCESS-PLC

Scanning of User Interface Keys
Special Flags

LED, Key

Special Flags

LED, Key

Function Keys
2201

2181

2202

2182

2203

2183

2204

2184

2205

2185

2206

2186

2207

2187

2208

2188

2209

2189

2210

2190

2211

2191

2212

2192

Special function keys

102

2214

2193

2213

2194

2215

2195

2216

2196

Jetter AG

NANO-B

6.8 Controlling the Keys and LEDs of the User Interface

Scanning of User Interface Keys
Special Flags

LED, Key

Special Flags

2217

2197

2218

2198

2219

2199

2220

2221

2222

2223

LED, Key

2200

Numerical Keys

Jetter AG

2160

2170

2161

2171

2162

2172

2163

2173

2164

2174

2165

2175

2166

2176

2167

2177

2168

2178

2169

2179

103

6 User Interfaces, Operator Guidance

PROCESS-PLC

Scanning Keys of the LCD 17 User Interface

User Interfaces
with Irregular Flag
Assignment

Flag

Key

Flag

2201

2234

2202

2235

2203

2236

2204

2237

2205

2238

2206

2239

2221

2240

2222

2241

2223

2242

2224

2243

2230

2244

2231

2245

2232

2246

2233

2248

Key

Note!

The user interfaces LCD 17 and LCD 19 haven't got any "SHIFT" functions.

104

Jetter AG

NANO-B

6.8 Controlling the Keys and LEDs of the User Interface

Scanning Keys of the LCD 19 User Interface
Flag

Key

Flag

2201

2234

2202

2235

2203

2236

2204

2237

2205

2238

2206

2239

2221

2240

2222

2241

2223

2242

2224

2243

2230

2244

2231

2245

2232

2246

2233

2248

Key

2249

Jetter AG

105

6 User Interfaces, Operator Guidance

PROCESS-PLC

Scanning Keys of the LCD 27 User Interface
Special Flags

LED, Key

Special Flags

2209

2211

2210

2212

LED, Key

Note!

With the user interface LCD 27 merely flags 2209 through 2212 differ from table
1 : "Scanning of User Interface Keys" on page 102.

106

Jetter AG

NANO-B

7.1 JETWay-H: JETTER Data Highway

98 Nodes

7

Network Operation

7.1

JETWay-H: JETTER Data Highway

The data highway JETWay-H enables several networked control systems of the
PROCESS-PLC family to be controlled by a host computer. Purely technical, the
maximum amount of nodes to be controlled is 126. However, with such a number
of nodes reasonable communication on the network gets next to impossible, since
transmission rate slows down. Therefore, it is advisable to limit the number of nodes
to be controlled to 98. In detail, network operation means:
•
•
•
•
•

Visualisation
Programming
Data transfer
Production data acquisition
Service functions; access to each control system

In addition to this, using a modem remote maintenance of the entire machinery of a
plant is possible.

Note!
Please, refer to chapter 2.2 "Electrical Connection", page 18, for description of
wiring and parameter assignment of JETWay-H.

Fig. 24: JETWay-H for the Management Level

Jetter AG

107

7 Network Operation

PROCESS-PLC

7.2

JETWay-R: Process Level

The JETWay-R network has got two functions:
•
•

The hierarchical networking of PROCESS-PLC control systems.
The connection of decentralized peripheral devices, such as remote I/Os or valve
blocks.

The maximum amount of nodes per level is 99. This network is a monomaster
network. This means that there is one master and a maximum of 98 slaves per
hierarchical level.

Fig. 25: JETWay-R for the Process Level

108

Jetter AG

NANO-B

7.3 N-SEND Registers and N-GET Registers

7.3

N-SEND Registers and
N-GET Registers

Note!

These register numbers are not influenced by the number offset defined in
register 2702.

7.3.1

N-SEND REGISTER

Note!

The PROCESS-PLC NANO-B can be operated as master or slave in a JETWAY-R
network.

By using the following instruction, the master controller can write values into registers
of slave controllers:
N-SEND REGISTER [to  from Reg to Reg]

•

: PASE # stands for the network number of the slave controller which

is to be addressed via the network.
•

: Here, the number of the register is specified, the value of which
is to be transmitted to a slave via the network.

•

: Here, the number of the register is specified into which the

value from the master controller is to be transmitted. This register is located on
the slave controller with the slave number PASE #.

Example:
N-SEND REGISTER [to 3 from Reg=100 to Reg=200]

Following this instruction, the value contained in register 100 of the
master controller is entered into register 200 of the slave controller
with the network number 3.

Jetter AG

109

7 Network Operation

PROCESS-PLC

7.3.2

N-GET REGISTER

By using the following instruction, the master controller can read out values from
registers of slave controllers:
N-GET REGISTER [from  Reg, Reg here=]

•

: PASE # stands for the network number of the slave controller which
is to be addressed via the network.

•

: Here, the number of the register is specified from which the
value is to be transmitted to the master controller. This register is located on the
slave controller.

•

: Here, the number of the master controller register is
specified into which the value from the slave controller is to be transmitted.

Example:
N-GET REGISTER [from 4 Reg=150, Reg here=102]

By this instruction, the value contained in register 150 of the slave
controller with the network number 4 is copied into register 102 of the
master controller.

7.3.3

Access to slave inputs, slave outputs and
slave flags

In order to have access to inputs, outputs and flags of a slave overlaid registers must
be used. Access is carried out in 3 steps:

1. Transfer of input registers to a slave:
To do so, overlaying of slave inputs with slave registers is used.

2. Loading an overlaid input register into the master:
The overlaid input register is to be loaded into the master by using the N-GET
REGISTER instruction. This way, the slave inputs are mapped within the master.

3. Transfer of flag registers to the master:
Within the master the register, in which the slave inputs are mapped, in its turn is
overlaid with flags. Now, access to slave inputs is carried out by the SYMPAS
program with the help of flag instructions.

110

Jetter AG

NANO-B

7.3 N-SEND Registers and N-GET Registers

Example: Overlaying
1. Step: Overlaying of input registers in the slave.
Register 2400 of the NANO slave controller is overlaid with inputs 101..108,
201..208, 301..308.

Overlaying of inputs on registers by the example of
register 2400
Bit #

0

1

2

3

4

...

21

22

23

Value

1

0

0

0

1

...

0

1

0

Input

101

102

103

104

105

...

306

307

308

2. Step:Loading an overlaid input register into the master.
The contents of register 2400 (overlaid inputs) of the slave NANO with the network
# 3 is loaded into register 2400 of the master NANO by using the N-GET REGISTER
instruction.
N-GET REGISTER [from 3 Reg=2400, Reg here=2600]

3. Step: Overlaying of flag registers in the master controller.
The slave inputs are specifically loaded into the master register 2600.
The user flags are overlaid on this register. This way, the program has high-rate
access to slave inputs via these master flags.

Overlaying of flags on registers by the example of
register 2600
Bit #

0

1

2

3

4

...

21

22

23

Value

1

0

0

0

1

...

0

1

0

Flag

0

1

2

3

4

...

21

22

23

IF
FLAG 3
OR
FLAG 21
THEN
...

Jetter AG

111

7 Network Operation

PROCESS-PLC

Note!
Overlaying of slave registers with inputs, outputs and flags of the slave controller
is demonstrated here by example of overlaid inputs of a NANO slave and a NANO
master.
By analogy, this procedure has to be applied to outputs, flags and additional
PROCESS-PLCs, such as DELTA, and PASE-E, for differing applications.

7.4

Registers for Network Operation

Each PROCESS-PLC system has got at least one interface for networking via the
JETTER network JETWay. The registers 2700 through 2711 described below serve
the definition of transmission parameters and node numbers of this RS485.

Overview: Network Registers
Register #

Designation

2700

Network number

2701

Baud Rate

2702

Register offset*)

2703

Flag offset*)

2704

Input offset*)

2705

Output offset*)

2706

Output mask*)

2707

Indirect network number

2708

Time-out period for network

2709

Network response time

2710

Number of network errors

2711

Error code of the last access to the
network

*) This register can only be used in slave mode if the master controller is, for example,

a DELTA (no NANO-B).

112

Jetter AG

NANO-B

7.4 Registers for Network Operation

Register 2700: Node Number
Function
Read

Description
Present node number on the JETWay network.
Value following reset: 2

Write

New node number on the JETWay network:
Value 0: deactivated
Value 1: Network master
Value 2 - 127: Possible slave number

Value range

0 - 127

Register 2701: Baud Rate JETWay-R
Function
Read

Description
Present value for baud rate on the JETWay-R.
Value following reset: 10 (115.2 kBaud)

Write

New value for baud rate on the JETWay-R.
0=
1=
2=
3=
4=
5=
6=
7=
8=
9=
10 =

Value range

150 Bit/s
300 Bit/s
600 Bit/s
1200 Bit/s
2400 Bit/s
4800 Bit/s
9600 Bit/s
19200 Bit/s
38400 Bit/s
57600 Bit/s
115200 Bit/s

0 - 65536

Register 2702: Register Offset
Function
Read

Description
Present value for register offset
Value following reset: 0

Write

New value for register offset

Value range

0 - 65535

This value will be added to the register number of a 50000-number network access
when, for example, a MIKRO controller is used.

Jetter AG

113

7 Network Operation

PROCESS-PLC

Register 2703: Flag Offset
Function
Read

Description
Present value for flag offset
Value following reset: 0

Write

New value for flag offset

Value range

0 - 65535

This value will be added to the flag number of a 50000-number network access
when, for example, a MIKRO controller is used.

Register 2704: Input Offset
Function
Read

Description
Present value for input offset
Value following reset: 100

Write

New value for input offset

Value range

0 - 65535

This value will be added to the flag number of a 50000-number network access
when, for example, a MIKRO controller is used.

Register 2705: Output Offset
Function
Read

Description
Present value for output offset
Value following reset: 100

Write

New value for output offset

Value range

0 - 65535

This value will be added to the flag number of a 50000-number network access
when, for example, a MIKRO controller is used.

114

Jetter AG

NANO-B

7.4 Registers for Network Operation

Register 2706: Output Mask
Function
Read

Description
Present output mask
Bit 0 =
Bit 1 =
Bit 2 =
...
Bit 7 =
Bit 8 =
Bit 9 =
...
Bit 15 =

101
102
103
...
108
201
202
...
208

Value following reset: 100
Write

New output mask

Value range

0 - 65536

This register is bit-coded. Set bits have only local effect, i.e. with a remote scan, the
output will be disabled and won't be overwritten. Overwriting is possible only with a
master device, such as a MIKRO, by using 50000-numbers.

Register 2707: Indirect Network Number
Function
Read

Description
Indirect network number
Value following reset: 0

Write

New indirect network number

Value range

2 - 127

If as network number parameter of a network instruction 0 is specified, the contents
of register 2707 serve as network number.

Register 2708: Time-out Period for Network
Function
Read

Description
Present time-out period
Value following reset: 250

Jetter AG

Write

New time-out period

Value range

0 - 65536 ms

115

7 Network Operation

PROCESS-PLC

Register 2709: Network Response Time
Function
Read

Description
Present response time
Value following reset: 0

Write

Illegal

Value range

0 - 65536 ms

Register 2710: Amount of Network Errors
Function
Read

Description
Present error count
Value following reset: 0

Write

Illegal

Value range

0 - 255

Register 2711: Error Code of Network Access
Function
Read

Description
Present error code
0=
1=
2=
3=
4=

No error detected.
Time-out
Checksum error
Error message from slave
No master specified

Value following reset: 0

116

Write

New error code

Value range

0 - 65536

Jetter AG

NANO-B

8.1 Description of Connections

8

Single-/Dual-Channel Counter

8.1

Description of Connections

For connection of the single-/dual-channel counter to the basic controller NANO-B
see chapter: 2.2.5 "Single- and Dual-Channel Counter", page 33.

8.2

Register Description

Register 2900: Peripherals Control Register
Function
Read

Description
Present value of the peripherals control register
Value following reset = 1

Write

New value of the peripherals control register

Value range

0 - 65536

Meaning of the individual bits:
Bit 0 = 0

A/D converter for analog inputs deactivated

Bit 0 = 1

A/D converter for analog inputs activated

Bit 1 = 0

Dual-channel counter

Bit 1 = 1

Single-channel counter

Register 2901: Count Value of the
Single-/Dual-Channel Counter
Function
Read

Description
Present count value
Value following reset = 0

Jetter AG

Write

Count value will be overwritten

Value range

-8388608 - +8388607

117

8 Single-/Dual-Channel Counter

PROCESS-PLC

Register 2918: Counting Rate
Function
Read

*)

Description
Present value of the counting rate
Value following reset = 0

Write

Disabled

Value range

-32768 ... +32767

Register 2919: Time Base for Counting Rate *)
Function
Read

Description
Present value of the time base for counting rate
Value following reset = 10 (100 ms)

*)

Write

The value of the time base for counting rate will be overwritten

Value range

0 ... 255

The counting rate is calculated by the following formula:

Count n – Count n – 1
Register 2918 = -----------------------------------------Register 2919 × 10 ms

Note!
The count value n-1 is sensed earlier by the value register 2919 x 10 ms than
count value n.

118

Jetter AG

NANO-B

Jetter AG

8.2 Register Description

119

9 Analog I/Os

PROCESS-PLC

9

Analog I/Os

9.1

Description of Connections

For connection of analog inputs and outputs to the basic controller NANO-B see
chapter: 2.2.6 "Analog Inputs", page 34, and chapter: 2.2.7 "Analog Output", page
35.

9.2

Register Description
Register 2900: Peripherals Control Register

Function

Description

Read

Present value of the peripherals control register
Value following reset = 1

Write

New value of the peripherals control register

Value range

0 - 65536

Meaning of the individual bits:
Bit 0 = 0

A/D converter for analog inputs deactivated

Bit 0 = 1

A/D converter for analog inputs activated

Bit 1 = 0

Dual-channel counter

Bit 1 = 1

Single-channel counter

Register 2902: Analog Output (X5)
Function
Read

Description
Present value for analog output (X5)
Value following reset: 0

120

Write

New value for analog output (X5)

Value range

0 - 255

Jetter AG

NANO-B

9.2 Register Description

Register 2903 - 2906: Analog Input (X5)
Function
Read

Description
Present value for analog input (X5)
Value following reset: Analog voltage

Write

Illegal

Value range

0 .. 1023

Assignment of registers to analog inputs:

Register 2903:

Analog input # 1

Register 2904:

Analog input # 2

Register 2905:

Analog input # 3

Register 2906:

Analog input # 4

Register 2920: Slew Rate Limitation for AD
Conversion
Function
Read

Description
Present value for AD conversion slew rate limitation
Value following reset: 2

*)

Jetter AG

Write

New value for AD conversion slew rate limitation

Value range

2 .. 2000 [0 .. 32767, theoretical values] *)

Register 2920 specifies as a multiple of 1 digit/ms (which equals to approx.
10 mV/ms) the slew rate limitation of the voltage input for AD conversion. However,
only values from 2 to 2000 are practicable. Values above 2000 have no further
effect on slew rate limitation for AD conversion. For additional information refer to
fig. 26, page 122.

121

9 Analog I/Os

PROCESS-PLC

Fig. 26: Slew Rate Limitation for AD Conversion

Note!
Register 2920 addresses all analog inputs simultaneously.

122

Jetter AG

NANO-B

10.1 Overview and Technical Data

10

Stepper Motor Control

10.1

Overview and Technical Data

The stepper motor control of the NANO-B controller serves to control servo amplifiers
for stepper motors equipped with STEP and DIR interfaces, i.e. through stepping and
direction pulses.

Fig. 27: Stepper Motor with Motor Control and Power Amplifier

Acceleration and deceleration are automatically preset by the microprocessor of the
stepper motor control. For activation, entry of macro instructions, such as the
positioning instruction, is sufficient:
POS [Axis, set position, set speed]

All values can be read back at any time. The parameters, including set position and
set speed, can be changed at any time.

Connecting the
Stepper Motor
Control

Jetter AG

For stepper motor control, 2 terminals for the DIR and STEP signal and one 0 V
terminal have been provided on the basic controller (X3). Please refer to chapter
2.2.8 "Stepper Motor Control", page 36.

123

10 Stepper Motor Control

PROCESS-PLC

10.2

Firmware of Stepper Motor Control

The firmware allows a stepper motor control to operate a stepper motor axis. Configuration for operation and different operating conditions is made using different parameters.
Positioning processes are controlled by the following instructions:

Positioning

POS
AXARR

+ Axis #:

AXARR position query / AXARR instruction

AXARR

- Axis #:

Continue to travel to old target position

There is an additional option of positioning an axis, that is, control of the stepper
motor through REGISTER_LOAD instructions. The positioning process is described
in the programming manual in more detail. Therefore, please refer to the
programming manual for additional information.

Note!
On the basic controller the axis number of the stepper motor axis is always 11.
All registers start with 111 if they are assigned to this axis. This axis is always
assigned to module number 1.
Generally, the following steps are required for programming a stepper motor axis:

1. Loading of Parameters
This has to be made at the beginning of the program with the help of the axis
registers 11105 through 11108.
Example:
TASK 0 -----------------------------------------------------THEN
REGISTER_LOAD [11105 with R100]

;Acceleration

REGISTER_LOAD [11106 with R101]

;Deceleration

REGISTER_LOAD [11108 with R103]

;Start/stop frequency

The positioning parameters are defined by the program sequence as follows:
REGISTER 100:

Value of acceleration ramp

REGISTER 101:

Value of deceleration ramp

REGISTER 103:

Value of start/stop frequency

In chapter 10.2.1 "Register Assignment", page 126, you will find a description of the
characteristics of the parameters.

124

Jetter AG

NANO-B

10.2 Firmware of Stepper Motor Control

2. Machine Referencing
Before the first positioning process can be executed, machine referencing is
required. Referencing can be initiated by entering a value into command register
11101 of the corresponding axis.

3. Positioning
Following machine referencing the positioning processes can be carried out. This
can be carried out by using the following instruction:
POS [Axis, set position, set speed]

Example:

THEN
POS [Axis11, Pos10000, v2500)
WHEN
AXARR Axis11
THEN

In this example, positioning is carried out as follows:
•

The stepping rate is increased linearly to the steepness of the previously defined
acceleration ramp up to the speed of 2500 (= 2.5 kHz) which has been set through
the positioning instruction.

•

The rate will remain at 2.5 kHz until the positioning algorithm recognises that,
according to the previously defined steepness of the deceleration ramp, the
deceleration process has to be initiated.

•

Deceleration is calculated in such a way that the target position will be
approached linearly to the steepness of the previously defined deceleration ramp.

•

If the travel is too short, or the ramps are too flat and if the set maximum speed is
not reached, transition from acceleration to deceleration is made automatically at
the right time.

More of these functions, and many more possibilities are provided by the stepper
motor controller. For example, values and parameters can perpetually be changed
and adjusted during the positioning process. For this purpose, all internal values can
be accessed directly with the help of registers.

Jetter AG

125

10 Stepper Motor Control

PROCESS-PLC

10.2.1 Register Assignment
For each register the following items are quoted:
1. The value of the register in case of a "read access" using the following instruction:
LOAD_REGISTER [220 with R(111zz)].

2. The meaning of the register in case of a "write access" using the following
instruction:
LOAD_REGISTER [111zz with R(220)].

3. The value range, i.e. valid numerical values for the registers:

•

8-bit value

for numbers from 0 through 255

•

16-bit value

for numbers from 0 through 65535

•

23-bit-signed integer

for numbers from -8388608 through +8388607.

4. The register value following reset. Following power-up, to the registers their
default values are assigned. In case of a read access, this value is uploaded.
5. An example regarding the use of the register with a description of the effect
resulting from the given instruction.

126

Jetter AG

NANO-B

10.2 Firmware of Stepper Motor Control

10.2.2 Register Description
Register 11100: Status register
Function
Read

Description
The conditions of the stepper motor controller are
reported back.
Value following reset = depending on card status

Write

Illegal

Value range

23-bit-signed integer

Meaning of the individual status register bits:
Search for reference?

Reference switch has been found.
1 = Reference OK

Bit 1:

AXARR?

1 = AXARR

Bit 2:

Axis in the destination
window?

1 = Yes

Bit 4:

Negative limit switch?

1 = Negative limit switch activated

Bit 5:

Positive limit switch?

1 = Positive limit switch activated

Bit 6:

Reference switch?

1 = Reference switch activated

Bit 7:

not assigned

Bit 8:

Did the limit switch trip? 1 = Yes

Bit 0:

Bit

9 - 11: not assigned

Bit 12:

Machine referencing
error?

1 = Machine referencing error

Bit 13:

BUSY for instructions
from 9 through 12

1 = Busy

Bit

14 -15: not assigned

Bit 16:
Bit

Jetter AG

Axis in deceleration

1 = Axis in deceleration

17 -23: not assigned

127

10 Stepper Motor Control

PROCESS-PLC

Register 11101: Instruction Register
Function
Read

Description
Instruction currently being executed or the last
executed instruction
Value following reset: 0

Write

A new instruction is issued to the stepper motor
controller. The instruction remains readable in
register 11101.

Value range

23-bit-signed integer

The instruction register of the stepper motor controller makes use of the
following instructions:
0

AXARR with deceleration ramp:
This instruction causes the axis to be decelerated with a deceleration
ramp until the start/stop frequency is preset again.

3

Setting the status "Referencing Completed":
The actual position will be set to zero by this instruction. Once the function
"Stop at the reference point" (instruction 22 = Default) is activated, the set
position will be set to zero as well.

4

Clearing the status "Referencing Completed":
When the reference switch is operated next time, the actual position is set
to zero and the reference bit in register 11100 is set to "Reference OK".

5

Stop axis = "AXARR" instruction:
This instruction serves to stop an axis without deceleration ramp. This can
be done only at low speed without skipping steps.

9

Automatic machine referencing at the speed given in register 11103:
Start in positive direction giving heed to the reference switch. Once the
positive limit switch is operated during machine referencing, the axis
reverses the direction of motion and continues to travel in negative
direction until
– either the reference switch has been activated and the actual position
is set to zero,
– or the negative limit switch has been operated. This causes machine
referencing to be terminated. The set position is set to actual position,
and an error is reported to the status register 11100 through bit 12.

128

Jetter AG

NANO-B

10.2 Firmware of Stepper Motor Control

10

Automatic machine referencing at the speed given in register 11103:
Start in negative direction giving heed to the reference switch. Once the
negative limit switch is operated, the axis reverses the direction of motion
and continues to travel in positive direction until
• either the reference switch has been activated and the actual position
is set to zero,
• or the positive limit switch has been operated. This causes machine
referencing to be terminated. The set position is set to actual position,
and an error is reported to the status register 11100 through bit 12.

11

Automatic machine referencing at the speed given in register 11103:
Start in positive direction towards the positive limit switch ignoring the
reference switch; there, reverse the direction of motion, travel in negative
direction giving heed to the reference switch.
If the negative limit switch is operated, machine referencing is terminated
and an error is reported to the status register 11100.

12

Automatic machine referencing at the speed given in register 11103:
Start in negative direction towards the negative limit switch ignoring the
reference switch; there, reverse the direction of motion, travel in positive
direction giving heed to the reference switch.
If the positive limit switch is operated, machine referencing is terminated
and an error is reported to the status register.

13

No ramps:
Acceleration/deceleration ramps are disabled, i.e. the axis immediately
travels to the target position at the stepping rate specified in register
11103. Acceleration/deceleration ramps are not being used.

14

With ramps (default): Normal mode with acceleration/deceleration ramp.

17

Relative positioning ON:
Positioning relates to the last set position, but not to the reference position.

18

Absolute positioning ON (default):
Positioning relates to the reference position.

19

After AXARR instruction, continue to travel to former target position:
A positioning process, which has been interrupted by an AXARR
instruction (or instruction 0), is resumed and the axis travels to the initial
target position.

22

Stop at the reference position (default)

23

Do not stop at the reference position:
At the reference position, the actual position is set to zero, but not the set
position. Then, the axis resumes travelling.

Jetter AG

129

10 Stepper Motor Control

PROCESS-PLC

Register 11102: Set Position
Function
Read

Description
Set position of the axis
Value following reset: 0

Write

Specification of the next set point for the axis and
immediate start of the positioning process

Value range

-8388608 .. +8388607 (23-bit-signed integer)

Examples:
1.

THEN
REGISTER_LOAD [11103 with 1000]
REGISTER_LOAD [11102 with 10000]

This instruction set is identical with the positioning instruction:
POS[Axis11, Pos10000, v1000]

The positioning process is started and the axis is moved to the absolute position
10000.
2.

THEN
DISPLAY_REG [#0, cp=1, Reg=11102]

The present set position of the axis is displayed top left on the display.
3.

THEN

REG 11102
=

REG 11102
+
100
Axis positioning to the relative position 100 is started, i.e. the axis travels 100 steps
further. Positioning is carried out in absolute positioning mode.

Important!
Register 11102 can be altered any time during the positioning process. From then
on, the positioning process will refer to the new value. While doing so, the axis
does not stop.
Reversal of direction during a positioning process by means of register 11102 may
result in the axis to skip steps. Therefore, it is advisable to carry out reversal of
direction by means of ramp functions.

130

Jetter AG

NANO-B

10.2 Firmware of Stepper Motor Control

Register 11103: Set Speed (Stepping Rate)
Function
Read

Description
Maximum set speed of the axis
Value following reset: 100 (Hz)

Write

Specification of a new maximum set speed for the
axis. The new value is accepted immediately.

Value range

0 .. 5000 (in Hz)

When entering a new value into register 11103 distinction must be made between
two system states:
1. The axis is at standstill at the moment:
The new value is stored for the next positioning process.
2. A positioning process presently is in progress:
The new value is accepted as new maximum set speed. The maximum value is increased or decreased to suit the new value. Change of the maximum value does not
take place steplessly, but with the "acceleration ramp" specified in register 11105.

Examples:
1.

THEN
REGISTER_LOAD [11103 with 2500]

This instruction forces the axis to travel with a stepping rate of 2500 Hz.

2.

THEN

REG 11103
=

REG 11103
+
1000
The stepping rate of the axis is increased by 1000 Hz. On principle, the limiting value
of 5000 Hz must not be exceeded.

Jetter AG

131

10 Stepper Motor Control

PROCESS-PLC

Register 11104: Polarities
Function
Read

Description
Present polarity settings
Value following reset: 7 (reference switch and limit switch: N/O)

Write

New settings for polarity of reference and limit switch

Value range

0 .. 55

This register is bit-coded:
Bit 0:

Bit 1:

Bit 2:

Bit 4:

Bit 5:

132

0=

Reference switch (24 V) is negative, i.e. no voltage at the
input means reference position.

1=

Reference switch (24 V) is positive, i.e. voltage at the
input means reference position.

0=

Limit switch (24 V) is negative, i.e. no voltage at the input
means limit position; N/C.

1=

Limit switch (24 V) is positive, i.e. voltage at the input
means limit position; N/O.

0=

DIR level low for positive direction.

1=

DIR level high for positive direction.

0=

INPUT2 is used as reference input.

1=

INPUT2 is used as input and the status bit "Reference
OK" is 1.

0=

INPUT3 is used as negative limit switch input.
INPUT4 is used as positive limit switch input.

1=

INPUT2 is used as input.
INPUT4 is used as input and the status bits of the limit
switches are 0.

Jetter AG

NANO-B

10.2 Firmware of Stepper Motor Control

Register 11105: Acceleration Ramp
Function
Read

Description
Present value of the acceleration ramp parameter
Value following reset: 10

Write

Transfer of a new value for the acceleration ramp
parameter.

Value range

1 .. 255 (Hz / 4 ms) *)

*) i.e.

every 4 ms the register value is increased by 10 Hz.

When during a positioning process a new value is entered into register 11105, this
will have no effect on the motion in progress. The new value for acceleration ramp
will be used only when the next positioning process begins, i.e. by writing into register
11102 or by issuing the POS instruction.
In register 11105 the rate of rise of the stepping rate, with which the axis accelerates
when a motion is started, is defined. Please, refer to Fig. 28, page 133. The greater
the value, the higher the acceleration, however, the more critical the motor
performance.

Fig. 28: Speed Profile of Acceleration/Deceleration Ramps

Jetter AG

133

10 Stepper Motor Control

PROCESS-PLC

Register 11106: Deceleration Ramp
Function
Read

Description
Present value of the deceleration ramp parameter
Value following reset: 10

Write

Transfer of a new value for the deceleration ramp
parameter.

Value range

1 .. 255 [Hz / 4 ms]

When during a positioning process a new value is entered into register 11106, this
will have no effect on the motion in progress. The new value for deceleration ramp
will be used only when the next positioning process begins, i.e. by writing into register
11102 or by issuing the POS instruction.
In register 11106 the steepness of the deceleration ramp is defined. Please, refer to
Fig. 28, page 133. The greater the value, the higher the deceleration, and, however,
the higher the risk of skipping steps during deceleration.

Register 11107: Destination Window
Function
Read

Description
Present value of the destination window parameter
Value following reset: 0

Write

Transfer of a new value for the destination window
parameter.

Value range

0 .. 65535 [Steps]

This new value is stored and will not be effective before the next positioning process.
When during a positioning process a new value is entered into register 11107, this
will have no effect on the motion in progress. The new value for the destination
window will be used only when the next positioning process begins, i.e. by writing into
register 11102 or by issuing the POS instruction.
By using the destination window parameter, faster program flow can be achieved,
because the step enabling condition
WHEN

AXARR
THEN

is fulfilled already before the exact target position is reached. Nevertheless, the exact
target position will be reached.

134

Jetter AG

NANO-B

10.2 Firmware of Stepper Motor Control

Important!
The stepper motor will skip steps if the destination window value is other than
zero, and a reversal of direction of movement is carried out.

Fig. 29: Destination Window
Bit 2 of the status register 11000 indicates whether the axis is in the destination
window specified in register 11107.

Register 11108: Digital Offset, Acceleration/
Deceleration Stepping Rate
Function
Read

Description
Present value of the acceleration/deceleration
stepping rate
Value following reset: 10

Write

Transfer of a new value for the acceleration/
deceleration stepping rate parameter.

Value range

0 .. 65535 [Hz]

When during a positioning process a new value is entered into register 11108, this
will have no effect on the motion in progress. The new value for acceleration/
deceleration stepping rate will be used only when the next positioning process
begins, i.e. by writing into register 11102 or by issuing the POS instruction.

Jetter AG

135

10 Stepper Motor Control

PROCESS-PLC

Fig. 30: Digital Offset, Acceleration/Deceleration Stepping Rate

Register 11109: Actual Position
Function
Read

Description
Actual axis position
Value following reset: 0

Write

Illegal

Value range

23-bit-signed integer

This parameter is used to display the present actual position. The "internal" count of
the axis is displayed only, as there is no feedback from the motor. This value should
always represent the instantaneous axis position. Skipped steps will not be recorded.

Example:
WHEN

REG 11109
>

2000
THEN
A 103

This program segment has the following meaning: Wait until the axis has crossed
position 2000, then activate output 103.

136

Jetter AG

NANO-B

10.3 Sample Programs

Register 11110: Pulse Width of the STEP Pulse
Function
Read

Description
Pulse Width of the STEP Pulse
Value following reset: 1 = 8,68 µs + Offset (=1.5 µs)

*)

Write

New value

Value range

1 ... 20 *) practicable, maximum value: 65535

Pulse width = value (register 11110) · 8.68 µs + offset (=1.5 µs)

Register 11112: Actual Speed
Function
Read

Description
Actual speed
Value following reset: 0

*)

Write

Illegal

Value range

0 ... 5000 (Hz)*)

presently calculated output frequency in Hz

10.3
Machine
Referencing

Jetter AG

Sample Programs

Since there is no position feedback when positioning is carried out by means of
stepper motors, machine referencing is mandatory. The internally recorded actual
position is set to the present value, in case steps have been skipped during
positioning.
Machine referencing is required at least after the machinery is powered up, in order
to inform the control system of the actual axis position. There are two possibilities
to carry out machine referencing:
•

In the instruction register of the stepper motor control four different machine
referencing modes have been stored which can be started by a register
assignment.

•

Start of an automatic search for reference by means of a program which has been
written with SYMPAS programming instructions.

137

10 Stepper Motor Control

PROCESS-PLC

Important!
Before and during machine referencing the actual position, i.e. the value of
register 11109, is not yet defined. Operation of machinery in such an undefined
state may result in damages to machines. Therefore, the reference position must
be loaded and the actual position must be set to 0 before the machinery is
operated.

1. Possibility: Machine referencing with internal program
The reference switch is located somewhere within the positioning range between the
two limit switches. This reference switch is active over a greater travel than merely
one step of the stepper motor. In order to be able to determine a definite reference
position it is necessary to approach the reference switch always from the same side.
In the given case, this is to be done in positive direction. The starting point for
determining the direction is the negative limit switch.
The given machine referencing program first specifies the speed for machine
referencing by loading a value into the speed register. Then, automatic machine
referencing is started by means of one of the instructions of the instruction register.
First, the axis approaches the negative limit switch ignoring the reference switch,
reverses direction and travels in positive direction until it will reach the reference
switch. Here, the axis is stopped automatically, and set position and actual position
are set to zero.

Note!
Machine referencing is aborted if the reference switch is ignored and the positive
limit switch is reached by the axis.
On the display an error message is shown. In this case, the error must be fixed
before machine referencing can be repeated by pressing the "F12" key on the
display module.

LABEL 40
THEN
REG_LOAD [11103 with 25]

;Set speed

REGISTER_LOAD [11101
with 12]

;Automatic start

WHEN

;Machine referencing, wait un;til processing is completed

BIT_CLEAR [REG=11100, Bit=13]
THEN
IF

;Check for errors
BIT_CLEAR [REG=11100, Bit=12]

THEN

138

Jetter AG

NANO-B

10.3 Sample Programs

GOTO 42

ELSE
DISPLAY_TEXT [#0, cp=1, "Check reference switch!"]
DISPLAY_TEXT [#0, cp=25, "Continue with F12"]
WHEN
FLAG 2212

;F12 on the display
;module has been pressed

THEN
GOTO 40
LABEL 42
THEN
....

;Additional program

2. Possibility:
In this case, the positive limit switch also acts as reference switch; here, the
reference switch and limit switch inputs must be interconnected. This means that, on
principle, the reference switch can be approached only from one direction.
Thus, the reference signal is unambiguously defined.
LABEL 40
THEN
POS [Axis11, Pos4000000, v100)

;Rapid traverse to;wards limit switch

WHEN
BIT_SET [REG=11100, Bit=5]
THEN
POS [Axis11, Pos-4000000, v10)
WHEN
BIT_CLEAR [REG=11100, Bit=5]

;Low-speed reverse
;until limit switch
;has been released

THEN
REGISTER_LOAD [11101 with 4]

;Search for reference

POS [Axis11, Pos4000000, v1]

;Machine referencing
;at very low speed

WHEN
BIT_SET [REG=11100, Bit=0]

;Reference point found

THEN

Note!
The difference between alternative 1 and 2 is the assignment of register REG
11101.
With REGISTER_LOAD [11101 with 12] the automatic program 12 is started and
processed.
With REGISTER_LOAD [11101 with 4] the reference is cleared and, for a while,
nothing happens.
When the axis approaches the next reference switch, the new reference is set.
To do so, an additional program is required.

Jetter AG

139

11 User-Programmable Interface

PROCESS-PLC

11

User-Programmable Interface

11.1

Description of Connections,
Activation

User-Programmable Interface Cables for RS232 PC or
LCD Sockets
PROCESS-PLC

Shield

VIADUKT
RS232

9-pin male SUB-D
connector

Shield

or
15-pin male SUBD connector

Connect shield with the greatest
possible surface area!
Use metallised housing only!

PIN

PIN

2

TXD

RXD

2

3

RXD

TXD

3

7

140

Signal

Gnd

5

Jetter AG

NANO-B

11.1 Description of Connections, Activation

User-Programmable Interface Cables for RS422 LCD
Sockets
PROCESS-PLC

Shield

User Interface

Shield

15-pin male SUBD connector

Connect shield with the greatest
possible surface area!

15-pin male SUBD connector

Use metallised housing only!

Jetter AG

PIN

Signal

PIN

4

DC 24 V

15

7

Gnd

12

10

SDB

RDB

6

11

SDA

RDA

7

12

RDB

SDB

4

13

RDA

SDA

5

141

11 User-Programmable Interface

PROCESS-PLC

User-Programmable Interface Cables for RS232 PC or
LCD Sockets
PROCESS-PLC

Shield

Specification
RS485

9 pin male SUB-D
connector (PC)

Shield

or
15 pin male SUBD connector
(LCD)
Connect shield with the greatest
possible surface area!
Use metallised housing only!

142

PIN

Signal

Comment

7

Gnd

-

8

Data +

-

9

Data -

-

Jetter AG

NANO-B

11.2 Register Description

11.2

Register Description
Register 10000: Configuration for UserProgrammable Interface

Function
Read

Description
Present configuration
Value following reset: 0

Write

Value range

Present output mask
0 ..

No user-programmable interface

1 ..

PC

RS232 = PRIM

2 ..

LCD

RS422 / RS232 = PRIM

3 ..

JETWay RS485 = PRIM

0 ... 3

Note!
The user may program one interface exclusively.
Default settings: no PRIM, 8N1, 9600!
PRIM = user-programmable interface!

Register 10001: Baud Rate
Function
Read

Description
Present value of the baud rate
Value following reset: 6

Write

Value range

Jetter AG

new baud rate:
0

150 bits/s

1

300 bits/s

2

600 bits/s

3

1200 bits/s

4

2400 bits/s

5

4800 bits/s

6

9600 bits/s

7

19200 bits/s

8

38400 bits/s

for RS485 only

9

57600 bits/s

for RS485 only

10

115200 bits/s

for RS485 only

Default setting

0 ... 10

143

11 User-Programmable Interface

PROCESS-PLC

Register 10002: Interface Configuration
Function
Read

Description
Present data format
Value following reset: 4

Write

New baud rate:
0 = 7 bit

Value range

even

1 stop bit

1 = 7 bit

odd

1 stop bit

2 = 8 bit

even

1 stop bit

3 = 8 bit

odd

1 stop bit

4 = 8 bit

no parity

1 stop bit

5 = 7 bit

even

2 stop bit

6 = 7 bit

odd

2 stop bit

7 = 7 bit

no parity

2 stop bit

0 ... 7

Register 10003: Sending Buffer
Function
Read

Description
Latest character that has been sent or is to be sent
Value following reset: 0

Write

Send a character

Value range

0 ... 255

Important!
The maximum sending buffer size is 128 characters with a size of 8 bit.

Register 10004: Sending Buffer Occupancy
Function
Read

Description
Present occupancy of the sending buffer
Value following reset: 0

Write

Illegal

Value range

0 ... 128

Register 10004 displays the number of received values.

144

Jetter AG

NANO-B

11.3 Programming

Register 10005: Receiving Buffer;
characters are cleared at access
Function
Read

Description
Received character
Value following reset: 0

Write

Illegal

Value range

0 ... 255

Note!
The maximum receiving buffer size is 128 characters with a size of 8 bit. Access
to register 10005 deletes the characters contained in the receiving buffer. This
means that for reprocessing a character must be stored before a read access is
carried out.

Register 10006: Receiving Buffer Occupancy
Function
Read

Description
Present occupancy of the receiving buffer
Value following reset: 0

Write

Illegal

Value range

0 .. 128

11.3

Programming

Use of the user-programmable interface is shown in the sample program below:

11.3.1 Program Listing

Jetter AG

0:

;*******************************************************

1:

;* The program will receive the upper-case characters

2:

;* from „A“ to „Z“ via the N-SER 1 module, and will then *

3:

;* send them back as lower-case characters.

4:

; ******************************************************

5:

; DEF_FUNCTION [RecPRIM, RP]
Par: rFirstChar, rLastChar
Var: rHelp

6:

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++

*
*

7:

; +

This function is used to read a character from

+

8:

; +

the receiving buffer

+

145

11 User-Programmable Interface

PROCESS-PLC

9:

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++

10:

11:
12:
13:
14:
15:
16:
17:
18:

REGISTER_LOAD [rHelp with R(RecPRIM)]
;read character from buffer,
;check character for valid range.
IF
LIMITS [Reg=rHelp, low=R(rFirstChar),
high=R(rLastChar)]
Then
REGISTER_LOAD [RecPRIM with R(rHelp)]
;character is valid
ELSE
REGZERO RecPRIM
RETURN

19:

END_DEF

20:

DEF_FUNCTION [SendPrim, S]
Par: rSendChar

21:

;++++++++++++++++++++++++++++++++++++++++++++++++++++++

22:

;+ This function is used to write a character

+

23:

;+ into the sending buffer.

+

24:
25:

;++++++++++++++++++++++++++++++++++++++++++++++++++++++
WHEN

26:

REG rSendCnt

;Is there free space

27:

<

;in the sending buffer?

28:
29:

128
THEN

30:

REG rPRIMSend

;Send back modified

31:

=

;character

32:

REG rSendChar

33:

+

34:

32

35:

THEN

36:

RETURN

37:

END_DEF

38:

TASK tPRIMhandling ------------------------------------------

39:

REGISTER_LOAD [rPRIMconfig1 with 1]
;RS232 PC configuration

40:

REGISTER_LOAD [rPRIMconfig2 with 2]
;Configuration: even Parity,
;8 bit, 1 stop bit

41:
42:
43:

REGISTER_LOAD [rPRIMbaud with 7]
;19200 Baud
LABEL mPRIMloop
WHEN

44:

NOT

;Are there any incoming

45:

REGZERO rRecCnt

;characters?

46:
47:

146

;character is invalid

THEN

THEN
REG rChar

48:

=

49:

RecPRIM [rLastChar=90, rFirstChar=65]

Jetter AG

NANO-B

11.3 Programming

50:

IF

51:
52:

REGZERO rChar

53:
54:

;Is there a valid

THEN

;character?

GOTO mPRIMloop

;NO

THEN

55:

SendPrim [rSendChar=R(rChar)]

56:

GOTO mPRIMloop

End of Program

11.3.2 Symbol Listing
**********

Task

tPRIMhandling
**********

******************

0

Flags

****************

fPRIMloop

!

**********

Registers

**************

rPRIMconfig1

10000

rPRIMconfig2

10002

rPRIMbaud

10001

rPRIMSend

10003

;sending register

rPRIMRec

10005

;receiving register

rRecCnt

10006

;rec. buffer occupancy

rSendCnt

10004

;send. buffer occupancy

rChar

100

Note!

In the example above, sending and receiving of characters are divided into
several functions:

Jetter AG

•

A character is sent if the value is written into the sending register.

•

Occupancy of the the receiving buffer is queried from register 10006..

•

Access to register 10005 deletes characters contained in the receiving buffer.

•

Occupancy of the the sending buffer is queried from register 10004..

147

12 Real-Time Clock

PROCESS-PLC

12

Real-Time Clock

With the help of a battery buffered register set access to the functions of the real-time
clock is made.

Overview: Real-Time Clock Registers
Register #

Function

2911

Seconds

2912

Minutes

2913

Hours

2914

Day of the week with:
–
–
–
–
–
–
–

0 = Sunday
1 = Monday
2 = Tuesday
3 = Wednesday
4 = Thursday
5 = Friday
6 = Saturday

2915

Day

2916

Month

2917

Year 0 .. 99

Sample Program for Real-Time Clock
The following sample program shows the present real-time clock data on the display.
The following approach is used to display minutes and seconds with a leading zero:

For right justified display of numbers it is possible to specify the
number of digits to be displayed by using register 2812.
If less digits are allowed than there are significant digits in the
number, then leading digits are suppressed.

The program uses this approach by adding the value 100 to the
number of seconds and minutes. Then, display of the leading " 1" will
be suppressed.

148

Jetter AG

NANO-B

0:

TASK 0 -------------------------------------------

1:

;

2:

REGISTER_LOAD [2816 with 1]

;No sign

3:

REGISTER_LOAD [2812 with 3]

;2-digit numbers

4:

DISPLAY_TEXT [#0, cp=1, „_The present time is:“]

5:

;

6:

FLAG 100

7:

SUBPROGRAM 900

8:

DELAY 5

9:

GOTO 100

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

;
FLAG 900

;-> Displaying

IF
REG 2917
< 90
THEN
DISPLAY_TEXT [#0, cp=27, „.

.20

,

:

:“]

.19

,

:

:“]

ELSE
DISPLAY_TEXT [#0, cp=27, „.
THEN

20:

DISPLAY_REG [#0, cp=25, Reg=2915]

;Day

21:

DISPLAY_REG [#0, cp=28, Reg=2916]

;Month

22:

DISPLAY_REG [#0, cp=33, Reg=2917]

;Year

23:

;

24:

;-------------- Display Time -------------

25:

;

26:

DISPLAY_REG [#0, cp=36, Reg=2913]

27:

REG 900

;Procedure for displaying

28:

=

;the decimal place

29:

REG 2912

;even if it is „0“

30:

+

31:

100

32:

DISPLAY_REG [#0, cp=39, Reg=900]

33:

REG 900

;Procedure for displaying

34:

=

;the decimal place

35:

REG 2911

;even if it is „0“

36:

+

37:

100

38:

DISPLAY_REG [#0, cp=42, Reg=900]

39:

Return

;Hour

;Minute

;Second

End of Program

Jetter AG

149

13 Expansion Modules

Centralised and
Decentralised
Arrangement of
Expansion
Modules

PROCESS PLC

13

Expansion Modules

13.1

Topology of the JETTER System Bus

The NANO-B control system can be expanded via digital and analog expansion
modules. The JETTER system bus port is located on the righthand side of the
basic controller. The internal system bus is a JETTER system bus. The expansion
modules are either centrally attached to the basic module, or located distributedly
at a distance of up to 30 meters from the basic module.

The basic module can be expanded to a maximum of:
•

136 digital inputs/outputs (including CPU I/O)

->

non-intelligent modules

•

64 analog inputs

->

non-intelligent modules

•

61 analog outputs

->

non-intelligent modules

•

16 hardware counters

->

non-intelligent modules

•

3 servo axes

->

intelligent modules

•

7 stepper motor axes

->

intelligent modules

•

12 PID controllers

->

intelligent modules

Note!
In order to ensure flawless functioning of the centralised or decentralised
arrangement, the following boundary conditions as regards configuration must be
met. Failure to meet these boundary conditions will result in malfunctions of
individual modules or a breakdown of the entire system configuration.
•
•
•

•

•

•

•
•

150

The NANO-B basic controller is designed to supply a maximum of 5 nonintelligent expansion modules.
The N-PS 1 module is designed to supply a maximum of 5 non-intelligent
expansion modules.
For each remote module set at least one N-PS 1 module is required. Even with
intelligent modules, the N-PS 1 modules must be located at the beginning of the
module set, so as to meet EMC requirements.
A maximum quantity of 15 non-intelligent expansion modules may be linked
together with the N-PS 1 modules being ignored (please refer to fig. 31:
"Centralised Arrangement on the JETTER System Bus", page 151, and fig. 32:
"Decentralised Arrangement on the JETTER System Bus", page 151).
Power supply of intelligent modules (CAN-DIMA, N-PID 1, N-SM1 D, N-SM 2, and
N-SV1) is made through an individual power supply unit (DC 24 V), and not
through a N-PS 1 module.
Intelligent modules are not designed to supply non-intelligent expansion modules
with voltage and current. Therefore, for a heterogeneous decentralised module
set with intelligent and non-intelligent expansion modules at least one N-PS 1
module is required.
One N-IO 16 module is designed to supply a maximum of 3 expansion modules.
Power supply of a FESTO CP module is always to be made through an individual
supply unit. Such a unit is for example a N-PS 1CP power supply unit or a FESTO
tee connector.

Jetter AG

NANO-B

13.1 Topology of the JETTER System Bus

13.1.1 Centralised Arrangement on the JETTER
System Bus
– In case of centralised arrangement, the expansion modules are directly attached
to the basic controller.
– A centralised arrangement may include up to 15 non-intelligent and 3 intelligent
expansion modules.
– Electrical and mechanical connection is realised via a SUB-D connector. These
connectors excel by their reliable mechanical and electrical connections, as well
as good EMI characteristics.

Fig. 31: Centralised Arrangement on the JETTER System Bus

13.1.2 Decentralised Arrangement on the
JETTER System Bus
– Use of the JETTER system bus as internal system bus allows that one or several
modules can remotely be located at a maximum distance of 30 meters from the
basic controller.
– A decentralised arrangement may include up to 15 expansion modules.
– Each decentralised module set must be connected to a N-PS 1 power supply unit.
One power supply unit N-PS 1 is designed for supplying 5 expansion modules.
– The modules are controlled by the application program as if they were located in
a centralised configuration.

Fig. 32: Decentralised Arrangement on the JETTER System Bus
Jetter AG

151

13 Expansion Modules

PROCESS PLC

13.1.3 Direct Connection of FESTO CP Modules
to the JETTER System Bus
FESTO CP modules can directly be connected to the Process PLC NANO. This
means that no special bus node for either of the systems, FESTO CP module, or
NANO controller, is required. Connection is carried out in the same way as for
decentralised arrangement of digital and analog modules. In addition to this, a N-PS
1CP power supply unit or a FESTO tee connector is required. Either of the devices
must be supplied with DC 24 V; please refer to chapter 14: "NANO Network Topology
and FESTO CP Modules", page 244.

Fig. 33: Connecting FESTO CP Modules to the JETTER System Bus

152

Jetter AG

NANO-B

13.2 N-ID 8 Module, 8 Digital Inputs

13.2

N-ID 8 Module, 8 Digital Inputs

The N-ID 8 module serves to connect centralised or decentralised actuators or
valves.

13.2.1 Physical Dimensions

Fig. 34: Mounting Dimensions of the Digital Input Module N-ID 8

Jetter AG

153

13 Expansion Modules

PROCESS PLC

13.2.2 Overview and Technical Data
Technical Data of the N-ID 8 Module
Digital Inputs

DC 24 V -15 % .. +20 %

Power Supply

•

centralised arrangement: via basic unit
cf. chapter 13.1.1: "Centralised
Arrangement on the JETTER System
Bus", page 151

•

decentralised arrangement: via power
supply N-PS 1, cf. chapter 13.1.2:
"Decentralised Arrangement on the
JETTER System Bus", page 151

Connecting to the basic unit via
JETTER system bus

Male connector SUB-D, 9 pins

Input terminals

Screw terminals

LEDs, inputs 1-8

24 volt are applied to the input

Enclosure

Aluminium, powder coated, black

Dimensions (H x W x D in mm)

114 x 45 x 70

Weight

350 g

Mounting

DIN Rail

Heat loss of CPU logic circuit

0.3 Watt

Technical Data of N-ID 8 Inputs

154

Input quantity

8

Rated Input Voltage

DC 24 V -15 % .. +20 %

Voltage Range

0 .. 30 V

Input current

approx. 8mA

Input resistance

3.0 kΩ

Input delay time

approx. 3 ms

Signal voltage ON

min. 15 V

Signal voltage OFF

max. 10 V

Electrical isolation

None

Jetter AG

NANO-B

13.2 N-ID 8 Module, 8 Digital Inputs

EMC - N-ID 8 Module
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m) at
10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000
MHz; test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

155

13 Expansion Modules

PROCESS PLC

EMC - N-ID 8 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

156

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

Jetter AG

NANO-B

13.2 N-ID 8 Module, 8 Digital Inputs

13.2.3 Description of Connections
On the expansion module, 8 terminals have been provided for 24 V signals. The 0 V
signal is to be connected to the 0 V terminal of the electric cabinet.

Fig. 35: Diagram of Input Wiring of a N-ID8 Module

Addressing
Digital Inputs

For more information on addressing digital inputs refer to chapter 5.1: "Addressing
Digital Inputs/Outputs", page 48.

13.2.4 Description of LEDs
The LEDs show that a 24 V input signal is applied to the corresponding input.

Jetter AG

157

13 Expansion Modules

13.3

PROCESS PLC

N-OD 4.2 Module, 4 Digital Outputs

The N-OD 4.2 serves for connecting centralised or decentralised actuators, valves
or contactors.

13.3.1 Physical Dimensions

Fig. 36: Physical Dimensions of the Digital Output Module N-OD 4.2

158

Jetter AG

NANO-B

13.3 N-OD 4.2 Module, 4 Digital Outputs

13.3.2 Overview and Technical Data
Technical Data of the N-OD 4.2 Module
Digital Outputs

Transistor DC 24 V, 2.0 A

Power supply of the internal logic
circuit

•

centralised arrangement: via basic unit
cf. chapter 13.1.1: "Centralised
Arrangement on the JETTER System
Bus", page 151

•

decentralised arrangement: via power
supply N-PS 1, cf. chapter 13.1.2:
"Decentralised Arrangement on the
JETTER System Bus", page 151

Connecting to the basic unit via
JETTER system bus

Male connector SUB-D, 9 pins

Output terminals

Screw terminals

LEDs, outputs 1 - 4

Output is set on 24 V

Enclosure

Aluminium, powder coated, black

Dimensions (H x W x D in mm)

114 x 45 x 70

Weight

350 g

Mounting

DIN Rail

Heat loss of CPU logic circuit

0.3 Watt

Technical Data of the N-OD 4.2 Outputs

Jetter AG

Quantity of outputs

4

Type of outputs

Transistor, pnp

Rated voltage

DC 24 V -15 % .. +20 %

Voltage Range

20 .. 30 V

Load current

max. 2.0 A per output

Output power of outputs

192 Watt

Electrical isolation

None

Protective circuit

Short circuit, overvoltage,
overtemperature

Protection against inductive loads

Yes

Signal voltage ON

Typ. VSupply -1.5 V

159

13 Expansion Modules

PROCESS PLC

EMC - N-OD 4.2 Module
Emitted Interference
Parameter

Value
•

Enclosure

•

Frequency band 30 - 230 MHz,
limit 30 dB (µV/m) at 10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000 MHz;
test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

160

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Jetter AG

NANO-B

13.3 N-OD 4.2 Module, 4 Digital Outputs

EMC - N-OD 4.2 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

161

13 Expansion Modules

PROCESS PLC

13.3.3 Description of Connections
On the expansion module, 4 terminals have been provided for 24 V output signals.
The 0 V signal is to be connected to the 0 V terminal of the electric cabinet.

Fig. 37: Example: Output Wiring of an N-OD 4.2 Module

Addressing of
Digital Outputs

For addressing of digital outputs refer to chapter 5.1: "Addressing Digital Inputs/
Outputs", page 48. Addressing of outputs of N-OD 4.2 modules is carried out the
same way as with the N-OD 8 module. However, it must be taken into account that
there are only 4 outputs.

13.3.4 Description of LEDs
The LEDs show that a 24 V output signal is applied to the corresponding output.

162

Jetter AG

NANO-B

13.4 N-OD 8 Module, 8 Digital Outputs

13.4

N-OD 8 Module, 8 Digital Outputs

The N-OD 8 serves for connecting centralised or decentralised actuators, valves or
contactors.

13.4.1 Physical Dimensions

Fig. 38: Physical Dimensions of the Digital Output Module N-OD 8

Jetter AG

163

13 Expansion Modules

PROCESS PLC

13.4.2 Overview and Technical Data
Technical Data of the N-OD 8 Module
Digital Outputs

Transistor DC 24 V, 0.5 A

Power supply of the internal logic
circuit

•

centralised arrangement: via basic unit
cf. chapter 13.1.1: "Centralised
Arrangement on the JETTER System
Bus", page 151

•

decentralised arrangement: via power
supply N-PS 1, cf. chapter 13.1.2:
"Decentralised Arrangement on the
JETTER System Bus", page 151

Connecting to the basic unit via
JETTER system bus

Male connector SUB-D, 9 pins

Output terminals

Screw terminals

LEDs, outputs 1 -8

Output is set on 24 V

Enclosure

Aluminium, powder coated, black

Dimensions (H x W x D in mm)

114 x 45 x 70

Weight

350 g

Mounting

DIN Rail

Heat loss of CPU logic circuit

0.3 Watt

Technical Data of N-OD 8 Inputs

164

Quantity of outputs

8

Type of outputs

Transistor, pnp

Rated voltage

DC 24 V -15 % .. +20 %

Voltage Range

20 .. 30 V

Load current

max. 0.5 A per output

Output power of outputs

96 Watt

Electrical isolation

None

Protective circuit

Short circuit, overvoltage,
overtemperature

Protection against inductive loads

yes

Signal voltage ON

typ. VSupply -1.5 V

Jetter AG

NANO-B

13.4 N-OD 8 Module, 8 Digital Outputs

EMC - N-OD 8 Module
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m)
at 10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m)
at 10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000
MHz; test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

165

13 Expansion Modules

PROCESS PLC

EMC - N-OD 8 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines, Long Bus
Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

166

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

Jetter AG

NANO-B

13.4 N-OD 8 Module, 8 Digital Outputs

13.4.3 Description of Connections
On the expansion module, 8 terminals have been provided for 24 V output signals.
The 0 V signal is to be connected to the 0 V terminal of the electric cabinet.

Fig. 39: Example: Output Wiring of an N-OD 8 Module

Addressing
Digital
Outputs

For addressing of digital outputs refer to chapter 5.1: "Addressing Digital Inputs/
Outputs", page 48.

13.4.4 Description of LEDs
The LEDs show that a 24 V output signal is applied to the corresponding output.

Jetter AG

167

13 Expansion Modules

13.5

PROCESS PLC

N-IO 16 Module - Digital Inputs and
Outputs

The N-IO 16 module serves to connect centralised or decentralised pushbuttons or
lamps.

13.5.1 Physical Dimensions of the N-IO 16
Module

Fig. 40: Physical Dimensions of the Digital Input and Output Module N-IO 16

168

Jetter AG

NANO-B

13.5 N-IO 16 Module - Digital Inputs and Outputs

13.5.2 Overview and Technical Data
Technical Data of the N-IO 16 Module
Power supply of the internal
logic circuit

Own power supply unit DC 20 ... 30 V

Power Loss

•
•

•

Time period ≤ 10 ms
Time interval between two voltage
dips ≥ 1 s
Severity level PS2

to DIN EN 61131-2

Connections to the basic unit
via JETTER system bus

Male connector SUB-D, 9 pins

Input and output terminal
blocks

Double- and three-level terminal blocks

Enclosure

Aluminium, powder coated, black

Dimensions
(H x W x D in mm)

50 x 130 x 103

Weight

326 g

Mounting

DIN Rail

Electrical isolation

None

Heat loss of CPU logic circuit

1.0 Watt

Technical Data of N-IO 16 Inputs
Number of digital inputs

8

Rated Input Voltage

DC 24 V -15 % .. +20 %

Voltage Range

0 - 30 V

Input current

approx. 8mA

Input resistance

3.0 kΩ

Signal voltage ON

min. 15 V

Signal voltage OFF

max. 10 V
Technical Data of the N-IO 16 Outputs

Jetter AG

Number and type of outputs

8; transistor, pnp

Rated voltage

DC 24 V -15 % .. +20 %

Rated output current

0.5 A

Output power of outputs

96 Watt

Protection against inductive
loads, short circuit, overvoltage and overtemperature

yes

Signal voltage (S) ON

typically VSupply -1.5 V

169

13 Expansion Modules

PROCESS PLC

EMC - N-IO 16 Module
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m) at
10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000 MHz;
test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

170

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Jetter AG

NANO-B

13.5 N-IO 16 Module - Digital Inputs and Outputs

EMC - N-IO 16 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

171

13 Expansion Modules

PROCESS PLC

13.5.3 Description of Connections
•

On the expansion module, 24 terminals have been provided for the 8 inputs. For
the 8 outputs on the expansion module 16 terminals have been provided.

•

Each output can be switched individually and provides voltage values according
to table “Technical Data of the N-IO 16 Module”, page 169.

•

The left +24 Volt terminal is for supplying the internal logic and the top level of the
three-level terminal block. The right +24 Volt power supply terminal is for
supplying the output drivers.

•

All voltage signals relate to 0 V. Within the module, the 0 V signal is connected to
ground internally via the enclosure.

Note!
•

•

Please note that in registers 2015 and 2016 the N-IO 16 module appears as 1
module, though it performs the functions of 2 modules. The N-IO 16 module
is to be regarded as one combined N-PS 1, N-OD 8, and N-ID 8 module.
Therefore, three non-intelligent modules, such as N-ID 8, N-OD 8, can be
connected to the N-IO 16 module and be supplied with voltage.

Important!
•

For Inputs three-level terminal blocks are available.

•

Apply to the digital inputs of the N-IO 16 module a maximum voltage of 28.8
Volt. This will prevent the N-IO 16 module and the sensor, e.g. an inductive
limit switch, from being destroyed.

Following power-up, the N-IO 16 module is initialised by the NANO-CPU via JETTER
system bus. During this process, the various initialisation modes are displayed
through LEDs RUN, and ERR. In the normal course of initialisation, both LEDs flash
up for a short time only.

Important!
•

172

Do not apply a voltage to individual digital outputs.
If application of voltage cannot be avoided, for example, for testing inputs/
outputs with the N-IO 16 module wired in an electric cabinet, the voltage has
to be applied to the output drivers of the module before-hand.
The output drivers will be destroyed if you fail to apply voltage to them.

Jetter AG

NANO-B

13.5 N-IO 16 Module - Digital Inputs and Outputs

Note!
For fault-free operation, both 24 V terminals have to be connected-up. The 3
LEDs have the following meaning:
•

LED POWER (green):

Voltage supply of the outputs is provided.

•

LED ERR (red):

One or more output driver chips signal
overload or error.

•

LED RUN (green):

The operating system of the N-IO 16
module has been activated.

Input and Output Terminal Assignment
of the N-IO 16 Module
Terminal

Signal
Terminal block OUTPUT

24 Volt

Supply voltage

0 Volt

Gnd

1 .. 8

Digital outputs
Terminal block INPUT

24 Volt

Sensor supply voltage

S

Sensor signal

0 Volt

Gnd

1 .. 8

Digital inputs

Emergency Stop
Circuitry of the
N-IO 16 Module

Fig. 41: Example: Emergency Stop Circuitry of the N-IO 16 Module

Note!
Once the Emergency Stop button is pressed, all outputs are disabled.
However, the logic circuit remains connected, e.g. for scanning errors.

Jetter AG

173

13 Expansion Modules

PROCESS PLC

Fig. 42: Example: Input Wiring of the N-IO 16 Module

Coding of the Input / Output Number: xyz

174

Jetter AG

NANO-B

13.5 N-IO 16 Module - Digital Inputs and Outputs

Note!
For determination of the module number, only the non-intelligent modules will be
counted. Intelligent modules, such as SV, SM, PID, etc., located among the
modules, are not being taken into consideration.
Module number 1 is always assigned to the basic control unit. Starting from there,
the module numbers are being counted left to right.

Numbering of Inputs and Outputs of the N-IO 16 Module
Example 1:
The table below shows the input/output numbering for a basic controller equipped
with one N-ID 8 module, one N-OD 8 output module, and one N-IO 16 module:
NANO-B
Basic Unit
Module # 1
Inputs and
Outputs
101 .. 108

N-OD 8
Output Module
Module # 2
Output
201 .. 208

N-IO 16
I/O Module
Module # 3
Input
301 .. 308

N-ID 8
Input Module
Module # 4
Input
401 .. 408

Output
301 .. 308

Example 2:
The table below shows the input/output numbering for a basic controller equipped
with one N-SV 1 module, one N-IO 16 output module, and one digital output module
N-OD 8:

NANO-B
Basic Unit
Module # 1
Inputs and
Outputs
101 .. 108

Jetter AG

N-OD 8
Output Module
Module # 2
Output
201 .. 208

N-SV 1
Servo Module
Module # 3
SV module

N-IO 16
I/O Module
Module # 4
!!!
Input
301 .. 308

175

13 Expansion Modules

13.6

PROCESS PLC

N-IA 4 Module - Analog Inputs

The N-IA 4 module is for measuring analog input voltages and currents. The
measured values are evaluated and processed by the application program.

13.6.1 Physical Dimensions of the N-IA 4
Module

Fig. 43: Physical Dimensions of the Analog Input Module N-IA 4

176

Jetter AG

NANO-B

13.6 N-IA 4 Module - Analog Inputs

13.6.2 Overview and Technical Data
Technical Data of the N-IA 4 Module
Power Supply

centralised arrangement: via
basic unit; cf. fig. 13.1.1:
"Centralised Arrangement on
the JETTER System Bus",
page 151.

•

decentralised arrangement:
via power supply N-PS 1, cf.
chapter 13.1.2:
"Decentralised Arrangement
on the JETTER System Bus",
page 151

Connections to the basic unit via JETTER
system bus

Male connector SUB-D, 9 pins

Input terminals

Screw terminals

Enclosure

Aluminium, powder coated,
black

Dimensions (H x W x D in mm)

114 x 45 x 70

Weight

190 g

Mounting

DIN Rail

Input quantity

4 channels:
- U 1-4 for voltage
- I 1-4 for current

Voltage Range

Value range (voltage)

- Unipolar

0 -10 V

- Bipolar

-10 V ... + 10 V

- Unipolar

0 ... 4095

- Bipolar

-2048 ... 2047

Current range

0 ... 20 mA

Value range (current)

0 ... 2047

Input impedance

Jetter AG

•

- Current

220 Ω

Resolution (voltage)

12 Bit

Resolution (current)

11 Bit

Sampling interval

< 13 ms

Heat loss of CPU logic circuit

0.3 Watt

Electrical isolation

None

177

13 Expansion Modules

178

PROCESS PLC

Jetter AG

NANO-B

13.6 N-IA 4 Module - Analog Inputs

EMC - N-IA 4 Module
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m) at
10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000
MHz; test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

179

13 Expansion Modules

PROCESS PLC

EMC - N-IA 4 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

180

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

Jetter AG

NANO-B

13.6 N-IA 4 Module - Analog Inputs

Accuracy Classes of the N-IA 4 Module
Type of Error

Maximum Error *)

Input
Configuration

in LSB
Zero Error

Gain Error

*)

in LSB

•

Unipolar

± 5 LSB

12.2 mV

•

Bipolar

± 10 LSB

48.8 mV

•

Current

± 10 LSB

98 µA

•

Unipolar

± 10 LSB

24.4 mV

•

Bipolar

± 10 LSB

48.8 mV

•

Current

± 10 LSB

98 µA

The typical measuring accuracy is higher.

13.6.3 Description of Connections
On the expansion module, 4 channels with 8 terminals have been provided for the
inputs. Theses terminals are grouped in the following way:
•
•

four terminals for voltage measurement ± 10 V
four terminals for current measurement 0 through 20 mA

Each channel can be switched individually between voltage and current. All voltage
and current input signals relate to 0 V. Within the module, the 0 V signal is connected
to ground internally via the enclosure.

Important!
Apply to the analog inputs of the N-IA 4 module a maximum voltage of 12 V,
or current of 50 mA. This will prevent the N-IA 4 module and the sensor, e.g. a
temperature sensor, from being destroyed.

Jetter AG

181

13 Expansion Modules

PROCESS PLC

Fig. 44: Diagram of Input Wiring of an N-IA4 Module

Important!
To avoid malfunctions the following must be ensured:
•
•
•

The shielding must be clamped under a strain relief with the greatest possible
surface area.
The connection between shielding and ground must be electrically conducting.
The distance "L" of unshielded conductor ends must not exceed 8 cm.

Addressing Analog Inputs
The address is made up of the module number and the number of the respective
input or output:

Coding of the registers:

182

Jetter AG

NANO-B

13.6 N-IA 4 Module - Analog Inputs

Note!
•

For determination of the module number, only the non-intelligent modules will
be counted. Intelligent modules, such as SV, SM, PID, etc., located among the
modules, are not being taken into consideration.

•

Module number 1 is always assigned to the basic control unit. Starting from
there, the module numbers are being counted left to right.

For communication with the CPU, 10 registers and the output byte have been
provided by the N-IA 4 module. The operating system version number of the module
can always be read from register 9. The other module registers are being defined by
the function of the module. The registers are addressed as follows:
Register number = 3000 + (module number - 2) * 10 + local register number

Input and Output Configuration of the N-IA 4 Module
Inputs

A/D Value

Voltage

Current

Register

Unipolar

Bipolar

Channel # 1

3yy0

xxx0xxx0

xxx1xxx0

xxxxxxx1

Channel # 2

3yy1

xx0xxx0x

xx1xxx0x

xxxxxx1x

Channel # 3

3yy2

x0xxx0xx

x1xxx0xx

xxxxx1xx

Channel # 4
Configuration of virtual outputs

3yy3

0xxx0xxx

1xxx0xxx

xxxx1xxx

Output

↑↑↑↑↑↑↑↑

↑↑↑↑↑↑↑↑

↑↑↑↑↑↑↑↑

xx01-xx08

87654321

87654321

87654321

Output numbers

xx = Module number
yy = Module number -2
z = Local register number (predefined with 0, 1, 2 or 3). This number is of no relevance to this configuration

Example 1: Determining Register Numbers
The number of the second expansion module’s register is determined as follows:
Module number = 3
Local register number = 9
Register number = 3019 + (3-2) * 10 +9 = 3003

Note!
When the register number is called in the SYMPAS program, the number of the
module's OS version is displayed. With inquiries always identify this number.

Jetter AG

183

13 Expansion Modules

PROCESS PLC

Example 2: Configuring and Evaluating Measurements
Task definitions with the first expansion module (module # 2):
1. A unipolar input voltage ranging from 0 to 10 V is to be measured using channel 1.
The output register is register 3000.
2. A bipolar input voltage ranging from -10 V to +10 V is to be measured using
channel 2. The output register is register 3001.
3. An input current ranging from 0 to 20 mA is to be measured using channel 3. The
output register is register 3002.
4. A unipolar input voltage ranging from 0 to 10 V is to be measured using channel 4.
The output register is register 3003.

Note!
To carry out measurements, the virtual outputs for the respective measuring
method (unipolar, bipolar, current) have to be set in the SYMPAS program.
The assignment can be seen from table “Input and Output Configuration of the NIA 4 Module”, page 183.

Comments on the approach for task # 1:
Through channel 1 a voltage ranging from 0 V to 10 V is to be measured. In the
SYMPAS program, the code of output xx01 becomes 201 and that of output xx05
becomes 205, since the first expansion module is assigned to module number 2. By
resetting inputs 201, and 205 to zero, a unipolar voltage measurement ranging from
0 V through 10 V with a value range from 0 ... 4095 is defined.
The other tasks are accomplished in the same way.
For details refer to the following table:
Channel #

184

A/D Value

Measurement settings for

Register

Unipolar

Channel # 1

3000

201 = 0
205 = 0

Channel # 2

3001

Channel # 3

3002

Channel # 4

3003

Bipolar

Current

202 =0
206 =1
203 = 1
204 = 0
208 = 0

Jetter AG

NANO-B

13.6 N-IA 4 Module - Analog Inputs

13.6.4 Register Description - N-IA 4 Module
Register 3yy0: Channel # 1 for input voltage/current
Function
Read

Description
Present value for input voltage/current
Value following reset: Present value for applied input
voltage/current

Write

Illegal

Value range

Voltage

- unipolar:

0 ... 4095

- bipolar:

-2048 ... 2047

Current:

0 ... 2047

Register 3yy1: Channel # 2 for input voltage/current
Function
Read

Description
Present value for input voltage/current
Value following reset: Present value for applied
input voltage/current

Write

Illegal

Value range

Voltage

- unipolar:

0 ... 4095

- bipolar:

-2048 ... 2047

Current:

0 ... 2047

Register 3yy2: Channel # 3 for input voltage/current
Function
Read

Description
Present value for input voltage/current
Value following reset: Present value for applied input
voltage/current

Write

Illegal

Value range

Voltage

Current:

Jetter AG

- unipolar:

0 ... 4095

- bipolar:

-2048 ... 2047
0 ... 2047

185

13 Expansion Modules

PROCESS PLC

Register 3yy3: Channel # 4 for input voltage/current
Function
Read

Description
Present value for input voltage/current
Value following reset: Present value for applied input
voltage/current

Write

Illegal

Value range

Voltage

- unipolar:

0 ... 4095

- bipolar:

-2048 ... 2047

Current:

0 ... 2047

Register 3yy9: Version number of the operating
system
Function
Read

Description
Version number of the operating system
e.g. 101= V 1.01

186

Write

Illegal

Value range

23-bit-signed integer

Jetter AG

NANO-B

13.7 N-OA 2 and N-OA 4 Modules - Analog Outputs

13.7

N-OA 2 and N-OA 4 Modules - Analog
Outputs

The N-OA 2 and N-OA 4 modules are for outputting analog voltages. These voltage
values are used as manipulated variables, for example, for actuators etc. Such
voltage values are defined in a user program, such as SYMPAS, and are output by
the module according to definition.

13.7.1 Physical Dimensions of the N-OA 2, and
N-OA 4 Modules
Physical
Dimensions of
the N-OA 2
Module

Fig. 45: Physical Dimensions of the Analog Output Module N-OA 2

Jetter AG

187

13 Expansion Modules

PROCESS PLC

Physical
Dimensions of
the N-OA 4
Module

Fig. 46: Physical Dimensions of the Analog Output Module N-OA 4

188

Jetter AG

NANO-B

13.7 N-OA 2 and N-OA 4 Modules - Analog Outputs

13.7.2 Overview and Technical Data
Technical Data of the N-OA 2, and N-OA 4 Modules
Power Supply

•

centralised arrangement: via basic
unit; cf. chapter 13.1: "Topology of
the JETTER System Bus", page 150

•

decentralised arrangement: via
power supply N-PS 1, cf. chapter
13.1.2: "Decentralised Arrangement
on the JETTER System Bus", page
151

Connections to the basic unit via
JETTER system bus

Male connector SUB-D, 9 pins

Output terminals

Screw terminals

Enclosure

Aluminium, powder coated, black

Dimensions (H x W x D in mm)

114 x 45 x 70

Weight

200 g

Mounting

DIN Rail

Number of outputs (N-OA 2)

2 channels: - U 1-2 for voltage

Number of outputs (N-OA 4)

4 channels: - U 1-4 for voltage

Voltage Range

- Bipolar

-10 V ... + 10 V

Value range (voltage):

- Bipolar

-2048 ... 2047

Resolution (voltage)

12 Bit

Voltage supply of analog outputs

DC 24 V
-15% through +20%, 150 mA
(maximum)

Output current

max. 10 mA

Delay Time

< 4 ms

Electrical isolation

None

Heat loss of CPU logic circuit

0.3 Watt

Output Voltage Accuracy Classes of the N-OA 2,
and N-OA 4 Modules
Type of Error

*)

Jetter AG

Input
Configuration

Maximum Error *)
in LSB

in mV

Zero Error

Bipolar

± 6 LSB

29.3 mV

Gain Error

Bipolar

± 6 LSB

29.3 mV

The typical output voltage accuracy is higher.

189

13 Expansion Modules

PROCESS PLC

EMC of the N-OA 2, and N-OA 4 Modules
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m)
at 10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m)
at 10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000 MHz;
test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

190

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Jetter AG

NANO-B

13.7 N-OA 2 and N-OA 4 Modules - Analog Outputs

EMC of the N-OA 2, and N-OA 4 Modules
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

191

13 Expansion Modules

PROCESS PLC

13.7.3 Description of Connections
On the expansion module, 2 resp. 4 channels have been provided for the outputs.
Each channel can be switched individually and provides bipolar voltage values
of ± 10 V. All voltage signals relate to 0 V. Within the module, the 0 V signal is
connected to ground internally via the enclosure.

Important!
The supply voltage for analog outputs must not exceed 28.8 Volt (150 mA).
This will prevent the N-OA 2, resp. N-OA 4 module and possibly the actuator from
being destroyed.

Fig. 47: Example: Wiring of Outputs of the N-OA 4 Module

192

Jetter AG

NANO-B

Addressing
Scheme for
Analog Outputs

13.7 N-OA 2 and N-OA 4 Modules - Analog Outputs

The register address is made up of the module number and the respective output
number:

Coding of the registers:

Note!
•

For determination of the module number, only the non-intelligent modules will
be counted. Intelligent modules, such as SV, SM, PID, etc., located among the
modules, are not being taken into consideration.

•

Module number 1 is always assigned to the basic control unit. Starting from
there, the module numbers are being counted left to right.

For communication with the CPU, 3 registers have been provided by the N-OA 2
module, and 5 registers by the N-OA 4 module. The operating system version
number of the module can always be read from register 9. The registers are
addressed as follows:

Register number = 3000 + (module number - 2) * 10 + local register number

Output of voltage values to the actuators is carried out via output channels 1 and 2
for the N-OA 2 module, resp. 1 through 4 for the N-OA 4 module.

Example: Definition of Output Voltage
Value 1534 is assigned to channel 1 (register 3000). The resulting voltage is 7.5 volt.

Jetter AG

193

13 Expansion Modules

PROCESS PLC

N-OA 2 Module: Register assignment for analog
outputs
Outputs

D/A value

Voltage

Register

Bipolar

Channel # 1

3yy0

-10 V through +10 V

Channel # 2

3yy1

-10 V through +10 V

YY = Module number -2

N-OA 4 Module: Register assignment for analog
outputs
Outputs

D/A value

Voltage

Register

Bipolar

Channel # 1

3yy0

-10 V through +10 V

Channel # 2

3yy1

-10 V through +10 V

Channel # 3

3yy2

-10 V through +10 V

Channel # 4

3yy3

-10 V through +10 V

YY = Module number -2

Example: Determining Register Numbers
The number of the second expansion module’s register is determined as follows:
Module number = 3
Local register number = 9
Register number = 3019 + (3-2) * 10 +9 = 3003

Note!
When the register number is called in the SYMPAS program, the number of the
module's OS version is displayed. With inquiries always identify this number.

194

Jetter AG

NANO-B

13.7 N-OA 2 and N-OA 4 Modules - Analog Outputs

13.7.4 Register Description - N-OA 2, and N-OA
4 Modules
Register 3yy0 for N-OA 2 and N-OA 4 Modules:
Channel # 1 - Output Voltage
Function
Read

Description
Present value of the output voltage
Value following reset: 0

Write

New output voltage

Value range

Voltage

- bipolar:

-2048 ... 2047

Register 3yy1 for N-OA 2 and N-OA 4 Modules:
Channel # 2 - Output Voltage
Function
Read

Description
Present value of the output voltage
Value following reset: 0

Write

New output voltage

Value range

Voltage

- bipolar:

-2048 ... 2047

Register 3yy2 for N-OA 4 Module only:
Channel # 3 - Output Voltage
Function
Read

Description
Present value of the output voltage
Value following reset: 0

Jetter AG

Write

New output voltage

Value range

Voltage

- bipolar:

-2048 ... 2047

195

13 Expansion Modules

PROCESS PLC

Register 3yy3 for N-OA 4 Module only:
Channel # 4 - Output Voltage
Function
Read

Description
Present value of the output voltage
Value following reset: 0

Write

New output voltage

Value range

Voltage

- bipolar:

-2048 ... 2047

Register 3yy9 for N-OA 2 and N-OA 4 Modules:
Version Number of the Operating System
Function
Read

Description
Version number of the operating system
e.g. 101= V 1.01

196

Write

Illegal

Value range

23-bit-signed integer

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

13.8

N-CNT 1 Module - Single and DualChannel Counter

The N-CNT 1 module is for counting events. In this module a single- and dualchannel counter is included. The single-channel counter is used e.g. as workpiece
counter, and the dual-channel counter e.g. as length counter. The measured values
are evaluated and processed by the application program.

13.8.1 Physical Dimensions of the N-CNT 1
Module

Fig. 48: Physical Dimensions of the Digital Counter Module N-CNT 1

Jetter AG

197

13 Expansion Modules

PROCESS PLC

13.8.2 Overview and Technical Data
Technical Data of the N-CNT 1 Module
Power Supply

•

centralised arrangement: via basic
unit; cf. chapter 13.1: "Topology of
the JETTER System Bus", page 150

•

decentralised arrangement: via
power supply N-PS 1, cf. chapter
13.1.2: "Decentralised Arrangement
on the JETTER System Bus", page
151

Connections to the basic unit via
JETTER system bus

Male connector SUB-D, 9 pins

Connection to counter inputs

•
•

Enclosure

Aluminium, powder coated, black

Dimensions (H x W x D in mm)

114 x 45 x 69

Weight

190 g

Mounting

DIN Rail

Quantity of counters

•
•

Maximum counting frequency
(single-channel counter)

10 kHz

Voltage input (single-channel counter)

24 Volt

Maximum counting frequency
(dual-channel counter)

•
•

500 kHz: at 24 Volt
1 MHz: at 5 Volt

Voltage input (dual-channel counter)

•

24 Volt with operating point:
- signal voltage ON at 15 V minimum
- signal voltage OFF at 10 V
maximum
5 Volt differential voltage

•

198

Screw terminals
Male connector SUB-D, 15 pins

1 Single-channel counter
1 dual-channel counter

Electrical isolation

None

Heat loss of CPU logic circuit

0.5 Watt

Heat loss of incremental encoder input

0.5 Watt

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

EMC - N-CNT 1 Module
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m) at
10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000
MHz; test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

199

13 Expansion Modules

PROCESS PLC

EMC - N-CNT 1 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

200

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

13.8.3 Description of Connections
For input purposes the expansion module is provided with 2 counters equipped with
4 terminals and one SUB-D connector, 15 pins. It is possible to operate the singleand the dual-channel counter in parallel. Inputs are split into:
•
•
•

Terminals for 24 Volt single-channel counter signals
Terminals for 24 Volt dual-channel counter control signals
Transducers with 24 Volt signals or 5 Volt differential signals are connected to the
dual-channel counter input via the 15-pin SUB-D connector (RS422 port). Signals
of such transducers can be read in through adjustable digital filters.
As an alternative of using a dual-channel counter, an SSI absolute encoder can
be connected to the 15-pin SUB-D port.

•

Note!
•
•
•

All voltage input signals relate to 0 V. Within the module, the 0 V signal is
connected to ground internally via the enclosure.
Configuration of the module is carried out through the virtual outputs.
Do not use inverted (negative) signals for 24 Volt encoder inputs. Inverted
signals cannot be evaluated.

Important!
Make sure that to the counter inputs of the N-CNT 1 module a maximum voltage
of 24 V ± 10% is applied. This will prevent the N-CNT 1 module and the
incremental encoder from being destroyed.

Fig. 49: Example: Input Wiring of the N-CNT 1 Module

Jetter AG

201

13 Expansion Modules

PROCESS PLC

Inputs of the Single-Channel Counter Module N-CNT 1

Detail 1

Terminals:
– 0V
– S: Counter input

ENC Inputs of the Dual-Channel Counter Module N-CNT 1

Detail 2

Male connector
SUB-D, 15 pins

PIN

SSI Absolute
Position Encoder

24 Volt
Encoder *)

5 Volt Differential
Voltage

1

GND

GND

GND

2

Reserved

K0 +

K0 +

3

Reserved

Reserved

K0 -

4

DATA +

K1 +

K1 +

5

DATA -

Reserved

K1 -

6

Reserved

K2 +

K2 +

7

Reserved

Reserved

K2 -

8

SSI-CLK -

Reserved

Reserved

9

SSI-CLK +

Reserved

Reserved

10

5 Volt (-5%) encoder
supply with a
maximum input
current of 100 mA

Reserved

5 Volt (-5%) encoder supply with a
maximum input
current of 100 mA

11

Reserved

Reserved

Reserved

12

Reserved

Reserved

Reserved

13

Reserved

Reserved

Reserved

14

Reserved

Reserved

Reserved

15

Reserved

Reserved

Reserved

**)

Terminals :
-0V
- STR: Strobe
- REF: Reference
*)

The counting inputs, as well as the reference signal of the dual-channel counter
(K0, K1, K2 and REF) can be filtered digitally. This means that a counting pulse,
resp. reference pulse will only be processed if a predefined set length is exceeded.
This way, noise pulses are suppressed. For more information see register 3yy8 on
page 211.
**)
Terminals are not shown separately as detail.
202

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

Important!
To avoid malfunctions the following must be ensured:
•
•
•

Register
Addressing

The shielding must be clamped under a strain relief with the greatest possible
surface area.
The connection between shielding and ground must be electrically conducting.
The distance "L" of unshielded conductor ends must not exceed 8 cm.

The address is made up of the module number and the number of the respective
input and output:

Coding of Counter Registers

Note!
For determination of the module number, only the non-intelligent modules will be
counted. Intelligent modules, such as SV, SM, PID, etc., located among the
modules, are not being taken into consideration.

Module number 1 is always assigned to the basic control unit. Starting from there,
the module numbers are being counted left to right.
For communication with the CPU, 6 registers have been provided by the N-CNT 1
module. The operating system version number of the module can always be read
from register 9. The other module registers are being defined by the function of the
module. The registers are addressed as follows:
Register number = 3000 + (module number - 2) * 10 + local register number

Example: Determination of the register numbers
The number of the third expansion module’s register is determined as follows:
Module number = 4
Local register number = 9
Register number = 3029 + (4-2) * 10 +9 = 3003

Jetter AG

203

13 Expansion Modules

PROCESS PLC

Note!

When the register number is called in the SYMPAS program, the number of the
module's OS version is displayed. With inquiries always identify this number.

Addressing the
Virtual Outputs

Configuration of the N-CNT 1 Module
Counter

Register
values

Dual-channel
counter:

3yy0

Configuration and action of virtual outputs
xx01:

=0

enable STR
disable REF

through

=1

enable REF
disable STR *)

3yy3

3yy5

SSI Absolute
Position Encoder

3yy6

xx02:

xx03:

xx04:

xx06:

xx07:

xx08:

Single-channel
counter:

3yy4

xx05:

=0

Dual-channel circuit configuration with quadruple
evaluation

=1

Single-channel circuit configuration with single evaluation. The rising edge is
counted only.

=0

Transmission of actual axis
position is stopped.

=1

Transmission of actual axis
position is started and sent to
the bus.

=0

Dual-channel counter

=1

SSI Absolute Position
Encoder

=0

Gray code evaluation

=1

Binary code evaluation

=0

Parity check OFF

=1

Parity check ON

=0

odd parity

=1

even parity

=0

counting up

=1

counting down

*) Bit 3 in the status register 3yy3 is reset by entering 1 during configuration.
xx = Module number
YY = Module number -2

204

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

It is possible to operate the dual-channel counter both as single-channel and dualchannel counter. Selection between the counter types is made by setting the virtual
output xx02.

Whenever the dual-channel counter is operated as single-channel counter, the
counting direction is defined through the voltage applied to channel 2 (K2). In this
case, the following conditions apply:
•
•

for positive counting direction K2 = 0 (0 V);
for negative counting direction K2 = 1 (24 V).

Setting the Dual-Channel Counter to Zero
The dual-channel counter can be set to zero (initialisation) either through hardware
or through software.

•

•

For initialisation through hardware the input of terminal REF is to be set to zero
(REF = 0) Through its 15-pin SUB-D connector, the incremental encoder supplies
K0 = 1 (refer to fig. 50: "Pulse sequence of counting signals", page 206).
Initialisation via software is carried out by entering zero into register 3yy0.

When the dual-channel counter is set to zero, bit 3 of the status register 3yy3 is set.
The status register 3yy3 is scanned by the application program.

Strobe Function
The strobe function can only be used with the dual-channel counter. In order to
activate the strobe function, the virtual output zz01 of the dual-channel counter
must be set to zero.
The strobe function is used to store a count to register 3yy2 when a signal (rising
edge) is applied. The delay time of the display caused by the strobe function is less
than 1 ms.
Once the strobe signal is applied, bit 0 is set in the status register 3yy3 which is
scanned by the application program.
Multiple strobing is indicated by bit 4.
Bits 0 and 4 have to be reset by the application program.

Jetter AG

205

13 Expansion Modules

PROCESS PLC

Fig. 50: Pulse sequence of counting signals

206

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

13.8.4 Register Description - N-CNT 1 Module
Register 3yy0: Count of Dual-Channel Counter
Function
Read

Description
Maximum count of dual-channel counter
Value following reset: 0

Write

New count of dual-channel counter

Value range

-8388608 ... 8388607

Register 3yy1: Offset value of Dual-Channel Counter
Function
Read

Description
Present offset value of dual-channel counter
Value following reset: 0

Write

New offset value of dual-channel counter

Value range

-8388608 ... 8388607

Register 3yy2: Strobe Value of Dual-Channel Counter
Function
Read

Description
Last strobe value of dual-channel counter
Value following reset: 0

Write

Illegal

Value range

-8388608 ... 8388607

Register 3yy3: Status of Dual-Channel Counter
Function
Read

Description
Status of dual-channel counter (bit-coded)
– Bit 0: Count is strobed
– Bit 3: Counter set to zero
– Bit 4: Strobing value is overwritten
(strobing signal before reset of strobe message)
Value following reset: 0

Jetter AG

Write

Bits 0 and 4 are reset

Value range

0 ... 31

207

13 Expansion Modules

PROCESS PLC

Register 3yy4: Count of Single-Channel Counter
Function
Read

Description
Present count of Single-Channel Counter
Value following reset: 0

Write

New count of Single-Channel Counter

Value range

-8388608 ... 8388607

Register 3yy5: Transmitting Rate of Actual Position to
an Intelligent Servo or Stepper Motor Module
Function
Read

Description
Present value of transmitting rate *)
Value following reset: 0

Write

New value of transmitting rate

Value range

1 ... 5

*) It is possible to use the N-CNT 1 module in a servo control system as master
module for position modules of the NANO series, such as N-SV1, CAN-DIMA, NSM2, N-SM1D. In this role, the master module N-CNT 1 is not controlled. The axis
which is controlled by the positioning module is to follow the master with a fixed or
variable transmission ratio as to position. In this case, the position encoder,
mounted on the master axis, is connected to the N-CNT 1 module. This module
then transmits the read-out position and the interval between two scans to the
positioning module via JETTER system bus. Then, the position value can be read
out of register 1y195.
Register 3yy5 controls the transmission rate, thus, the bus load. In case register
3yy5 = 0, about every 300 µs position is sent after each scan cycle. In normal
operating mode, such a high transmission rate is not required for good servo control.
With insignificant bus load caused by other modules, such a high transmission rate
has no adverse effect.

208

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

Register 3yy6: Word Size of Absolute Value
Function

Description
Present value of the word size of the absolute value *)

Read

Value following reset: 0
Write

New value of the word size of the absolute value

Value range

*)

0
...
19495
25639
27687
...
50215
52263

at pulse number = 9
at pulse number = 12
at pulse number = 13
...
at pulse number = 24
at pulse number = 25

The value of register 3yy6 is calculated using the pulse number. With the given
pulse number the word size of the absolute value is calculated by the following
formula:
Register 3yy6 = ( ( ( ( Pulse eNumber + 1 ) × 2 ) – 1 ) × 1024 ) + 39

In order to use register 3yy6, an SSI absolute encoder is read in via the inputs of the
dual-channel counter. The SSI cycle is read via PIN 8 and PIN 9 and the data bits via
PIN 4 and PIN 5 of the 15-pin SUB-D connector (see “ENC Inputs of the DualChannel Counter Module N-CNT 1” auf Seite 202).
The SSI cycle is output with a frequency of 100 kHz. This clock frequency permits
use of cables of up to 400 meters in length.
In order to activate the absolute encoder, it is required to switch over between the
dual-channel counter and the SSI absolute encoder through output xx04.
Absolute encoders output their position value either in Gray code or in binary code.
Evaluation can be switched over between Gray code and binary code using output
xx06.
In order to activate parity check for an SSI absolute encoder, output xx07 must be
set to 1. Once parity check is activated, you can toggle between even and odd parity
through output xx08.
If the N-CNT 1 module detects a parity error, the position value received is being
ignored and register 3yy7 is incremented.

Jetter AG

209

13 Expansion Modules

PROCESS PLC

Register 3yy7: Parity Error Count
Function
Read

Description
Present parity error count *)
Value following reset: 0

*)

Write

New parity error count

Value range

-8388608 ... 8388607

Once a parity error is detected, register 3yy7 is incremented by 1. The count is set
by the application program. For normal operation, the count is set to zero.

Note!
If parity check is activated, calculations for the value of register 3yy6 have to be
carried out using a PPR count incremented by 1 as against the PPR count preset
by the encoder.
Example: If the encoder has got a resolution of 4096 increments per revolution
and 4096 revolutions, for calculations in register 3yy6 a PPR count of 24 has to
be used if a check of parity errors is not carried out. Once check of parity errors is
carried out, a PPR count of 25 has to be used for calculations.

210

Jetter AG

NANO-B

13.8 N-CNT 1 Module - Single and Dual-Channel Counter

Register 3yy8: Filter Frequency
Function

Description
Present value of filter frequency *)

Read

Value following reset: 0
Write

New value of filter frequency

Value range

0:
192:
...
65472:

no filter frequency
feff = 1 MHz
...
feff = 3906.25 Hz

*) In register 3xx8 a filter frequency is preset. This filter frequency is referred to as
useful signal is being processed unfilteredly. Using this useful signal, the value for
register 3xx8 is calculated by the following formula:
Register 3yy8 =

æ 4000000
----------------------è
f

eff

– 1ö × 64
ø

with f eff in Hz

Note!

The filter frequency of register 3yy8 can only be used for the dual-channel
counter!

Register 3yy9: Version number of the operating
system
Function
Read

Description
Version number of the operating system
e.g. 101= V 1.01
Value following reset: Version number of the operating
system

Jetter AG

Write

Illegal

Value range

0 ... 8388607

211

13 Expansion Modules

13.9

PROCESS PLC

Serial Interface Module N-SER 1

The N-SER 1 module provides the user with a programmable serial interface (PRIM).
Through this module, for instance, data of a pair of scales, communicating via a
RS-232 interface, can be sensed. While doing so, data are exchanged, for example,
with a SYMPAS application program.

13.9.1 Physical Dimensions of the N-SER 1
Module

Fig. 51: Physical Dimensions of the Serial Interface Module N-SER 1

212

Jetter AG

NANO-B

13.9 Serial Interface Module N-SER 1

13.9.2 Overview and Technical Data
Technical Data of the N-SER 1 Module
Power Supply

*)

•

centralised arrangement: via basic
unit; cf. chapter 13.1: "Topology of
the JETTER System Bus", page 150

•

decentralised arrangement: via
power supply N-PS 1, cf. chapter
13.1.2: "Decentralised Arrangement
on the JETTER System Bus", page
151

Connections to the basic unit via
JETTER system bus

Male connector SUB-D, 9 pins

Serial interface port

Male connector SUB-D, 15 pins

Enclosure

Aluminium, powder coated, black

Dimensions (H x W x D in mm)

114 x 45 x 69

Weight

190 g

Mounting

DIN Rail

User-Programmable Interface

15-pin socket for:
RS 232:

150 ... 19200 bits/s*)

RS 422:

150 ... 19200 bits/s*)

or
RS 485:

150 ... 115200 bits/s*)

Electrical isolation

None

Heat loss of CPU logic circuit

0.35 Watt

Rated current consumption

approx. 70 mA

The N-SER 1 module supports these protocols only.

LEDs of the N-SER 1 module

Jetter AG

Tx (Transmit Data):

The diode will flash up each time a bit is sent.

Rx (Receive Data):

The diode will flash up each time a bit is
received.

213

13 Expansion Modules

PROCESS PLC

EMC - N-SER 1 Module
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m) at
10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000 MHz;
test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

214

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Jetter AG

NANO-B

13.9 Serial Interface Module N-SER 1

EMC - N-SER 1 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

215

13 Expansion Modules

PROCESS PLC

13.9.3 Description of Connections
The user can select from interfaces with the specifications RS-232, RS-422 or RS485 according to the diagram depicted in fig. 52.

Fig. 52: Block Diagram of Interfaces of the N-SER 1 module

Pin Assignment - 15-pin male SUB-D connector *)
PIN

Signal

Interface

Comment

1

-

-

-

2

TXD

RS232

Transmit Data

3

RXD

RS232

Receive Data

4

RTS

RS232

Output

5

CTS

RS232

Input

6

-

-

-

7

GND

-

-

8

Data +

RS485

-

9

Data -

RS485

-

10

SDB

RS422

Sending

11

SDA

RS422

Sending

12

RDB

RS422

Receiving

13

RDA

RS422

Receiving

14

-

-

-

15

-

-

-

*) For technical specifications on cable length, diameter, wiring and shielding see
chapter 2.2: "Electrical Connection", page 18.

216

Jetter AG

NANO-B

Interface with
the Application
Program

Register
Addressing

13.9 Serial Interface Module N-SER 1

The interface between the module and the user's program is made up of seven
registers.
These registers are for configuring of the modules and for querying status
information.
The register address is made up of the module number and the respective register
number.

Coding of the registers: 3yyz

Note!
For determination of the module number, only the non-intelligent modules will be
counted. Intelligent modules, such as N-SV 1, N-SM 2, N-PID 1, etc., located
among the digital input and output modules, are not being taken into consideration.

Module number 1 is always assigned to the basic control unit. Starting from there,
the module numbers are being counted left to right.
For communication with the CPU, 7 registers have been provided by the N-SER 1
module. The operating system version number of the module can always be read
from register 9. The other module registers are being defined by the function of the
module. The registers are addressed as follows:
Register number = 3000 + (module number - 2) * 10 + local register number

Examples: Determination of the register numbers
The number of the first expansion module’s register is determined as follows:
Module number = 2
Local register number = 3 (sending buffer)
Register number = 3000 + (2-2) * 10 +3 = 3003

Jetter AG

217

13 Expansion Modules

PROCESS PLC

The number of the third expansion module’s register is determined as follows:
Module number = 4
Local register number = 9 (OS version)
Register number = 3029 + (4-2) * 10 +9 = 3003

Note!

When the register number is called in the SYMPAS program, the number of the
module's OS version is displayed. With inquiries always identify this number.

Addressing the
Virtual Outputs

Hard and software flow control is activated via the virtual outputs, which are
addressed as is being described below.

Coding of the virtual outputs yyzz

Example: Determination of virtual outputs
Determination of the virtual output 1 of the 3rd expansion module
Module number = 4
Output number = 1
Number of the virtual output = 401

218

Jetter AG

NANO-B

13.9 Serial Interface Module N-SER 1

13.9.4 Register Description - N-SER 1 Module
Register 3yy0: Status register
Function

Description

Read

Present interface state
Bit 0: 0
Bit 1: 1=Overflow receiving buffer
Bit 2: 1=Parity error during reception
Bit 3: 1=Framing error during reception
Bit 4: 1=Breaking-off condition1 *)
Bit 5: 0
Bit 6: 0
Bit 7: 1=Error in the present FIFO data
Value following reset: 0

*)

Write

Illegal

Value range

0 .. 255

Rx signal was logically 0 for the duration of one byte

The status register is bit-coded, i.e. each bit indicates a specific state.
The status register is cleared when reading.

Register 3yy1: Baud Rate
Function
Read

Description
Present value of the baud rate
Value following reset: 6

Write

Value range

Jetter AG

new baud rate:
0

150 bits/s

1

300 bits/s

2

600 bits/s

3

1200 bits/s

4

2400 bits/s

5

4800 bits/s

6

9600 bits/s

7

19200 bits/s

Default setting

8

38400 bits/s

for RS485 only

9

57600 bits/s

for RS485 only

10

115200 bits/s

for RS485 only

0 ... 256

219

13 Expansion Modules

PROCESS PLC

Register 3yy2: Interface Configuration
Function
Read

Description
Present data format
Value following reset: 4

Write

Value range
*)

New data format:
0 = 7 bit

even

1 stop bit

1 = 7 bit

odd

1 stop bit

2 = 8 bit

even

1 stop bit

3 = 8 bit

odd

1 stop bit

4 = 8 bit

no parity

1 stop bit

5 = 7 bit

even

2 stop bit

6 = 7 bit

odd

2 stop bit

7 = 7 bit

no parity

2 stop bit

8 = 8 bit

even

2 stop bits *)

9 = 8 bit

odd

2 stop bits *)

10 = 8 bit

no parity

2 stop bits *)

11 = 5 bit

even

1 stop bits *)

12 = 5 bit

odd

1 stop bits *)

13 = 5 bit

even

1 stop bits *)

14 = 6 bit

odd

1 stop bits *)

15 = 6 bit

even

1 stop bits *)

16 = 6 bit

odd

1 stop bits *)

17 = 5 bit

no parity

1

18 = 5 bit

even

1

19 = 5 bit

odd

1

20 = 6 bit

no parity

2 stop bits *)

21 = 6 bit

even

2 stop bits *)

22 = 6 bit

odd

2 stop bits *)

23 = 7 bit

no parity

1
--2
1
--2
1
--2

Stop bit *)
Stop bit *)
Stop bit *)

1 stop bit *)

0 ... 23

applies from firmware version 2.10 on.

Note!
To initialize the N-SER 1 module, values have to be entered into registers 3yy1
and 3yy2. Failure to do so may result in malfunctions.

220

Jetter AG

NANO-B

13.9 Serial Interface Module N-SER 1

Register 3yy3: Sending buffer
Function
Read

Description
Latest character that has been sent or is to be sent
Value following reset: 0

Write

Send a character

Value range

0 .. 255 (8-bit format)
0 .. 127 (7-bit format)

Important!
The maximum size of sending buffer is 128 characters.

Note!
Data are sent by the N-SER 1 module only if the value is written into the sending
register 3003.

Register 3yy4: Sending Buffer Occupancy
Function

Description

Read

Present occupancy of the sending buffer

Write

Illegal

Value range

0 .. 128

Value following reset: 0

Register 3yy5: Receiving Buffer; Characters are
Cleared at Access
Function
Read

Description
Received character
Value following reset: 0

Jetter AG

Write

Illegal

Value range

0 .. 255 (8-bit format)
0 .. 127 (7-bit format)

221

13 Expansion Modules

PROCESS PLC

Note!
•

•

The maximum size of receiving buffer is 129 characters. Access to register
3yy5 deletes the characters contained in the receiving buffer. This means that
for reprocessing a character must be stored before a read access is carried
out.
Reading from this register is only useful, if the contents of the receiving buffer
occupancy register 3yy6 are greater than 0.

Register 3yy6: Receiving Buffer Occupancy
Function
Read

Description
Present occupancy of the receiving buffer
Value following reset: 0

Write

Illegal

Value range

0 .. 129

Note!
•

•

The characters that have been transmitted by the N-SER 1 module via serial
port are buffered in register 3yy6. They remain there until they are called up
from a corresponding SYMPAS program.
The receiving buffer can store a maximum of 129 characters. If further
characters are received from sender although the receiving buffer is full, the
last sent characters will get lost, while bit 1 is set in the status register.

Register 3yy9: Version number of the operating
system
Function
Read

Description
Version number of the operating system
e.g. 101 = V 1.01
Value following reset: Version number of the
operating system

222

Write

Illegal

Value range

0 .. 8388607

Jetter AG

NANO-B

13.9 Serial Interface Module N-SER 1

13.9.5 Hardware and Software Flow Control of
the N-SER 1 Module
The N-SER 1 module supports hardware and software flow control. These control
functions are activated or deactivated through virtual outputs.
The flow control is to prevent the loss of data due to receiving buffer overflow.
For the N-SER 1 module, there are two possibilities of flow control:
1. For hardware flow control two additional wires are used.
2. For software flow control special characters are used.
Both with hardware and software flow control, the receiving device informs the
sending device that is not ready to receive data any more.
The N-SER 1 module will send the respective stop signal by hardware or software,
when a receiving buffer occupancy of 60 characters has been reached. When an
occupancy of 56 characters has been reached, readiness to receive will then be
signaled.
Hardware Flow
Control

The hardware flow control will be activated by setting the virtual output yy01 and will
be deactivated by clearing output yy01.
The function will automatically be carried out by using the RTS and CTS signals.
The RTS line will be activated by the N-SER 1 module, in order to inform the sender
that no more data can be received.
During the sending process, the CTS line will be checked by the module. If the CTS
line is activated, the sending process will be interrupted, until this line is deactivated
again.

Software Flow
Control

The software flow control will be activated by setting the virtual output yy02 and will
be deactivated by clearing this output.
The function will automatically be carried out by using the characters XON (value
11H) and XOFF (value 013H).
If no more data can be received by the N-SER 1 module, the XOFF character will
be sent in order to inform the sender. If data can be received again, XON will be
sent.
During the sending process, it will be checked by the module, whether the receiver
is sending an XOFF. If this is the case, the sending process will be interrupted, until
an XON has been received.

Note!
The characters XON and XOFF must not be contained in the user data! This may
result in a shutdown of the plant.

Jetter AG

223

13 Expansion Modules

PROCESS PLC

13.9.6 Sample Program
The usage of the N-SER 1 module will be illustrated by the following exemplary
program.

Program Listing

0:

;*******************************************************

1:

;* The program will receive the upper-case characters

2:

;* from „A“ to „Z“ via the N-SER 1 module, and will then *

3:

;* send them back as lower-case characters.

4:

; ******************************************************

5:

; DEF_FUNCTION [RecPRIM, RP]
Par: rFirstChar, rLastChar
Var: rHelp

6:

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++

7:

; +

The RecPRIM function is used to read a character

+

8:

; +

from the receiving buffer

+

9:

11:
12:
13:
14:
15:
16:
17:
18:

*

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++

10:

REGISTER_LOAD [rHelp with R(rRecPRIM)]
;reading character from buffer,
;checking character for valid range.
IF
LIMITS [Reg=rHelp, low=R(rFirstChar),
high=R(rLastChar)]
Then
REGISTER_LOAD [RecPRIM with R(rHelp)]
;character is valid
ELSE
REGZERO RecPRIM

;character is invalid

THEN
RETURN

19:

END_DEF

20:

DEF_FUNCTION [SendPrim, S]
Par: rSendChar

21:

;++++++++++++++++++++++++++++++++++++++++++++++++++++++

22:

;+ This function is used to write a character

+

23:

;+ into the sending buffer.

+

24:

;++++++++++++++++++++++++++++++++++++++++++++++++++++++

25:

WHEN

26:

REG rSendCnt

;Is there free space

27:

<

;in the sending buffer?

28:

128

29:
30:

224

*

THEN
REG rPRIMSend

;Send back modified

31:

=

;character

32:

REG rSendChar

33:

+

Jetter AG

NANO-B

13.9 Serial Interface Module N-SER 1

34:

32

35:

THEN

36:

RETURN

37:

END_DEF

38:

TASK tPRIMhandling ------------------------------------------

39:

REGISTER_LOAD [rPRIMBaud with zBaud]
;Setting Baud rate

40:

REGISTER_LOAD [rPRIMconfig with zConfig]
;Setting control byte

41:
42:

LABEL fPRIMloop
WHEN

43:
44:
45:

NOT

;Are there any incoming

REGZERO rRecCnt

;characters?

THEN

46:

REG rChar

47:

=

48:
49:
50:
51:
52:
53:

RecPRIM [rLastChar=90, rFirstChar=65]
IF
REGZERO rChar
THEN
GOTO fPRIMloop

;Is there a valid
;character?
;NO

THEN

54:

SendPrim [rSendChar=R(rChar)]

55:

GOTO fPRIMloop

End of Program

Jetter AG

225

13 Expansion Modules

PROCESS PLC

Symbol Listing

**********

Task

tPRIMhandling
**********
fPRIMloop
**********

******************
0

Labels

****************

!
Registers

**************

;The following register values are valid for a N-SER 1 module
;located on the first place after the basic controller NANO-B!
rPRIMBaud

3001

; Baud rates

rPRIMConfig

3002

; Control register

rPRIMSend

3003

; Sending register

rSendCnt

3004

; Send. buffer occupancy

rPRIMRec

3005

; Receiving registers

rRecCnt

3006

; Rec. buffer occupancy

rChar

100

**********
zBaud
**********
zConfig

Baud Rates

******************

6

Control Bytes
4

; 9600

**************
; 8 data bits, no parity
; 1 stop bit

Note!

In the example above, sending and receiving of characters is divided into several
functions:

226

•

Data are sent by the N-SER 1 module only if the value is written into the
sending register 3003.

•

Occupancy of the the receiving buffer is queried from register 3006..

•

Access to register 3005 deletes characters contained in the receiving buffer.

•

Occupancy of the the sending buffer is queried from register 3004..

Jetter AG

NANO-B

13.10 Parallel Interface Module N-PRN 1

13.10 Parallel Interface Module N-PRN 1
The N-PRN 1 module allows data and control information to be output to a printer
and status information to be read out of the printer.
Output of data is carried out via a CENTRONICS interface.

13.10.1 Physical Dimensions of the N-PRN 1
Module

Fig. 53: Physical Dimensions of the Parallel Interface Module N-PRN 1

Jetter AG

227

13 Expansion Modules

PROCESS PLC

13.10.2 Overview and Technical Data
Technical Data of the N-PRN 1 Module
Power Supply

228

•

centralised arrangement: via basic unit; cf.
chapter 13.1: "Topology of the JETTER
System Bus", page 150

•

decentralised arrangement: via power supply
N-PS 1, cf. chapter 13.1.2: "Decentralised
Arrangement on the JETTER System Bus",
page 151

Connections to the basic unit
via JETTER system bus

Male connector SUB-D, 9 pins

Parallel interface port

Male connector SUB-D, 25 pins

Enclosure

Aluminium, powder coated, black

Dimensions (H x W x D in
mm)

114 x 45 x 69

Weight

192 g

Mounting

DIN Rail

Centronics Interface

25-pin socket

Electrical isolation

None

Heat loss of CPU logic circuit

0.35 Watt

Rated current consumption

approx. 35 mA

Jetter AG

NANO-B

13.10 Parallel Interface Module N-PRN 1

EMC - N-PRN 1 Module
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m) at
10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000
MHz; test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

229

13 Expansion Modules

PROCESS PLC

EMC - N-PRN 1 Module
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

230

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

Jetter AG

NANO-B

13.10 Parallel Interface Module N-PRN 1

13.10.3 Description of Connections
Pin Assignment - 25 pin male SUB-D connector
PIN

Signal

Meaning

Signal Direction

1

STROBE

Signal to start data transfer

to the printer

2

DATA 1

Data bit 1

to the printer

3

DATA 2

Data bit 2

to the printer

4

DATA 3

Data bit 3

to the printer

5

DATA 4

Data bit 4

to the printer

6

DATA 5

Data bit 5

to the printer

7

DATA 6

Data bit 6

to the printer

8

DATA 7

Data bit 7

to the printer

9

DATA 8

Data bit 8

to the printer

10

ACKNLG

Acknowledgement signal

from the printer

11

BUSY

Printer is busy

from the printer

12

PAPER END

Paper tray is empty

from the printer

13

SELECT

Printer is on-/off-line

from the printer

14

AUTO FEED

Line feed

to the printer

15

ERROR

Fault message

from the printer

16

INIT

Initialisation

to the printer

17

SELECT IN

Switch printer on-line

to the printer

18

GND

Parallel ground line

19

GND

Parallel ground line

20

GND

Parallel ground line

21

GND

Parallel ground line

22

GND

Parallel ground line

23

GND

Parallel ground line

24

GND

Parallel ground line

25

GND

Parallel ground line

Important!
•

•

Jetter AG

In case you buy a printer cable or fabricate your own cable, the following
minimum requirements, also with a view to EMC, must be met:
1. Number of cores:

25

2. Core cross-sectional area:

0.25 mm²

3. Connector (male):

SUB-D, metallised

4. Maximum cable length:

2m

5. Shield:

complete shielding, no paired shielding

The shield must be connected to the metallised connector housings on both
ends of the cable with the greatest possible surface area. The braided shield
has to be made of tin-coated copper wires with a minimum degree of coverage
of 85 %.

231

13 Expansion Modules

Interface with
the Application
Program

Register
Addressing

PROCESS PLC

The interface between the module and the user's program is made up of three
registers.
These registers are for configuring of the modules and for querying status
information.
The register address is made up of the module number and the respective register
number.

Coding of the registers: 3yyz

Note!
For determination of the module number, only the non-intelligent modules will be
counted. Intelligent modules, such as N-SV 1, N-SM1D, N-PID 1, etc., located
among the digital input and output modules, are not being taken into
consideration.

Module number 1 is always assigned to the basic control unit. Starting from there,
the module numbers are being counted left to right.
For communication with the CPU, three registers have been provided by the N-PRN
1 module. The operating system version number of the module can always be read
from register 9. The other module registers are being defined by the function of the
module. The registers are addressed as follows:
Register number = 3000 + (module number - 2) * 10 + local register number

Examples: Determination of the register numbers
The number of the first expansion module’s register is determined as follows:
Module number = 2
Local register number = 3 (control register)
Register number = 3000 + (2-2) * 10 +3 = 3003

232

Jetter AG

NANO-B

13.10 Parallel Interface Module N-PRN 1

13.10.4 Register Description - N-PRN 1 Module
Note!
With the N-PRN 1 module, register 3yy0 has got no function.

Register 3yy1: Data Register
Function
Read

Description
Last sent character
Value following reset: 0

Write

Sending the character to the printer *)

Value range

0 .. 255

*)

Once a character is entered into this register, this character is sent to the printer.
Prior to sending this character, a STROBE pulse with a pulse length of 5 µs is
generated and sent.

Register 3yy2: Status register
Function
Read

Description
Present interface state
Bit 0: 1 = No function
Bit 1: 1 = No function
Bit 2: 1 = No function
Bit 3: 0 = Error message
Bit 4: 1 = Printer is online
Bit 5: 1 = Paper tray is empty
Bit 6: 0 = Acknowledge
Bit 7: 0 = Printer is busy
Value following reset: Depending on printer status

Write

Illegal

Value range

0 .. 255

The status register is bit-coded, i.e. each bit indicates a specific state.
The status register is cleared when reading.

Note!
In case the printer is ready, register 3yy2 contains the value 223 (0xDF)

Jetter AG

233

13 Expansion Modules

PROCESS PLC

Register 3yy3: Control Register
Function
Read

Description
Status of the control lines

Value following reset: 0
Write

Setting the status of the control line
Bit 0: 1 = Signal for starting data transmission is
activated
Bit 1: 1 = Line feed
Bit 2: 0 = Printer reset
Bit 3: 0 = Select printer
Bit 4: 0 = No function
Bit 5: 0 = No function
Bit 6: 0 = No function
Bit 7: 0 = No function

Value range

0 .. 15

Note!
Following reset, the value 4 should be written into register 3yy3 to select the
printer and to terminate the reset state.

Register 3yy9: Version number of the operating
system
Function
Read

Description
Version number of the operating system
e.g. 101 = V 1.01
Value following reset: Version number of the
operating system

234

Write

Illegal

Value range

0 .. 8388607

Jetter AG

NANO-B

13.10 Parallel Interface Module N-PRN 1

13.10.5 Sample Program
The usage of the N-PRN 1 module will be illustrated by the following exemplary
program.

Program Listing
0:

;*******************************************************

1:

;* Output of the characters A through Z

*

2:

;* on the printer by the program

*

3:

; ******************************************************

4:

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++

5:

; +

The function Print sends

+

6:

; +

a character to the printer

+

7:

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++

8:

; DEF_FUNCTION [Print, PR]
Par: rChar

9:

WHEN

10:
11:

BIT_SET [REG=rStatus, Bit=zbBusy]
REGISTER_LOAD [rData with R(rChar)]

;Output of character

THEN

14:
15:

;Busy?

THEN

12:
13:

;Wait until the
printer is ready

RETURN
END_DEF

16:

;

17:

TASK tPrinter -----------------------------------------------

18:

;Terminate reset and
select printer

19:

REGISTER_LOAD [rControl with 4]

20:

;

21:

REGISTER_LOAD [rChar with zFirstChar]

22:
23:

IF
REG rChar

25:

<

26:

zLastChar

28:

;First character

MARKE sPrnLoop

24:

27:

;Reset=1, Select=0

;Check character
;Last character?

THEN
Print [rChar=R(rChar)]

;Output of character

29:

REGINC rChar

;Next character

30:

GOTO sPrnLoop

;Repeat

31:
32:
33:
34:
35:
36:

ELSE

;Received character

Print [rChar=10]

;Line feed

Print [rChar=13]

;Carriag return

THEN

;End of program

LABEL sPrnLoop1
GOTO sPrnLoop1

End of program

Jetter AG

235

13 Expansion Modules

PROCESS PLC

Symbollisting
;**********
tPrinter

Task

******************

0

;**********

Labels

sPrnLoop

!

sPrnLoop1

!

;**********

****************

Registers

**************

;The following register values are for a module located
;on the first module position after the NANO-B controller!
rData

3001

;Data register

rStatus

3002

;Status register

rControl

3003

;Control register

rChar

100

;Character

;**********

236

Numbers

****************

zbBusy

7

;Busy bit (0=Busy)

zbError

3

;Error bit in the status register
(0=Error)

zFirstChar

65

;First character (A)

zLastChar

90

;Last character (Z)

Jetter AG

NANO-B

13.11 N-PS1 Module - Power Supply Unit for Remote Modules

13.11 N-PS1 Module - Power Supply Unit
for Remote Modules
These power supply units are to supply decentralized digital expansion modules.
They convert 24 V into a logic voltage of 5 V. The power supply unit is supplied with
a voltage of 24 V via two terminals. A maximum of five digital expansion modules can
be connected to one power supply module.

Note!
Merely digital and analog input and output modules, as well as the N-CNT 1
module are supplied by the power supply modules N-PS 1 or N-PS 1CP.
Intelligent modules have got their own 24 volt power supply unit.

13.11.1 Physical Dimensions of the N-PS 1, and
N-PS 1CP Modules
Physical
Dimensions of
the N-PS 1
Module

Fig. 54: Mounting Dimensions of the N-PS 1 Module

Jetter AG

237

13 Expansion Modules

PROCESS PLC

Physical
Dimensions of
the N-PS 1CP
Module

Fig. 55: Physical Dimensions of the N-PS 1CP Module

238

Jetter AG

NANO-B

13.11 N-PS1 Module - Power Supply Unit for Remote Modules

13.11.2 Technical Data
Modules N-PS 1, and N-PS 1CP:
Power Supply Unit for Remote Arrangement
Connection to the
JETTER system bus

Male connector SUB-D, 9 pins

24 V connection

•
•

Power Supply

DC 20 ... 30 V at the terminal block X1

Power supply of FESTO
CP valve terminal bus

DC 20 ... 30 V

Power Loss

•
•
•

Terminal block X1
With the N-PS 1CP module only:
FESTO CP connector socket

Time period ≤ 10 ms
Time interval between
two voltage dips ≥ 1 s
Severity level PS2

to DIN EN 61131-2

Power consumption

Depending on type and number of modules being
connected

Enclosure

Aluminium, powder coated, black

Dimensions
(H x W x D in mm)

114 x 45 x 70

Weight

N-PS 1:
180 g
N-PS 1CP: 199 g

Mounting

DIN Rail

Modules N-PS 1, and N-PS 1CP:
Light-Emitting Diodes

Jetter AG

LED 24 V

Supply voltage 24 V within the range of DC 20 ... 30 V

LED 5 V

Internal logic voltage within the range of 5 V ± 5 %

239

13 Expansion Modules

PROCESS PLC

EMC of Modules N-PS 1, and N-PS 1CP
Emitted Interference
Parameter

Value

Enclosure

•

•

Frequency band 30 - 230
MHz, limit 30 dB (µV/m) at
10 m
Frequency band 230 - 1000
MHz, limit 37 dB (µV/m) at
10 m
(class B)

Reference
DIN EN 50081-1
DIN EN 50081-2
DIN EN 55011

Interference Immunity: Enclosure
Parameter

Value

Reference

RF Field,
amplitudemodulated

Frequency band 27 -1000
MHz; test signal strength 10 V/m
AM 80 % with 1 kHz
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-3

Electromagnetic
RF Field, pulsemodulated

Frequency 900 ± 5 MHz
Test field strength 10 V/m
50 % ON period
Repetition rate 200 Hz
Criterion A

DIN EN 50082-2
DIN EN 61000-4-3

Magnetic Field
with Mains
Frequency

50 Hz
30 A/m

DIN EN 50082-2
DIN EN 61000-4-8

ESD

Discharge through air:
Test Peak Voltage 15 kV
(Humidity Rating RH-2 / ESD-4)
Contact Discharge:
Test peak voltage 4 kV
(severity level 2)
Criterion A

DIN EN 61131-2
DIN EN 50082-2
DIN EN 61000-4-2

Interference Immunity: Signal and Data Lines
Parameter

240

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Jetter AG

NANO-B

13.11 N-PS1 Module - Power Supply Unit for Remote Modules

EMC of Modules N-PS 1, and N-PS 1CP
Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV

DIN EN 61131-2
DIN EN 61000-4-12

Interference Immunity: Process, Measuring and Control lines,
Long Bus Lines and Long Control Lines
Parameter

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Interference Immunity: Mains Inputs and Outputs for AC and DC
Parameter

Jetter AG

Value

Reference

Asymmetric RF,
amplitudemodulated

Frequency 0.15 - 80 MHz
Test voltage 10 V
AM 80 % with 1 kHz
Source Impedance 150 Ω
Criterion A

DIN EN 50082-2
DIN EN 61000-4-6

Burst

Test voltage 2 kV
tr/tn 5/50 ns
Repetition rate 5 kHz
Criterion A

DIN EN 50082-2
DIN EN 61131-2
DIN EN 61000-4-4

Test with
Damped
Oscillation

Damped Oscillation
Frequency 1 MHz
Source Impedance 200 Ω
Repeat Factor 400/s
Test voltage 1 kV
Criterion A

DIN EN 61131-2
DIN EN 61000-4-12

241

13 Expansion Modules

PROCESS PLC

13.11.3 Description of Connections of the
N-PS 1 Module

Fig. 56: Connections of the N-PS 1 Module
For the incoming JETTER system bus a SUB-D connector (male) and for the
outgoing JETTER system bus a 9-pin SUB-D connector (female) are available.

Important!
The FESTO CP modules have to be connected in series at the end of the
JETTER system bus. FESTO CP modules do not enable automatic termination
of the bus. This must be done manually. Junctions of the bus must be avoided. If
the modules are arranged in a different way, the system will exhibit errors or
won't work at all.

242

Jetter AG

NANO-B

13.11 N-PS1 Module - Power Supply Unit for Remote Modules

13.11.4 Description of Connections of the
N-PS 1CP Module

Fig. 57: Connections of the N-PS 1CP Module
There is a male SUB-D connector for the incoming JETTER system bus. For FESTO
CP valve terminals a CP connector (female) and for the outgoing JETTER system
bus a 9-pin SUB-D connector (female) are available.

Jetter AG

243

14 NANO Network Topology and FESTO CP Modules

14

PROCESS PLC

NANO Network Topology and
FESTO CP Modules

The PROCESS-PLC NANO-B is internally operated with the JETTER system bus.
The JETTER system bus allows remote arrangement of NANO expansion modules
at a distance of up to 30 meters. Instead of expansion modules, FESTO CP modules
can be connected. For more information refer to chapter 13.1: "Topology of the
JETTER System Bus", page 150.

14.1

FESTO CP Modules, FESTO Tee
Connector

Fig. 58: Example: FESTO CP Module

FESTO CP modules are inserted into the network of NANO modules by means of
FESTO tee connectors via tap lines.

Fig. 59: Physical Dimensions of the FESTO Tee Connector

244

Jetter AG

NANO-B

14.2 Networking of NANO and FESTO CP Modules

Important!
•
•

FESTO tee connectors and the cables between tee connector and FESTO CP
modules have to be purchased from FESTO.
As interconnecting cable between the PROCESS-PLC NANO-B and the
FESTO tee connector a system bus cable for NANO expansion module is to
be used. For details see specification “System Bus Cable for NANO Expansion
Modules” on page 30.

14.2

Networking of NANO and FESTO CP
Modules

FESTO CP modules can directly be connected to the PROCESS-PLC NANO-B. This
means that no special bus node for either of the systems, FESTO CP module, or
NANO-B controller, is required. Connection is carried out in the same way as for
decentralised arrangement of digital and analog modules on the JETTER system
bus. For more information refer to chapter 13.1.2: "Decentralised Arrangement on
the JETTER System Bus", page 151.
In addition to this, a N-PS 1CP power supply unit or a FESTO tee connector is required.
Either of the devices must be supplied with DC 24 V.

Note!
If possible, do not use tap lines for connecting FESTO CP valve terminals. By
doing so, you ensure correct operation of the system.

Arrangement without tap line:
•
•

the FESTO CP module must always be located at the end of the bus line;
a terminating resistor (120 Ω) must be attached to the FESTO CP module. The
NANO modules do not require terminating resistors, since these are included as
standard.

Fig. 60: Connection of FESTO CP Modules to the JETTER System Bus (bus topology)

Jetter AG

245

14 NANO Network Topology and FESTO CP Modules

PROCESS PLC

If, due to the arrangement of the machine and the control system, a configuration
with a tap line is required, the following constraints have to be observed:
•
•

the maximum length of all tap lines is 3 m;
the tap line to the FESTO CP modules must be as short as possible. In some
cases, it is necessary to place a FESTO tee connector with a higher degree of
protection (IP) next to the valve terminal;
it is not allowed to attach terminating resistors to FESTO CP modules;
a maximum of 2 valve terminals and 1 input module can be connected to 1
FESTO tee connector. Only FESTO CP modules occupy I/O numbers, but not the
FESTO tee connector.

•
•

Fig. 61: Connection of FESTO CP Modules to the JETTER System Bus via Tap Lines

Important!
•

•

If it is planned to use an arrangement of the PROCESS-PLC other than the one
described in chapter 13.1: "Topology of the JETTER System Bus", page 150,
please contact a representative of JETTER AG.
JETTER personnel will help you to avoid malfunctions of your system, as well
as time-consuming and cost-intensive troubleshooting.
The functioning of the respective arrangement and the system-compatible
termination have to be determined and tested in each particular case.

14.3

FESTO CP Modules Attached to a
NANO-B Controller

The NANO-B controller is a control system for digital and analog inputs and outputs.
The maximum degree of extension includes 136 digital inputs and outputs, though it
should be noted that the basic controller itself occupies 8 digital inputs and 8 digital
outputs. Therefore, the basic controller can be expanded by 120 digital inputs and
outputs; cf. chapter 13.1: "Topology of the JETTER System Bus", page 150.
Such an expansion can be carried out using either NANO expansion modules or
FESTO CP modules.

246

Jetter AG

NANO-B

14.3 FESTO CP Modules Attached to a NANO-B Controller

Note!
•
•

•

•

If FESTO CP modules are attached, they always occupy 16 digital outputs or
16 digital inputs.
When a FESTO output module is attached, this means that, irrespectively of
the number of valves a FESTO CP valve terminal is equipped with, always 16
digital outputs are reserved and that in register 2013 two inserted I/O modules
are displayed. However, in the module array of register 2015 and 2016 code
number 32 appears only once; cf. chapter 5.3.4: "Special Registers", page 61.
By analogy, the FESTO input modules always occupy 16 input addresses,
though, in the module array of register 2015 and 2016 code number 33 appears
only once.
Please give heed to the fact that per module always 16 input and output
addresses have to be subtracted from the maximum number of possible digital
inputs and outputs.

Important!
•

A maximum of 7 FESTO CP modules can be connected to a NANO-B
controller.

Example: Addressing a NANO-B equipped with a FESTO CP valve
terminal
As expansion modules one digital output and input module each are attached to a
NANO-B controller. Last of all, a FESTO CP valve terminal with 8 valves is added.
This configuration results in the following addressing scheme:

NANO-B
Basic Unit
Module # 1
Input
101 .. 108
Output
101 .. 108

N-OD 8
Output Module
Module # 2
Output
201 .. 208

N-ID 8
Input Module
Module # 3
Input
301 .. 308

FESTO CP with 8
Valves
Module # 4
Output
401 .. 408
and
501 .. 508
though unused

Important!
Address numbers are assigned to FESTO CP modules only after NANO
modules. For more information refer to chapter 14.5: "Example: Register
Assignment of FESTO CP Modules", page 255.

Jetter AG

247

14 NANO Network Topology and FESTO CP Modules

PROCESS PLC

14.3.1 Commissioning a PROCESS-PLC NANOB/C equipped with FESTO CP Modules
The PROCESS-PLC NANO-B/C and FESTO CP modules communicating via Jetter
System Bus are initialised using the following flow chart:

Fig. 62: Flowchart for Commissioning NANO-B/C with FESTO CP Modules

248

Jetter AG

NANO-B

14.3 FESTO CP Modules Attached to a NANO-B Controller

14.3.2 Comparing Set/Actual Configuration
If a FESTO CP module has to be replaced, the PROCESS-PLC must be switched off
beforehand. Restart the PROCESS PLC system to activate the new FESTO CP
module. During start-up the new module is detected and register 2021 is read in.
While doing so, the module type is not determined. This means that a FESTO CPV
valve terminal type 4 can be replaced with a FESTO CPV valve terminal type 8.
To ensure that the replacement is taken into account the user should write a
SYMPAS program comparing SET with ACTUAL configuration. Examples of such a
program are given in fig. 63 and fig. 64 .
The program extract given in fig. 63 shows that the set configuration of FESTO CP
modules ist stored to registers starting with register 100. The information contained
herein is required to compare set with actual configuration.

Fig. 63: Setting Configuration of FESTO CP Modules

Jetter AG

249

14 NANO Network Topology and FESTO CP Modules

PROCESS PLC

The program extract given in fig. 64 is an example of a comparison between set and
actual configuration. The set configuration is contained in the registers starting with
100 and the actual configuration in the registers starting with 2019. Comparison of
set configuration with actual configuration is used to determine that all FESTO CP
modules, for which the program was designed, have been detected during
initialisation of the PROCESS-PLC system.

Fig. 64: Comparison of Set Configuration with Actual Configuration

250

Jetter AG

NANO-B

14.4 Register Description of the FESTO CP Module

14.4

Register Description of the FESTO
CP Module

Register 2017: Amount of FESTO CP Modules
Function
Read

Description
Amount of FESTO CP modules recognised as
connected to the JETTER bus and appearing in the
configuration table.
Value following reset: 0

Write

Illegal

Value range

0 ... 8

Register 2018: Index to Configuration Table
Function
Read

Description
This index selects the FESTO CP module, the
configuration of which is to be read from registers 2019
through 2021. Register 2017 indicates how many
FESTO CP modules are available.
Value following reset: 1

Write

New index *)

Value range

1 ... 8

*) The

index is regarded as pointer. The required FESTO CP module is selected from
the table by using this pointer.

Register 2019: Check Number
Function
Read

Description
Check number of the FESTO CP module
Value following reset: Last value or new check number

*)

Jetter AG

Write

New check number *)

Value range

0 ... 65535

The check number of the FESTO CP module is entered into the table either
manually by the user or automatically by the controller. The check number is
indicated as PN number on the nameplate of the FESTO module. The following
illustration is to show the elements a FESTO serial number consists of.

251

14 NANO Network Topology and FESTO CP Modules

PROCESS PLC

Register 2020: Type of the FESTO CP Module
Function
Read

Description
Type of the FESTO CP module
Value following reset: Last value or new type

FESTO CP Module
Types and I/O
Configuration

252

Write

New type; cf. the following table

Value range

0 ... 65535

CP Module

Entry for Valve Terminal
Type

Entry for I/O
Configuration

CPV10-GE-FB-4

100

32

CPV10-GE-FB-6

101

32

CPV10-GE-FB-8

102

32

CPV14-GE-FB-4

110

32

CPV14-GE-FB-6

111

32

CPV14-GE-FB-8

112

32

CPV18-GE-FB-4

125

32

CPV18-GE-FB-6

126

32

CPV18-GE-FB-8

127

32

CP-E16-M8

240

02

CP-E16-M12

241

02

CP-E16N-M8

248

02

CP-E16N-M12

249

02

CP-A8-M12

200

32

CP-A8N-M12

208

32

CPA-10/14 MFB/IFB

150

32

CPA-18 MFB/IFB

152

32

Jetter AG

NANO-B

14.4 Register Description of the FESTO CP Module

Register 2021: I/O Configuration
Function
Read

Description
I/O configuration of the FESTO CP module
Value following reset: Last value or new I/O configuration

*)

Write

Illegal

Value range

02: for input module *)
32: for output module *)

Settings by FESTO.

Fig. 65: Register Configuration of FESTO CP Modules

Note!
The entry of the check numbers is automated. In the basic setting, the default
value for the check number in register 2019 is zero.
By that means, the NANO-B automatically enters the check number of the FESTO
CP modules into the configuration table of register 2018; When doing so, the
controller starts with the least check number and enters the check numbers in
ascending order into the configuration table.
The check numbers of FESTO CP modules are to be entered into the
configuration table by means of register 2018 in the same order in which they are
intended to be addressed during operation. The first entry is addressed as the first
module, the second entry as second module etc.

Jetter AG

253

14 NANO Network Topology and FESTO CP Modules

PROCESS PLC

Important!
The higher the check number, the higher the logical (not physical) location of the
FESTO CP module being addressed by the controller.

Register 2027: Output Driver Error / FESTO CP
Module Error
Function
Read

Description
Present error of the output driver, resp. FESTO CP module:
Bit 0

Local outputs short-circuited

Bit 1-23

One of the I/O modules short-circuited;
FESTO CP module error.

Value following reset = 0
Write

Illegal

Value range

0 ... 65535

An error of the locals outputs of a NANO module or a FESTO CP module is displayed
through register 2027. A short-circuited or an overloaded local output can be a cause
for such an error.
The cause of an error message of a FESTO CP module can be read out of register
2034. To do so, the number of the FESTO CP module must have been entered into
register 2018.

254

Jetter AG

NANO-B

14.5 Example: Register Assignment of FESTO CP Modules

14.5

Example: Register Assignment of
FESTO CP Modules

Fig. 66: Example: FESTO CP Modules connected to the JETTER System Bus

Note!
Register assignments, references to additional registers and additional
information resulting from the configuration shown in fig. 66 are as follows:

Configuration of the Exemplary Arrangement:

NANO Expansion
Modules
3 non-intelligent
modules:

Jetter AG

FESTO CP Modules

•

N-IA 4

Valve terminal 1:

e.g. CPV-10-6E-FB-8,
terminal type 102

•

N-OA 4

Valve terminal 2:

e.g. CPV-10-6E-FB-4,
terminal type 100

•

N-OD 8

Input module

e.g. CP-E16-1112x2,
terminal type 241

255

14 NANO Network Topology and FESTO CP Modules

PROCESS PLC

Register Assignment Resulting from the Exemplary Configuration:

Register
and
Register
Value

Reference to
Additional
Registers

2013: 9

•
•

Components

Comments

3 non-intelligent
modules
3 FESTO CP
Modules

In this register,
FESTO CP modules are counted
twice resulting in:
3+3x2=9

2014: 0

•

intelligent module
are not being used

2015: 0 -> 2016:6

•

3 non-intelligent
modules
3 FESTO CP
Modules

•

with the following
codes:
1->

3 for

N-IA4

2->

4 for

N-OA4

3->

0 for

N-OD8

4->

33 for

FESTO CP Input
Module

5->

32 for

FESTO CP Valve
Terminal 2

6->

32 for

FESTO CP Valve
Terminal 1

2017: 3
2018: 1 ->

In this register,
FESTO CP modules are counted
once resulting in:
3+3x1=6

3 FESTO CP Modules
2019: 125
2020: 241

->FESTO CP Input
Module

2021: 2
2018: 2 ->

2019: 419
2020: 100

->FESTO CP Valve
Terminal 2

2021: 32
2018: 3 ->

2019: 18224
2020: 102

->FESTO CP Valve
Terminal 1

2021: 32

256

Jetter AG

NANO-B

14.5 Example: Register Assignment of FESTO CP Modules

Input and Output Numbering with Automatic Recognition
Resulting from the Exemplary Configuration:

Component
NANO-B

Inputs
101 ... 108

Outputs
101 ... 108

N-IA 4

201 ... 208 (virtually)

N-OA 4

301 ... 308 (virtually)

N-OD 8

401 .... 408

FESTO Tee Connector

The FESTO Tee Connector does not
require a number!

FESTO CP Valve Terminal 1

901 ... 908
1001 ... 1008

FESTO CP Valve Terminal 2

701 ... 708
801 ... 808

FESTO CP Input Module

501 ... 508 *)
601 ... 608

*) I/O numbering is continued with the FESTO CP module with the least check number.

Note!
Following the numbering of NANO-B modules, numbering of inputs and outputs
of the FESTO CP module is continued with the FESTO module with the least
check number. Please give heed to the difference in numbering of expansion
modules from Jetter AG.

Jetter AG

257

15 Error Handling

PROCESS PLC

15

Error Handling

When dealing with errors, the following distinction has to be made:
•
•
•

Hardware errors
Application program errors
Operating system errors

15.1

Hardware Errors

If communication with a module connected to a NANO-B is not possible via JETTER
system bus, this error is signaled by the following messages:
•

register 2011 resp. 2012 shows the number of the module where a
communication time-out has occurred;

•

the red LED-ERR on the NANO-B basic controller is lit when register 2008 is not
equal to zero.

If the computer is connected to the controller via a programming cable and if the
SYMPAS program is activated, in the first instance, it is to be checked whether in the
windows 4, 5, 8 or 9 registers with a time-out error message are displayed.

Fig. 67: Error Message: Time-out
If this is the case, the registers in the corresponding windows have to be deleted and
"0" has to be entered into register 2008.

Fig. 68: Resetting Register 2008

258

Jetter AG

NANO-B

15.2 Application Program Errors

To check whether the SYMPAS program will access to registers which cause errors,
the NANO-B must be powered on while the program is stopped. If register 2008
continues to display "0", the error is caused by the SYMPAS program. If a value other
than "0" is displayed, proceed according to Chapter 15.3 "OS Error Messages".

15.2
Syntax Checking

Application Program Errors

The programming interface SYMPAS includes a syntax checking function which
"intercepts" errors in the application program. When the program is uploaded
from the PC to the controller, syntax checking can either be enabled or disabled.
When working with SYMPAS, it is advisable to leave syntax checking enabled
since it spots fundamental errors.

If syntax checking is disabled, it can happen that faulty programs are uploaded to the
NANO-B controller. In this case, errors will be reported in register 2008.
Register 2001 signals whether the program is running properly or has been stopped.

Register 2001: Status register
Function

Description

Read

State:
Bit 0 = 0: Program has been stopped
Bit 0 = 1: Program is running
Bit 1 not assigned
Bit 2 = 0: Stepper motor disabled
Bit 2 = 1: Stepper motor activated

Write

Bit 0 = 0: Stop program
Bit 0 = 1: Start program

Value range

0-5

The status register signals whether the program in the controller is currently running
or has been stopped. A program can be "stopped":
•
•
•

Jetter AG

if a syntax error in the application program has been spotted. The kind of error is
displayed in register 2008 and LED ERR is lit.
if the program has been stopped through the setup screen of SYMPAS by
pressing SHIFT F3, [F2, F4] or by writing into register 2001;
if the "STOP-RUN" switch is in "STOP" position when the controller is powered
up.

259

15 Error Handling

PROCESS PLC

Note!

The LED RUN signals whether the program is running properly or has been
stopped.

LED RUN lit:

Program is running

LED RUN is flashing:

Program has been stopped

Register 2009: Status register
Function
Read

Description
Number of the task in which an error
has occurred.
Value following reset: -1
– 1: No error!
– 2: The program code cannot be
related to a task following
program start or reset.

Write

Error is deleted

Value range

0 - 31

If in the application program an error has been spotted, the number of the task, in
which the error has occurred, can be read from this register.

Note!
The function Autoflash has to be activated to store a newly prepared SYMPAS
program. For more information refer to Fig. 69 "Autoflash Settings in the
SYMPAS Program", page 261.
Only in case the autoflash function is activated, the SYMPAS program is
permanently stored to the flash memory of the CPU. If the autoflash function is
not activated, the JETTER test program, for example, is in the CPU memory
when the NANO-B is restarted.

260

Jetter AG

NANO-B

15.2 Application Program Errors

Fig. 69: Autoflash Settings in the SYMPAS Program

The SYMPAS program is transferred by pressing

.

Note!
SYMPAS programs should only be transferred upon completion of program
creation, since the CPU's flash memory allows only a certain amount of write
cycles (approx. 10000).

Jetter AG

261

15 Error Handling

PROCESS PLC

15.3

OS Error Messages

Register 2008: Operating System Error messages
Error #
Bit 2 = 1

Type of Error
No user program
in the NANO-B memory

Error Cause
•
•

Troubleshooting

No user (SYMPAS-)
program present
No valid user program
present

– Reload user program

Bit 3 = 1

I/O module timeout:
Module does not answer

•

Intermittent electrical
contact or break of
JETTER system bus
cable JX2-SBK1

– Check JETTER system bus
cable JX2-SBK1 for continuity
and short circuit. While doing
so, shake the cable.

Bit 4 = 1

Slave module timeout:
Module does not answer

•

Access to intelligent
modules which have
not been inserted or
detected.
Reg. 12100 .. 14199

– Check power supply of the
intelligent module.
– Do not power up intelligent
modules following power-up
of the CPU, i.e. intelligent
modules have to be powered
up at the same time as the rest
of the system.
– If the 5 V LED of the relevant
module is not illuminated,
return the module for repair.
– Check addressing of registers
for the module in the SYMPAS
program and correct it if
necessary. The module has to
be detected in the module
array with register 2015 and
2016.

•

Access to nonintelligent modules
which have not been
inserted or detected.
Reg. 3000 .. 3149

– Wrong calculation of register
address
– Module defective
– Too many modules connected
to the JETTER system bus
cable JX2-SBK1 without
power supply module PS1.

•

Intermittent electrical
contact or break of
JETTER system bus
cable JX2-SBK1

– Check JETTER system bus
cable JX2-SBK1 for continuity
and short circuit. While doing
so, shake the cable.

•

e.g. Modem with selfdetection routine
keeps sending data

– Switch off self-detection
routine of the modem.

•

faulty SYMPAS
program

– Repeat SYMPAS program
upload

•

Faulty programming

– Activate syntax checking.
Following this, reload
corrected program.

Bit 5 = 1

Bit 6 = 1

262

Illegal op-code in the RAM

Wrong programming of an
arithmetic calculation

Jetter AG

NANO-B

15.3 OS Error Messages

Register 2008: Operating System Error messages
Error #

Type of Error

Error Cause

Troubleshooting

Bit 7 = 1

Multiple entry of a label
number

•

Faulty programming

– Activate syntax checking.
Following this, reload
corrected program.

Bit 8 = 1

General syntax error

•

Faulty programming

– Activate syntax checking.
Following this, reload
corrected program.

Bit 9 = 1

(if flag 2065 is set) one or
more output drivers on the
basic controller are
overloaded

•

Overload or short
circuit of a set output

– Eliminate short circuit

Bit 10 = 1

Jump to a non-existing
label or subprogram

•

No jump label defined
in the SYMPAS
program

– Activate syntax checking,
check program and correct it.

Error Messages of Special Flags Specified in Chapter 5.2 "Access to
Flags"
2048

Time-out I/O module: corresponds to register 2008 Bit 3

2049

Time-out slave module: corresponds to register 2008 Bit 4

2051

Time-out during slave access through SYMPAS

2052

User programmable interface: Parity error

2053

User programmable interface: Frame error

2065

Enable error message (CPU output driver). For more information see register 2008,
bit 3

Jetter AG

263

16 NANO-C: Differences from NANO-B

16

PROCESS PLC

NANO-C: Differences from
NANO-B

The NANO-C module has additional or improved functions as compared with the
NANO-B.

Comparison between Functions
NANO-C Module

NANO-B Module

•

10000 User Registers

•

2000 User Registers

•

64 KByte Application program

•

16 KByte Application program

•

256 Floating point registers

•

No floating point registers

•

Special Functions:

•

Special Functions:

– SF4 BCD ->HEX

– SF4 BCD ->HEX

– SF4 BCD ->HEX

– SF4 BCD ->HEX

– Square root
– Sine
– Cosine
– Tangens
– Arc Sin
– Arc Cosin
– Arc Tangens
– Exponential function
– Natural logarithm

10000 User Registers:
Numbering of user registers is carried out as follows:
0 .. 1999 and 20000 .. 27999

256 Floating point registers (NANO-B none)
Floating point registers are numbered as follows:
65024 .. 65279

with a value range from ± (8.43 10-37 through 3.38 1038)

264

Jetter AG

NANO-B

Special Functions: (NANO-B only SF4 BCD->HEX, SF5 HEX->BCD)
Special functions are always called using two parameters. The first parameter is the
number of the register containing the operand. The second parameter is the number
of the register into which the results of the function have to be written, for example:
SPECIAL FUNCTION [#21, P1=65024, P2=65025]

This function calculates the sine for the number contained in register 65024 and
stores the result to register 65025.
On principle, it is permitted to specify integer registers for parameter transfer or for
the result. In most cases, this makes no sense due to the value range.

Function 20: Square root
Value range of argument:

0 and positive numbers

Value range of the result:

0 and positive numbers

Potential errors:

Negative number as argument

Result in case of error:

1.00

Computing time:

approx. 0.5 ms

Function 21: Sine (sin)
Value range of argument:

-1000 to +1000 in radian measure!

Value range of the result:

-1.00 through +1.00

Potential errors:

None

Computing time:

approx. 2.6 ms

Function 22: Cosine (cos)
Value range of argument:

-1000 to +1000 in radian measure!

Value range of the result:

-1.00 through +1.00

Potential errors:

None

Computing time:

approx. 2.7 ms

Function 23: Tangent (tan)

Jetter AG

Value range of argument:

-1000 to +1000 in radian measure!

Value range of the result:

-10 13 through +1013

Potential errors:

None

Computing time:

approx. 2.5 ms

265

16 NANO-C: Differences from NANO-B

PROCESS PLC

Function 24: Arc Sine (arc sin)
Value range of argument:

-1.00 through +1.00

Value range of the result:

-π/2 through +π/2

Potential errors:

Argument outside -1..+1

Result in case of error:

1,00

Computing time:

approx. 3.0 ms

Function 25: Arc Cosine (arc cos)
Value range of argument:

-1.00 through +1.00

Value range of the result:

0 through +π

Potential errors:

Argument outside -1..+1

Result in case of error:

1,00

Computing time:

approx. 3.0 ms

Function 26: Arc Tangent (arc tan)
Value range of argument:

-1013 through +1013

Value range of the result:

-π/2 through +π/2

Computing time:

approx. 2.5 ms

Function 27: Exponential Function (ex)
Value range of argument:

-86.63 through +86.63

Value range of the result:

0 through 4.237

Computing time:

approx. 3.0 ms

Function 28: Natural Logarithm (ln)
Value range of argument:

0 through 4.237

Value range of the result:

-86.63 through +86.63

Computing time:

approx. 3.0 ms

Note!
SYMPAS programs for a NANO-B controller can also be used for a NANO-C
controller. For this purpose, the extensions of SYMPAS files for NANO-B have to
be renamed from .PNB to .PNC.

266

Jetter AG

NANO-B

Appendices

Appendices

Jetter AG

267

Appendices

PROCESS-PLC

Appendices
of
List
Appendix A: Downloading the

Operating System
In the menu "Transfer" of the SYMPAS programming interface the operating system
can be updated.
For this purpose, operating system files (*.OS) are made available on the internet
(http://www.jetter.de) by JETTER AG.

Fig. 70: SYMPAS Programming Interface

For downloading an OS update, time-out must be set to 4000 ms in
the SYMPAS menu "Special / Interface". This is the default setting.
In addition to this, the OS itself must be stopped during download of
an OS update.

268

Jetter AG

NANO-B

Appendices

Appendix B:Multitasking Operating
System
This chapter is directed at users who in greater detail want to know how the
multitasking operating system of the NANO-B basically works.

Basic Information on Multitasking
A lot of control systems are operated with a program which is cyclically processed.
Cyclic processing is required if processing of several parallel programs is not
feasible, thus multitasking cannot be used.
Every system, however small it may be, includes parallel functions and processes.
Even if only one automatic process is required, there are parallel functions or
operator guidance functions to be monitored.

Execution of Parallel Functions by Multitasking
The most practical approach to parallel processing is multitasking since it is the most
distinct and, in logical terms, the simplest way of implementing parallel processing
The reasons, why this kind of technology has not yet been applied in control systems
on a broad basis, are as follows:
•

PLC automation technology is to a high degree committed to its traditional
concept using PLC languages, such as ladder diagram, function plan and
statement list, and, as a result, to the cyclic processing of programs.

•

The well-known realtime-capable multitasking operating systems are very
complex, thus, requiring high-performance and, therefore, expensive hardware.
Also, specialists are needed for their handling.

•

The realtime capability of multitasking operating systems known from the office
realm is limited since numerous system functions, such as access to hard disks,
mouse handling etc., get access to program flow via interrupts.

•

Due to the complexity of the known multitasking operating systems, their
application in the area of small and mid-sized control system has not been
possible so far.

Reproduction of the Real Process Flow
Multitasking enables the program to be executed in a way that corresponds to the
real process flow.

Jetter AG

269

Appendices

PROCESS-PLC

PROCESS-PLC with Multitasking OS for Automation
Technology
To realise an OS with multitasking and a descriptive, process oriented execution for
the whole range of automation technology, JETTER AG has developed an easy-touse multitasking OS.
This OS was designed for meeting the demands of automation technology and
already enables multitasking to be implemented into the micro controller NANO-B.

Principle of Operation
First of all, distinction must be made between single-processor and multiprocessor
systems. For processing applications with great volumes of data, e.g. complex
graphics, multiprocessor systems are used in the EDP realm. In such systems, data
are processed in parallel by several processors.

Multitasking Using Single-Processor Systems
In most cases, parallel data processing using several processors is not being used,
neither in known multitasking operating systems of the office realm nor in most other
systems, Except for some few special applications, multiprocessor systems are not
universally applicable to the wide range of control engineering due to the required
hardware and software, thus, the high price. Therefore, in control systems a single
processor is used managing parallel processing of all programs. This also applies to
PROCESS-PLC systems.
There are several basic approaches to multitasking operating systems. One of them
is the time-sharing method.
Time-sharing runs several tasks by interleaving portions of processing time allotted
to each task. Each task is executed until its portion of time is elapsed. Then, control
of the system is passed to the next task. This process is continued until the initial task
gets its turn, then it starts once again.

Time-slice Multitasking
With PROCESS-PLC systems an optimized time-sharing multitasking is used. It is
possible to write up to 32 parallel programs, called tasks. In many cases, in particular
with micro controllers, a number of 3 to 10 task is practicable.

270

Jetter AG

NANO-B

Appendices

Note!
A program always starts with TASK 0. Thus, TASK 0 is the only task, the
existence of which is mandatory. The order, in which additional tasks are
programmed, is irrelevant. For reasons of clarity, a systematic and logical order
of tasks is advisable.

Note!
The duration of program execution primarily depends on the number of tasks
being used. The program length is only of secondary importance to the
processing time. Clever programming, thus, a limited number of tasks is crucial
to a fast processing of a program.

Permanently Defined and User-Defined Task Switching
Conditions
A task does not always make the most of the available processing time. If, for
example, the next instruction of a task is a delay which has not elapsed yet, an
immediate task switch takes place. Such a task switch cannot be controlled by the
program. After the following instructions a task switch is inevitably carried out:
•
•
•

DELAY process has not been completed yet
WHEN condition has not been fulfilled yet
USER_INPUT program waits until a value is entered by operator

Additionally, further task switching conditions can be defined in register 2004:
•
•
•

if the time specified in register 2005 has elapsed and a THEN instruction follows
if the task encounters a GOTO instruction
if the condition of an IF instruction has not been fulfilled.

In addition to the user task, three further functions are
carried out in the background:
•
•
•

Jetter AG

interface for connection with the user interface
interface for connection with PC, VIADUKT or graphic user interface
JETWay interface

271

Appendices

PROCESS-PLC

Priorities
The priority of managing the user interface and the serial interface can be defined. In
default setting, both functions are carried out after all tasks have been processed.
The priority of these functions can be increased by means of flags 2056 and 2057.
In this case, interfaces are always "served" between two tasks.
In most cases, default setting is best since the highest priority usually is given to
automatic functions, and not to operating functions. Changing these flags is practical,
for example when switching the system from automatic mode to manual mode.
In register 2026the priority of a task is defined by the user.

Note!
By using the instruction DELAY 0 with parameter 0, task switching is induced. If,
during processing, a task encounters DELAY 0, it switches immediately to the
next task.

By using the instruction DELAY 0 low priority can be assigned to tasks or program
parts. A task which is controlling the displays needs not have, for example, the same
response time as a task for automatic mode. Insertion of one or more DELAY 0
instructions into user interface tasks results in time saving which is made available
to other task.

272

Jetter AG

NANO-B

Appendices

Appendix C: Glossary

Jetter AG

Sequential Control
System

Control system with sequential processing. Stepping is
initiated either by feedback signals from the machine
(process-dependent sequential control) or timecontrolled (time-dependent sequential control).

Axis

A principal direction along which a movement of the tool
or work piece occurs.

Actuator

A component which is connected to the output of a
controlled system and which converts an electrical
signal into mechanical motion.

Analog

A parameter, e.g. voltage, which is steplessly
adjustable. Contrasted with digital.

Statement List

Application program that lists control functions in the
form of statements.

Resolution

A resolution of 10 bit means that, for example,
a value range of 0-10 V is divided into 2 10 = 1024
increments.

Output Driver

Output drivers are semiconductor components, such as
transistors with the N-IO 16 module. To function
correctly, they have to be connected to voltage and
current.

Bit-coded

Bit-coded means that bits are evaluated individually.

Burst

1) Short period of intense activity on an otherwise quiet
data channel. 2) Short isolated sequence of transmitted
signals. 3) Fast transient interference.

Bus

A set of hardware lines (conductors) used for data
transfer among the components of a computer system.
Buses are characterised by the number of bits they can
transfer at a single time. Distinction is made between
serial bus systems (transmission of one bit at a time)
and parallel bus systems (simultaneous transmission of
a group of bits over separate wires).

CAN Bus

Controller Area Network Bus: Originally, this bus was
intended for use in automobiles due to its short cable
length of 30 m maximum, high bit rate of 1 Mbit/s and its
noise immunity.
The same demands apply to automation technology.
Therefore, this bus system (serial bus) is used in Jetter
control systems.

Digital

Presentation of a parameter, e.g. time, in the form of
characters or figures. This parameter in digital
representation can be changed in given steps only.
Contrasted with analog.

DIP switch

Dual-in-line Package Switch

DIN Rail

Rail to DIN EN 50022 for mounting modules

273

Appendices

274

PROCESS-PLC

Download

In communications, to transfer a copy of a file from a
remote computer to the requesting computer, for
example, an OS from a PC to a PROCESS-PLC.

Electromagnetic
Compatibility (EMC)

Definition according to the EMC regulations:
EMC is the ability of a device to function in a satisfactory
way in electro-magnetic surroundings without causing
electromagnetic disturbances itself, which would be
unbearable for other devices in these surroundings.

Fieldbus Interface

Interface for connection of field devices, such as
FESTO valve terminals.

Field Level

Sensors and actuators located in the machinery.

Firmware

Software routines stored in read-only memory (ROM).
For example, startup routines and low-level I/O
instructions are stored in firmware. It falls between
software and hardware in terms of ease of modification.

First In First Out

A method of processing a queue, in which items are
removed in the same order in which they were added.
The first element in is the first out.

Flash Memory

A type of nonvolatile memory. Flash memory is similar
to EEPROM memory in function bit it must be erased in
blocks, whereas EEPROM can be erased one byte at a
time.

Framing Error

With serial data transmission, a so-called frame is
added to the data. This frame consists of one start bit
and one or several stop bits which define the beginning
and the end of a data byte. In a Jetter control, a framing
error indicates that the received character has not got a
valid stop bit.

Function Plan

A graphic map of the control functions. Each control job
(function) is provided with a corresponding symbol.

Accuracy

The deviation between the actual position and the
theoretical position

Floating Point Notation

The floating point notation is also called exponential
notation. It is a numeric format that can be used to
represent very large and very small numbers. Floating
point numbers are stored in two parts, a mantissa and
an exponent. For example, 456000 is expressed as
456E3.

Jetter AG

NANO-B

Jetter AG

Appendices

Integer

Also called "integral number". A positive or negative
integral number, e.G. 37, -50 or 764.
In programming, "integer" stands for a data type
representing whole numbers. Calculations with integers
are considerably faster than calculations with floating
point numbers. Therefore, integers are commonly used
for counting and numbering procedures. Integers can
have a leading sign (positive or negative) or be
unsigned (positive). In addition to this, distinction is
made between long and short integers depending on
the number of bytes they occupy in the memory.
Short integers comprise a smaller range of numbers
(e.g. - 32,768 to +32,767) than long integers do (e.g. 2,147,483,648 to + 2,147,483,647).
On Jetter controllers integer values are defined for a
range of 24 bit = - 8 388 608 to + 8 388 607.

Plaintext High-Level
Language

Programming language using nonencrypted or legible
text.

Ladder Diagram

Graphic representation of control functions in imitation
of schematic diagrams used in contactor technology.
However, current paths are horizontally located one
below the other and different symbols are used.

Master

A device, e.g. a PASE-E, that controls another device,
e.g. a NANO-B, called the slave.

Flag

1 bit storage position for intermediate results which are
required for linkage purposes.
The state of the bit is either 0 or 1.

Multiplexer

A device for funneling signals from several input lines to
one output line.

Multitasking

A mode of operation offered by an operating system in
which a computer works on more than one task at a
time.

Monitor Mode

Using this function, registers, I/Os can be monitored
and altered during operation.

Parallel Processing

A method of processing that can run only on a computer
that contains two or more processors running
simultaneously. Parallel processing differs from
multitasking in the way a task is distributed over the
available processors. Example: The process of
controlling servo axes is entirely taken on by the SV
module. This way, the processing time of application
program is not affected.

Parity

The quality of sameness or equivalence. In the case of
computers parity usually refers to an error-checking
procedure. Depending on the definition, the number of
1s must always be the same - either even or odd - for
each group of bits transmitted without error.

275

Appendices

276

PROCESS-PLC

Parity error

An error in parity indicates an error in transmitted data
or in data stored in memory. If a parity error occurs in
communications, all or part of a message (programs)
must be retransmitted.

Port Address

An address for a channel used to transmit data between
an input or output device and the processor. From the
CPU's point of view a port is one or more locations in
memory, to which it can send data or from which it can
receive data. Special hardware, such as an extension
board, saves data from the device to memory
addresses and sends data from these addresses to the
device. Some port are meant only for input or output
purposes.

Process

A program or a part of it. A related sequence of steps
carried out by program.

Process level

Level of a system overriding the field level.

PROCESS-PLC

Compared with the traditional programmable logic
controller an advanced control system developed by
Jetter AG.

Pull-Up Resistors

A functional resistor generating defined states for
measurements and evaluations. Such a resistor pulls
up the potential to a high level in contrast to a pull down
transistor pulling down the potential to the ground.

Register

A high-speed memory for a group of bits placed in a
microprocessor or in another electronic device where
data can be buffered for a specific purpose. On JETTER
controllers, usually, these are 24 bit wide storage
positions in a remanent RAM.

Remanent Application
Registers

Registers, the information contents of which are
maintained in case of a power supply interrupt.

Sensor

Electronic detector, pick-up.

Slave

A device, e.g. a NANO-B controller, which is controlled
or influenced by another device called "Master", e.g. a
NANO-C controller.

TASK

A stand-alone application or a subprogram that is run as
an independent entity.

Time-out

The amount of time the system will wait for a peripheral
device to respond before it detects and reports this as
an error.

Time-sharing

The use of a computer system by more than one
individual at the same time.

Token

A unique structured data object or message that
circulates continuously among the nodes of a token ring
and describes the current state of the network.

Jetter AG

NANO-B

Jetter AG

Appendices

Valve Terminal

An array of pneumatic or hydraulic valves which are
addressed via bus system. Valve terminals are used for
automation jobs on the field level.

Virtual

Of or pertaining to a device, service or sensory input
that is perceived to be what it is not in actuality, usually
as more "real" or concrete than it actually is.

XON/XOFF

An asynchronous communications protocol in which the
receiving device uses special characters to control the
flow of data from the transmitting device. When the
receiving device cannot continue to receive data, it
transmits an XOFF control character. When
transmission can resume, the device signals the sender
with an XON character.

277

Appendices

PROCESS-PLC

Appendix D: List of Abbreviations

278

AC

Alternating Current

A/D

Analog/Digital

ADC

Analog-to-Digital Converter

AM

Amplitude Modulation

ASCII

American Standard Code for Information Interchange

COM

Device name for a serial port in Wintel systems. The first serial
port is identified as COM1, the second as COM2, etc.

CPU

Central Processing Unit

CSF

Control System Function Chart

D/A

Digital/Analog

DAC

Digital-to-Analog Converter

DC V

Direct Current Voltage

DIN

Deutsches Institut für Normung = German Industry Standard

DIR

Direction

EEPROM

Electrically Erasable Programmable Read Only Memory

EMC

Electro Magnetic Compatibility

ENC

Encoder

ERR

Error

ESD

Electro Statical Discharge

FIFO

First In First Out

Gnd

Ground

HR 1

Handrad 1 = Thumbwheel 1

I/O

Input/Output

IEC

International Electrotechnical Commission

LAD

LAdder Diagramm

LC

Liquid Crystal

LCD

Liquid Crystal Display

LED

Llight - Emitring Diode

LSB

Least Significant Bit, e.g. of a word.

MMI

Man Machine Interface

ms

Millisecond

NUM 25

Keyboard module for LCD 16 user interface

Jetter AG

NANO-B

Jetter AG

Appendices

PASE - E

Programmierbare Ablaufsteuerungseinheit Typ E =
Programmable Sequential Control, Type E

PE

Protective Earth

PELV

Protective Extra Low Voltage

PID

Proportional-Integral-Differential (Controller)

PLC

Programmable Logic Controller

PRIM

User-programmable interface

PWM

Pulse Width Modulation

RDA

Receive Data A: The first differential channel of the RS 422
interface

RDB

Receive Data B: The second differential channel of the
RS 422 interface

RS 232

An accepted industry standard for serial communications
connections.
RS: Recommended Standard
For transmission distances of up to 15 m. No differential
evaluation. Transmitting and sending on different lines.

RS 422

For transmission distances over 15 m. Two lines with 2
differential evaluations each. Transmitting and sending on
different lines.

RS 485

For transmission distances over 15 m. Two lines with handling
of differential signals. Transmitting and sending on the same
line.

RTC

Real Time Clock

RXD

Receive (RX) Data
A line used to carry received serial data from one device to
another.

SDA

Send Data A - The first differential channel of the RS 422
interface

SDB

Send Data B - The second differential channel of the RS 422
interface

SELV

Safe Extra Low Voltage: Voltage up to 60 V, galvanically
separated from the network.

SM

Stepper Motor

SSI

Synchronous Serial Interface

STEP

Step

STL

STatement List

SUB-D

Type name of a plug-in connector

SV

Servomotor

279

Appendices

280

PROCESS-PLC

SYMPAS

Symbolische Programmablaufsprache = Symbolic Program
Processing Language

tr/tn

time rise/time normal: Rise time of a pulse/total duration of a
pulse

TXD

Transmit (TX) Data
A line used to transmit received serial data from one device to
another; e.g. from a computer to a modem.

Jetter AG

NANO-B

Appendices

Appendix E: List of Illustrations
Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4:
Fig. 5:
Fig. 6:
Fig. 7:
Fig. 8:
Fig. 9:
Fig. 10:
Fig. 11:
Fig. 12:
Fig. 13:
Fig. 14:
Fig. 15:
Fig. 16:
Fig. 17:
Fig. 18:
Fig. 19:
Fig. 20:
Fig. 21:
Fig. 22:
Fig. 23:
Fig. 24:
Fig. 25:
Fig. 26:
Fig. 27:
Fig. 28:
Fig. 29:
Fig. 30:
Fig. 31:
Fig. 32:
Fig. 33:
Fig. 34:
Fig. 35:
Fig. 36:
Fig. 37:
Fig. 38:
Fig. 39:
Fig. 40:
Fig. 41:
Fig. 42:
Fig. 43:
Fig. 44:
Fig. 45:
Fig. 46:
Fig. 47:
Fig. 48:
Fig. 49:
Fig. 50:
Fig. 51:
Fig. 52:
Fig. 53:

Jetter AG

Shielding in conformity with the EMC standards
14
Example: Connecting a LCD display to the PROCESS-PLC NANO-B 16
Power Supply Terminals
18
Block Diagram of NANO-B Interfaces
19
JETWay-H PC Board
25
SYMPAS Menu [Special -> Interface]
26
Connection Details for Digital Inputs
31
Connecting Digital Outputs
32
Connection Details for Single-/Dual-Channel Counter
33
Connection Details for Analog Inputs
34
Connection Details for Analog Output
35
Connection Details for Stepper Motor Control
36
NANO-B Stepper Motor Driving Circuit
38
Exemple: Internal Circuitry of a DIR and STEP Signal
38
Arrangement of LEDs
39
STOP/RUN Switch
40
Mounting Dimensions of the NANO-B Basic Unit
41
REGISTER_LOAD with numeric parameters
55
REGISTER_LOAD with symbolic parameters
55
Indirect and Double Indirect Addressing
56
Example for Double Indirect Addressing
57
Example of Register Arithmetic
58
Pin Assignment of Connecting Cable for Several LCD User Interfaces 77
JETWay-H for the Management Level
107
JETWay-R for the Process Level
108
Slew Rate Limitation for AD Conversion
122
Stepper Motor with Motor Control and Power Amplifier
123
Speed Profile of Acceleration/Deceleration Ramps
133
Destination Window
135
Digital Offset, Acceleration/Deceleration Stepping Rate
136
Centralised Arrangement on the JETTER System Bus
151
Decentralised Arrangement on the JETTER System Bus
151
Connecting FESTO CP Modules to the JETTER System Bus
152
Mounting Dimensions of the Digital Input Module N-ID 8
153
Diagram of Input Wiring of a N-ID8 Module
157
Physical Dimensions of the Digital Output Module N-OD 4.2
158
Example: Output Wiring of an N-OD 4.2 Module
162
Physical Dimensions of the Digital Output Module N-OD 8
163
Example: Output Wiring of an N-OD 8 Module
167
Physical Dimensions of the Digital Input and Output Module N-IO 16 168
Example: Emergency Stop Circuitry of the N-IO 16 Module
173
Example: Input Wiring of the N-IO 16 Module
174
Physical Dimensions of the Analog Input Module N-IA 4
176
Diagram of Input Wiring of an N-IA4 Module
182
Physical Dimensions of the Analog Output Module N-OA 2
187
Physical Dimensions of the Analog Output Module N-OA 4
188
Example: Wiring of Outputs of the N-OA 4 Module
192
Physical Dimensions of the Digital Counter Module N-CNT 1
197
Example: Input Wiring of the N-CNT 1 Module
201
Pulse sequence of counting signals
206
Physical Dimensions of the Serial Interface Module N-SER 1
212
Block Diagram of Interfaces of the N-SER 1 module
216
Physical Dimensions of the Parallel Interface Module N-PRN 1
227

281

Appendices

PROCESS-PLC

Fig. 54:
Fig. 55:
Fig. 56:
Fig. 57:
Fig. 58:
Fig. 59:
Fig. 60:
Fig. 61:
Fig. 62:
Fig. 63:
Fig. 64:
Fig. 65:
Fig. 66:
Fig. 67:
Fig. 68:
Fig. 69:
Fig. 70:

282

Mounting Dimensions of the N-PS 1 Module
Physical Dimensions of the N-PS 1CP Module
Connections of the N-PS 1 Module
Connections of the N-PS 1CP Module
Example: FESTO CP Module
Physical Dimensions of the FESTO Tee Connector
Connection of FESTO CP Modules to the
JETTER System Bus (bus topology)
Connection of FESTO CP Modules to the
JETTER System Bus via Tap Lines
Flowchart for Commissioning NANO-B/C with FESTO CP Modules
Setting Configuration of FESTO CP Modules
Comparison of Set Configuration with Actual Configuration
Register Configuration of FESTO CP Modules
Example: FESTO CP Modules connected to the
JETTER System Bus
Error Message: Time-out
Resetting Register 2008
Autoflash Settings in the SYMPAS Program
SYMPAS Programming Interface

237
238
242
243
244
244
245
246
248
249
250
253
255
258
258
261
268

Jetter AG

NANO-B

Appendices

Appendix F: Index
A
Accuracy Classes of the
N-IA 4 Module

E
181

Air Humidity

44

Altitude

44

Ambient Temperature

44

Analog Input

121

Analog Output

120

Arc Cosin

266

Arc Sin

266

Arc Tangens

266

Autoflash

260

B
Binary code
Bit-specific Functions of
Register 2818

204

30
227

Class of Protection

45

Corrosion

44

Cursor Position

23

Error Messages via Special Flags

263

Exponential function

266

F

Centronics Interface

Cosine

EM-DK Cable for LCD 9, LCD 10
and LCD 12

93

C
CAN-BUS

EMC
NANO-B Basic Unit
46
N-CNT 1 Module
199
N-IA 4 Module
179
N-ID 8 Module
155
N-IO 16 Module
170
N-OA 2 Module
190
N-OA 4 Module
190, 199, 229
N-OD 4.2 Module
160
N-OD 8 Module
165
N-PRN 1 Module
229
N-PS 1 Module
240
N-PS 1CP Module
240
N-SER 1 Module
214

265

FESTO CP Module Types

252

FESTO CP Valve Terminal

244

Firmware

220

Flag 2057

100

Free Falls Withstanding Test

45

Fully metallised housing

14

79

G

D

Gray code

204

Damages in transit and storage

45

Degree of Protection

45

DELEOL

80

DELSCR

80

Device Number

78

Dielectric Test Voltage

45

Digital Inputs

31

I

Digital Outputs

32

Installation Accessories

17

DIN Rail

45

Installation Sequence

16

DIP switch

26

Interface for LCD Displays

23

Disposal

11

H
Hardware Flow Control
Hardware-Handshake

223
22

J
JETWay-H Cable

Jetter AG

24

283

PROCESS-PLC

Appendices

JETWay-R Cable

27

M
11

Monitor Mode

76

Mounting Position

45

N
Natural Logarithm
Network Interface JETWay-R
Networking of lines

43
266
27
244

O
Open Collector

38

Operating Conditions

44

Output Driver

173

Overlaying
Flags on registers
Inputs-Register

111
111

Overlaying of flags on registers

50

Overview
Network Registers
Real-Time Clock Registers
Special Flags
Special Registers
User Interfaces

112
148
52
61
74

Overvoltage Category

45

P
Parity check

204

Parity error

210

Pin Assignment - 15 pin male SUB-D
21
connector
Pin Assignment - 9 pin male SUB-D
connector
20

284

209

R

Maintenance

NANO-B Basic Unit - Terminals

Pulse Number

Pollution Degree

44

Programming Cable EM-PK

22

Programming Instruction
REG
REGDEC and REGINC
REGZERO

58
60
59

Programming interface
JETWay-H
RS232

24
22

Programming with the Aid of Flags

51

Register
10000
10001
10002
10003
10004
10005
10006
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11112
2001
2008
2009
2017
2018
2019
2020
2021
2027
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2804
2805
2806
2807
2808
2809
2810
2812
2813
2814

143
143
144
144
144
145
145
127
128
130
131
132
133
134
134
135
136
137
137
259
262
260
251
251
251
252
253
254
113
113
113
114
114
114
115
115
115
116
116
116
87
87
87
84, 88
85, 88
83, 89
83, 89
90
90
91

Jetter AG

NANO-B

Appendices

2815
86, 91
2816
92
2819
94
2820
94
2821
95
2822
95
2823
96
2824
96
2825
96
2826
97
2827
97
2828
97
2829
97
2830
97
2831
98
2832
98
2833
98
2834
99
2835
99
2836
99
2900
117, 120
2901
117
2902
120
2903 - 2906
121
2918
118
2919
118
2920
121
3yy0
185, 195, 207
3yy1
185, 195, 207
3yy2
185, 195, 207, 220
3yy3
186, 196, 207, 221
3yy4
208, 221
3yy5
208, 221
3yy6
209, 222
3yy7
210
3yy8
211
3yy9
186, 196, 211, 222, 234
Residual Dangers

45

Shock Resistance

265

Sine

33

Single-/Dual-Channel Counter

223

Software Flow Control

52

Special Flags
Special functions

265

Square root

265

SSI Absolute Position Encoder
202, 216, 231
STEP and DIR Signals

38

Storage temperature

44

SYMPAS Menu

26

System Bus Cable for NANO
Expansion Modules

30

T
Tangent

265

Tap Lines

244

Technical Data - Basic Unit

41

The JETWay-H board for PC's

25

Time Base

61, 69, 94, 118

U
Usage as Agreed Upon

11

Usage Other Than Agreed Upon

11

User Flags

50

User Interface Cable DK-422

28

User Interface Port

28

User-Programmable Interface

143, 213

15

V
S
Scope of Supply
Servo Control
Shielding in conformity with the
EMC standards

Jetter AG

16
208

VIADUKT Cable

29

Vibration Resistance

45

Visualisation Interface

29

14

285

Jetter AG
Gräterstrasse 2
D-71642 Ludwigsburg
Germany
Phone:
Fax:
Internet:
E-mail:

+49 7141 2550-530
+49 7141 2550-484
http://www.jetter.de
sales@jetter.de

Subsidiaries
Jetter UK Ltd.

Jetter Asia Pte. Ltd.

Jetter AG Switzerland

43 Leighswood Road Aldridge
GB-West Midlands WS9 8AH

32 Ang Mo Kio Industrial Park 2
#07-03 Sing Industrial Complex
Singapore 569510

Münchwilerstrasse 19
CH-9554 Tägerschen

Great Britain

Singapore

Switzerland

Phone:
Fax:
E-mail:

Phone:
Fax:
E-mail:

Phone:
Fax:
E-mail:

+44 1922 745200
+44 1922 745045
jetteruk@btinternet.com

+65 4838200
+65 4833881
sales@jetter.com.sg

+41 719 1879-50
+41 719 1879-69
info@jetterag.ch

Jetter USA Inc.
165 Ken Mar Industrial Parkway
Broadview Heights
OH 44147-2950

U.S.A
Phone:
Fax:
E-mail:

286

+1 440 8380860
+1 440 8380861
bernd@jetterus.com

Jetter AG

Branches
Jetter AG Büro Nord

Jetter AG Büro Süd

Jetter AG Büro Mitte

Am Nordbahnhof 5
D-59555 Lippstadt

Am Pulverl 5
D-85051 Ingolstadt

Wohnbacher Strasse 19
D-61200 Wölfersheim

Germany

Germany

Germany

Phone:
Fax:
E-mail:

+49 2941 6691-10
+49 2941 6691-22
dschnelle@jetter.de

Phone:
Fax:
E-mail:

+49 841 97149-30
+49 841 97149-40
mkos@jetter.de

Jetter AG Büro Ost

Jetter AG Büro Netherlands

Gewerbepark am Wald 3d
D-98693 Ilmenau

Amperestraat 10
NL-4004 KB Tiel

Germany

Netherlands

Phone:
Fax:
E-mail:

Jetter AG

+49 3677 2000-54
+49 3677 2000-55
mjakob@jetter.de

Phone:
Fax:
E-mail:

Phone:
Fax:
E-mail:

+49 6036 984382
+49 6036 984383
jpommerening@jetter.de

+31 344654-944
+31 344654-932
ddeijs@jetter.de

287



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : Yes
Subject                         : PROCESS-PLC
Modify Date                     : 2002:11:04 10:56:35+01:00
Create Date                     : 2002:11:04 10:35:17Z
Page Count                      : 285
Creation Date                   : 2002:11:04 10:35:17Z
Mod Date                        : 2002:11:04 10:56:35+01:00
Producer                        : Acrobat Distiller 5.0 (Windows)
Author                          : Armin Kreissl; Translation by G.nter Schmitt
Metadata Date                   : 2002:11:04 10:56:35+01:00
Creator                         : Armin Kreissl; Translation by G.nter Schmitt
Title                           : NANO-B Operator’s Manual
Description                     : PROCESS-PLC
Page Mode                       : UseOutlines
EXIF Metadata provided by EXIF.tools

Navigation menu