Datasheet STM32L432KB STM32L432KC Ultra Low Power Arm® Cortex® M4 32 Bit MCU+FPU, 100DMIPS, Up To 256KB Flash, 64KB SRAM, US Manual

stm32l432kb-manual

stm32l432kb-manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 157

DownloadDatasheet - STM32L432KB STM32L432KC Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS, Up To 256KB Flash, 64KB SRAM, US Stm32l432kb-manual
Open PDF In BrowserView PDF
STM32L432KB STM32L432KC
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
up to 256KB Flash, 64KB SRAM, USB FS, analog, audio
Datasheet - production data

Features
• Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/105/125 °C temperature range
– 8 nA Shutdown mode (2 wakeup pins)
– 28 nA Standby mode (2 wakeup pins)
– 280 nA Standby mode with RTC
– 1.0 µA Stop 2 mode, 1.28 µA with RTC
– 84 µA/MHz run mode
– Batch acquisition mode (BAM)
– 4 µs wakeup from Stop mode
– Brown out reset (BOR)
– Interconnect matrix
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
• Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
• Energy benchmark
– 176.7 ULPBench® score
• Clock Sources
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
– Internal 48 MHz with clock recovery
– 2 PLLs for system clock, USB, audio, ADC

UFQFPN32 (5x5)

• Up to 26 fast I/Os, most 5 V-tolerant
• RTC with HW calendar, alarms and calibration
• Up to 3 capacitive sensing channels
• 11x timers: 1x 16-bit advanced motor-control,
1x 32-bit and 2x 16-bit general purpose, 2x 16bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
• Memories
– Up to 256 KB single bank Flash,
proprietary code readout protection
– 64 KB of SRAM including 16 KB with
hardware parity check
– Quad SPI memory interface
• Rich analog peripherals (independent supply)
– 1x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold
– 1x operational amplifier with built-in PGA
– 2x ultra-low-power comparators
• 14x communication interfaces
– USB 2.0 full-speed crystal less solution
with LPM and BCD
– 1x SAI (serial audio interface)
– 2x I2C FM+(1 Mbit/s), SMBus/PMBus
– 3x USARTs (ISO 7816, LIN, IrDA, modem)
– 1x LPUART (Stop 2 wake-up)
– 2x SPIs (and 1x Quad SPI)
– CAN (2.0B Active)
– SWPMI single wire protocol master I/F
– IRTIM (Infrared interface)
• 14-channel DMA controller
• True random number generator

May 2018
This is information on a product in full production.

DS11451 Rev 4

1/156
www.st.com

STM32L432KB STM32L432KC
• All packages are ECOPACK2® compliant

• CRC calculation unit, 96-bit unique ID
• Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™

2/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Contents

Contents
1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3

Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1

Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2

Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 14

3.3

Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4

Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5

Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6

Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7

Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8

Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 17

3.9

Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.1

Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.9.2

Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.9.3

Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9.4

Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9.5

Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.10

Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11

Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12

General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.13

Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.14

Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15

3.14.1

Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 34

3.14.2

Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 34

Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.15.1

Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.15.2

Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.16

Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.17

Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.18

Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

DS11451 Rev 4

3/156
6

Contents

STM32L432KB STM32L432KC

3.19

Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.20

Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.21

Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.21.1

Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.21.2

General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 40

3.21.3

Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.21.4

Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 40

3.21.5

Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.21.6

Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.21.7

System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.21.8

SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.22

Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 42

3.23

Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.24

Universal synchronous/asynchronous receiver transmitter (USART) . . . 44

3.25

Low-power universal asynchronous receiver transmitter (LPUART) . . . . 45

3.26

Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.27

Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.28

Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 47

3.29

Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.30

Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.31

Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.32

Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.33

Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.33.1

Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.33.2

Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4

Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5

Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1

4/156

Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.1

Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.2

Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.3

Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.4

Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
DS11451 Rev 4

STM32L432KB STM32L432KC

7

6.1.5

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.6

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.7

Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3

Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.1

General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.2

Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 68

6.3.3

Embedded reset and power control block characteristics . . . . . . . . . . . 68

6.3.4

Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.5

Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.6

Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.7

External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.8

Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.9

PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.10

Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.11

EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.12

Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.13

I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.14

I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.15

NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.16

Extended interrupt and event controller input (EXTI) characteristics . . 113

6.3.17

Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.18

Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 114

6.3.19

Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 127

6.3.20

Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.21

Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.22

Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.23

Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.24

Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 138

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.1

UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2

Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2.1

8

Contents

Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

DS11451 Rev 4

5/156
6

Contents

9

6/156

STM32L432KB STM32L432KC

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

DS11451 Rev 4

STM32L432KB STM32L432KC

List of tables

List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.

STM32L432Kx family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . 11
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 15
STM32L432xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM32L432xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32L432xx USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L432xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
STM32L432xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 60
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 68
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 73
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 76
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 78
Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . . 79
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

DS11451 Rev 4

7/156
8

List of tables
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.

8/156

STM32L432KB STM32L432KC

Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
STM32L432xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

DS11451 Rev 4

STM32L432KB STM32L432KC

List of figures

List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

STM32L432xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32L432Kx UFQFPN32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L432xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

DS11451 Rev 4

9/156
9

Introduction

1

STM32L432KB STM32L432KC

Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L432xx microcontrollers.
This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx
reference manual (RM0394). The reference manual is available from the
STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, please refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

10/156

DS11451 Rev 4

STM32L432KB STM32L432KC

2

Description

Description
The STM32L432xx devices are the ultra-low-power microcontrollers based on the highperformance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
Arm® single-precision data-processing instructions and data types. It also implements a full
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L432xx devices embed high-speed memories (Flash memory up to 256 Kbyte,
64 Kbyte of SRAM), a Quad SPI flash memories interface and an extensive range of
enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit
multi-AHB bus matrix.
The STM32L432xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,
two DAC channels, a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM
timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit lowpower timers.
In addition, up to 3 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces.
•

Two I2Cs

•

Two SPIs

•

Two USARTs and one Low-Power UART.

•

One SAI (Serial Audio Interfaces)

•

One CAN

•

One USB full-speed device crystal less

•

One SWPMI (Single Wire Protocol Master Interface)

The STM32L432xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C
(+125 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6 V power supply. A comprehensive set of power-saving modes allows the design of lowpower applications.
Some independent power supplies are supported: analog independent supply input for
ADC, DAC, OPAMP and comparators
The STM32L432xx family offers a single 32-pin package.
Table 1. STM32L432Kx family device features and peripheral counts
Peripheral

STM32L432Kx

Flash memory

256KB

SRAM

64KB

Quad SPI

Yes

DS11451 Rev 4

11/156
50

Description

STM32L432KB STM32L432KC
Table 1. STM32L432Kx family device features and peripheral counts (continued)
Peripheral

Timers

Comm. interfaces

STM32L432Kx

Advanced control

1 (16-bit)

General purpose

2 (16-bit)
1 (32-bit)

Basic

2 (16-bit)

Low -power

2 (16-bit)

SysTick timer

1

Watchdog timers (independent,
window)

2

SPI

2

I2C

2

USART
LPUART

2
1

SAI

1

CAN

1

USB FS

Yes(1)

SWPMI

Yes

RTC

Yes

Tamper pins

1

Random generator

Yes

GPIOs
Wakeup pins

26
2

Capacitive sensing
Number of channels

3

12-bit ADC
Number of channels

1
10

12-bit DAC channels

2

Analog comparator

2

Operational amplifiers

1

Max. CPU frequency

80 MHz

Operating voltage

1.71 to 3.6 V
Ambient operating temperature: -40 to 85 °C / 40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to
125 °C / -40 to 130 °C

Operating temperature

Packages

UFQFPN32

1. There is no VDDUSB pin. VDDUSB is connected internally at VDD. To be functional, VDD must be equal to
3.3 V (+/- 10%).

12/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Description

Figure 1. STM32L432xx block diagram
NJTRST, JTDI,
JTCK/SWCLK

D0[3:0],
CLK0,
CS

Quad SPI memory interface

JTAG & SW

MPU

ETM

NVIC

JTDO/SWD, JTDO
TRACECLK

D-BUS

TRACED[3:0]
ARM Cortex-M4
80 MHz
FPU

I-BUS
ART
ACCEL/
CACHE

RNG
Flash
up to
256 KB

AHB bus-matrix

S-BUS

SRAM 48 KB
SRAM 16 KB

VDD

AHB2 80 MHz

DMA2

Power management
Voltage
regulator
3.3 to 1.2 V

VDD = 1.71 to 3.6 V
VSS

DMA1
@ VDD

@ VDD

1 Group of
3 channels max as AF

supervision

RC HSI

Touch sensing controller

Supply

reset

MSI

Int

VDDA, VSSA

BOR

VDD, VSS, NRST

RC LSI
GPIO PORT A

PB[7:3],
PB[1:0]

GPIO PORT B

PC[15:14]

GPIO PORT C

PH[3]

GPIO PORT H

PVD, PVM

PLL 1&2

AHB1 80 MHz

PA[15:0]

HSI48
@VDD
IWDG

Standby
interface

Reset & clock
M AN
AGT
control

@VBAT
XTAL 32 kHz

OSC32_IN
OSC32_OUT

PCLKx

HCLKx

FCLK

RTC
RTC_TAMPx

AWU
Backup register

@ VDD
TIM2

U STemperature
AR T 2 M sensor
Bps

32b

CRC

4 channels, ETR as AF

FIFO

@ VDDA
ADC1

10 external analog inputs

USB FS

PHY

@ VDDUSB

ITF
CRS_SYNC

CRS

AHB/APB2

AHB/APB1
USART2

26 AF

EXT IT. WKUP

smcard
IrDA

SPI3
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF

DP
DM
NOE

TIM1 / PWM

16b

2 channels,
1 compl. channel, BKIN as AF

TIM15

16b

1 channel,
1 compl. channel, BKIN as AF

TIM16

16b

RX, TX, CK, CTS, RTS as AF

MOSI, MISO, SCK, NSS as AF

I2C1/SMBUS

SCL, SDA, SMBA as AF

I2C3/SMBUS

SCL, SDA, SMBA as AF

USART1

IrDA

MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF

SAI1

16b

TIM7

16b

A
60PM
B Hz
2

SPI1

TIM6

@ VDDA

A P B(max)
1 3 0 M Hz
APB1 80 MHz

smcard

MOSI, MISO,
SCK, NSS as AF

APB2 80MHz

RX, TX, CK,CTS,
RTS as AF

bxCAN1

COMP1

INP, INM, OUT

COMP2

DAC1

TX, RX as AF

@VDDA
OpAmp1

VOUT, VINM, VINP

LPUART1

RX, TX, CTS, RTS as AF

SWPMI1

IO
RX, TX, SUSPEND as AF

LPTIM1

IN1, IN2, OUT, ETR as AF

LPTIM2

IN1, OUT, ETR as AF

@ VDDA

INP, INM, OUT

FIFO

WWDG

ITF

DAC2

FIREWALL

OUT1

Note:

OUT2

MSv39215V3

AF: alternate function on I/O pins.
DS11451 Rev 4

13/156
50

Functional overview

STM32L432KB STM32L432KC

3

Functional overview

3.1

Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L432xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L432xx family devices.

3.2

Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.

3.3

Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

14/156

DS11451 Rev 4

STM32L432KB STM32L432KC

3.4

Functional overview

Embedded Flash memory
STM32L432xx devices feature up to 256 Kbyte of embedded Flash memory available for
storing programs and data in single bank architecture. The Flash memory contains 128
pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
•

Readout protection (RDP) to protect the whole memory. Three levels are available:
–

Level 0: no readout protection

–

Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected

–

Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.

Table 2. Access status versus readout protection level and execution modes
Area

Debug, boot from RAM or boot
from system memory (loader)

User execution

Protection
level
Read

Write

Erase

Read

Write

Erase

Main
memory

1

Yes

Yes

Yes

No

No

No

2

Yes

Yes

Yes

N/A

N/A

N/A

System
memory

1

Yes

No

No

Yes

No

No

2

Yes

No

No

N/A

N/A

N/A

Option
bytes

1

Yes

Yes

Yes

Yes

Yes

Yes

2

Yes

No

No

N/A

N/A

N/A

No

No

N/A(1)

Backup
registers
SRAM2

(1)

1

Yes

Yes

N/A

2

Yes

Yes

N/A

N/A

N/A

N/A

1

Yes

Yes

Yes(1)

No

No

No(1)

2

Yes

Yes

Yes

N/A

N/A

N/A

1. Erased when RDP change from Level 1 to Level 0.

•

Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 2-Kbyte granularity.

•

Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
allows to select if the PCROP area is erased or not when the RDP protection is
changed from Level 1 to Level 0.

DS11451 Rev 4

15/156
50

Functional overview

STM32L432KB STM32L432KC

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

3.5

•

single error detection and correction

•

double error detection.

•

The address of the ECC fail can be read in the ECC register

Embedded SRAM
STM32L432xx devices feature 64 Kbyte of embedded SRAM. This SRAM is split into two
blocks:
•

48 Kbyte mapped at address 0x2000 0000 (SRAM1)

•

16 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2000 C000, offering a contiguous address
space with the SRAM1 (16 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance.
These 16 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.

The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6

Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
•
Three segments can be protected and defined thanks to the Firewall registers:
–
Code segment (located in Flash or SRAM1 if defined as executable protected
area)
–
Non-volatile data segment (located in Flash)
–
Volatile data segment (located in SRAM1)
•
The start address and the length of each segments are configurable:
–
Code segment: up to 1024 Kbyte with granularity of 256 bytes
–
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
–
Volatile data segment: up to 48 Kbyte with a granularity of 64 bytes
•
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•
Volatile data segment can be shared or not with the non-protected code
•

Volatile data segment can be executed or not depending on the Firewall configuration

The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.

16/156

DS11451 Rev 4

STM32L432KB STM32L432KC

3.7

Functional overview

Boot modes
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select
one of three boot options:
•

Boot from user Flash

•

Boot from system memory

•

Boot from embedded SRAM

BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the
first flash memory location is not programmed and if the boot selection is configured to boot
from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI or USB FS in Device mode through DFU (device firmware upgrade).

3.8

Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.9

Power supply management

3.9.1

Power supply schemes
•

VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.

•

VDDA = 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMP) to 3.6 V: external analog power
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The VDDA
voltage level is independent from the VDD voltage.

Note:

When the functions supplied by VDDA or VDDUSB are not used, these supplies should
preferably be shorted to VDD.

Note:

If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to Table 18: Voltage characteristics).

Note:

VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with
VDDIO1 = VDD.

DS11451 Rev 4

17/156
50

Functional overview

STM32L432KB STM32L432KC
Figure 2. Power supply overview
VDDA domain

VDDA
VSSA

A/D converters
Comparators
D/A converters
Operational amplifiers
Voltage reference buffer

VDDUSB
VSS

USB transceivers

VDD domain

VDD

VDDIO1

I/O ring

Reset block
Temp. sensor
PLL, HSI, MSI, HSI48

VSS
Standby circuitry
(Wakeup logic, IWDG)
Voltage regulator

VCORE

VCORE domain
Core
Memories
Digital peripherals

Low voltage detector
Backup domain

VBAT

LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC

MSv39216V3

During power-up and power-down phases, the following power sequence requirements
must be respected:
•

When VDD is below 1 V, other power supplies (VDDA) must remain below VDD +
300 mV.

•

When VDD is above 1 V, all power supplies are independent.

During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power- down transient
phase.

18/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Functional overview
Figure 3. Power-up/down sequence

V
3.6
VDDX(1)
VDD

VBOR0

1

0.3
Power-on
Invalid supply area

Operating mode
VDDX < VDD + 300 mV

Power-down
VDDX independent from VDD

time

MSv47490V1

1. VDDX refers to VDDA.

3.9.2

Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltage VDDA with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.

DS11451 Rev 4

19/156
50

Functional overview

3.9.3

STM32L432KB STM32L432KC

Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•

The MR is used in the Run and Sleep modes and in the Stop 0 mode.

•

The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 16 Kbyte SRAM2 in Standby with SRAM2 retention.

•

Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.

The ultralow-power STM32L432xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•

Range 1 with the CPU running at up to 80 MHz.

•

Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.

The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•

3.9.4

Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.

Low-power modes
The ultra-low-power STM32L432xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.

20/156

DS11451 Rev 4

Mode
Run

LPRun

Sleep

LPSleep

Regulator(1)
MR range 1
MR range2
LPR
MR range 1
MR range2
LPR

DS11451 Rev 4

Flash SRAM Clocks

Yes

ON(4)

ON

Any

Yes

ON(4)

ON

Any
except
PLL

No

ON(4)

ON(5)

Any

No

ON(4)

ON(5)

Any
except
PLL

All except USB_FS, RNG

Any interrupt or
event

LSE
LSI

BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.

Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
USB_FS(8)
SWPMI1(9)

MR Range 1

Stop 0

No

MR Range 2

DMA & Peripherals(2)

CPU

OFF

ON

All
All except USB_FS, RNG

Wakeup source
N/A

Consumption(3)
97 µA/MHz
84 µA/MHz

All except USB_FS, RNG

N/A

94 µA/MHz

All

Any interrupt or
event

28 µA/MHz

All except USB_FS, RNG

26 µA/MHz
29 µA/MHz

Wakeup time
N/A
to Range 1: 4 µs
to Range 2: 64 µs
6 cycles

STM32L432KB STM32L432KC

Table 3. STM32L432xx modes overview

6 cycles

108 µA

2.4 µs in SRAM
4.1 µs in Flash

108 µA

Functional overview

21/156

Mode

Stop 1

DS11451 Rev 4

Stop 2

Regulator

LPR

LPR

CPU

No

No

DMA & Peripherals(2)

Wakeup source

Consumption(3)

Wakeup time

LSE
LSI

BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.

Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
USB_FS(8)
SWPMI1(9)

4.34 µA w/o RTC
4.63 µA w RTC

6.3 µs in SRAM
7.8 µs in Flash

LSE
LSI

BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1
***
All other peripherals are
frozen.

Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1

1.3 µA w/o RTC
1.4 µA w/RTC

6.8 µs in SRAM
8.2 µs in Flash

Flash SRAM Clocks

Off

Off

ON

ON

Functional overview

22/156

Table 3. STM32L432xx modes overview (continued)
(1)

STM32L432KB STM32L432KC

Mode

Regulator

CPU

Flash SRAM Clocks

Standby
OFF

Shutdown

OFF

Power
ed Off

Power
ed Off

Off

Off

Power
ed
Off

Power
ed
Off

Wakeup source

Consumption(3)

Wakeup time

0.20 µA w/o RTC
0.46 µA w/ RTC

DS11451 Rev 4

LSE
LSI

BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down

Reset pin
5 I/Os (WKUPx)(10)
BOR, RTC, IWDG

LSE

RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pulldown(11)

Reset pin
5 I/Os (WKUPx)(10)
RTC

SRAM
2 ON

LPR

DMA & Peripherals(2)

0.03 µA w/o RTC
0.29 µA w/ RTC

0.01 µA w/o RTC
0.20 µA w/ RTC

12.2 µs

STM32L432KB STM32L432KC

Table 3. STM32L432xx modes overview (continued)
(1)

262 µs

1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. USB_FS wakeup by resume from suspend and attach detection protocol event.
9. SWPMI1 wakeup by resume from suspend.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

23/156

Functional overview

10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.

Functional overview

STM32L432KB STM32L432KC

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•

Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.

•

Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.

•

Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.

•

Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC
and the HSI16 RC are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.

•

Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC and the HSI16 RC are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.

24/156

DS11451 Rev 4

STM32L432KB STM32L432KC
•

Functional overview

Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI and the LSI oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.

DS11451 Rev 4

25/156
50

Functional overview

STM32L432KB STM32L432KC
Table 4. Functionalities depending on the working mode(1)

-

Y

-

Y

-

-

-

-

-

-

-

-

-

O(2)

O(2)

O(2)

O(2)

-

-

-

-

-

-

-

-

SRAM1 (48 KB)

Y

Y(3)

Y

Y(3)

Y

-

Y

-

-

-

-

-

SRAM2 (16 KB)

Y

Y(3)

Y

Y(3)

Y

-

Y

-

O(4)

-

-

-

Quad SPI

O

O

O

O

-

-

-

-

-

-

-

-

Backup Registers

Y

Y

Y

Y

Y

-

Y

-

Y

-

Y

-

Brown-out reset
(BOR)

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

-

-

Programmable
Voltage Detector
(PVD)

O

O

O

O

O

O

O

O

-

-

-

-

Peripheral Voltage
Monitor (PVMx;
x=1,3,4)

O

O

O

O

O

O

O

O

-

-

-

-

DMA

O

O

O

O

-

-

-

-

-

-

-

-

High Speed Internal
(HSI16)

O

O

O

O

(5)

-

(5)

-

-

-

-

-

Oscillator RC48

O

O

-

-

-

-

-

-

-

-

-

-

High Speed
External (HSE)

O

O

O

O

-

-

-

-

-

-

-

-

Low Speed Internal
(LSI)

O

O

O

O

O

-

O

-

O

-

-

-

Low Speed External
(LSE)

O

O

O

O

O

-

O

-

O

-

O

-

Multi-Speed Internal
(MSI)

O

O

O

O

-

-

-

-

-

-

-

-

Clock Security
System (CSS)

O

O

O

O

-

-

-

-

-

-

-

-

Clock Security
System on LSE

O

O

O

O

O

O

O

O

O

O

-

-

RTC / Auto wakeup

O

O

O

O

O

O

O

O

O

O

O

O

Number of RTC
Tamper pins

1

1

1

1

1

O

1

O

1

O

1

O

O(8)

O(8)

-

-

-

O

-

-

-

-

-

-

CPU
Flash memory (up
to 256 KB)

USB FS

Run

Low- LowSleep power power
run
sleep

DS11451 Rev 4

-

Wakeup capability

-

Wakeup capability

Shutdow

Wakeup capability

Standby

-

Peripheral

26/156

Stop 2

Wakeup capability

Stop 0/1

STM32L432KB STM32L432KC

Functional overview

Table 4. Functionalities depending on the working mode(1) (continued)

-

-

-

-

-

-

Shutdow

-

Wakeup capability

Low- LowSleep power power
run
sleep

Standby
Wakeup capability

Run

Stop 2
Wakeup capability

Peripheral

Wakeup capability

Stop 0/1

-

-

-

USARTx (x=1,2)

O

O

O

O

O(6) O(6)

Low-power UART
(LPUART)

O

O

O

O

O(6) O(6) O(6) O(6)

-

-

-

-

I2Cx (x=1)

O

O

O

O

O(7) O(7)
(7)

O

(7)

-

-

-

-

-

-

(7)

(7)

-

-

-

-

O

O

I2C3

O

O

O

O

O

SPIx (x=1,3)

O

O

O

O

-

-

-

-

-

-

-

-

CAN

O

O

O

O

-

-

-

-

-

-

-

-

SWPMI1

O

O

O

O

-

O

-

-

-

-

-

-

SAIx (x=1)

O

O

O

O

-

-

-

-

-

-

-

-

ADCx (x=1)

O

O

O

O

-

-

-

-

-

-

-

-

DAC1

O

O

O

O

O

-

-

-

-

-

-

-

OPAMPx (x=1)

O

O

O

O

O

-

-

-

-

-

-

-

COMPx (x=1,2)

O

O

O

O

O

O

O

O

-

-

-

-

Temperature sensor

O

O

O

O

-

-

-

-

-

-

-

-

Timers (TIMx)

O

O

O

O

-

-

-

-

-

-

-

-

Low-power timer 1
(LPTIM1)

O

O

O

O

O

O

O

O

-

-

-

-

Low-power timer 2
(LPTIM2)

O

O

O

O

O

O

-

-

-

-

-

-

Independent
watchdog (IWDG)

O

O

O

O

O

O

O

O

O

O

-

-

Window watchdog
(WWDG)

O

O

O

O

-

-

-

-

-

-

-

-

SysTick timer

O

O

O

O

-

-

-

-

-

-

-

-

Touch sensing
controller (TSC)

O

O

O

O

-

-

-

-

-

-

-

-

Random number
generator (RNG)

O(8)

O(8)

-

-

-

-

-

-

-

-

-

-

CRC calculation
unit

O

O

O

O

-

-

-

-

-

-

-

-

GPIOs

O

O

O

O

O

O

O

O

(9)

DS11451 Rev 4

2
pins (11)
(10)

2
pins
(10)

27/156
50

Functional overview

STM32L432KB STM32L432KC

1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not
available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16
is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put
off when the peripheral does not need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start,
address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address
match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PA2.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is
lost when exiting the Shutdown mode.

3.9.5

Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.

3.10

Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.

28/156

Low-power sleep

Stop 0 / Stop 1

Stop 2

TIM15/TIM16

Low-power run

TIMx

Sleep

Interconnect source

Run

Table 5. STM32L432xx peripherals interconnect matrix

TIMx

Timers synchronization or chaining

Y

Y

Y

Y

-

-

ADCx
DAC1

Conversion triggers

Y

Y

Y

Y

-

-

DMA

Memory to memory transfer trigger

Y

Y

Y

Y

-

-

COMPx

Comparator output blanking

Y

Y

Y

Y

-

-

IRTIM

Infrared interface output generation

Y

Y

Y

Y

-

-

Interconnect
destination

Interconnect action

DS11451 Rev 4

STM32L432KB STM32L432KC

Functional overview

Run

Sleep

Low-power run

Low-power sleep

Stop 0 / Stop 1

Stop 2

Table 5. STM32L432xx peripherals interconnect matrix (continued)

TIM1
TIM2

Timer input channel, trigger, break from
analog signals comparison

Y

Y

Y

Y

-

-

LPTIMERx

Low-power timer triggered by analog
signals comparison

Y

Y

Y

Y

Y

(1)

TIM1

Timer triggered by analog watchdog

Y

Y

Y

Y

-

-

TIM16

Timer input channel from RTC events

Y

Y

Y

Y

-

-

LPTIMERx

Low-power timer triggered by RTC alarms
or tampers

Y

Y

Y

Y

Y

(1)

All clocks sources (internal TIM2
and external)
TIM15, 16

Clock source used as input channel for
RC measurement and trimming

Y

Y

Y

Y

-

-

USB

Timer triggered by USB SOF

Y

Y

-

-

-

-

Timer break

Y

Y

Y

Y

-

-

TIMx

External trigger

Y

Y

Y

Y

-

-

LPTIMERx

External trigger

Y

Y

Y

Y

Y

(1)

ADCx
DAC1

Conversion external trigger

Y

Y

Y

Y

-

-

Interconnect source

COMPx

ADCx
RTC

Interconnect
destination

TIM2

CSS
CPU (hard fault)
RAM (parity error)
TIM1
Flash memory (ECC error) TIM15,16
COMPx
PVD

Interconnect action

Y

Y

Y

GPIO

1. LPTIM1 only.

DS11451 Rev 4

29/156
50

Functional overview

3.11

STM32L432KB STM32L432KC

Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:

30/156

•

Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler

•

Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.

•

Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.

•

System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–

High Speed External clock (HSE) can supply a PLL.

–

16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL

–

Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the
USB device. The MSI can supply a PLL.

–

System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.

•

RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the USB or the RNG peripherals. This clock can be output on the MCO.

•

Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
–

32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.

–

32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.

•

Peripheral clock sources: Several peripherals (USB, RNG, SAI, USARTs, I2Cs,
LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock.
Two PLLs, each having three independent outputs allowing the highest flexibility, can
generate independent clocks for the ADC, the USB/RNG and the SAI.

•

Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.

•

Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software

DS11451 Rev 4

STM32L432KB STM32L432KC

Functional overview

interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•

Clock-out capability:
–

MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.

–

LSCO: low speed clock output: it outputs LSI or LSE in all low-power
modesdown to Standby mode. LSE can also be output on LSCO in Shutdown
mode. LSCO is not available in VBAT mode.

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.

DS11451 Rev 4

31/156
50

Functional overview

STM32L432KB STM32L432KC
Figure 4. Clock tree
to IWDG

LSI RC 32 kHz
LSCO

to RTC
OSC32_OUT
LSE OSC
32.768 kHz

/32

OSC32_IN
LSE
LSI
HSE
to PWR

SYSCLK

MCO

/ 1䊻㻝㻢

MSI
HSI16
Clock
source
control

HSI48
PLLCLK
CK_IN

to AHB bus, core, memory and DMA
AHB PRESC
/ 1,2,..512

HCLK

to Cortex system timer

HSE

Clock detector

FCLK Cortex free running clock

/8
MSI
SYSCLK

APB1 PRESC
/ 1,2,4,8,16

HSI16

PCLK1
to APB1 peripherals
x1 or x2

HSI RC
16 MHz
LSE
HSI16
SYSCLK

to USARTx
x=2..3
to LPUART1

HSI16
SYSCLK

MSI RC
100 kHz – 48 MHz

to TIMx
x=2,6,7

to I2Cx
x=1,2,3

LSI
LSE
HSI16

to LPTIMx
x=1,2

HSI16
to SWPMI
MSI
PLL

/M

VCO FVCO

PLLSAI1
VCO FVCO

/P

PLLSAI1CLK

/Q

PLL48M1CLK

/R

PLLCLK

/P

PLLSAI2CLK

/Q

PLL48M2CLK

/R

PLLADC1CLK

PCLK2

HSI16

APB2 PRESC
/ 1,2,4,8,16

HSE

to APB2 peripherals
x1 or x2

LSE
HSI16
SYSCLK

SYSCLK

HSI RC
48 MHz
HSI16

to TIMx
x=1,15,16

to USART1

to ADC

MSI

CRS

48 MHz clock to USB, RNG

HSI16
to SAI1
SAI1_EXTCLK
MSv39217V4

32/156

DS11451 Rev 4

STM32L432KB STM32L432KC

3.12

Functional overview

General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.

3.13

Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 6: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
•

14 independently configurable channels (requests)

•

Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.

•

Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)

•

Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.

•

Support for circular buffer management

•

3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel

•

Memory-to-memory transfer

•

Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers

•

Access to Flash, SRAM, APB and AHB peripherals as source and destination

•

Programmable number of data to be transferred: up to 65536.
Table 6. DMA implementation
DMA features

DMA1

DMA2

Number of regular channels

7

7

DS11451 Rev 4

33/156
50

Functional overview

STM32L432KB STM32L432KC

3.14

Interrupts and events

3.14.1

Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 61 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4.
The NVIC benefits are the following:
•

Closely coupled NVIC gives low latency interrupt processing

•

Interrupt entry vector table address passed directly to the core

•

Allows early processing of interrupts

•

Processing of late arriving higher priority interrupts

•

Support for tail chaining

•

Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.

3.14.2

Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 34 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 26 GPIOs can be connected to the 16 external interrupt lines.

34/156

DS11451 Rev 4

STM32L432KB STM32L432KC

3.15

Functional overview

Analog to digital converter (ADC)
The device embeds a successive approximation analog-to-digital converter with the
following features:
•

12-bit native resolution, with built-in calibration

•

5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time

–

Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)

•

Up to 10 external channels.

•

4 internal channels: internal reference voltage, temperature sensor, DAC1_OUT1 and
DAC1_OUT2.

•

Single-ended and differential mode inputs

•

Low-power design

•

3.15.1

–

–

Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)

–

Dual clock domain architecture: ADC speed independent from CPU frequency

Highly versatile digital interface
–

Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions

–

ADC supports multiple trigger inputs for synchronization with on-chip timers and
external signals

–

Results stored into data register or in RAM with DMA controller support

–

Data pre-processing: left/right alignment and per channel offset compensation

–

Built-in oversampling unit for enhanced SNR

–

Channel-wise programmable sampling time

–

Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers

–

Hardware assistant to prepare the context of the injected channels to allow fast
context switching

Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.

DS11451 Rev 4

35/156
50

Functional overview

STM32L432KB STM32L432KC
Table 7. Temperature sensor calibration values

3.15.2

Calibration value name

Description

Memory address

TS_CAL1

TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)

0x1FFF 75A8 - 0x1FFF 75A9

TS_CAL2

TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)

0x1FFF 75CA - 0x1FFF 75CB

Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 8. Internal voltage reference calibration values

3.16

Calibration value name

Description

Memory address

VREFINT

Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)

0x1FFF 75AA - 0x1FFF 75AB

Digital to analog converter (DAC)
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
This digital interface supports the following features:
•

Up to two DAC output channels

•

8-bit or 12-bit output mode

•

Buffer offset calibration (factory and user trimming)

•

Left or right data alignment in 12-bit mode

•

Synchronized update capability

•

Noise-wave generation

•

Triangular-wave generation

•

Dual DAC channel independent or simultaneous conversions

•

DMA capability for each channel

•

External triggers for conversion

•

Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.

36/156

DS11451 Rev 4

STM32L432KB STM32L432KC

3.17

Functional overview

Comparators (COMP)
The STM32L432xx devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
•

External I/O

•

DAC output channels

•

Internal reference voltage or submultiple (1/4, 1/2, 3/4).

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.

3.18

Operational amplifier (OPAMP)
The STM32L432xx embeds one operational amplifier with external or internal follower
routing and PGA capability.
The operational amplifier features:

3.19

•

Low input bias current

•

Low offset voltage

•

Low-power mode

•

Rail-to-rail input

Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (glass,
plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is
measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.

DS11451 Rev 4

37/156
50

Functional overview

STM32L432KB STM32L432KC

The main features of the touch sensing controller are the following:
•

Proven and robust surface charge transfer acquisition principle

•

Supports up to 3 capacitive sensing channels

•

Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time

•

Spread spectrum feature to improve system robustness in noisy environments

•

Full hardware management of the charge transfer acquisition sequence

•

Programmable charge transfer frequency

•

Programmable sampling capacitor I/O pin

•

Programmable channel I/O pin

•

Programmable max count value to avoid long acquisition when a channel is faulty

•

Dedicated end of acquisition and max count error flags with interrupt capability

•

One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components

•

Compatible with proximity, touchkey, linear and rotary touch sensor implementation

•

Designed to operate with STMTouch touch sensing firmware library

Note:

The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.

3.20

Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.

3.21

Timers and watchdogs
The STM32L432xx includes one advanced control timers, up to five general-purpose timers,
two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table
below compares the features of the advanced control, general purpose and basic timers.
Table 9. Timer feature comparison

Timer type

Timer

Counter
resolution

Counter
type

Prescaler
factor

DMA
request
generation

Capture/
compare
channels

Complementary
outputs

Advanced
control

TIM1

16-bit

Up, down,
Up/down

Any integer
between 1
and 65536

Yes

4

3

Generalpurpose

TIM2

32-bit

Up, down,
Up/down

Any integer
between 1
and 65536

Yes

4

No

Generalpurpose

TIM15

16-bit

Up

Any integer
between 1
and 65536

Yes

2

1

38/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Functional overview

Table 9. Timer feature comparison (continued)
Timer type

Timer

Counter
resolution

Counter
type

Prescaler
factor

DMA
request
generation

Capture/
compare
channels

Complementary
outputs

Generalpurpose

TIM16

16-bit

Up

Any integer
between 1
and 65536

Yes

1

1

Basic

TIM6, TIM7

16-bit

Up

Any integer
between 1
and 65536

Yes

0

No

3.21.1

Advanced-control timer (TIM1)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
•

Input capture

•

Output compare

•

PWM generation (edge or center-aligned modes) with full modulation capability (0100%)

•

One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.21.2) using the same architecture, so the advanced-control timer can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.

DS11451 Rev 4

39/156
50

Functional overview

3.21.2

STM32L432KB STM32L432KC

General-purpose timers (TIM2, TIM15, TIM16)
There are up to three synchronizable general-purpose timers embedded in the
STM32L432xx (see Table 9 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
•

TIM2
It is a full-featured general-purpose timer:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
This timer features 4 independent channels for input capture/output compare, PWM or
one-pulse mode output. It can work with the other general-purpose timers via the Timer
Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
It has independent DMA request generation and support quadrature encoder.

•

TIM15 and 16
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–

TIM15 has 2 channels and 1 complementary channel

–

TIM16 has 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.

3.21.3

Basic timers (TIM6 and TIM7)
The basic timers are mainly used for DAC trigger generation. They can also be used as
generic 16-bit timebases.

3.21.4

Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.

40/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Functional overview

This low-power timer supports the following features:

3.21.5

•

16-bit up counter with 16-bit autoreload register

•

16-bit compare register

•

Configurable output: pulse, PWM

•

Continuous/ one shot mode

•

Selectable software/hardware input trigger

•

Selectable clock source
–

Internal clock sources: LSE, LSI, HSI16 or APB clock

–

External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).

•

Programmable digital glitch filter

•

Encoder mode (LPTIM1 only)

Infrared interface (IRTIM)
The STM32L432xx includes one infrared interface (IRTIM). It can be used with an infrared
LED to perform remote control functions. It uses TIM15 and TIM16 output channels to
generate output signal waveforms on IR_OUT pin.

3.21.6

Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.

3.21.7

System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.

3.21.8

SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
•

A 24-bit down counter

•

Autoreload capability

•

Maskable system interrupt generation when the counter reaches 0.

•

Programmable clock source

DS11451 Rev 4

41/156
50

Functional overview

3.22

STM32L432KB STM32L432KC

Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•

Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.

•

Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.

•

Two programmable alarms.

•

On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.

•

Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.

•

Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.

•

One anti-tamper detection pin with programmable filter.

•

Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event.

•

17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power from
the VDD supply.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
•

A 32.768 kHz external crystal (LSE)

•

An external resonator or oscillator (LSE)

•

The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)

•

The high-speed external clock (HSE) divided by 32.

The RTC is functional in all low-power modes when it is clocked by the LSE. When clocked
by the LSI, the RTC is functional in all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.

42/156

DS11451 Rev 4

STM32L432KB STM32L432KC

3.23

Functional overview

Inter-integrated circuit interface (I2C)
The device embeds two I2C. Refer to Table 10: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•

•

I2C-bus specification and user manual rev. 5 compatibility:
–

Slave and master modes, multimaster capability

–

Standard-mode (Sm), with a bitrate up to 100 kbit/s

–

Fast-mode (Fm), with a bitrate up to 400 kbit/s

–

Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os

–

7-bit and 10-bit addressing mode, multiple 7-bit slave addresses

–

Programmable setup and hold times

–

Optional clock stretching

System Management Bus (SMBus) specification rev 2.0 compatibility:
–

Hardware PEC (Packet Error Checking) generation and verification with ACK
control

–

Address resolution protocol (ARP) support

–

SMBus alert

•

Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility

•

Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.

•

Wakeup from Stop mode on address match

•

Programmable analog and digital noise filters

•

1-byte buffer with DMA capability
Table 10. I2C implementation
I2C features(1)

I2C1

I2C3

Standard-mode (up to 100 kbit/s)

X

X

Fast-mode (up to 400 kbit/s)

X

X

Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)

X

X

Programmable analog and digital noise filters

X

X

SMBus/PMBus hardware support

X

X

Independent clock

X

X

Wakeup from Stop 0 / Stop 1 mode on address match

X

X

Wakeup from Stop 2 mode on address match

-

X

1. X: supported

DS11451 Rev 4

43/156
50

Functional overview

3.24

STM32L432KB STM32L432KC

Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L432xx devices have two embedded universal synchronous receiver
transmitters (USART1 and USART2).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to
10Mbit/s.
USART1 and USART2 also provide Smart Card mode (ISO 7816 compliant) and SPI-like
communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake
up events from Stop mode are programmable and can be:
•

Start bit detection

•

Any received data frame

•

A specific programmed data frame

All USART interfaces can be served by the DMA controller.
Table 11. STM32L432xx USART/LPUART features
USART modes/features(1)

USART1

USART2

LPUART1

Hardware flow control for modem

X

X

X

Continuous communication using DMA

X

X

X

Multiprocessor communication

X

X

X

Synchronous mode

X

X

-

Smartcard mode

X

X

-

Single-wire half-duplex communication

X

X

X

IrDA SIR ENDEC block

X

X

-

LIN mode

X

X

-

Dual clock domain

X

X

X

Wakeup from Stop 0 / Stop 1 modes

X

X

X

Wakeup from Stop 2 mode

-

-

X

Receiver timeout interrupt

X

X

-

Modbus communication

X

X

-

Auto baud rate detection

X (4 modes)

Driver Enable

X

LPUART/USART data length

X
7, 8 and 9 bits

1. X = supported.

44/156

-

DS11451 Rev 4

X

STM32L432KB STM32L432KC

3.25

Functional overview

Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
•

Start bit detection

•

Any received data frame

•

A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.

DS11451 Rev 4

45/156
50

Functional overview

3.26

STM32L432KB STM32L432KC

Serial peripheral interface (SPI)
Two SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.

3.27

Serial audio interfaces (SAI)
The device embeds 1 SAI. Refer to Table 12: SAI implementation for the features
implementation. The SAI bus interface handles communications between the
microcontroller and the serial audio protocol.
The SAI peripheral supports:
•

Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.

•

8-word integrated FIFOs for each audio sub-block.

•

Synchronous or asynchronous mode between the audio sub-blocks.

•

Master or slave configuration independent for both audio sub-blocks.

•

Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.

•

Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.

•

Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.

•

Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.

•

Number of bits by frame may be configurable.

•

Frame synchronization active level configurable (offset, bit length, level).

•

First active bit position in the slot is configurable.

•

LSB first or MSB first for data transfer.

•

Mute mode.

•

Stereo/Mono audio frame capability.

•

Communication clock strobing edge configurable (SCK).

•

Error flags with associated interrupts if enabled respectively.

•

•

46/156

–

Overrun and underrun detection.

–

Anticipated frame synchronization signal detection in slave mode.

–

Late frame synchronization signal detection in slave mode.

–

Codec not ready for the AC’97 mode in reception.

Interruption sources when enabled:
–

Errors.

–

FIFO requests.

DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.

DS11451 Rev 4

STM32L432KB STM32L432KC

Functional overview
Table 12. SAI implementation
SAI features

Support(1)

I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97

X

Mute mode

X

Stereo/Mono audio frame capability.

X

16 slots

X

Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit

X

FIFO Size

X (8 Word)

SPDIF

X

1. X: supported

3.28

Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
•

full-duplex communication mode

•

automatic SWP bus state management (active, suspend, resume)

•

configurable bitrate up to 2 Mbit/s

•

automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

3.29

Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.

DS11451 Rev 4

47/156
50

Functional overview

STM32L432KB STM32L432KC

The CAN peripheral supports:
•

Supports CAN protocol version 2.0 A, B Active

•

Bit rates up to 1 Mbit/s

•

Transmission

•

•

•

3.30

–

Three transmit mailboxes

–

Configurable transmit priority

Reception
–

Two receive FIFOs with three stages

–

14 Scalable filter banks

–

Identifier list feature

–

Configurable FIFO overrun

Time-triggered communication option
–

Disable automatic retransmission mode

–

16-bit free running timer

–

Time Stamp sent in last two data bytes

Management
–

Maskable interrupts

–

Software-efficient mailbox mapping at a unique address space

Universal serial bus (USB)
The STM32L432xx devices embed a full-speed USB device peripheral compliant with the
USB specification version 2.0. The internal USB PHY supports USB FS signaling,
embedded DP pull-up and also battery charging detection according to Battery Charging
Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function
interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up-to 1 KB and suspend/resume support.
It requires a precise 48 MHz clock which can be generated from the internal main PLL or by
the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this
oscillator can be taken from the USB data stream itself (SOF signalization) which allows
crystal less operation.

3.31

Clock recovery system (CRS)
The STM32L432xx devices embed a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from USB SOF signalization, from LSE oscillator, from an
external signal on CRS_SYNC pin or generated by user software. For faster lock-in during
startup it is also possible to combine automatic trimming with manual trimming action.

48/156

DS11451 Rev 4

STM32L432KB STM32L432KC

3.32

Functional overview

Quad SPI memory interface (QUADSPI)
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI
flash memories. It can operate in any of the three following modes:
•

Indirect mode: all the operations are performed using the QUADSPI registers

•

Status polling mode: the external flash status register is periodically read and an
interrupt can be generated in case of flag setting

•

Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory

Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad SPI flash memories are accessed simultaneously.
The Quad SPI interface supports:
•

Three functional modes: indirect, status-polling, and memory-mapped

•

SDR and DDR support

•

Fully programmable opcode for both indirect and memory mapped mode

•

Fully programmable frame format for both indirect and memory mapped mode

•

Each of the 5 following phases can be configured independently (enable, length,
single/dual/quad communication)
–

Instruction phase

–

Address phase

–

Alternate bytes phase

–

Dummy cycles phase

–

Data phase

•

Integrated FIFO for reception and transmission

•

8, 16, and 32-bit data accesses are allowed

•

DMA channel for indirect mode operations

•

Programmable masking for external flash flag management

•

Timeout management

•

Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error

DS11451 Rev 4

49/156
50

Functional overview

STM32L432KB STM32L432KC

3.33

Development support

3.33.1

Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.

3.33.2

Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L432xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.

50/156

DS11451 Rev 4

STM32L432KB STM32L432KC

4

Pinouts and pin description

Pinouts and pin description

VSS

PH3/BOOT0

PB7

PB6

PB5

PB4

PB3

PA15

32

31

30

29

28

27

26

25

Figure 5. STM32L432Kx UFQFPN32 pinout(1)

VDD

1

24

PA14

PC14-OSC32_IN

2

23

PA13

PC15-OSC32_OUT

3

22

PA12

NRST

4

21

PA11

VDDA/VREF+

5

20

PA10

PA0/CK_IN

6

19

PA9

PA1

7

18

PA8

PA2

8

17

VDD

9

10

11

12

13

14

15

16

PA3

PA4

PA5

PA6

PA7

PB0

PB1

VSS

UFQFPN32

MSv37605V2

1. The above figure shows the package top view.

Table 13. Legend/abbreviations used in the pinout table
Name
Pin name

Pin type

Abbreviation

Definition

Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S

Supply pin

I

Input only pin

I/O

Input / output pin

FT

5 V tolerant I/O

TT

3.6 V tolerant I/O

RST

Bidirectional reset pin with embedded weak pull-up resistor

I/O structure

Option for TT or FT I/Os
_f (1)

I/O, Fm+ capable

_u (2)

I/O, with USB function supplied by VDDUSB

_a
Notes

(3)

I/O, with Analog switch function supplied by VDDA

Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.

Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 14 are: FT_f, FT_fa.
2. The related I/O structures in Table 14 is: FT_u.
3. The related I/O structures in Table 14 are: FT_a, FT_fa, TT_a.

DS11451 Rev 4

51/156
62

Pinouts and pin description

STM32L432KB STM32L432KC

I/O structure

PC14OSC32_I
N (PC14)

I/O

FT

3

PC15OSC32_
OUT
(PC15)

I/O

FT

4

NRST

I/O

RST

-

-

-

5

VDDA/VR
EF+

S

-

-

-

-

6

PA0/
CK_IN

-

TIM2_CH1, USART2_CTS,
COMP1_OUT, SAI1_EXTCLK,
TIM2_ETR, EVENTOUT

OPAMP1_VINP,
COMP1_INM, ADC1_IN5,
RTC_TAMP2, WKUP1,
CK_IN

-

TIM2_CH2, I2C1_SMBA,
SPI1_SCK,
USART2_RTS_DE,
TIM15_CH1N, EVENTOUT

OPAMP1_VINM,
COMP1_INP, ADC1_IN6

-

TIM2_CH3, USART2_TX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT, TIM15_CH1,
EVENTOUT

COMP2_INM, ADC1_IN7,
WKUP4, LSCO

OPAMP1_VOUT,
COMP2_INP, ADC1_IN8

8

PA1

PA2

I/O

I/O

I/O

FT_a

FT_a

FT_a

Alternate functions

Additional functions

EVENTOUT

OSC32_IN

(2)

EVENTOUT

OSC32_OUT

Notes

UFQFPN32

Pin type

Pin functions

2

7

(1)
(2)

(1)

9

PA3

I/O

TT_a

-

TIM2_CH4, USART2_RX,
LPUART1_RX,
QUADSPI_CLK,
SAI1_MCLK_A, TIM15_CH2,
EVENTOUT

10

PA4

I/O

TT_a

-

SPI1_NSS, SPI3_NSS,
USART2_CK, SAI1_FS_B,
LPTIM2_OUT, EVENTOUT

COMP1_INM,
COMP2_INM, ADC1_IN9,
DAC1_OUT1

11

PA5

I/O

TT_a

-

TIM2_CH1, TIM2_ETR,
SPI1_SCK, LPTIM2_ETR,
EVENTOUT

COMP1_INM,
COMP2_INM, ADC1_IN10,
DAC1_OUT2

-

TIM1_BKIN, SPI1_MISO,
COMP1_OUT, USART3_CTS,
LPUART1_CTS,
QUADSPI_BK1_IO3,
TIM1_BKIN_COMP2,
TIM16_CH1, EVENTOUT

ADC1_IN11

12

52/156

Pin name
(function after
reset)

Table 14. STM32L432xx pin definitions
Pin
Number

PA6

I/O

FT_a

DS11451 Rev 4

STM32L432KB STM32L432KC

Pinouts and pin description

13

14

PA7

PB0

I/O

I/O

FT_fa

FT_a

Alternate functions

Additional functions

-

TIM1_CH1N, I2C3_SCL,
SPI1_MOSI,
QUADSPI_BK1_IO2,
COMP2_OUT, EVENTOUT

ADC1_IN12

-

TIM1_CH2N, SPI1_NSS,
USART3_CK,
QUADSPI_BK1_IO1,
COMP1_OUT, SAI1_EXTCLK,
EVENTOUT

ADC1_IN15

COMP1_INM, ADC1_IN16

Notes

I/O structure

Pin functions

Pin type

UFQFPN32

Pin
Number

Pin name
(function after
reset)

Table 14. STM32L432xx pin definitions (continued)

15

PB1

I/O

FT_a

-

TIM1_CH3N,
USART3_RTS_DE,
LPUART1_RTS_DE,
QUADSPI_BK1_IO0,
LPTIM2_IN1, EVENTOUT

16

VSS

S

-

-

-

-

17

VDD

S

-

-

-

-

-

18

PA8

I/O

FT

-

MCO, TIM1_CH1,
USART1_CK, SWPMI1_IO,
SAI1_SCK_A, LPTIM2_OUT,
EVENTOUT

19

PA9

I/O

FT_f

-

TIM1_CH2, I2C1_SCL,
USART1_TX, SAI1_FS_A,
TIM15_BKIN, EVENTOUT

-

-

TIM1_CH3, I2C1_SDA,
USART1_RX,
USB_CRS_SYNC,
SAI1_SD_A, EVENTOUT

-

-

TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, COMP1_OUT,
USART1_CTS, CAN1_RX,
USB_DM,
TIM1_BKIN2_COMP1,
EVENTOUT

-

-

-

20

21

PA10

PA11

I/O

I/O

FT_f

FT_u

22

PA12

I/O

FT_u

-

TIM1_ETR, SPI1_MOSI,
USART1_RTS_DE,
CAN1_TX, USB_DP,
EVENTOUT

23

PA13
(JTMSSWDIO)

I/O

FT

(3)

JTMS-SWDIO, IR_OUT,
USB_NOE, SWPMI1_TX,
SAI1_SD_B, EVENTOUT

DS11451 Rev 4

53/156
62

Pinouts and pin description

STM32L432KB STM32L432KC

PA14
(JTCKSWCLK)

25

PA15
(JTDI)

26

PB3
(JTDOTRACE
SWO)

27

PB4
(NJTRST)

28

PB5

I/O

FT

(3)

JTCK-SWCLK, LPTIM1_OUT,
I2C1_SMBA, SWPMI1_RX,
SAI1_FS_B, EVENTOUT

-

FT

JTDI, TIM2_CH1, TIM2_ETR,
USART2_RX, SPI1_NSS,
SPI3_NSS,
(3)
USART3_RTS_DE,
TSC_G3_IO1,
SWPMI1_SUSPEND,
EVENTOUT

-

I/O

Notes

I/O structure

24

Pin functions

Pin type

UFQFPN32

Pin
Number

Pin name
(function after
reset)

Table 14. STM32L432xx pin definitions (continued)

Alternate functions

Additional functions

JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK,
USART1_RTS_DE,
SAI1_SCK_B, EVENTOUT

COMP2_INM

I/O

FT_a (3)

I/O

(3)

NJTRST, I2C3_SDA,
SPI1_MISO, SPI3_MISO,
USART1_CTS, TSC_G2_IO1,
SAI1_MCLK_B, EVENTOUT

COMP2_INP

-

LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI,
USART1_CK, TSC_G2_IO2,
COMP2_OUT, SAI1_SD_B,
TIM16_BKIN, EVENTOUT

-

COMP2_INP

I/O

FT_fa

FT

29

PB6

I/O

FT_fa

-

LPTIM1_ETR, I2C1_SCL,
USART1_TX, TSC_G2_IO3,
SAI1_FS_B, TIM16_CH1N,
EVENTOUT

30

PB7

I/O

FT_fa

-

LPTIM1_IN2, I2C1_SDA,
USART1_RX, TSC_G2_IO4,
EVENTOUT

COMP2_INM, PVD_IN

31

PH3/
BOOT0

I/O

FT

-

EVENTOUT

BOOT0

32

VSS

S

-

-

-

-

1

VDD

S

-

-

-

-

1. PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of
current (3 mA), the use of GPIOs PC14 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the RTC registers which are not reset by the system reset. For details on how to manage these
GPIOs, refer to the Backup domain and RTC register descriptions in the RM0394 reference manual.
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on
PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

54/156

DS11451 Rev 4

AF1

AF2

AF3

AF4

AF5

AF6

AF7

SYS_AF

TIM1/TIM2/
LPTIM1

TIM1/TIM2

USART2

I2C1/I2C2/I2C3

SPI1/SPI2

SPI3

USART1/
USART2/
USART3

PA0

-

TIM2_CH1

-

-

-

-

-

USART2_CTS

PA1

-

TIM2_CH2

-

-

I2C1_SMBA

SPI1_SCK

-

USART2_RTS_
DE

PA2

-

TIM2_CH3

-

-

-

-

-

USART2_TX

PA3

-

TIM2_CH4

-

-

-

-

-

USART2_RX

PA4

-

-

-

-

-

SPI1_NSS

SPI3_NSS

USART2_CK

PA5

-

TIM2_CH1

TIM2_ETR

-

-

SPI1_SCK

-

-

PA6

-

TIM1_BKIN

-

-

-

SPI1_MISO

COMP1_OUT

USART3_CTS

PA7

-

TIM1_CH1N

-

-

I2C3_SCL

SPI1_MOSI

-

-

PA8

MCO

TIM1_CH1

-

-

-

-

-

USART1_CK

PA9

-

TIM1_CH2

-

-

I2C1_SCL

-

-

USART1_TX

PA10

-

TIM1_CH3

-

-

I2C1_SDA

-

-

USART1_RX

PA11

-

TIM1_CH4

TIM1_BKIN2

-

-

SPI1_MISO

COMP1_OUT

USART1_CTS

PA12

-

TIM1_ETR

-

-

-

SPI1_MOSI

-

USART1_RTS_
DE

PA13

JTMS-SWDIO

IR_OUT

-

-

-

-

-

-

PA14

JTCK-SWCLK

LPTIM1_OUT

-

-

I2C1_SMBA

-

-

-

PA15

JTDI

TIM2_CH1

TIM2_ETR

USART2_RX

-

SPI1_NSS

SPI3_NSS

USART3_RTS_
DE

Port

DS11451 Rev 4

Port A

55/156

Pinouts and pin description

AF0

STM32L432KB STM32L432KC

Table 15. Alternate function AF0 to AF7(1)

AF0

AF1

AF2

AF3

AF4

AF5

AF6

AF7

SYS_AF

TIM1/TIM2/
LPTIM1

TIM1/TIM2

USART2

I2C1/I2C2/I2C3

SPI1/SPI2

SPI3

USART1/
USART2/
USART3

PB0

-

TIM1_CH2N

-

-

-

SPI1_NSS

-

USART3_CK

PB1

-

TIM1_CH3N

-

-

-

-

-

USART3_RTS_
DE

PB3

JTDOTRACESWO

TIM2_CH2

-

-

-

SPI1_SCK

SPI3_SCK

USART1_RTS_
DE

PB4

NJTRST

-

-

-

I2C3_SDA

SPI1_MISO

SPI3_MISO

USART1_CTS

PB5

-

LPTIM1_IN1

-

-

I2C1_SMBA

SPI1_MOSI

SPI3_MOSI

USART1_CK

PB6

-

LPTIM1_ETR

-

-

I2C1_SCL

-

-

USART1_TX

PB7

-

LPTIM1_IN2

-

-

I2C1_SDA

-

-

USART1_RX

PC14

-

-

-

-

-

-

-

-

PC15

-

-

-

-

-

-

-

-

PH3

-

-

-

-

-

-

-

-

Port

Port B

DS11451 Rev 4

Port C
Port H

Pinouts and pin description

56/156

Table 15. Alternate function AF0 to AF7(1) (continued)

1. Please refer to Table 16 for AF8 to AF15.

STM32L432KB STM32L432KC

AF9

AF10

AF11

AF12

AF13

AF14

AF15

LPUART1

CAN1/TSC

USB/QUADSPI

-

COMP1/
COMP2/
SWPMI1

SAI1

TIM2/TIM15/
TIM16/LPTIM2

EVENTOUT

PA0

-

-

-

-

COMP1_OUT

SAI1_EXTCLK

TIM2_ETR

EVENTOUT

PA1

-

-

-

-

-

-

TIM15_CH1N

EVENTOUT

PA2

LPUART1_TX

-

QUADSPI_
BK1_NCS

-

COMP2_OUT

-

TIM15_CH1

EVENTOUT

PA3

LPUART1_RX

-

QUADSPI_CLK

-

-

SAI1_MCLK_A

TIM15_CH2

EVENTOUT

PA4

-

-

-

-

-

SAI1_FS_B

LPTIM2_OUT

EVENTOUT

PA5

-

-

-

-

-

-

LPTIM2_ETR

EVENTOUT

PA6

LPUART1_CTS

-

QUADSPI_
BK1_IO3

-

TIM1_BKIN_
COMP2

-

TIM16_CH1

EVENTOUT

PA7

-

-

QUADSPI_
BK1_IO2

-

COMP2_OUT

-

-

EVENTOUT

PA8

-

-

-

-

SWPMI1_IO

SAI1_SCK_A

LPTIM2_OUT

EVENTOUT

PA9

-

-

-

-

-

SAI1_FS_A

TIM15_BKIN

EVENTOUT

PA10

-

-

USB_CRS_
SYNC

-

-

SAI1_SD_A

-

EVENTOUT

PA11

-

CAN1_RX

USB_DM

-

TIM1_BKIN2_
COMP1

-

-

EVENTOUT

PA12

-

CAN1_TX

USB_DP

-

-

-

-

EVENTOUT

PA13

-

-

USB_NOE

-

SWPMI1_TX

SAI1_SD_B

-

EVENTOUT

PA14

-

-

-

-

SWPMI1_RX

SAI1_FS_B

-

EVENTOUT

PA15

-

TSC_G3_IO1

-

-

SWPMI1_
SUSPEND

-

-

EVENTOUT

Port

DS11451 Rev 4

Port A

57/156

Pinouts and pin description

AF8

STM32L432KB STM32L432KC

Table 16. Alternate function AF8 to AF15(1)

AF8

AF9

AF10

AF11

AF12

AF13

AF14

AF15

LPUART1

CAN1/TSC

USB/QUADSPI

-

COMP1/
COMP2/
SWPMI1

SAI1

TIM2/TIM15/
TIM16/LPTIM2

EVENTOUT

PB0

-

-

QUADSPI_
BK1_IO1

-

COMP1_OUT

SAI1_EXTCLK

-

EVENTOUT

PB1

LPUART1_RTS
_DE

-

QUADSPI_
BK1_IO0

-

-

-

LPTIM2_IN1

EVENTOUT

PB3

-

-

-

-

-

SAI1_SCK_B

-

EVENTOUT

PB4

-

TSC_G2_IO1

-

-

-

SAI1_MCLK_B

-

EVENTOUT

PB5

-

TSC_G2_IO2

-

-

COMP2_OUT

SAI1_SD_B

TIM16_BKIN

EVENTOUT

PB6

-

TSC_G2_IO3

-

-

-

SAI1_FS_B

TIM16_CH1N

EVENTOUT

PB7

-

TSC_G2_IO4

-

-

-

-

-

EVENTOUT

PC14

-

-

-

-

-

-

-

EVENTOUT

PC15

-

-

-

-

-

-

-

EVENTOUT

PH3

-

-

-

-

-

-

-

EVENTOUT

Port

Port B

DS11451 Rev 4

Port C
Port H

Pinouts and pin description

58/156

Table 16. Alternate function AF8 to AF15(1) (continued)

1. Please refer to Table 15 for AF0 to AF7.

STM32L432KB STM32L432KC

STM32L432KB STM32L432KC

5

Memory mapping

Memory mapping
Figure 6. STM32L432xx memory map

0xFFFF FFFF

0xBFFF FFFF
Reserved

Cortex™-M4
with FPU
Internal
Peripherals

7

0xA000 1400
QUADSPI registers
0xA000 1000

0xE000 0000
0x5FFF FFFF
Reserved

6

0x5006 0C00
AHB2
0x4800 0000
Reserved

0xC000 0000
0x4002 4400

QUADSPI
registers

5

AHB1
0x4002 0000

0xA000 1000
0x4001 5800
0xA000 0000

APB2

0x4001 0000

QUADSPI Flash
bank
4

Reserved

Reserved
0x4000 9800

0x9000 0000

APB1
0x4000 0000
0x1FFF FFFF

0x8000 0000

3
Reserved
0x6000 0000
0x1FFF 7810
Options Bytes

2

0x1FFF 7800

Reserved

0x1FFF 7400
Peripherals

OTP area

0x4000 0000

0x1FFF 7000
System memory

1
0x2000 C000

0x1FFF 0000

SRAM2

Reserved

0x1000 4000

SRAM1

SRAM2

0x2000 0000

0x1000 0000
Reserved

0

0x0804 0000

CODE

Flash memory
0x0800 0000

0x0000 0000

0x0004 0000
0x0000 0000

Reserved

Reserved
Flash, system memory
or SRAM, depending on
BOOT configuration

MSv36892V2

DS11451 Rev 4

59/156
62

Memory mapping

STM32L432KB STM32L432KC

Table 17. STM32L432xx memory map and peripheral register boundary addresses(1)
Bus

AHB2

-

AHB1

APB2

60/156

Boundary address

Size(bytes)

Peripheral

0x5006 0800 - 0x5006 0BFF

1 KB

0x5004 0400 - 0x5006 07FF

158 KB

0x5004 0000 - 0x5004 03FF

1 KB

ADC

0x5000 0000 - 0x5003 FFFF

16 KB

Reserved

0x4800 2000 - 0x4FFF FFFF

~127 MB

Reserved

0x4800 1C00 - 0x4800 1FFF

1 KB

GPIOH

0x4800 0C00 - 0x4800 1BFF

4 KB

Reserved

0x4800 0800 - 0x4800 0BFF

1 KB

GPIOC

0x4800 0400 - 0x4800 07FF

1 KB

GPIOB

0x4800 0000 - 0x4800 03FF

1 KB

GPIOA

0x4002 4400 - 0x47FF FFFF

~127 MB

0x4002 4000 - 0x4002 43FF

1 KB

TSC

0x4002 3400 - 0x4002 3FFF

1 KB

Reserved

0x4002 3000 - 0x4002 33FF

1 KB

CRC

0x4002 2400 - 0x4002 2FFF

3 KB

Reserved

0x4002 2000 - 0x4002 23FF

1 KB

FLASH registers

0x4002 1400 - 0x4002 1FFF

3 KB

Reserved

0x4002 1000 - 0x4002 13FF

1 KB

RCC

0x4002 0800 - 0x4002 0FFF

2 KB

Reserved

0x4002 0400 - 0x4002 07FF

1 KB

DMA2

0x4002 0000 - 0x4002 03FF

1 KB

DMA1

0x4001 5800 - 0x4001 FFFF

42 KB

Reserved

0x4001 5400 - 0x4000 57FF

1 KB

SAI1

0x4001 4800 - 0x4000 53FF

3 KB

Reserved

0x4001 4400 - 0x4001 47FF

1 KB

TIM16

0x4001 4000 - 0x4001 43FF

1 KB

TIM15

0x4001 3C00 - 0x4001 3FFF

1 KB

Reserved

0x4001 3800 - 0x4001 3BFF

1 KB

USART1

0x4001 3400 - 0x4001 37FF

1 KB

Reserved

0x4001 3000 - 0x4001 33FF

1 KB

SPI1

0x4001 2C00 - 0x4001 2FFF

1 KB

TIM1

0x4001 2000 - 0x4001 2BFF

3 KB

Reserved

DS11451 Rev 4

RNG
Reserved

Reserved

STM32L432KB STM32L432KC

Memory mapping

Table 17. STM32L432xx memory map and peripheral register boundary addresses(1)
(continued)
Bus

APB2

Boundary address

Size(bytes)

0x4001 1C00 - 0x4001 1FFF

1 KB

FIREWALL

0x4001 0800- 0x4001 1BFF

5 KB

Reserved

0x4001 0400 - 0x4001 07FF

1 KB

EXTI

0x4001 0200 - 0x4001 03FF
0x4001 0030 - 0x4001 01FF

COMP
1 KB

0x4001 0000 - 0x4001 002F

APB1

Peripheral

Reserved
SYSCFG

0x4000 9800 - 0x4000 FFFF

26 KB

Reserved

0x4000 9400 - 0x4000 97FF

1 KB

LPTIM2

0x4000 8C00 - 0x4000 93FF

2 KB

Reserved

0x4000 8800 - 0x4000 8BFF

1 KB

SWPMI1

0x4000 8400 - 0x4000 87FF

1 KB

Reserved

0x4000 8000 - 0x4000 83FF

1 KB

LPUART1

0x4000 7C00 - 0x4000 7FFF

1 KB

LPTIM1

0x4000 7800 - 0x4000 7BFF

1 KB

OPAMP

0x4000 7400 - 0x4000 77FF

1 KB

DAC1

0x4000 7000 - 0x4000 73FF

1 KB

PWR

0x4000 6C00 - 0x4000 6FFF

1 KB

USB SRAM

0x4000 6800 - 0x4000 6BFF

1 KB

USB FS

0x4000 6400 - 0x4000 67FF

1 KB

CAN1

0x4000 6000 - 0x4000 63FF

1 KB

CRS

0x4000 5C00- 0x4000 5FFF

1 KB

I2C3

0x4000 5800 - 0x4000 5BFF

1 KB

Reserved

0x4000 5400 - 0x4000 57FF

1 KB

I2C1

0x4000 4800 - 0x4000 53FF

3 KB

Reserved

0x4000 4400 - 0x4000 47FF

1 KB

USART2

0x4000 4000 - 0x4000 43FF

1 KB

Reserved

0x4000 3C00 - 0x4000 3FFF

1 KB

SPI3

0x4000 3400 - 0x4000 3BFF

2 KB

Reserved

0x4000 3000 - 0x4000 33FF

1 KB

IWDG

0x4000 2C00 - 0x4000 2FFF

1 KB

WWDG

0x4000 2800 - 0x4000 2BFF

1 KB

RTC

0x4000 1800 - 0x4000 27FF

4 KB

Reserved

0x4000 1400 - 0x4000 17FF

1 KB

TIM7

DS11451 Rev 4

61/156
62

Memory mapping

STM32L432KB STM32L432KC

Table 17. STM32L432xx memory map and peripheral register boundary addresses(1)
(continued)
Bus

APB1

Boundary address

Peripheral

0x4000 1000 - 0x4000 13FF

1 KB

TIM6

0x4000 0400- 0x4000 0FFF

3 KB

Reserved

0x4000 0000 - 0x4000 03FF

1 KB

TIM2

1. The gray color is used for reserved boundary addresses.

62/156

Size(bytes)

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

6

Electrical characteristics

6.1

Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.

6.1.1

Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).

6.1.2

Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).

6.1.3

Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.

6.1.4

Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.

6.1.5

Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
Figure 7. Pin loading conditions

Figure 8. Pin input voltage

MCU pin

MCU pin

C = 50 pF

VIN

MS19210V1

DS11451 Rev 4

MS19211V1

63/156
148

Electrical characteristics

6.1.6

STM32L432KB STM32L432KC

Power supply scheme
Figure 9. Power supply scheme

Backup circuitry
(LSE, RTC,
Backup registers)

1.55 – 3.6 V

VDD

VCORE
n x VDD

Regulator

OUT

n x 100 nF

GPIOs
IN

+1 x 4.7 μF

Level shifter

VDDIO1
IO
logic

Kernel logic
(CPU, Digital
& Memories)

n x VSS

VDDA

VDDA
VREF

10 nF
+1 μF

VREF+
VREF-

100 nF +1 μF

ADCs/
DACs/
OPAMPs/
COMPs

VSSA
MSv40915V2

Caution:

64/156

Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.

DS11451 Rev 4

STM32L432KB STM32L432KC

6.1.7

Electrical characteristics

Current consumption measurement
Figure 10. Current consumption measurement scheme
IDD_USB
VDDUSB

IDD
VDD

IDDA
VDDA

MSv41630V1

The IDD_ALL parameters given in Table 25 to Table 37 represent the total MCU consumption
including the current supplying VDD, VDDA, VDDUSB and VBAT.

6.2

Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,
Table 19: Current characteristics and Table 20: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
Table 18. Voltage characteristics(1)

Symbol
VDDX - VSS

VIN(2)

|∆VDDx|
|VSSx-VSS|

Ratings

Min

Max

Unit

-0.3

4.0

V

Input voltage on FT_xxx pins

VSS-0.3

min (VDD, VDDA, VDDUSB)
+ 4.0(3)(4)

Input voltage on TT_xx pins

VSS-0.3

4.0

Input voltage on any other pins

VSS-0.3

4.0

Variations between different VDDX power
pins of the same domain

-

50

mV

Variations between all the different ground
pins(5)

-

50

mV

External main supply voltage (including
VDD, VDDA, VDDUSB)

DS11451 Rev 4

V

65/156
148

Electrical characteristics

STM32L432KB STM32L432KC

1. All main power (VDD, VDDA, VDDUSB,) and ground (VSS, VSSA) pins must always be connected to the external power supply,
in the permitted range.
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.

Table 19. Current characteristics
Symbol

Ratings

Max

∑IVDD

Total current into sum of all VDD power lines (source)(1)

140

∑IVSS

(sink)(1)

140

Total current out of sum of all VSS ground lines

IVDD(PIN)

Maximum current into each VDD power pin (source)(1)

100

IVSS(PIN)

Maximum current out of each VSS ground pin (sink)(1)

100

Output current sunk by any I/O and control pin except FT_f

20

Output current sunk by any FT_f pin

20

Output current sourced by any I/O and control pin

20

IIO(PIN)

∑IIO(PIN)

IINJ(PIN)(3)
∑|IINJ(PIN)|

Total output current sunk by sum of all I/Os and control pins(2)

Unit

mA

100
(2)

Total output current sourced by sum of all I/Os and control pins

100

Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,
PA5

-5/+0(4)

Injected current on PA4, PA5

-5/0

Total injected current (sum of all I/Os and control pins)(5)

25

1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power
supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage
characteristics for the maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).

Table 20. Thermal characteristics
Symbol
TSTG
TJ

66/156

Ratings
Storage temperature range
Maximum junction temperature

DS11451 Rev 4

Value

Unit

–65 to +150

°C

150

°C

STM32L432KB STM32L432KC

Electrical characteristics

6.3

Operating conditions

6.3.1

General operating conditions
Table 21. General operating conditions

Symbol

Parameter

Conditions

Min

Max

fHCLK

Internal AHB clock frequency

-

0

80

fPCLK1

Internal APB1 clock frequency

-

0

80

fPCLK2

Internal APB2 clock frequency

-

0

80

Standard operating voltage

-

VDD

VDDA

Analog supply voltage

1.71
(1)

ADC or COMP used

1.62

DAC or OPAMP used

1.8

ADC, DAC, OPAMP, COMP not
used

VDDUSB USB supply voltage

USB used

Unit

MHz

3.6

V

3.6

V

0
3.0

3.6

0

3.6

TT_xx I/O

-0.3

VDDIOx+0.3

All I/O except TT_xx

-0.3

Min(Min(VDD, VDDA,
VDDUSB)+3.6 V,
5.5 V)(2)(3)

V

USB not used

V

VIN

I/O input voltage

PD

Power dissipation at
TA = 125 °C for suffix 3(4)

UFQFPN32

-

128

mW

PD

Power dissipation at
TA = 85 °C for suffix 6
or
TA = 105 °C for suffix 7(4)

UFQFPN32

-

523

mW

–40

85

–40

105

–40

105

–40

125

–40

125

–40

130

Suffix 6 version

–40

105

Suffix 7 version

–40

125

Suffix 3 version

–40

130

TA

TJ

Ambient temperature for the
suffix 6 version

Maximum power dissipation

Ambient temperature for the
suffix 7 version

Maximum power dissipation

Ambient temperature for the
suffix 3 version

Maximum power dissipation

Junction temperature range

Low-power dissipation

Low-power dissipation

Low-power dissipation

(5)

(5)

(5)

°C

°C

1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDUSB)+3.6 V and 5.5V.
3. For operation with voltage higher than Min (VDD, VDDA, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must
be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics).

DS11451 Rev 4

67/156
148

Electrical characteristics

STM32L432KB STM32L432KC

5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2:
Thermal characteristics).

6.3.2

Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
Table 22. Operating conditions at power-up / power-down
Symbol

Parameter

Conditions

VDD rise time rate

tVDD

VDDA rise time rate

0

∞

10

∞

0

∞

10

∞

0

∞

10

∞

-

VDDA fall time rate
VDDUSB rise time rate

tVDDUSB

Max

-

VDD fall time rate

tVDDA

Min

-

VDDUSB fall time rate

Unit

µs/V

The requirements for power-up/down sequence specified in Section 3.9.1: Power supply
schemes must be respected.

6.3.3

Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature conditions summarized in Table 21: General operating conditions.
Table 23. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)

68/156

Parameter
Reset temporization after
BOR0 is detected

VBOR0(2)

Brown-out reset threshold 0

VBOR1

Brown-out reset threshold 1

VBOR2

Brown-out reset threshold 2

VBOR3

Brown-out reset threshold 3

VBOR4

Brown-out reset threshold 4

VPVD0

Programmable voltage
detector threshold 0

Conditions(1)

Min

Typ

Max

Unit

-

250

400

μs

Rising edge

1.62

1.66

1.7

Falling edge

1.6

1.64

1.69

Rising edge

2.06

2.1

2.14

Falling edge

1.96

2

2.04

Rising edge

2.26

2.31

2.35

Falling edge

2.16

2.20

2.24

Rising edge

2.56

2.61

2.66

Falling edge

2.47

2.52

2.57

Rising edge

2.85

2.90

2.95

Falling edge

2.76

2.81

2.86

Rising edge

2.1

2.15

2.19

Falling edge

2

2.05

2.1

VDD rising

DS11451 Rev 4

V

V

V

V

V

V

STM32L432KB STM32L432KC

Electrical characteristics

Table 23. Embedded reset and power control block characteristics (continued)
Conditions(1)

Min

Typ

Max

Rising edge

2.26

2.31

2.36

Falling edge

2.15

2.20

2.25

Rising edge

2.41

2.46

2.51

Falling edge

2.31

2.36

2.41

Rising edge

2.56

2.61

2.66

Falling edge

2.47

2.52

2.57

Rising edge

2.69

2.74

2.79

Falling edge

2.59

2.64

2.69

Rising edge

2.85

2.91

2.96

Falling edge

2.75

2.81

2.86

Rising edge

2.92

2.98

3.04

Falling edge

2.84

2.90

2.96

Hysteresis in
continuous
Hysteresis voltage of BORH0 mode

-

20

-

Hysteresis in
other mode

-

30

-

Symbol

Parameter

VPVD1

PVD threshold 1

VPVD2

PVD threshold 2

VPVD3

PVD threshold 3

VPVD4

PVD threshold 4

VPVD5

PVD threshold 5

VPVD6

PVD threshold 6

Vhyst_BORH0

Unit
V

V

V

V

V

V

mV

Hysteresis voltage of BORH
(except BORH0) and PVD

-

-

100

-

mV

BOR(3) (except BOR0) and
IDD
(2)
(BOR_PVD)
PVD consumption from VDD

-

-

1.1

1.6

µA

-

1.18

1.22

1.26

V

Vhyst_BOR_PVD

VPVM1

VDDUSB peripheral voltage
monitoring

VPVM3

VDDA peripheral voltage
monitoring

Rising edge

1.61

1.65

1.69

Falling edge

1.6

1.64

1.68

VPVM4

VDDA peripheral voltage
monitoring

Rising edge

1.78

1.82

1.86

Falling edge

1.77

1.81

1.85

V

V

Vhyst_PVM3

PVM3 hysteresis

-

-

10

-

mV

Vhyst_PVM4

PVM4 hysteresis

-

-

10

-

mV

PVM1 consumption from VDD

-

-

0.2

-

µA

-

-

2

-

µA

IDD (PVM1)
(2)

IDD
PVM3 and PVM4
(PVM3/PVM4)
consumption from VDD
(2)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.

DS11451 Rev 4

69/156
148

Electrical characteristics

6.3.4

STM32L432KB STM32L432KC

Embedded voltage reference
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 24. Embedded internal voltage reference

Symbol
VREFINT

Parameter
Internal reference voltage

Conditions
–40 °C < TA < +130 °C

Min

Typ

Max

Unit

1.182

1.212

1.232

V

tS_vrefint (1)

ADC sampling time when
reading the internal reference
voltage

-

4(2)

-

-

µs

tstart_vrefint

Start time of reference voltage
buffer when ADC is enable

-

-

8

12(2)

µs

-

-

12.5

20(2)

µA

VREFINT buffer consumption
from VDD when converted by
IDD(VREFINTBUF)
ADC
∆VREFINT
TCoeff

Internal reference voltage
spread over the temperature
range

VDD = 3 V

-

5

7.5(2)

mV

Temperature coefficient

–40°C < TA < +130°C

-

30

50(2)

ppm/°C
ppm
ppm/V

ACoeff

Long term stability

1000 hours, T = 25°C

-

300

1000(2)

VDDCoeff

Voltage coefficient

3.0 V < VDD < 3.6 V

-

250

1200(2)

24

25

26

49

50

51

74

75

76

VREFINT_DIV1

1/4 reference voltage

VREFINT_DIV2

1/2 reference voltage

VREFINT_DIV3

3/4 reference voltage

-

1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.

70/156

DS11451 Rev 4

%
VREFINT

STM32L432KB STM32L432KC

Electrical characteristics
Figure 11. VREFINT versus temperature

V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40

-20

0

20

40

Mean

60

Min

80

100

120

°C

Max
MSv40169V1

DS11451 Rev 4

71/156
148

Electrical characteristics

6.3.5

STM32L432KB STM32L432KC

Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.

Typical and maximum current consumption
The MCU is placed under the following conditions:
•

All I/O pins are in analog input mode

•

All peripherals are disabled except when explicitly mentioned

•

The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0394 reference manual).

•

When the peripherals are enabled fPCLK = fHCLK

The parameters given in Table 25 to Table 37 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.

72/156

DS11451 Rev 4

running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Symbol

Parameter
-

Voltage
scaling

DS11451 Rev 4

85 °C

2.7

2.7

2.8

2.9

3.2

1.79

1.7

1.7

1.8

2.0

2.3

0.94

1.08

0.9

0.9

1.0

1.2

1.5

0.52

0.59

0.73

0.5

0.6

0.6

0.8

1.1

0.3

0.34

0.41

0.55

0.3

0.4

0.4

0.6

0.9

0.2

0.21

0.25

0.32

0.46

0.2

0.3

0.3

0.5

0.8

100 kHz

0.12

0.13

0.17

0.24

0.38

0.1

0.2

0.2

0.4

0.7

80 MHz

8.53

8.56

8.64

8.74

8.92

9.5

9.6

9.7

9.9

10.3

72 MHz

7.7

7.73

7.8

7.9

8.08

8.6

8.6

8.7

8.9

9.3

64 MHz

6.86

6.9

6.97

7.06

7.23

7.7

7.7

7.8

8.0

8.3

Range 1 48 MHz

5.13

5.16

5.23

5.32

5.49

5.8

5.8

6.0

6.1

6.5

32 MHz

3.46

3.48

3.55

3.64

3.8

3.9

4.0

4.1

4.2

4.6

24 MHz

2.63

2.64

2.71

2.79

2.96

3.0

3.0

3.1

3.3

3.6

16 MHz

1.8

1.81

1.87

1.96

2.12

2.0

2.1

2.2

2.3

2.7

2 MHz

211

230

280

355

506

273.8

301.1

360.4

502.7

815.9

1 MHz

117

134

179

254

404

154.7

184.6

249.6

398.4

712.4

400 kHz

58.5

70.4

116

189

338

80.2

111.5

179.7

330.8

643.4

100 kHz

30

41.1

85.2

159

308

46.5

76.6

147.1

299.1

611.2

fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable

Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run mode

25 °C 55 °C

85 °C

26 MHz

2.37

2.38

2.44

2.52

2.66

16 MHz

1.5

1.52

1.57

1.64

8 MHz

0.81

0.82

0.87

4 MHz

0.46

0.47

2 MHz

0.29

1 MHz

fHCLK

1. Guaranteed by characterization results, unless otherwise specified.

105 °C 125 °C 25 °C

105 °C 125 °C

mA

µA

73/156

Electrical characteristics

IDD_ALL
(LPRun)

Unit
55 °C

Range 2

IDD_ALL
(Run)

MAX(1)

TYP

STM32L432KB STM32L432KC

Table 25. Current consumption in Run and Low-power run modes, code with data processing

running from Flash, ART disable
Conditions
Symbol

Parameter
-

Voltage
scaling

Range 2

IDD_ALL
(Run)
DS11451 Rev 4

Unit
25 °C 55 °C

85 °C

26 MHz

2.66

2.68

2.73

2.81

2.96

16 MHz

1.88

1.9

1.94

2.02

8 MHz

1.05

1.06

1.11

1.18

4 MHz

0.6

0.62

0.66

fHCLK

105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

3.0

3.1

3.2

3.3

3.6

2.17

2.1

2.2

2.3

2.4

2.7

1.33

1.2

1.2

1.3

1.4

1.7

0.73

0.87

0.7

0.7

0.8

0.9

1.2

2 MHz

0.36

0.37

0.34

0.48

0.62

0.4

0.4

0.5

0.6

0.9

1 MHz

0.23

0.25

0.25

0.36

0.5

0.3

0.3

0.4

0.5

0.8

100 kHz

0.12

0.14

0.17

0.25

0.39

0.1

0.2

0.2

0.4

0.7

80 MHz

8.56

8.61

8.69

8.79

8.97

9.6

9.7

9.8

10.0

10.3

72 MHz

7.74

7.79

7.86

7.96

8.14

8.7

8.7

8.8

9.0

9.4

64 MHz

7.63

7.68

7.75

7.85

8.04

8.6

8.6

8.7

8.9

9.3

Range 1 48 MHz

6.36

6.4

6.48

6.58

6.76

7.2

7.3

7.4

7.6

7.9

32 MHz

4.56

4.6

4.66

4.76

4.93

5.2

5.2

5.3

5.5

5.8

24 MHz

3.45

3.48

3.54

3.64

3.8

3.9

4.0

4.1

4.2

4.6

16 MHz

2.48

2.51

2.56

2.65

2.82

2.8

2.9

3.0

3.1

3.5

2 MHz

310

317

364

440

593

375.3

400.9

456.7

595.3

909.6

1 MHz

157

173

226

296

448

204.8

234.2

298.2

445.8

758.9

400 kHz

72.6

89

130

206

356

99.7

131.2

199.7

349.3

663.7

100 kHz

32.3

46

89.7

164

314

52.4

82.1

153.3

301.2

616.9

Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run

1. Guaranteed by characterization results, unless otherwise specified.

mA

µA

STM32L432KB STM32L432KC

IDD_ALL
(LPRun)

fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable

MAX(1)

TYP

Electrical characteristics

74/156

Table 26. Current consumption in Run and Low-power run modes, code with data processing

Conditions
Symbol

Parameter
-

Voltage
scaling

Range 2

IDD_ALL
(Run)

Supply
current in
Run mode

DS11451 Rev 4

fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 1

IDD_ALL
(LPRun)

Supply
current in
low-power
run mode

fHCLK = fMSI
all peripherals disable
FLASH in power-down

MAX(1)

TYP
fHCLK

25 °C

55 °C

85 °C

105
°C

125
°C

25 °C

26 MHz

2.42

2.43

2.49

16 MHz

1.54

1.55

1.6

2.56

2.71

2.7

1.67

1.82

1.7

85 °C

105
°C

2.7

2.8

3.0

3.3

1.7

1.8

2.0

2.3

55 °C

125
°C

8 MHz

0.82

0.84

0.88

0.95

1.1

0.9

1.0

1.0

1.2

1.5

4 MHz

0.47

0.48

0.52

0.59

0.73

0.5

0.6

0.6

0.8

1.1

2 MHz

0.29

0.3

0.34

0.41

0.55

0.3

0.4

0.4

0.6

0.9

1 MHz

0.2

0.21

0.25

0.32

0.46

0.2

0.3

0.3

0.5

0.8

100 kHz

0.12

0.13

0.17

0.24

0.38

0.1

0.2

0.2

0.4

0.7

80 MHz

8.63

8.68

8.74

8.84

9.01

9.5

9.6

9.7

9.9

10.2

72 MHz

7.79

7.83

7.9

7.99

8.17

8.6

8.6

8.8

8.9

9.3

64 MHz

6.95

6.99

7.05

7.15

7.32

7.7

7.7

7.9

8.0

8.4

48 MHz

5.19

5.22

5.29

5.38

5.55

5.8

5.8

5.9

6.1

6.5

32 MHz

3.51

3.53

3.6

3.68

3.85

3.9

4.0

4.1

4.2

4.6

24 MHz

2.66

2.68

2.74

2.83

2.99

3.0

3.0

3.1

3.3

3.6

16 MHz

1.82

1.84

1.89

1.98

2.14

2.0

2.1

2.2

2.3

2.7

2 MHz

205

228

275

352

501

276.5

302.3

358.4

502.5

816.4

1 MHz

111

126

175

248

397

151.3

180.9

245.3

390.7

703.4

400 kHz

49.2

62.7

108

181

330

73.3

104.0

170.8

321.0

632.4

100 kHz

21.5

33.3

76.6

151

299

36.4

67.7

137.2

287.8

600.8

mA

µA

75/156

Electrical characteristics

1. Guaranteed by characterization results, unless otherwise specified.

Unit

STM32L432KB STM32L432KC

Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1

Electrical characteristics

STM32L432KB STM32L432KC

Table 28. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
-

IDD_ALL
(Run)

Supply
current in
Run mode

fHCLK = fHSE up
to 48 MHz
included, bypass
mode PLL ON
above 48 MHz
all peripherals
disable

Voltage
scaling
Range 2
fHCLK = 26 MHz

Parameter

Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run

25 °C

Reduced code(1)

2.37

91

Coremark

2.69

103

Dhrystone 2.1

2.74

Fibonacci

2.58

99

2.30

88

Reduced code

8.53

107

Coremark

9.68

121

Dhrystone 2.1

9.76

Fibonacci

9.27

116

8.20

103

Reduced code

211

106

Coremark

251

126

Dhrystone 2.1

269

Fibonacci

230

115

While(1)

286

143

While(1)

While(1)

1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.

76/156

Unit

25 °C

(1)

IDD_ALL
(LPRun)

TYP
Unit

Code

(1)

Range 1
fHCLK = 80 MHz

Symbol

TYP

DS11451 Rev 4

mA

mA

µA

105

122

135

µA/MHz

µA/MHz

µA/MHz

STM32L432KB STM32L432KC

Electrical characteristics

Table 29. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable
Conditions
Parameter
-

IDD_ALL
(Run)

IDD_ALL
(LPRun)

Supply
current in
Run mode

fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable

Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run

TYP
Unit

Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz

Symbol

TYP
Code

Unit

25 °C

25 °C

Reduced code(1)

2.66

102

Coremark

2.44

94

Dhrystone 2.1

2.46

Fibonacci

2.27

87

While(1)

2.20

84.6

Reduced code(1)

8.56

107

Coremark

8.00

mA

95

µA/MHz

100
mA

Dhrystone 2.1

7.98

100

Fibonacci

7.41

While(1)

7.83

98

Reduced code(1)

310

155

µA/MHz

93

Coremark

342

Dhrystone 2.1

324

171

Fibonacci

324

162

While(1)

384

192

µA

162

µA/MHz

1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.

Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
Parameter
-

IDD_ALL
(Run)

IDD_ALL
(LPRun)

fHCLK = fHSE up to
48 MHz included,
bypass mode
Supply
current in PLL ON above
Run mode 48 MHz all
peripherals
disable

Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz

Symbol

Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run

TYP

TYP
Unit

Code

Unit

25 °C

25 °C

Reduced code(1)

2.42

93

Coremark

2.18

Dhrystone 2.1

2.40

84
mA

92

Fibonacci

2.40

92

While(1)

2.29

88

Reduced code(1)

8.63

108

Coremark

7.76

µA/MHz

97
mA

Dhrystone 2.1

8.55

107

Fibonacci

8.56

107

While(1)

8.12

102

Reduced code(1)

205

103

Coremark

188

µA/MHz

94
µA

Dhrystone 2.1

222

111

Fibonacci

204

102

While(1)

211

106

µA/MHz

1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.

DS11451 Rev 4

77/156
148

Conditions
Symbol

Parameter
-

Voltage
scaling

Unit
fHCLK
26 MHz

IDD_ALL
(Sleep)
DS11451 Rev 4
IDD_ALL
(LPSleep)

25 °C 55 °C

85 °C

0.68

0.74

0.69

105 °C 125 °C 25 °C
0.81

0.95

0.8

55 °C

85 °C

0.8

0.9

105 °C 125 °C
1.0

1.3

0.46

0.48

0.52

0.59

0.73

0.5

0.6

0.6

0.8

1.1

8 MHz

0.29

0.30

0.34

0.41

0.55

0.3

0.4

0.4

0.6

0.9

4 MHz

0.20

0.21

0.25

0.32

0.46

0.2

0.3

0.3

0.5

0.8

2 MHz

0.16

0.17

0.21

0.28

0.42

0.2

0.2

0.3

0.4

0.7

1 MHz

0.13

0.15

0.19

0.26

0.40

0.1

0.2

0.3

0.4

0.7

100 kHz

0.11

0.13

0.17

0.24

0.38

0.1

0.2

0.2

0.4

0.7

80 MHz

2.23

2.25

2.30

2.38

2.54

2.5

2.5

2.6

2.8

3.1

72 MHz

2.02

2.04

2.10

2.18

2.34

2.2

2.3

2.4

2.5

2.9

64 MHz

1.82

1.84

1.89

1.98

2.14

2.0

2.1

2.1

2.3

2.6

Range 1 48 MHz

1.34

1.36

1.42

1.50

1.66

1.5

1.6

1.7

1.8

2.2

32 MHz

0.93

0.95

1.01

1.09

1.25

1.1

1.1

1.2

1.4

1.7

24 MHz

0.73

0.75

0.80

0.88

1.04

0.8

0.9

1.0

1.1

1.4

16 MHz

0.53

0.55

0.60

0.68

0.84

0.6

0.6

0.7

0.9

1.2

2 MHz

71.8

80.7

125

200

350

91.1

122.7

191.3

341.5

653.5

1 MHz

45.0

57.3

101

176

325

63.2

95.4

165.4

316.5

628.7

400 kHz

27.0

40.7

84.6

158

308

43.9

75.8

147.2

297.6

609.2

100 kHz

22.8

30.9

63.3

113.2

207.7

35.2

67.9

140.9

290.8

602.4

fHCLK = fHSE up
to 48 MHz
included, bypass
mode
pll ON above
48 MHz all
peripherals
disable

Supply
current in
=f
f
low-power HCLK MSI
all peripherals disable
sleep
mode

1. Guaranteed by characterization results, unless otherwise specified.

mA

µA

STM32L432KB STM32L432KC

16 MHz
Range 2

Supply
current in
sleep
mode,

MAX(1)

TYP

Electrical characteristics

78/156

Table 31. Current consumption in Sleep and Low-power sleep modes, Flash ON

Conditions
Symbol

Parameter

Voltage
scaling

-

IDD_ALL
(LPSleep)

Supply current
in low-power
sleep mode

fHCLK = fMSI
all peripherals disable

MAX(1)

TYP

Unit
fHCLK

25 °C 55 °C

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

2 MHz

58.7

70.7

103.2

153.7

248.5

105 °C 125 °C

80

113

180

330

641

1 MHz

39.4

47.2

79.3

129.6

224.8

53

86

154

304

616

400 kHz

20.8

30.8

62.1

112.5

207.8

35

67

137

286

597

100 kHz

14.3

23.1

55.1

105.7

201.5

27

58

130

279

590

µA

1. Guaranteed by characterization results, unless otherwise specified.

STM32L432KB STM32L432KC

Table 32. Current consumption in Low-power sleep modes, Flash in power-down

Table 33. Current consumption in Stop 2 mode

DS11451 Rev 4

Symbol

Parameter

IDD_ALL
(Stop 2)

Supply current in
Stop 2 mode,
RTC disabled

Conditions
-

-

RTC clocked by LSI

Supply current in
RTC clocked by LSE
Stop 2 mode,
bypassed at 32768 Hz
RTC enabled

RTC clocked by LSE
quartz(2)
in low drive mode

VDD

25 °C 55 °C

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

1.8 V

1

2.54

8.74

19.8

43.4

2.0

5.6

21.1

50.8

116.0

2.4 V

1.02

2.59

8.89

20.2

44.3

2.1

5.8

21.6

52.3

119.6

3V

1.06

2.67

9.11

20.7

45.5

2.1

5.9

22.2

53.7

123.2

3.6 V

1.23

2.88

9.56

21.6

47.3

2.3

6.1

23.0

55.8

127.9

1.8 V

1.3

2.82

9.02

20.1

43.6

2.5

6.2

21.6

51.3

116.3

2.4 V

1.39

2.95

9.24

20.5

44.6

2.8

6.4

22.3

52.8

120.0

3V

1.5

3.11

9.55

21.1

45.8

3.0

6.8

23.0

54.5

123.8

3.6 V

1.76

3.42

10.1

22.1

47.8

3.3

7.2

24.1

56.7

128.7

1.8 V

1.36

2.9

9.1

20.1

43.7

-

-

-

-

-

2.4 V

1.48

3.09

9.44

20.8

45

-

-

-

-

-

3V

1.83

3.67

10.4

22.3

47.3

-

-

-

-

-

3.6 V

3.58

6.17

13.9

26.6

53

-

-

-

-

-

1.8 V

1.28

2.81

9.13

20.8

-

-

-

-

-

-

2.4 V

1.39

2.93

9.34

21.3

-

-

-

-

-

-

3V

1.59

3.1

9.64

21.8

-

-

-

-

-

-

3.6 V

1.86

3.45

10.2

22.8

-

-

-

-

-

-

Unit

µA

µA

79/156

Electrical characteristics

IDD_ALL
(Stop 2 with
RTC)

MAX(1)

TYP

Symbol

Parameter

Supply current
IDD_ALL
during wakeup
(wakeup from
from Stop 2
Stop2)
mode

Conditions
-

MAX(1)

TYP
VDD

25 °C 55 °C

Wakeup clock is
MSI = 48 MHz,
voltage Range 1.
See (3).

3V

1.85

-

-

-

-

Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (3).

3V

1.52

-

-

-

Wakeup clock is
HSI16 = 16 MHz,
voltage Range 1.
See (3).

3V

1.54

-

-

-

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Unit

mA

Electrical characteristics

80/156

Table 33. Current consumption in Stop 2 mode (continued)

DS11451 Rev 4

1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.

STM32L432KB STM32L432KC

Symbol

Parameter

IDD_ALL
(Stop 1)

Supply
current in
Stop 1 mode,
RTC disabled

Conditions
-

-

RTC clocked by LSI

DS11451 Rev 4

Supply
IDD_ALL
current in stop RTC clocked by LSE
(Stop 1 with
1 mode,
bypassed, at 32768 Hz
RTC)
RTC enabled

RTC clocked by LSE quartz(2)
in low drive mode
Wakeup clock MSI = 48 MHz,
voltage Range 1.
See (3).

VDD

25 °C 55 °C 85 °C 105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

1.8 V

4.34

12.4

43.6

96.4

204

9.3

27.4

98.9

198.7

397.5

2.4 V

4.35

12.5

43.8

97

205

9.4

27.6

99.5

199.0

398.0

3V

4.41

12.6

44.1

97.7

207

9.5

27.8

100.3

200.4

400.8

3.6 V

4.56

12.9

44.8

98.9

210

9.7

28.3

101.7

202.1

404.2

1.8 V

4.63

12.7

43.9

96.8

205

9.9

28.0

99.5

198.9

397.8

2.4 V

4.78

12.8

44.2

97.4

206

10.1

28.3

100.3

199.5

399.0

3V

4.93

13

44.6

98.1

207

10.4

28.7

101.2

200.9

401.9

3.6 V

5.05

13.4

45.3

99.5

210

10.8

29.4

102.8

202.5

405.0

1.8 V

4.7

12.8

44

96.9

205

-

-

-

-

-

2.4 V

4.95

13

44.4

97.6

206

-

-

-

-

-

3V

5.33

13.6

45.4

99.1

209

-

-

-

-

-

3.6 V

6.91

16.1

48.8

103

216

-

-

-

-

-

1.8 V

4.76

12.3

43.7

99.1

-

-

-

-

-

-

2.4 V

4.95

12.4

43.8

99.3

-

-

-

-

-

-

3V

5.1

12.6

44.1

99.6

-

-

-

-

-

-

3.6 V

5.65

13

44.8

101

-

-

-

-

-

-

3V

1.14

-

-

-

-

-

-

-

-

-

3V

1.22

-

-

-

-

-

-

-

-

-

3V

1.20

-

-

-

-

-

-

-

-

-

1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.

Unit

µA

µA

mA

81/156

Electrical characteristics

Supply
Wakeup clock MSI = 4 MHz,
IDD_ALL
current during voltage Range 2.
(wakeup
wakeup from
from Stop1)
See (3).
Stop 1
Wakeup clock HSI16 =
16 MHz, voltage Range 1.
See (3).

MAX(1)

TYP

STM32L432KB STM32L432KC

Table 34. Current consumption in Stop 1 mode

Symbol

Parameter

IDD_ALL
(Stop 0)

Supply
current in
Stop 0 mode,
RTC disabled

Conditions
VDD

MAX(1)

TYP
25 °C 55 °C

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

1.8 V

108

119

158

221

347

133

158

244

395

704

2.4 V

110

121

160

223

349

136

161

248

399

710

3V

111

123

161

224

352

139

164

251

403

716

3.6 V

114

125

163

227

355

142

167

254

408

722(2)

1. Guaranteed by characterization results, unless otherwise specified.

Unit

µA

Electrical characteristics

82/156

Table 35. Current consumption in Stop 0

2. Guaranteed by test in production.

DS11451 Rev 4

STM32L432KB STM32L432KC

Symbol

IDD_ALL
(Standby)

Parameter

Supply current
in Standby
mode (backup
registers
retained),
RTC disabled

Conditions
-

no independent watchdog

with independent
watchdog

DS11451 Rev 4

RTC clocked by LSI, no
independent watchdog

IDD_ALL
(Standby
with RTC)

Supply current
in Standby
mode (backup
registers
retained),
RTC enabled

RTC clocked by LSI, with
independent watchdog

RTC clocked by LSE
bypassed at 32768Hz

MAX(1)

TYP
VDD

25 °C 55 °C

1.8 V

27.7

144

758

2 072

5 425

2.4 V

50.9

187

892

2 408

3V

90.2

253

1 090

3.6 V

253

459

1.8 V

216

-

2.4 V

342

3V

416

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

119

425

2866

7524

20510

6 247

183

564

3383

8778

23768

2 884

7 409

225

681

3912

10071

26976

1 474

3 575

8 836

292

877

4638

11659

30758

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

3.6 V

551

-

-

-

-

-

-

-

-

-

1.8 V

287

407

989

2 230

5 396

585

944

3344

7866

20504

2.4 V

386

526

1 201

2 638

6 274

811

1230

4007

9246

23824

3V

513

679

1 478

3 167

7 414

1022

1521

4683

10671

27124

3.6 V

771

978

1 963

3 992

9 039

1284

1924

5577

12383

1.8 V

342

-

-

-

-

-

-

-

-

-

2.4 V

521

-

-

-

-

-

-

-

-

-

Unit

nA

STM32L432KB STM32L432KC

Table 36. Current consumption in Standby mode

30954
(2)

3V

655

-

-

-

-

-

-

-

-

-

3.6 V

865

-

-

-

-

-

-

-

-

-

1.8 V

142

126

865

2 220

5 650

-

-

-

-

-

2.4 V

249

219

1 090

2 660

6 600

-

-

-

-

-

404

364

1 410

3 260

7 850

-

-

-

-

-

742

670

2 000

4 230

9 700

-

-

-

-

-

1.8 V

281

423

1 046

2 410

5 700

-

-

-

-

-

2.4 V
RTC clocked by LSE
quartz (3) in low drive mode 3 V

388

548

1 268

2 847

6 564

-

-

-

-

-

535

715

1 565

3 420

7 694

-

-

-

-

-

3.6 V

836

1 048

2 081

4 311

9 338

-

-

-

-

-

nA

83/156

Electrical characteristics

3V
3.6 V

nA

Symbol

IDD_ALL
(SRAM2)(4)
IDD_ALL
(wakeup
from
Standby)

Conditions

Parameter
Supply current
to be added in
Standby mode
when SRAM2
is retained
Supply current
during wakeup
from Standby
mode

-

VDD

-

Wakeup clock is
MSI = 4 MHz.
See (5).

MAX(1)

TYP
25 °C 55 °C

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

1.8 V

173

349

1 009

2 158

4 542

249

527

1604

3402

6908

2.4 V

174

345

1 015

2 163

4 535

271

589

1623

3438

6924

3V

178

350

1 019

2 148

4 419

277

594

1628

3467

6935

3.6 V

184

352

1 033

2 208

4 610

293

611

1631

3480

6948

3V

1.23

-

-

-

-

-

-

-

-

-

Unit

nA

Electrical characteristics

84/156

Table 36. Current consumption in Standby mode (continued)

mA

1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

DS11451 Rev 4

4. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby
+ RTC) + IDD_ALL(SRAM2).
5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.

Table 37. Current consumption in Shutdown mode
Symbol

Supply current
in Shutdown
mode
(backup
registers
retained) RTC
disabled

-

-

MAX(1)

TYP
VDD

25 °C 55 °C

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

1.8 V

7.82

190

386

1 286

3 854

2.4 V

23

229

485

1 517

3V

44.3

290

634

3.6 V

212

397

977

105 °C 125 °C

25.0

255

1721

5052

15543

4 431

34.9

270

2085

5878

17639

1 878

5 310

70.1

345

2454

6755

19984

2 516

6 656

119.1

496

2992

7939

22860

Unit

nA

STM32L432KB STM32L432KC

IDD_ALL
(Shutdown)

Parameter

Conditions

Symbol

IDD_ALL
(Shutdown
with RTC)

Parameter

Supply current
in Shutdown
mode
(backup
registers
retained) RTC
enabled

DS11451 Rev 4

Supply current
IDD_ALL
during wakeup
(wakeup from
from Shutdown
Shutdown)
mode

Conditions
-

RTC clocked by LSE
bypassed at 32768 Hz

RTC clocked by LSE
quartz (2) in low drive
mode
Wakeup clock is
MSI = 4 MHz.
See (3).

MAX(1)

TYP
VDD

25 °C 55 °C

85 °C

105 °C 125 °C 25 °C

55 °C

85 °C

105 °C 125 °C

1.8 V

63

133

522

1 490

4 270

-

-

-

-

-

2.4 V

165

253

710

1 830

4 980

-

-

-

-

-

3V

316

423

990

2 340

6 050

-

-

-

-

-

3.6 V

649

787

1 530

3 220

7 710

-

-

-

-

-

1.8 V

203

293

700

1 675

-

-

-

-

-

-

2.4 V

303

411

880

2 001

-

-

-

-

-

-

3V

448

567

1 136

2 479

-

-

-

-

-

-

3.6 V

744

887

1 609

3 256

-

-

-

-

-

-

3V

0.780

-

-

-

-

-

-

-

-

-

Unit

nA

STM32L432KB STM32L432KC

Table 37. Current consumption in Shutdown mode (continued)

mA

1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.

Electrical characteristics

85/156

Electrical characteristics

STM32L432KB STM32L432KC

I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 57: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 38: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:

I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.

86/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 38. The MCU is placed
under the following conditions:
•

All I/O pins are in Analog mode

•

The given value is calculated by measuring the difference of the current consumptions:
–

when the peripheral is clocked on

–

when the peripheral is clocked off

•

Ambient operating temperature and supply voltage conditions summarized in Table 18:
Voltage characteristics

•

The power consumption of the digital part of the on-chip peripherals is given in
Table 38. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 38. Peripheral current consumption
Range 1

Range 2

Low-power run
and sleep

Bus Matrix(1)

3.2

2.9

3.1

ADC independent clock domain

0.4

0.1

0.2

ADC clock domain

2.1

1.9

1.9

CRC

0.4

0.2

0.3

DMA1

1.4

1.3

1.4

DMA2

1.5

1.3

1.4

6.2

5.2

5.8

1.7

1.4

1.6

Peripheral

FLASH
(2)

GPIOA
AHB

GPIOB(2))

1.6

1.3

1.6

(2)

GPIOC

1.7

1.5

1.6

GPIOH(2)

0.6

0.6

0.5

QSPI

7.0

5.8

7.3

RNG independent clock domain

2.2

N/A

N/A

RNG clock domain

0.5

N/A

N/A

SRAM1

0.8

0.9

0.7

SRAM2

1.0

0.8

0.8

TSC

1.6

1.3

1.3

21.7

18.5

20.3

AHB to APB1 bridge

0.9

0.7

0.9

CAN1

4.1

3.2

3.9

DAC1

2.4

1.8

2.2

RTCA

1.7

1.1

2.1

CRS

0.3

0.3

0.6

All AHB Peripherals
(3)

APB1

DS11451 Rev 4

Unit

µA/MHz

87/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Table 38. Peripheral current consumption (continued)
Range 1

Range 2

Low-power run
and sleep

USB FS independent clock
domain

2.9

N/A

N/A

USB FS clock domain

2.3

N/A

N/A

I2C1 independent clock domain

3.5

2.8

3.4

I2C1 clock domain

1.1

0.9

1.0

I2C3 independent clock domain

2.9

2.3

2.5

I2C3 clock domain

0.9

0.4

0.8

LPUART1 independent clock
domain

1.9

1.6

1.8

LPUART1 clock domain

0.6

0.6

0.6

LPTIM1 independent clock
domain

2.9

2.4

2.8

LPTIM1 clock domain

0.8

0.4

0.7

LPTIM2 independent clock
domain

3.1

2.7

3.9

LPTIM2 clock domain

0.8

0.7

0.8

OPAMP

0.4

0.2

0.4

PWR

0.4

0.1

0.4

SPI3

1.7

1.3

1.6

SWPMI1 independent clock
domain

1.9

1.6

1.9

SWPMI1 clock domain

0.9

0.7

0.8

TIM2

6.2

5.0

5.9

TIM6

1.0

0.6

0.9

TIM7

1.0

0.6

0.6

USART2 independent clock
domain

4.1

3.6

3.8

USART2 clock domain

1.3

0.9

1.1

WWDG

0.5

0.5

0.5

All APB1 on

40.2

26.7

37.9

AHB to APB2(4)

1.0

0.9

0.9

FW

0.2

0.2

0.2

SAI1 independent clock domain

2.3

1.8

1.9

SAI1 clock domain

2.1

1.8

2.0

SPI1

1.8

1.6

1.7

SYSCFG/COMP

0.6

0.5

0.6

Peripheral

APB1

APB2

88/156

DS11451 Rev 4

Unit

µA/MHz

STM32L432KB STM32L432KC

Electrical characteristics

Table 38. Peripheral current consumption (continued)
Range 1

Range 2

Low-power run
and sleep

TIM1

8.1

6.5

7.6

TIM15

3.7

3.0

3.4

TIM16

2.7

2.1

2.6

USART1 independent clock
domain

4.8

4.2

4.6

USART1 clock domain

1.5

1.3

1.7

All APB2 on

24.2

19.9

22.6

86.1

65.1

80.9

Peripheral

APB2

ALL

Unit

µA/MHz

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

6.3.6

Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 39 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
Table 39. Low-power mode wakeup timings(1)

Symbol
tWUSLEEP

Parameter

Conditions

Typ

Max

-

6

6

Wakeup time from Sleep
mode to Run mode

Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode

Wakeup in Flash with Flash in power-down
during low-power sleep mode (SLEEP_PD=1 in
FLASH_ACR) and with clock MSI = 2 MHz

DS11451 Rev 4

6

8.3

Unit

Nb of
CPU
cycles

89/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Table 39. Low-power mode wakeup timings(1) (continued)
Symbol

Parameter

Conditions
Range 1

Wake up time from Stop 0
mode to Run mode in
Flash

Range 2

tWUSTOP0
Range 1
Wake up time from Stop 0
mode to Run mode in
SRAM1

Range 2

Range 1
Wake up time from Stop 1
mode to Run in Flash
Range 2

Range 1
tWUSTOP1

Wake up time from Stop 1
mode to Run mode in
SRAM1

Wake up time from Stop 1
mode to Low-power run
mode in Flash
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1

90/156

Range 2

Regulator in
low-power
mode (LPR=1
in PWR_CR1)

Typ

Max

Wakeup clock MSI = 48 MHz

3.8

5.7

Wakeup clock HSI16 = 16 MHz

4.1

6.9

Wakeup clock MSI = 24 MHz

4.07

6.2

Wakeup clock HSI16 = 16 MHz

4.1

6.8

Wakeup clock MSI = 4 MHz

8.45

11.8

Wakeup clock MSI = 48 MHz

1.5

2.9

Wakeup clock HSI16 = 16 MHz

2.4

2.76

Wakeup clock MSI = 24 MHz

2.4

3.48

Wakeup clock HSI16 = 16 MHz

2.4

2.76

Wakeup clock MSI = 4 MHz

8.16 10.94

Wakeup clock MSI = 48 MHz

6.34

7.86

Wakeup clock HSI16 = 16 MHz

6.84

8.23

Wakeup clock MSI = 24 MHz

6.74

8.1

Wakeup clock HSI16 = 16 MHz

6.89

8.21

Wakeup clock MSI = 4 MHz

10.47 12.1

Wakeup clock MSI = 48 MHz

4.7

5.97

Wakeup clock HSI16 = 16 MHz

5.9

6.92

Wakeup clock MSI = 24 MHz

5.4

6.51

Wakeup clock HSI16 = 16 MHz

5.9

6.92

Wakeup clock MSI = 4 MHz

11.1

12.2

16.4 17.73
Wakeup clock MSI = 2 MHz

DS11451 Rev 4

17.3 18.82

Unit

µs

µs

STM32L432KB STM32L432KC

Electrical characteristics

Table 39. Low-power mode wakeup timings(1) (continued)
Symbol

Parameter

Conditions

Typ

Max

Wakeup clock MSI = 48 MHz

8.02

9.24

Wakeup clock HSI16 = 16 MHz

7.66

8.95

Wakeup clock MSI = 24 MHz

8.5

9.54

Wakeup clock HSI16 = 16 MHz

7.75

8.95

Wakeup clock MSI = 4 MHz

12.06 13.16

Wakeup clock MSI = 48 MHz

5.45

6.79

Wakeup clock HSI16 = 16 MHz

6.9

7.98

Wakeup clock MSI = 24 MHz

6.3

7.36

Wakeup clock HSI16 = 16 MHz

6.9

7.9

Wakeup clock MSI = 4 MHz

13.1 13.31

Wakeup time from Standby
Range 1
mode to Run mode

Wakeup clock MSI = 8 MHz

12.2 18.35

Wakeup clock MSI = 4 MHz

19.14 25.8

Wakeup time from Standby
Range 1
with SRAM2 to Run mode

Wakeup clock MSI = 8 MHz

12.1

Wakeup clock MSI = 4 MHz

19.2 25.87

Wakeup clock MSI = 4 MHz

261.5 315.7

Range 1
Wake up time from Stop 2
mode to Run mode in
Flash

Range 2

tWUSTOP2
Range 1
Wake up time from Stop 2
mode to Run mode in
SRAM1

tWUSTBY
tWUSTBY
SRAM2

tWUSHDN

Wakeup time from
Shutdown mode to Run
mode

Range 2

Range 1

18.3

Unit

µs

µs

µs

µs

1. Guaranteed by characterization results.

Table 40. Regulator modes transition times(1)
Symbol
tWULPRUN
tVOST

Parameter

Conditions

Typ

Max

Wakeup time from Low-power run mode to
Code run with MSI 2 MHz
Run mode(2)

5

7

Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3)

20

40

Typ

Max

Stop 0 mode

-

1.7

Stop 1 mode and Stop 2
mode

-

8.5

Code run with MSI 24 MHz

Unit

µs

1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.

Table 41. Wakeup time using USART/LPUART(1)
Symbol

tWUUSART
tWULPUART

Parameter

Conditions

Wakeup time needed to calculate the
maximum USART/LPUART baudrate
allowing to wakeup up from stop mode
when USART/LPUART clock source is
HSI16

Unit

µs

1. Guaranteed by design.

DS11451 Rev 4

91/156
148

Electrical characteristics

6.3.7

STM32L432KB STM32L432KC

External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 12: High-speed external clock
source AC timing diagram.
Table 42. High-speed external user clock characteristics(1)

Symbol

fHSE_ext

Parameter

User external clock source frequency

Conditions

Min

Typ

Max

Voltage scaling
Range 1

-

8

48

Voltage scaling
Range 2

-

8

26

Unit

MHz

VHSEH

CK_IN input pin high level voltage

-

0.7 VDDIOx

-

VDDIOx

VHSEL

CK_IN input pin low level voltage

-

VSS

-

0.3 VDDIOx

Voltage scaling
Range 1

7

-

-

Voltage scaling
Range 2

18

tw(HSEH)
CK_IN high or low time
tw(HSEL)

V

ns
-

-

1. Guaranteed by design.

Figure 12. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL

10%
tr(HSE)

tf(HSE)

tw(HSEL)

t

THSE

MS19214V2

92/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 13.
Table 43. Low-speed external user clock characteristics(1)
Symbol

Parameter

Conditions

Min

Typ

Max

Unit
kHz

fLSE_ext

User external clock source frequency

-

-

32.768

1000

VLSEH

OSC32_IN input pin high level voltage

-

0.7 VDDIOx

-

VDDIOx

VLSEL

OSC32_IN input pin low level voltage

-

VSS

-

0.3 VDDIOx

-

250

-

-

tw(LSEH)
OSC32_IN high or low time
tw(LSEL)

V
ns

1. Guaranteed by design.

Figure 13. Low-speed external clock source AC timing diagram

tw(LSEH)
VLSEH
90%
VLSEL

10%
tr(LSE)

tf(LSE)

t
tw(LSEL)

TLSE

MS19215V2

Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 44. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).

DS11451 Rev 4

93/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Table 44. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol

IDD(LSE)

Conditions(2)

Parameter

LSE current consumption

Maximum critical crystal
Gmcritmax
gm

tSU(LSE)(3) Startup time

Min

Typ

Max

LSEDRV[1:0] = 00
Low drive capability

-

250

-

LSEDRV[1:0] = 01
Medium low drive capability

-

315

-

LSEDRV[1:0] = 10
Medium high drive capability

-

500

-

LSEDRV[1:0] = 11
High drive capability

-

630

-

LSEDRV[1:0] = 00
Low drive capability

-

-

0.5

LSEDRV[1:0] = 01
Medium low drive capability

-

-

0.75

LSEDRV[1:0] = 10
Medium high drive capability

-

-

1.7

LSEDRV[1:0] = 11
High drive capability

-

-

2.7

VDD is stabilized

-

2

-

Unit

nA

µA/V

s

1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.

tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note:

For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 14. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN

fLSE
Drive
programmable
amplifier

32.768 kHz
resonator

OSC32_OUT

CL2

MS30253V2

Note:

94/156

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.

DS11451 Rev 4

STM32L432KB STM32L432KC

6.3.8

Electrical characteristics

Internal clock source characteristics
The parameters given in Table 45 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator
Table 45. HSI16 oscillator characteristics(1)
Symbol
fHSI16

TRIM

Parameter
HSI16 Frequency

HSI16 user trimming step

DuCy(HSI16)(2) Duty Cycle

Conditions

Min

Typ

Max

Unit

15.88

-

16.08

MHz

Trimming code is not a
multiple of 64

0.2

0.3

0.4

Trimming code is a
multiple of 64

-4

-6

-8

45

-

55

%

-1

-

1

%

-2

-

1.5

%

-0.1

-

0.05

%

VDD=3.0 V, TA=30 °C

-

%

∆Temp(HSI16)

HSI16 oscillator frequency TA= 0 to 85 °C
drift over temperature
TA= -40 to 125 °C

∆VDD(HSI16)

HSI16 oscillator frequency
VDD=1.62 V to 3.6 V
drift over VDD

tsu(HSI16)(2)

HSI16 oscillator start-up
time

-

-

0.8

1.2

μs

tstab(HSI16)(2)

HSI16 oscillator
stabilization time

-

-

3

5

μs

IDD(HSI16)(2)

HSI16 oscillator power
consumption

-

-

155

190

μA

1. Guaranteed by characterization results.
2. Guaranteed by design.

DS11451 Rev 4

95/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Figure 15. HSI16 frequency versus temperature

MHz
16.4
+2%
16.3
+1.5%
16.2

+1%

16.1
16
15.9
-1%

15.8

-1.5%
15.7
-2%
15.6
-40

-20

0

20

min

40
mean

60

80

100

120 °C

max
MSv39299V1

96/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

Multi-speed internal (MSI) RC oscillator
Table 46. MSI oscillator characteristics(1)
Symbol

Parameter

Conditions

Min

Typ

Max

Range 0

98.7

100

101.3

Range 1

197.4

200

202.6

Range 2

394.8

400

405.2

Range 3

789.6

800

810.4

Range 4

0.987

1

1.013

Range 5

1.974

2

2.026

Range 6

3.948

4

4.052

Range 7

7.896

8

8.104

Range 8

15.79

16

16.21

Range 9

23.69

24

24.31

Range 10

31.58

32

32.42

Range 11

47.38

48

48.62

Range 0

-

98.304

-

Range 1

-

196.608

-

Range 2

-

393.216

-

Range 3

-

786.432

-

Range 4

-

1.016

-

PLL mode Range 5
XTAL=
32.768 kHz Range 6

-

1.999

-

-

3.998

-

Range 7

-

7.995

-

Range 8

-

15.991

-

Range 9

-

23.986

-

Range 10

-

32.014

-

Range 11

-

48.005

-

-3.5

-

3

-8

-

6

MSI mode

fMSI

∆TEMP(MSI)(2)

MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C

MSI oscillator
frequency drift
over temperature

MSI mode

TA= -0 to 85 °C
TA= -40 to 125 °C

DS11451 Rev 4

Unit

kHz

MHz

kHz

MHz

%

97/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 46. MSI oscillator characteristics(1) (continued)

Symbol

Parameter

Conditions

Min

Typ

VDD=1.62 V
to 3.6 V

-1.2

-

VDD=2.4 V
to 3.6 V

-0.5

-

VDD=1.62 V
to 3.6 V

-2.5

-

VDD=2.4 V
to 3.6 V

-0.8

-

VDD=1.62 V
to 3.6 V

-5

-

VDD=2.4 V
to 3.6 V

-1.6

-

TA= -40 to 85 °C

-

1

2

TA= -40 to 125 °C

-

2

4

Range 0 to 3

∆VDD(MSI)

(2)

MSI oscillator
frequency drift
MSI mode
over VDD
(reference is 3 V)

Range 4 to 7

Range 8 to 11

∆FSAMPLING
(MSI)(2)(6)

Frequency
variation in
MSI mode
sampling mode(3)

P_USB
Jitter(MSI)(6)

Period jitter for
USB clock(4)

MT_USB
Jitter(MSI)(6)

Medium term jitter PLL mode
for USB clock(5)
Range 11

CC jitter(MSI)(6)
P jitter(MSI)(6)

tSU(MSI)(6)

tSTAB(MSI)(6)

98/156

PLL mode
Range 11

Max

Unit

0.5

0.7

%

1

for next
transition

-

-

-

3.458

for paired
transition

-

-

-

3.916

for next
transition

-

-

-

2

for paired
transition

-

-

-

1

%

ns

ns

RMS cycle-tocycle jitter

PLL mode Range 11

-

-

60

-

ps

RMS Period jitter

PLL mode Range 11

-

-

50

-

ps

Range 0

-

-

10

20

Range 1

-

-

5

10

Range 2

-

-

4

8

Range 3

-

-

3

7

Range 4 to 7

-

-

3

6

Range 8 to 11

-

-

2.5

6

10 % of final
frequency

-

-

0.25

0.5

5 % of final
frequency

-

-

0.5

1.25

1 % of final
frequency

-

-

-

2.5

MSI oscillator
start-up time

MSI oscillator
stabilization time

PLL mode
Range 11

DS11451 Rev 4

us

ms

STM32L432KB STM32L432KC

Electrical characteristics

Table 46. MSI oscillator characteristics(1) (continued)
Symbol

IDD(MSI)(6)

Parameter

MSI oscillator
power
consumption

Conditions

MSI and
PLL mode

Min

Typ

Max

Range 0

-

-

0.6

1

Range 1

-

-

0.8

1.2

Range 2

-

-

1.2

1.7

Range 3

-

-

1.9

2.5

Range 4

-

-

4.7

6

Range 5

-

-

6.5

9

Range 6

-

-

11

15

Range 7

-

-

18.5

25

Range 8

-

-

62

80

Range 9

-

-

85

110

Range 10

-

-

110

130

Range 11

-

-

155

190

Unit

µA

1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI @48 MHz clock.
5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28
cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.

DS11451 Rev 4

99/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Figure 16. Typical current consumption versus MSI frequency

High-speed internal 48 MHz (HSI48) RC oscillator
Table 47. HSI48 oscillator characteristics(1)
Symbol

Parameter

fHSI48

HSI48 Frequency

TRIM

HSI48 user trimming step

USER TRIM
COVERAGE

HSI48 user trimming coverage

DuCy(HSI48) Duty Cycle
Accuracy of the HSI48 oscillator
ACCHSI48_REL over temperature (factory
calibrated)

DVDD(HSI48)

HSI48 oscillator frequency drift
with VDD

Conditions
VDD=3.0V, TA=30°C
±32 steps
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C

Min

Typ

Max

Unit

-

48

-

MHz

-

0.11(2)

0.18(2)

%

±3(3)

±3.5(3)

-

%

45(2)

-

55(2)

%

-

-

±3(3)
%

VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C

-

-

±4.5(3)

VDD = 3 V to 3.6 V

-

0.025(3)

0.05(3)

VDD = 1.65 V to 3.6 V

-

0.05(3)

0.1(3)

%

tsu(HSI48)

HSI48 oscillator start-up time

-

-

2.5(2)

6(2)

μs

IDD(HSI48)

HSI48 oscillator power
consumption

-

-

340(2)

380(2)

μA

100/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

Table 47. HSI48 oscillator characteristics(1) (continued)
Symbol

Parameter

Conditions

Min

Typ

Max

Unit

NT jitter

Next transition jitter
Accumulated jitter on 28 cycles(4)

-

-

+/-0.15(2)

-

ns

PT jitter

Paired transition jitter
Accumulated jitter on 56 cycles(4)

-

-

+/-0.25(2)

-

ns

1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.

3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.

Figure 17. HSI48 frequency versus temperature
%
6

4

2

0

-2

-4

-6
-50

-30

-10
Avg

10

30

50

70

90

min

110

130
°C

max

MSv40989V1

Low-speed internal (LSI) RC oscillator
Table 48. LSI oscillator characteristics(1)
Symbol
fLSI
tSU(LSI)(2)
tSTAB(LSI)(2)
IDD(LSI)(2)

Parameter
LSI Frequency
LSI oscillator startup time
LSI oscillator
stabilization time
LSI oscillator power
consumption

Conditions

Min

Typ

Max

Unit

VDD = 3.0 V, TA = 30 °C

31.04

-

32.96

VDD = 1.62 to 3.6 V, TA = -40 to 125 °C

29.5

-

34

-

-

80

130

μs

5% of final frequency

-

125

180

μs

-

-

110

180

nA

kHz

1. Guaranteed by characterization results.
2. Guaranteed by design.

DS11451 Rev 4

101/156
148

Electrical characteristics

6.3.9

STM32L432KB STM32L432KC

PLL characteristics
The parameters given in Table 49 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 21: General operating conditions.
Table 49. PLL, PLLSAI1 characteristics(1)

Symbol
fPLL_IN

Parameter

Conditions

Min

Typ

Max

Unit

PLL input clock(2)

-

4

-

16

MHz

PLL input clock duty cycle

-

45

-

55

%

Voltage scaling Range 1

3.0968

-

80

Voltage scaling Range 2

3.0968

-

26

Voltage scaling Range 1

12

-

80

Voltage scaling Range 2

12

-

26

Voltage scaling Range 1

12

-

80

Voltage scaling Range 2

12

-

26

Voltage scaling Range 1

96

-

344

Voltage scaling Range 2

96

-

128

-

15

40

-

40

-

-

30

-

VCO freq = 96 MHz

-

200

260

VCO freq = 192 MHz

-

300

380

VCO freq = 344 MHz

-

520

650

fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter

IDD(PLL)

PLL VCO output
PLL lock time
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption on
VDD(1)

System clock 80 MHz

MHz

MHz

MHz

MHz
μs
±ps

1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the 2 PLLs.

102/156

DS11451 Rev 4

μA

STM32L432KB STM32L432KC

6.3.10

Electrical characteristics

Flash memory characteristics
Table 50. Flash memory characteristics(1)
Symbol

Parameter

Conditions

Typ

Max

Unit

tprog

64-bit programming time

-

81.69

90.76

µs

tprog_row

one row (32 double
word) programming time

normal programming

2.61

2.90

fast programming

1.91

2.12

tprog_page

one page (2 Kbyte)
programming time

normal programming

20.91

23.24

fast programming

15.29

16.98

22.02

24.47

normal programming

5.35

5.95

fast programming

3.91

4.35

22.13

24.59

Write mode

3.4

-

Erase mode

3.4

-

Write mode

7 (for 2 μs)

-

Erase mode

7 (for 41 μs)

-

tERASE
tprog_bank
tME

IDD

Page (2 KB) erase time
one bank (512 Kbyte)
programming time

-

Mass erase time
(one or two banks)

-

Average consumption
from VDD
Maximum current (peak)

ms

s
ms

mA

1. Guaranteed by design.

Table 51. Flash memory endurance and data retention
Symbol
NEND

tRET

Min(1)

Unit

TA = –40 to +105 °C

10

kcycles

1 kcycle(2) at TA = 85 °C

30

Parameter
Endurance

Data retention

Conditions

1 kcycle

(2)

1 kcycle

(2)

at TA = 105 °C

15

at TA = 125 °C

7

(2)

at TA = 55 °C

30

10 kcycles(2) at TA = 85 °C

15

10 kcycles

10 kcycles

(2)

at TA = 105 °C

Years

10

1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.

DS11451 Rev 4

103/156
148

Electrical characteristics

6.3.11

STM32L432KB STM32L432KC

EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.

•

FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.
The test results are given in Table 52. They are based on the EMS levels and classes
defined in application note AN1709.
Table 52. EMS characteristics
Conditions

Level/
Class

Symbol

Parameter

VFESD

Voltage limits to be applied on any I/O pin
to induce a functional disturbance

VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-2

2B

VEFTB

Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance

VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-4

5A

Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:

104/156

•

Corrupted program counter

•

Unexpected reset

•

Critical Data corruption (control registers...)

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 53. EMI characteristics
Symbol

Parameter

Max vs.
[fHSE/fHCLK]

Monitored
frequency band

Conditions

Unit

8 MHz/ 80 MHz

SEMI

Peak level

0.1 MHz to 30 MHz

1

VDD = 3.6 V, TA = 25 °C, 30 MHz to 130 MHz
UFQFPN32 package
130 MHz to 1 GHz
compliant with IEC
61967-2
1 GHz to 2 GHz

0

7

EMI Level

6.3.12

dBµV

-1

1

-

Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 54. ESD absolute maximum ratings
Symbol

VESD(HBM)

Ratings

Conditions

TA = +25 °C, conforming
Electrostatic discharge
to ANSI/ESDA/JEDEC
voltage (human body model)
JS-001

Electrostatic discharge
VESD(CDM) voltage (charge device
model)

TA = +25 °C,
conforming to ANSI/ESD
STM5.3.1

Class

Maximum
value(1)

2

2000

Unit

V
C3

250

1. Guaranteed by characterization results.

DS11451 Rev 4

105/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•

A supply overvoltage is applied to each power supply pin.

•

A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 55. Electrical sensitivities
Symbol
LU

6.3.13

Parameter
Static latch-up class

Conditions

Class

TA = +105 °C conforming to JESD78A

II

I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 56.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 56. I/O current injection susceptibility(1)
Functional
susceptibility
Symbol

IINJ

Description
Positive
injection

Injected current on all pins except PA4, PA5

-5

N/A(2)

Injected current on PA4, PA5 pins

-5

0

1. Guaranteed by characterization results.
2. Injection is not possible.

106/156

Unit
Negative
injection

DS11451 Rev 4

mA

STM32L432KB STM32L432KC

6.3.14

Electrical characteristics

I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 57. I/O static characteristics

Symbol

VIL(1)

VIH(1)

Vhys(3)

Parameter

Conditions

Min

Typ

Max

Unit

I/O input low level
voltage

1.62 V

IOx

-0.06

x>1

for VDDIO

.62

xVDDIOx

9
or 0.3

xVdd

V DDIO
6 for
+0.2

TTL requirement Vil max = 0.8V

MSv37613V1

Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ± 20 mA (with a relaxed VOL/VOH).

108/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•

The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 18: Voltage characteristics).

•

The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 18: Voltage characteristics).

Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT
unless otherwise specified).
Table 58. Output voltage characteristics(1)
Symbol
VOL
VOH

Parameter

Conditions

Min

Max

-

0.4

VDDIOx-0.4

-

-

0.4

2.4

-

-

1.3

VDDIOx-1.3

-

-

0.45

VDDIOx-0.45

-

-

0.35ₓVDDIOx

0.65ₓVDDIOx

-

|IIO| = 20 mA
VDDIOx ≥ 2.7 V

-

0.4

|IIO| = 10 mA
VDDIOx ≥ 1.62 V

-

0.4

|IIO| = 2 mA
1.62 V ≥ VDDIOx ≥ 1.08 V

-

0.4

port(2)

Output low level voltage for an I/O pin

CMOS
|IIO| = 8 mA
Output high level voltage for an I/O pin V
DDIOx ≥ 2.7 V

VOH(3)

TTL port(2)
|IIO| = 8 mA
Output high level voltage for an I/O pin V
DDIOx ≥ 2.7 V

VOL(3)

Output low level voltage for an I/O pin

VOL(3)

VOH
VOL

(3)

(3)

Output low level voltage for an I/O pin

|IIO| = 20 mA
Output high level voltage for an I/O pin VDDIOx ≥ 2.7 V
Output low level voltage for an I/O pin

VOH(3)

|IIO| = 4 mA
Output high level voltage for an I/O pin VDDIOx ≥ 1.62 V

VOL(3)

Output low level voltage for an I/O pin

VOH

(3)

VOLFM+
(3)

|IIO| = 2 mA
Output high level voltage for an I/O pin 1.62 V ≥ VDDIOx ≥ 1.08 V

Output low level voltage for an FT I/O
pin in FM+ mode (FT I/O with "f"
option)

Unit

V

1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.

Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 19 and
Table 59, respectively.

DS11451 Rev 4

109/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 59. I/O AC characteristics(1)(2)
Speed Symbol

Fmax

Parameter

Maximum frequency

00

Tr/Tf

Fmax

Output rise and fall time

Maximum frequency

01

Tr/Tf

110/156

Output rise and fall time

Conditions

Min

Max

C=50 pF, 2.7 V≤VDDIOx≤3.6 V

-

5

C=50 pF, 1.62 V≤VDDIOx≤2.7 V

-

1

C=50 pF, 1.08 V≤VDDIOx≤1.62 V

-

0.1

C=10 pF, 2.7 V≤VDDIOx≤3.6 V

-

10

C=10 pF, 1.62 V≤VDDIOx≤2.7 V

-

1.5

C=10 pF, 1.08 V≤VDDIOx≤1.62 V

-

0.1

C=50 pF, 2.7 V≤VDDIOx≤3.6 V

-

25

C=50 pF, 1.62 V≤VDDIOx≤2.7 V

-

52

C=50 pF, 1.08 V≤VDDIOx≤1.62 V

-

140

C=10 pF, 2.7 V≤VDDIOx≤3.6 V

-

17

C=10 pF, 1.62 V≤VDDIOx≤2.7 V

-

37

C=10 pF, 1.08 V≤VDDIOx≤1.62 V

-

110

C=50 pF, 2.7 V≤VDDIOx≤3.6 V

-

25

C=50 pF, 1.62 V≤VDDIOx≤2.7 V

-

10

C=50 pF, 1.08 V≤VDDIOx≤1.62 V

-

1

C=10 pF, 2.7 V≤VDDIOx≤3.6 V

-

50

C=10 pF, 1.62 V≤VDDIOx≤2.7 V

-

15

C=10 pF, 1.08 V≤VDDIOx≤1.62 V

-

1

C=50 pF, 2.7 V≤VDDIOx≤3.6 V

-

9

C=50 pF, 1.62 V≤VDDIOx≤2.7 V

-

16

C=50 pF, 1.08 V≤VDDIOx≤1.62 V

-

40

C=10 pF, 2.7 V≤VDDIOx≤3.6 V

-

4.5

C=10 pF, 1.62 V≤VDDIOx≤2.7 V

-

9

C=10 pF, 1.08 V≤VDDIOx≤1.62 V

-

21

DS11451 Rev 4

Unit

MHz

ns

MHz

ns

STM32L432KB STM32L432KC

Electrical characteristics

Table 59. I/O AC characteristics(1)(2) (continued)
Speed Symbol

Fmax

Parameter

Maximum frequency

10

Tr/Tf

Fmax

Output rise and fall time

Maximum frequency

11

Tr/Tf

Fm+

Fmax
Tf

Output rise and fall time

Maximum frequency
(4)

Output fall time

Conditions

Min

Max

C=50 pF, 2.7 V≤VDDIOx≤3.6 V

-

50

C=50 pF, 1.62 V≤VDDIOx≤2.7 V

-

25

C=50 pF, 1.08 V≤VDDIOx≤1.62 V

-

5

C=10 pF, 2.7 V≤VDDIOx≤3.6 V

-

100(3)

C=10 pF, 1.62 V≤VDDIOx≤2.7 V

-

37.5

C=10 pF, 1.08 V≤VDDIOx≤1.62 V

-

5

C=50 pF, 2.7 V≤VDDIOx≤3.6 V

-

5.8

C=50 pF, 1.62 V≤VDDIOx≤2.7 V

-

11

C=50 pF, 1.08 V≤VDDIOx≤1.62 V

-

28

C=10 pF, 2.7 V≤VDDIOx≤3.6 V

-

2.5

C=10 pF, 1.62 V≤VDDIOx≤2.7 V

-

5

C=10 pF, 1.08 V≤VDDIOx≤1.62 V

-

12

C=30 pF, 2.7 V≤VDDIOx≤3.6 V

-

120(3)

C=30 pF, 1.62 V≤VDDIOx≤2.7 V

-

50

C=30 pF, 1.08 V≤VDDIOx≤1.62 V

-

10

C=10 pF, 2.7 V≤VDDIOx≤3.6 V

-

180(3)

C=10 pF, 1.62 V≤VDDIOx≤2.7 V

-

75

C=10 pF, 1.08 V≤VDDIOx≤1.62 V

-

10

C=30 pF, 2.7 V≤VDDIOx≤3.6 V

-

3.3

C=30 pF, 1.62 V≤VDDIOx≤2.7 V

-

6

C=30 pF, 1.08 V≤VDDIOx≤1.62 V

-

16

-

1

MHz

-

5

ns

C=50 pF, 1.6 V≤VDDIOx≤3.6 V

Unit

MHz

ns

MHz

ns

1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register.
Refer to the RM0394 reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
3. This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.
4. The fall time is defined between 70% and 30% of the output waveform accordingly to I2C specification.

DS11451 Rev 4

111/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Figure 19. I/O AC characteristics definition(1)
90%

10%

50%

50%

10%

90%

t f(IO)out

t r(IO)out
T

Maximum frequency is achieved if (t r + t f (≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by the specified capacitance.
MS32132V2

1. Refer to Table 59: I/O AC characteristics.

6.3.15

NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions.
Table 60. NRST pin characteristics(1)

Symbol

Parameter

Conditions

Min

Typ

Max

-

-

0.3ₓVDDIOx

Unit

VIL(NRST)

NRST input low level
voltage

-

VIH(NRST)

NRST input high level
voltage

-

0.7ₓVDDIOx

-

-

Vhys(NRST)

NRST Schmitt trigger
voltage hysteresis

-

-

200

-

mV

RPU

Weak pull-up
equivalent resistor(2)

VIN = VSS

25

40

55

kΩ

-

-

-

70

ns

1.71 V ≤ VDD ≤ 3.6 V

350

-

-

ns

VF(NRST)

NRST input filtered
pulse

VNF(NRST)

NRST input not filtered
pulse

1.

V

Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).

112/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics
Figure 20. Recommended NRST pin protection

External
reset circuit(1)

VDD
RPU
NRST(2)

Internal reset
Filter

0.1 μF

MS19878V3

1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 60: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.

6.3.16

Extended interrupt and event controller input (EXTI) characteristics
The pulse on the interrupt input must have a minimal length in order to guarantee that it is
detected by the event controller.
Table 61. EXTI Input Characteristics(1)
Symbol

Parameter

Conditions

Min

Typ

Max

Unit

PLEC

Pulse length to event
controller

-

20

-

-

ns

1. Guaranteed by design.

6.3.17

Analog switches booster
Table 62. Analog switches booster characteristics(1)
Symbol
VDD
tSU(BOOST)

IDD(BOOST)

Parameter

Min

Typ

Max

Unit

1.62

-

3.6

V

Booster startup time

-

-

240

µs

Booster consumption for
1.62 V ≤ VDD ≤ 2.0 V

-

-

250

Booster consumption for
2.0 V ≤ VDD ≤ 2.7 V

-

-

500

Booster consumption for
2.7 V ≤ VDD ≤ 3.6 V

-

-

900

Supply voltage

µA

1. Guaranteed by design.

DS11451 Rev 4

113/156
148

Electrical characteristics

6.3.18

STM32L432KB STM32L432KC

Analog-to-Digital converter characteristics
Unless otherwise specified, the parameters given in Table 63 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 21: General operating conditions.

Note:

It is recommended to perform a calibration after each power-up.
Table 63. ADC characteristics(1) (2)

Symbol

Parameter

VDDA

Analog supply voltage

VREF+

Positive reference voltage

VREF-

Negative reference
voltage

fADC

ADC clock frequency

Min

Typ

Max

Unit

-

1.62

-

3.6

V

2

-

VDDA

V

VDDA ≥ 2 V
VDDA < 2 V
-

VDDA

V

VSSA

V

Range 1

0.14

-

80

Range 2

0.14

-

26

Resolution = 12 bits

-

-

5.33

Resolution = 10 bits

-

-

6.15

Resolution = 8 bits

-

-

7.27

Resolution = 6 bits

-

-

8.88

Resolution = 12 bits

-

-

4.21

Resolution = 10 bits

-

-

4.71

Resolution = 8 bits

-

-

5.33

Resolution = 6 bits

-

-

6.15

fADC = 80 MHz
Resolution
= 12 bits
External trigger frequency

-

-

5.33

MHz

Resolution = 12 bits

-

-

15

1/fADC

Sampling rate for FAST
channels
fs
Sampling rate for SLOW
channels

fTRIG

Conditions

Differential mode

(VREF++
(VREF++
(VREF++
VREF-)/2
VREF-)/2
VREF-)/2
- 0.18
+ 0.18

MHz

Msps

V

VCMIN

Input common mode

VAIN (3)

Conversion voltage
range(2)

-

0

-

VREF+

V

RAIN

External input impedance

-

-

-

50

kΩ

CADC

Internal sample and hold
capacitor

-

-

5

-

pF

tSTAB

Power-up time

-

tCAL

Calibration time

114/156

fADC = 80 MHz
-

DS11451 Rev 4

1

conversion
cycle

1.45

µs

116

1/fADC

STM32L432KB STM32L432KC

Electrical characteristics

Table 63. ADC characteristics(1) (2) (continued)
Symbol

Parameter

tLATR

Trigger conversion
latency Regular and
injected channels without
conversion abort

Conditions

Min

Typ

Max

CKMODE = 00

1.5

2

2.5

CKMODE = 01

-

-

2.0

CKMODE = 10

-

-

2.25

CKMODE = 11

-

-

2.125

2.5

3

3.5

-

-

3.0

-

-

3.25

-

-

3.125

0.03125

-

8.00625

µs

-

2.5

-

640.5

1/fADC

-

-

-

20

µs

0.1875

-

8.1625

µs

CKMODE = 00
Trigger conversion
latency Injected channels CKMODE = 01
aborting a regular
CKMODE = 10
conversion
CKMODE = 11

tLATRINJ

ts

Sampling time

fADC = 80 MHz

ADC voltage regulator

tADCVREG_STUP start-up time

Total conversion time
(including sampling time)

tCONV

ADC consumption from
the VDDA supply

IDDA(ADC)

IDDV_S(ADC)

IDDV_D(ADC)

ADC consumption from
the VREF+ single ended
mode
ADC consumption from
the VREF+ differential
mode

fADC = 80 MHz
Resolution = 12 bits
Resolution = 12 bits

ts + 12.5 cycles for
successive approximation
= 15 to 653

fs = 5 Msps

-

730

830

fs = 1 Msps

-

160

220

fs = 10 ksps

-

16

50

fs = 5 Msps

-

130

160

fs = 1 Msps

-

30

40

fs = 10 ksps

-

0.6

2

fs = 5 Msps

-

260

310

fs = 1 Msps

-

60

70

fs = 10 ksps

-

1.3

3

Unit

1/fADC

1/fADC

1/fADC

µA

µA

µA

1. Guaranteed by design
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4V). It is disable when VDDA ≥ 2.4 V.
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 4: Pinouts and pin description for further details.

The maximum value of RAIN can be found in Table 64: Maximum ADC RAIN.

DS11451 Rev 4

115/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 64. Maximum ADC RAIN(1)(2)

Resolution

12 bits

10 bits

8 bits

6 bits

Sampling cycle
@80 MHz

Sampling time [ns]
@80 MHz

2.5

Fast channels(3)

Slow channels(4)

31.25

100

N/A

6.5

81.25

330

100

12.5

156.25

680

470

24.5

306.25

1500

1200

47.5

593.75

2200

1800

92.5

1156.25

4700

3900

247.5

3093.75

12000

10000

640.5

8006.75

39000

33000

2.5

31.25

120

N/A

6.5

81.25

390

180

12.5

156.25

820

560

24.5

306.25

1500

1200

47.5

593.75

2200

1800

92.5

1156.25

5600

4700

247.5

3093.75

12000

10000

640.5

8006.75

47000

39000

2.5

31.25

180

N/A

6.5

81.25

470

270

12.5

156.25

1000

680

24.5

306.25

1800

1500

47.5

593.75

2700

2200

92.5

1156.25

6800

5600

247.5

3093.75

15000

12000

640.5

8006.75

50000

50000

2.5

31.25

220

N/A

6.5

81.25

560

330

12.5

156.25

1200

1000

24.5

306.25

2700

2200

47.5

593.75

3900

3300

92.5

1156.25

8200

6800

247.5

3093.75

18000

15000

640.5

8006.75

50000

50000

1. Guaranteed by design.

116/156

RAIN max (Ω)

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4V). It is disable when VDDA ≥ 2.4 V.
3. Fast channels are: PC0, PC1, PC2, PC3, PA0, PA1.
4. Slow channels are: all ADC inputs except the fast channels.

DS11451 Rev 4

117/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Table 65. ADC accuracy - limited test conditions 1(1)(2)(3)
Symbol

Parameter

ET

Total
unadjusted
error

EO

Conditions(4)

Offset
error

Single
ended
Differential
Single
ended
Differential
Single
ended

EG

Gain error
Differential

ED

EL

Differential
linearity
ADC clock frequency ≤
error
80 MHz,
Sampling rate ≤ 5.33 Msps,
VDDA = VREF+ = 3 V,
Integral
TA = 25 °C
linearity
error

Effective
ENOB number of
bits

Signal-tonoise and
SINAD
distortion
ratio

SNR

Signal-tonoise ratio

Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential

118/156

Min Typ Max Unit
Fast channel (max speed)

-

4

5

Slow channel (max speed)

-

4

5

Fast channel (max speed)

-

3.5

4.5

Slow channel (max speed)

-

3.5

4.5

Fast channel (max speed)

-

1

2.5

Slow channel (max speed)

-

1

2.5

Fast channel (max speed)

-

1.5

2.5

Slow channel (max speed)

-

1.5

2.5

Fast channel (max speed)

-

2.5

4.5

Slow channel (max speed)

-

2.5

4.5

Fast channel (max speed)

-

2.5

3.5

Slow channel (max speed)

-

2.5

3.5

Fast channel (max speed)

-

1

1.5

Slow channel (max speed)

-

1

1.5

Fast channel (max speed)

-

1

1.2

Slow channel (max speed)

-

1

1.2

Fast channel (max speed)

-

1.5

2.5

Slow channel (max speed)

-

1.5

2.5

Fast channel (max speed)

-

1

2

Slow channel (max speed)

-

1

2

Fast channel (max speed) 10.4 10.5

-

Slow channel (max speed) 10.4 10.5

-

Fast channel (max speed) 10.8 10.9

-

Slow channel (max speed) 10.8 10.9

-

Fast channel (max speed) 64.4

65

-

Slow channel (max speed) 64.4

65

-

Fast channel (max speed) 66.8 67.4

-

Slow channel (max speed) 66.8 67.4

-

Fast channel (max speed)

65

66

-

Slow channel (max speed)

65

66

-

Fast channel (max speed)

67

68

-

Slow channel (max speed)

67

68

-

DS11451 Rev 4

LSB

bits

dB

STM32L432KB STM32L432KC

Electrical characteristics

Table 65. ADC accuracy - limited test conditions 1(1)(2)(3) (continued)
Symbol

THD

Conditions(4)

Parameter

Total
harmonic
distortion

ADC clock frequency ≤
Single
80 MHz,
ended
Sampling rate ≤ 5.33 Msps,
VDDA = VREF+ = 3 V,
Differential
TA = 25 °C

Min Typ Max Unit
Fast channel (max speed)

-

-74

-73

Slow channel (max speed)

-

-74

-73

Fast channel (max speed)

-

-79

-76

Slow channel (max speed)

-

-79

-76

dB

1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.

DS11451 Rev 4

119/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Table 66. ADC accuracy - limited test conditions 2(1)(2)(3)
Symbol

Parameter

ET

Total
unadjusted
error

EO

Conditions(4)

Offset
error

Single
ended
Differential
Single
ended
Differential
Single
ended

EG

Gain error
Differential

ED

EL

Differential
linearity
error
ADC clock frequency ≤
80 MHz,
Sampling rate ≤ 5.33 Msps,
2 V ≤ VDDA
Integral
linearity
error

Effective
ENOB number of
bits

Signal-tonoise and
SINAD
distortion
ratio

SNR

Signal-tonoise ratio

Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential

120/156

Min Typ Max Unit
Fast channel (max speed)

-

4

6.5

Slow channel (max speed)

-

4

6.5

Fast channel (max speed)

-

3.5

5.5

Slow channel (max speed)

-

3.5

5.5

Fast channel (max speed)

-

1

4.5

Slow channel (max speed)

-

1

5

Fast channel (max speed)

-

1.5

3

Slow channel (max speed)

-

1.5

3

Fast channel (max speed)

-

2.5

6

Slow channel (max speed)

-

2.5

6

Fast channel (max speed)

-

2.5

3.5

Slow channel (max speed)

-

2.5

3.5

Fast channel (max speed)

-

1

1.5

Slow channel (max speed)

-

1

1.5

Fast channel (max speed)

-

1

1.2

Slow channel (max speed)

-

1

1.2

Fast channel (max speed)

-

1.5

3.5

Slow channel (max speed)

-

1.5

3.5

Fast channel (max speed)

-

1

3

Slow channel (max speed)

-

1

2.5

Fast channel (max speed)

10

10.5

-

Slow channel (max speed)

10

10.5

-

Fast channel (max speed) 10.7 10.9

-

Slow channel (max speed) 10.7 10.9

-

Fast channel (max speed)

62

65

-

Slow channel (max speed)

62

65

-

Fast channel (max speed)

66

67.4

-

Slow channel (max speed)

66

67.4

-

Fast channel (max speed)

64

66

-

Slow channel (max speed)

64

66

-

Fast channel (max speed) 66.5

68

-

Slow channel (max speed) 66.5

68

-

DS11451 Rev 4

LSB

bits

dB

STM32L432KB STM32L432KC

Electrical characteristics

Table 66. ADC accuracy - limited test conditions 2(1)(2)(3) (continued)
Symbol

THD

Conditions(4)

Parameter

Total
harmonic
distortion

Fast channel (max speed)
Single
ADC clock frequency ≤
ended
Slow channel (max speed)
80 MHz,
Sampling rate ≤ 5.33 Msps,
Fast channel (max speed)
Differential
2 V ≤ VDDA
Slow channel (max speed)

Min Typ Max Unit
-

-74

-65

-

-74

-67

-

-79

-70

-

-79

-71

dB

1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.

DS11451 Rev 4

121/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Table 67. ADC accuracy - limited test conditions 3(1)(2)(3)
Symbol

Parameter

ET

Total
unadjusted
error

EO

Conditions(4)

Offset
error

Single
ended
Differential
Single
ended
Differential
Single
ended

EG

Gain error
Differential

ED

EL

Differential
linearity
ADC clock frequency ≤
error
80 MHz,
Sampling rate ≤ 5.33 Msps,
1.65 V ≤ VDDA = VREF+ ≤
3.6 V,
Integral
Voltage scaling Range 1
linearity
error

Effective
ENOB number of
bits

Signal-tonoise and
SINAD
distortion
ratio

SNR

Signal-tonoise ratio

Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential

122/156

Min Typ Max Unit
Fast channel (max speed)

-

5.5

7.5

Slow channel (max speed)

-

4.5

6.5

Fast channel (max speed)

-

4.5

7.5

Slow channel (max speed)

-

4.5

5.5

Fast channel (max speed)

-

2

5

Slow channel (max speed)

-

2.5

5

Fast channel (max speed)

-

2

3.5

Slow channel (max speed)

-

2.5

3

Fast channel (max speed)

-

4.5

7

Slow channel (max speed)

-

3.5

6

Fast channel (max speed)

-

3.5

4

Slow channel (max speed)

-

3.5

5

Fast channel (max speed)

-

1.2

1.5

Slow channel (max speed)

-

1.2

1.5

Fast channel (max speed)

-

1

1.2

Slow channel (max speed)

-

1

1.2

Fast channel (max speed)

-

3

3.5

Slow channel (max speed)

-

2.5

3.5

Fast channel (max speed)

-

2

2.5

Slow channel (max speed)

-

2

2.5

Fast channel (max speed)

10

10.4

-

Slow channel (max speed)

10

10.4

-

Fast channel (max speed) 10.6 10.7

-

Slow channel (max speed) 10.6 10.7

-

Fast channel (max speed)

62

64

-

Slow channel (max speed)

62

64

-

Fast channel (max speed)

65

66

-

Slow channel (max speed)

65

66

-

Fast channel (max speed)

63

65

-

Slow channel (max speed)

63

65

-

Fast channel (max speed)

66

67

-

Slow channel (max speed)

66

67

-

DS11451 Rev 4

LSB

bits

dB

STM32L432KB STM32L432KC

Electrical characteristics

Table 67. ADC accuracy - limited test conditions 3(1)(2)(3) (continued)
Symbol

THD

Conditions(4)

Parameter

Total
harmonic
distortion

ADC clock frequency ≤
Single
80 MHz,
ended
Sampling rate ≤ 5.33 Msps,
1.65 V ≤ VDDA = VREF+ ≤
Differential
3.6 V,
Voltage scaling Range 1

Min Typ Max Unit
Fast channel (max speed)

-

-69

-67

Slow channel (max speed)

-

-71

-67

Fast channel (max speed)

-

-72

-71

Slow channel (max speed)

-

-72

-71

dB

1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.

DS11451 Rev 4

123/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Table 68. ADC accuracy - limited test conditions 4(1)(2)(3)
Symbol

Parameter

ET

Total
unadjusted
error

EO

Offset
error

Conditions(4)
Single
ended
Differential
Single
ended
Differential
Single
ended

EG

Gain error
Differential

ED

EL

Differential
linearity
ADC clock frequency ≤
error
26 MHz,
1.65 V ≤ VDDA = VREF+ ≤
3.6 V,
Integral
Voltage scaling Range 2
linearity
error

Effective
ENOB number of
bits

Signal-tonoise and
SINAD
distortion
ratio

SNR

Signal-tonoise ratio

Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential

124/156

Min Typ Max Unit
Fast channel (max speed)

-

5

5.4

Slow channel (max speed)

-

4

5

Fast channel (max speed)

-

4

5

Slow channel (max speed)

-

3.5

4.5

Fast channel (max speed)

-

2

4

Slow channel (max speed)

-

2

4

Fast channel (max speed)

-

2

3.5

Slow channel (max speed)

-

2

3.5

Fast channel (max speed)

-

4

4.5

Slow channel (max speed)

-

4

4.5

Fast channel (max speed)

-

3

4

Slow channel (max speed)

-

3

4

Fast channel (max speed)

-

1

1.5

Slow channel (max speed)

-

1

1.5

Fast channel (max speed)

-

1

1.2

Slow channel (max speed)

-

1

1.2

Fast channel (max speed)

-

2.5

3

Slow channel (max speed)

-

2.5

3

Fast channel (max speed)

-

2

2.5

Slow channel (max speed)

-

2

2.5

Fast channel (max speed) 10.2 10.5

-

Slow channel (max speed) 10.2 10.5

-

Fast channel (max speed) 10.6 10.7

-

Slow channel (max speed) 10.6 10.7

-

Fast channel (max speed)

63

65

-

Slow channel (max speed)

63

65

-

Fast channel (max speed)

65

66

-

Slow channel (max speed)

65

66

-

Fast channel (max speed)

64

65

-

Slow channel (max speed)

64

65

-

Fast channel (max speed)

66

67

-

Slow channel (max speed)

66

67

-

DS11451 Rev 4

LSB

bits

dB

STM32L432KB STM32L432KC

Electrical characteristics

Table 68. ADC accuracy - limited test conditions 4(1)(2)(3) (continued)
Symbol

THD

Conditions(4)

Parameter
ADC clock frequency ≤
26 MHz,
1.65 V ≤ VDDA = VREF+ ≤
3.6 V,
Voltage scaling Range 2

Total
harmonic
distortion

Single
ended
Differential

Min Typ Max Unit
Fast channel (max speed)

-

-71

-69

Slow channel (max speed)

-

-71

-69

Fast channel (max speed)

-

-73

-72

Slow channel (max speed)

-

-73

-72

dB

1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.

Figure 21. ADC accuracy characteristics
VSSA

EG

(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line

4095
4094
4093
(2)
ET

(3)

7

(1)
6
5

EO

EL

4
3

ED

2
1 LSB IDEAL

1
0

1

2

3

4

5

6

7

ET = total unajusted error: maximum deviation
between the actual and ideal transfer curves.
EO = offset error: maximum deviation
between the first actual transition and
the first ideal one.
EG = gain error: deviation between the last
ideal transition and the last actual one.
ED = differential linearity error: maximum
deviation between actual steps and the ideal ones.
EL = integral linearity error: maximum deviation
between any actual transition and the end point
correlation line.

4093 4094 4095 4096

VDDA
MS19880V2

DS11451 Rev 4

125/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Figure 22. Typical connection diagram using the ADC
VDDA
VT

RAIN(1)

VAIN

Sample and hold ADC converter
RADC

AINx
Cparasitic(2)

VT

Ilkg (3)

12-bit
converter
CADC

MS33900V5

1. Refer to Table 63: ADC characteristics for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 57: I/O static characteristics for the value of the pad capacitance). A high
Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
3. Refer to Table 57: I/O static characteristics for the values of Ilkg.

General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 9: Power supply scheme.
The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as
possible to the chip.

126/156

DS11451 Rev 4

STM32L432KB STM32L432KC

6.3.19

Electrical characteristics

Digital-to-Analog converter characteristics
Table 69. DAC characteristics(1)

Symbol

VDDA

VREF+

Parameter

Analog supply voltage for
DAC ON

Conditions

Min

Typ

DAC output buffer OFF (no resistive
load on DAC1_OUTx pin or internal
connection)

1.71

-

Other modes

1.80

-

1.71

-

DAC output buffer OFF (no resistive
load on DAC1_OUTx pin or internal
Positive reference voltage connection)
Other modes

VREF-

Negative reference
voltage

Max

3.6

V
VDDA

1.80
-

VSSA

connected to VSSA

5

-

-

connected to VDDA

25

-

-

9.6

11.7

13.8

RL

Resistive load

DAC output
buffer ON

RO

Output Impedance

DAC output buffer OFF

Unit

kΩ
kΩ

Output impedance sample VDD = 2.7 V
and hold mode, output
VDD = 2.0 V
buffer ON

-

-

2

RBON

-

-

3.5

Output impedance sample VDD = 2.7 V
and hold mode, output
VDD = 2.0 V
buffer OFF

-

-

16.5

RBOFF

-

-

18.0

DAC output buffer ON

-

-

50

pF

Sample and hold mode

-

0.1

1

µF

Voltage on DAC1_OUTx
output

DAC output buffer ON

0.2

-

VREF+
– 0.2

V

DAC output buffer OFF

0

-

VREF+

Settling time (full scale: for
a 12-bit code transition
between the lowest and
the highest input codes
when DAC1_OUTx
reaches final value
±0.5LSB, ±1 LSB, ±2 LSB,
±4 LSB, ±8 LSB)

±0.5 LSB

-

1.7

3

Normal mode
DAC output
buffer ON
CL ≤ 50 pF,
RL ≥ 5 kΩ

±1 LSB

-

1.6

2.9

±2 LSB

-

1.55

2.85

±4 LSB

-

1.48

2.8

±8 LSB

-

1.4

2.75

Normal mode DAC output buffer
OFF, ±1LSB, CL = 10 pF

-

2

2.5

Wakeup time from off state
(setting the ENx bit in the
DAC Control register) until
final value ±1 LSB

Normal mode DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ

-

4.2

7.5

Normal mode DAC output buffer
OFF, CL ≤ 10 pF

-

2

5

Normal mode DAC output buffer ON
CL ≤ 50 pF, RL = 5 kΩ, DC

-

-80

-28

CL
CSH
VDAC_OUT

tSETTLING

tWAKEUP(2)

PSRR

Capacitive load

VDDA supply rejection ratio

DS11451 Rev 4

kΩ

kΩ

µs

µs

dB

127/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 69. DAC characteristics(1) (continued)

Symbol

TW_to_W

tSAMP

Parameter

Conditions

Typ

Max

Unit

-

-

µs

-

0.7

3.5

-

10.5

18

-

2

3.5

µs

-

-

-(3)

nA

5.2

7

8.8

pF

50

-

-

µs

VREF+ = 3.6 V

-

1500

-

VREF+ = 1.8 V

-

750

-

No load, middle
code (0x800)

-

315

500

No load, worst code
(0xF1C)

-

450

670

No load, middle
code (0x800)

-

-

0.2

Minimal time between two
consecutive writes into the
DAC_DORx register to
guarantee a correct
DAC1_OUTx for a small
variation of the input code
(1 LSB)
DAC_MCR:MODEx[2:0] =
000 or 001
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC_MCR:MODEx[2:0] =
010 or 011
CL ≤ 10 pF

Sampling time in sample
and hold mode (code
transition between the
lowest input code and the
highest input code when
DAC1_OUTx reaches final
value ±1LSB)

Ileak

Output leakage current

CIint

Internal sample and hold
capacitor

tTRIM

Middle code offset trim
time

Voffset

Middle code offset for 1
trim code step

DAC output buffer
ON, CSH = 100 nF

DAC1_OUTx
pin connected DAC output buffer
OFF, CSH = 100 nF
DAC1_OUTx
pin not
connected
(internal
connection
only)

Sample and hold mode,
DAC1_OUTx pin connected
DAC output buffer ON

DAC output
buffer ON

IDDA(DAC)

DAC consumption from
VDDA

DAC output buffer
OFF

DAC output
buffer OFF

Sample and hold mode, CSH =
100 nF

128/156

DS11451 Rev 4

Min

1
1.4

ms

-

670 ₓ
315 ₓ
Ton/(Ton Ton/(Ton
+Toff)
+Toff)
(4)

(4)

µV

µA

STM32L432KB STM32L432KC

Electrical characteristics

Table 69. DAC characteristics(1) (continued)
Symbol

Parameter

Conditions

DAC output
buffer ON
DAC output
buffer OFF
IDDV(DAC)

DAC consumption from
VREF+

Min

Typ

Max

No load, middle
code (0x800)

-

185

240

No load, worst code
(0xF1C)

-

340

400

No load, middle
code (0x800)

-

155

205

Sample and hold mode, buffer ON,
CSH = 100 nF, worst case

Sample and hold mode, buffer OFF,
CSH = 100 nF, worst case

-

400 ₓ
185 ₓ
Ton/(Ton Ton/(Ton
+Toff)
+Toff)
(4)

-

Unit

µA

(4)

155 ₓ
205 ₓ
Ton/(Ton Ton/(Ton
+Toff)
+Toff)
(4)

(4)

1. Guaranteed by design.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
3. Refer to Table 57: I/O static characteristics.
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0394 reference manual for more details.

Figure 23. 12-bit buffered / non-buffered DAC
Buffered/non-buffered DAC
Buffer

(1)

RLOAD
12-bit
digital to
analog
converter

DACx_OUT

CLOAD

ai17157d

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.

DS11451 Rev 4

129/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 70. DAC accuracy(1)

.

Symbol

Parameter

DNL

Differential non
linearity (2)

-

monotonicity

10 bits

INL

Integral non
linearity(3)

Offset

Offset1

OffsetCal

Gain

TUE

TUECal

SNR

THD

130/156

Offset error at
code 0x800(3)

Offset error at
code 0x001(4)

Conditions

Min

Typ

Max

DAC output buffer ON

-

-

±2

DAC output buffer OFF

-

-

±2

guaranteed

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ

-

-

±4

DAC output buffer OFF
CL ≤ 50 pF, no RL

-

-

±4

VREF+ = 3.6 V

-

-

±12

VREF+ = 1.8 V

-

-

±25

DAC output buffer OFF
CL ≤ 50 pF, no RL

-

-

±8

DAC output buffer OFF
CL ≤ 50 pF, no RL

-

-

±5

VREF+ = 3.6 V

-

-

±5

VREF+ = 1.8 V

-

-

±7

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ

-

-

±0.5

DAC output buffer OFF
CL ≤ 50 pF, no RL

-

-

±0.5

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ

-

-

±30

DAC output buffer OFF
CL ≤ 50 pF, no RL

-

-

±12

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ

-

-

±23

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
1 kHz, BW 500 kHz

-

71.2

-

DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
BW 500 kHz

-

71.6

-

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz

-

-78

-

DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz

-

-79

-

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ

Offset Error at
DAC output buffer ON
code 0x800
CL ≤ 50 pF, RL ≥ 5 kΩ
after calibration

(5)

Gain error

Total
unadjusted
error
Total
unadjusted
error after
calibration

Signal-to-noise
ratio

Total harmonic
distortion

Unit

LSB

DS11451 Rev 4

%

LSB

LSB

dB

dB

STM32L432KB STM32L432KC

Electrical characteristics

Table 70. DAC accuracy(1) (continued)
Symbol

Parameter

SINAD

Signal-to-noise
and distortion
ratio

ENOB

Effective
number of bits

Conditions

Min

Typ

Max

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz

-

70.4

-

DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz

-

71

-

DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz

-

11.4

-

DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz

-

Unit

dB

bits
11.5

-

1. Guaranteed by design.
2. Difference between two consecutive codes - 1 LSB.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.

DS11451 Rev 4

131/156
148

Electrical characteristics

6.3.20

STM32L432KB STM32L432KC

Comparator characteristics
Table 71. COMP characteristics(1)

Symbol

Conditions

Min

Typ

Max

Analog supply voltage

-

1.62

-

3.6

Comparator input voltage
range

-

0

-

VDDA

V

VBG(2)

Scaler input voltage

-

VSC

Scaler offset voltage

-

VDDA
VIN

IDDA(SCALER)

Parameter

VREFINT
-

±5

±10

mV

BRG_EN=0 (bridge disable)

-

200

300

nA

BRG_EN=1 (bridge enable)

-

0.8

1

µA

-

100

200

µs

VDDA ≥ 2.7 V

-

-

5

VDDA < 2.7 V
Comparator startup time to
VDDA ≥ 2.7 V
reach propagation delay
Medium mode
specification
VDDA < 2.7 V

-

-

7

-

-

15

-

-

25

-

-

40

VDDA ≥ 2.7 V

-

55

80

VDDA < 2.7 V

-

65

100

Medium mode

-

0.55

0.9

Ultra-low-power mode

-

4

7

-

±5

±20

No hysteresis

-

0

-

Low hysteresis

-

8

-

Medium hysteresis

-

15

-

High hysteresis

-

27

-

Scaler static consumption
from VDDA

tSTART_SCALER Scaler startup time

High-speed
mode

tSTART

Ultra-low-power mode

tD

(3)

Voffset

Vhys

132/156

Unit

Propagation delay with
100 mV overdrive

Comparator offset error

Comparator hysteresis

High-speed
mode

Full common
mode range

DS11451 Rev 4

-

µs

ns

µs
mV

mV

STM32L432KB STM32L432KC

Electrical characteristics

Table 71. COMP characteristics(1) (continued)
Symbol

Parameter

Conditions

Min

Typ

Max

Static

-

400

600

With 50 kHz
±100 mV overdrive
square signal

-

1200

-

Static

-

5

7

-

6

-

Static

-

70

100

With 50 kHz
±100 mV overdrive
square signal

-

75

-

-

-

-(4)

nA

Ultra-lowpower mode

IDDA(COMP)

Comparator consumption
from VDDA

Medium mode With 50 kHz
±100 mV overdrive
square signal
High-speed
mode

Comparator input bias
current

Ibias

-

Unit

nA

µA

1. Guaranteed by design, unless otherwise specified.
2. Refer to Table 24: Embedded internal voltage reference.
3. Guaranteed by characterization results.
4. Mostly I/O leakage when used in analog mode. Refer to Ilkg parameter in Table 57: I/O static characteristics.

6.3.21

Operational amplifiers characteristics
Table 72. OPAMP characteristics(1)

Symbol

Parameter

Conditions

Min

Typ

Max

Unit

VDDA

Analog supply
voltage(2)

-

1.8

-

3.6

V

CMIR

Common mode
input range

-

0

-

VDDA

V

25 °C, No Load on output.

-

-

±1.5

All voltage/Temp.

-

-

±3

Normal mode

-

±5

-

Low-power mode

-

±10

-

-

0.8

1.1

VIOFFSET

Input offset
voltage

∆VIOFFSET

Input offset
voltage drift

Offset trim step
TRIMOFFSETP at low common
TRIMLPOFFSETP input voltage
(0.1 ₓ VDDA)

-

Offset trim step
TRIMOFFSETN at high common
TRIMLPOFFSETN input voltage
(0.9 ₓ VDDA)

-

mV

μV/°C

mV

DS11451 Rev 4

-

1

1.35

133/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 72. OPAMP characteristics(1) (continued)

Symbol
ILOAD

Parameter
Drive current

ILOAD_PGA

Drive current in
PGA mode

RLOAD

Resistive load
(connected to
VSSA or to
VDDA)

RLOAD_PGA

Resistive load
in PGA mode
(connected to
VSSA or to
VDDA)

CLOAD

Capacitive load

CMRR

Common mode
rejection ratio

PSRR

Power supply
rejection ratio

Conditions
Normal mode
Low-power mode
Normal mode
Low-power mode

Low-power mode

AO

Open loop gain

VOHSAT(3)

High saturation
voltage

VOLSAT(3)

Low saturation
voltage

φm

Phase margin

134/156

Max

-

-

500

-

-

100

-

-

450

-

-

50

4

-

-

20

-

-

Unit

µA

kΩ
Normal mode

4.5

-

-

40

-

-

-

-

50

Normal mode

-

-85

-

Low-power mode

-

-90

-

85

-

VDDA < 2 V
Low-power mode
-

Normal mode

CLOAD ≤ 50 pf,
RLOAD ≥ 4 kΩ DC

70

Low-power mode

CLOAD ≤ 50 pf,
RLOAD ≥ 20 kΩ DC

72

90

-

550

1600

2200

100

420

600

250

700

950

40

180

280

-

700

-

-

180

-

-

300

-

-

80

-

Normal mode

55

110

-

Low-power mode

45

110

-

-

-

-

-

-

-

100

-

-

50

Normal mode

-

74

-

Low-power mode

-

66

-

Low-power mode

SR(3)

Typ

VDDA < 2 V

Gain Bandwidth Low-power mode
Product
Normal mode

Slew rate
(from 10 and
90% of output
voltage)

VDDA ≥ 2 V

Normal mode

Normal mode
GBW

VDDA ≥ 2 V

Min

Normal mode
Low-power mode
Normal mode
Low-power mode

Normal mode
Low-power mode
Normal mode
Low-power mode

VDDA ≥ 2.4 V
(OPA_RANGE = 1)
VDDA < 2.4 V
(OPA_RANGE = 0)
VDDA ≥ 2.4 V
VDDA < 2.4 V

DS11451 Rev 4

dB

dB

VDDA 100
Iload = max or Rload =
min Input at VDDA.
VDDA 50
Iload = max or Rload =
min Input at 0.

pF

kHz

V/ms

dB

mV

°

STM32L432KB STM32L432KC

Electrical characteristics

Table 72. OPAMP characteristics(1) (continued)
Symbol
GM

tWAKEUP

Ibias

PGA gain(3)

Rnetwork

Parameter
Gain margin

Conditions

Min

Typ

Max

Normal mode

-

13

-

Low-power mode

-

20

-

Normal mode

CLOAD ≤ 50 pf,
RLOAD ≥ 4 kΩ
follower
configuration

-

5

10

Low-power mode

CLOAD ≤ 50 pf,
RLOAD ≥ 20 kΩ
follower
configuration

-

10

30

-

-

-(4)

-

2

-

-

4

-

-

8

-

-

16

-

PGA Gain = 2

-

80/80

-

PGA Gain = 4

-

120/
40

-

PGA Gain = 8

-

140/
20

-

PGA Gain = 16

-

150/
10

-

Wake up time
from OFF state.

OPAMP input
bias current

General purpose input

Non inverting
gain value

R2/R1 internal
resistance
values in PGA
mode(5)

-

Unit
dB

µs

nA

-

kΩ/kΩ

Delta R

Resistance
variation (R1 or
R2)

-

-15

-

15

%

PGA gain error

PGA gain error

-

-1

-

1

%

PGA BW

Gain = 2

-

-

GBW/
2

-

PGA bandwidth Gain = 4
for different non
inverting gain
Gain = 8

-

-

GBW/
4

-

-

-

GBW/
8

-

-

-

GBW/
16

-

Gain = 16

DS11451 Rev 4

MHz

135/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 72. OPAMP characteristics(1) (continued)

Symbol

Parameter

Conditions

Voltage noise
density

en

IDDA(OPAMP)(3)

Typ

Max

Normal mode

at 1 kHz, Output
loaded with 4 kΩ

-

500

-

Low-power mode

at 1 kHz, Output
loaded with 20 kΩ

-

600

-

Normal mode

at 10 kHz, Output
loaded with 4 kΩ

-

180

-

Low-power mode

at 10 kHz, Output
loaded with 20 kΩ

-

290

-

-

120

260

-

45

100

Normal mode

OPAMP
consumption
from VDDA

Min

Low-power mode

no Load, quiescent
mode

Unit

nV/√Hz

µA

1. Guaranteed by design, unless otherwise specified.
2. The temperature range is limited to 0 °C-125 °C when VDDA is below 2 V
3. Guaranteed by characterization results.
4. Mostly I/O leakage, when used in analog mode. Refer to Ilkg parameter in Table 57: I/O static characteristics.
5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between
OPAMP inverting input and ground. The PGA gain =1+R2/R1

6.3.22

Temperature sensor characteristics
Table 73. TS characteristics

Symbol

Parameter

TL(1)

VTS linearity with temperature
(2)

Avg_Slope
V30

Average slope
Voltage at 30°C (±5

°C)(3)

Min

Typ

Max

Unit

-

±1

±2

°C

2.3

2.5

2.7

mV/°C

0.742

0.76

0.785

V

tSTART
(TS_BUF)(1)

Sensor Buffer Start-up time in continuous mode(4)

-

8

15

µs

tSTART(1)

Start-up time when entering in continuous mode(4)

-

70

120

µs

tS_temp(1)

ADC sampling time when reading the temperature

5

-

-

µs

IDD(TS)(1)

Temperature sensor consumption from VDD, when
selected by ADC

-

4.7

7

µA

1. Guaranteed by design.
2. Guaranteed by characterization results.
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 7:
Temperature sensor calibration values.
4.

Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

6.3.23

Timer characteristics
The parameters given in the following tables are guaranteed by design.

136/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 74. TIMx(1) characteristics
Symbol
tres(TIM)

Parameter
Timer resolution time

Conditions

Min

Max

Unit

-

1

-

tTIMxCLK

fTIMxCLK = 80 MHz

12.5

-

ns

0

fTIMxCLK/2

MHz

0

40

MHz

TIMx (except
TIM2)

-

16

TIM2

-

32

-

1

65536

tTIMxCLK

fTIMxCLK = 80 MHz

0.0125

819.2

µs

-

-

65536 × 65536

tTIMxCLK

fTIMxCLK = 80 MHz

-

53.68

s

Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 80 MHz

fEXT

ResTIM

tCOUNTER
tMAX_COUNT

Timer resolution

16-bit counter clock
period
Maximum possible count
with 32-bit counter

bit

1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 75. IWDG min/max timeout period at 32 kHz (LSI)(1)
Prescaler divider

PR[2:0] bits

Min timeout RL[11:0]=
0x000

Max timeout RL[11:0]=
0xFFF

/4

0

0.125

512

/8

1

0.250

1024

/16

2

0.500

2048

/32

3

1.0

4096

/64

4

2.0

8192

/128

5

4.0

16384

/256

6 or 7

8.0

32768

Unit

ms

1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there
is always a full RC period of uncertainty.

Table 76. WWDG min/max timeout value at 80 MHz (PCLK)
Prescaler

WDGTB

Min timeout value

Max timeout value

1

0

0.0512

3.2768

2

1

0.1024

6.5536

4

2

0.2048

13.1072

8

3

0.4096

26.2144

DS11451 Rev 4

Unit

ms

137/156
148

Electrical characteristics

6.3.24

STM32L432KB STM32L432KC

Communication interfaces characteristics
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•

Standard-mode (Sm): with a bit rate up to 100 kbit/s

•

Fast-mode (Fm): with a bit rate up to 400 kbit/s

•

Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0394 reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FT_f I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 77. I2C analog filter characteristics(1)
Symbol

Parameter

Min

Max

Unit

tAF

Maximum pulse width of spikes
that are suppressed by the analog
filter

50(2)

260(3)

ns

1. Guaranteed by design.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered

138/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

SPI characteristics
Unless otherwise specified, the parameters given in Table 78 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 21: General operating conditions.
•

Output speed is set to OSPEEDRy[1:0] = 11

•

Capacitive load C = 30 pF

•

Measurement points are done at CMOS levels: 0.5 ₓ VDD

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 78. SPI characteristics(1)
Symbol

Parameter

fSCK
SPI clock frequency
1/tc(SCK)

Conditions

Min

Typ

Max

Master mode receiver/full duplex
2.7 < VDD < 3.6 V
Voltage Range 1

40

Master mode receiver/full duplex
1.71 < VDD < 3.6 V
Voltage Range 1

16

Master mode transmitter
1.71 < VDD < 3.6 V
Voltage Range 1

40

Slave mode receiver
1.71 < VDD < 3.6 V
Voltage Range 1

-

Unit

-

MHz
40

Slave mode transmitter/full duplex
2.7 < VDD < 3.6 V
Voltage Range 1

37(2)

Slave mode transmitter/full duplex
1.71 < VDD < 3.6 V
Voltage Range 1

20(2)

Voltage Range 2

13

tsu(NSS) NSS setup time

Slave mode, SPI prescaler = 2

4ₓTPCLK

-

-

ns

th(NSS)

Slave mode, SPI prescaler = 2

2ₓTPCLK

-

-

ns

Master mode

TPCLK-2

TPCLK

TPCLK+2

ns

Master mode

4

-

-

Slave mode

1.5

-

-

Master mode

6.5

-

-

Slave mode

1.5

-

-

NSS hold time

tw(SCKH)
SCK high and low time
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)

Data input setup time

Data input hold time

ns

ns

ta(SO)

Data output access time Slave mode

9

-

36

ns

tdis(SO)

Data output disable time Slave mode

9

-

16

ns

DS11451 Rev 4

139/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 78. SPI characteristics(1) (continued)

Symbol

tv(SO)

Parameter

Data output valid time

tv(MO)
th(SO)
th(MO)

Data output hold time

Conditions

Min

Typ

Max

Slave mode 2.7 < VDD < 3.6 V
Voltage Range 1

-

12.5

13.5

Slave mode 1.71 < VDD < 3.6 V
Voltage Range 1

-

12.5

24

Slave mode 1.71 < VDD < 3.6 V
Voltage Range 2

-

12.5

33

Master mode

-

4.5

6

Slave mode

7

-

-

Master mode

0

-

-

Unit

ns

ns

1. Guaranteed by characterization results.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50 %.

Figure 24. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
tsu(NSS)

th(NSS)

tw(SCKH)

tr(SCK)

SCK input

CPHA=0
CPOL=0
CPHA=0
CPOL=1
ta(SO)

tw(SCKL)

MISO output

tv(SO)

First bit OUT

th(SO)
Next bits OUT

tf(SCK)

tdis(SO)

Last bit OUT

th(SI)
tsu(SI)
MOSI input

First bit IN

Next bits IN

Last bit IN
MSv41658V1

140/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

Figure 25. SPI timing diagram - slave mode and CPHA = 1
NSS input

SCK input

tc(SCK)
tsu(NSS)

tw(SCKH)

ta(SO)

tw(SCKL)

tf(SCK)

th(NSS)

CPHA=1
CPOL=0
CPHA=1
CPOL=1

MISO output

tv(SO)

th(SO)

First bit OUT
tsu(SI)

MOSI input

Next bits OUT

tr(SCK)

tdis(SO)

Last bit OUT

th(SI)
First bit IN

Next bits IN

Last bit IN
MSv41659V1

1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.

Figure 26. SPI timing diagram - master mode
High
NSS input

SCK Output

CPHA= 0
CPOL=0

SCK Output

tc(SCK)

CPHA=1
CPOL=0

CPHA= 0
CPOL=1

CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT

tw(SCKH)
tw(SCKL)

MSB IN

tr(SCK)
tf(SCK)

BIT6 IN

LSB IN

th(MI)
MOSI
OUTPUT

MSB OUT
tv(MO)

B I T1 OUT

LSB OUT

th(MO)
ai14136c

1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.

DS11451 Rev 4

141/156
148

Electrical characteristics

STM32L432KB STM32L432KC

Quad SPI characteristics
Unless otherwise specified, the parameters given in Table 79 and Table 80 for Quad SPI
are derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 21: General operating conditions, with the
following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•

Capacitive load C = 15 or 20 pF

•
Measurement points are done at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 79. Quad SPI characteristics in SDR mode(1)
Symbol

FCK
1/t(CK)

tw(CKH)
tw(CKL)

Parameter

Quad SPI clock frequency

Quad SPI clock high and
low time

ts(IN)

Data input setup time

th(IN)

Data input hold time

tv(OUT)

Data output valid time

th(OUT)

Data output hold time

Conditions

Min

Typ

Max

1.71 < VDD< 3.6 V, CLOAD = 20 pF
Voltage Range 1

-

-

40

1.71 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1

-

-

48

2.7 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1

-

-

60

1.71 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2

-

-

26

t(CK)/2-2

-

t(CK)/2

t(CK)/2

-

t(CK)/2+2

Voltage Range 1

2

-

-

Voltage Range 2

3.5

-

-

Voltage Range 1

5

-

-

Voltage Range 2

6.5

-

-

Voltage Range 1

-

1

5

Voltage Range 2

-

3

5

Voltage Range 1

0

-

-

Voltage Range 2

0

-

-

fAHBCLK= 48 MHz, presc=0

1. Guaranteed by characterization results.

142/156

DS11451 Rev 4

Unit

MHz

ns

STM32L432KB STM32L432KC

Electrical characteristics

Table 80. QUADSPI characteristics in DDR mode(1)
Symbol

FCK
1/t(CK)

tw(CKH)
tw(CKL)

Parameter

Quad SPI clock
frequency

Quad SPI clock high
and low time

Conditions

Min

Typ

Max

1.71 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1

-

-

40

2 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1

-

-

48

1.71 < VDD < 3.6 V, CLOAD = 15 pF
Voltage Range 1

-

-

48

1.71 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2

-

-

26

t(CK)/2-2

-

t(CK)/2

t(CK)/2

-

t(CK)/2+2

-

-

-

-

-

-

-

-

5

5.5

9.5

14

5

8.5

15

19

fAHBCLK = 48 MHz, presc=0

Unit

MHz

tsr(IN)

Data input setup time
on rising edge

Voltage Range 1

1

Voltage Range 2

3.5

tsf(IN)

Data input setup time
on falling edge

Voltage Range 1

1

Voltage Range 2

1.5

thr(IN)

Data input hold time
on rising edge

Voltage Range 1

6

Voltage Range 2

6.5

thf(IN)

Data input hold time
on falling edge

Voltage Range 1

5.5

Voltage Range 2

5.5

tvr(OUT)

Data output valid time Voltage Range 1
on rising edge
Voltage Range 2

-

tvf(OUT)

Data output valid time Voltage Range 1
on falling edge
Voltage Range 2

-

thr(OUT)

Data output hold time Voltage Range 1
on rising edge
Voltage Range 2

3.5

-

8

-

thf(OUT)

Data output hold time Voltage Range 1
on falling edge
Voltage Range 2

3.5

-

13

-

ns

-

-

1. Guaranteed by characterization results.

DS11451 Rev 4

143/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Figure 27. Quad SPI timing diagram - SDR mode
tr(CK)

t(CK)

tw(CKH)

tw(CKL)

tf(CK)

Clock
tv(OUT)

th(OUT)

Data output

D1

D0
ts(IN)

Data input

D0

D2
th(IN)

D1

D2
MSv36878V1

Figure 28. Quad SPI timing diagram - DDR mode
tr(CK)

t(CK)

tw(CKH)

tw(CKL)

tf(CK)

Clock
tvf(OUT)
Data output

thr(OUT)
D0

tvr(OUT)
D1

D2

thf(OUT)
D3

tsf(IN) thf(IN)
Data input

D0

D1

D4

D5

tsr(IN) thr(IN)
D2

D3

D4

D5
MSv36879V1

144/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics

SAI characteristics
Unless otherwise specified, the parameters given in Table 81 for SAI are derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized inTable 21: General operating conditions, with
the following configuration:
•

Output speed is set to OSPEEDRy[1:0] = 10

•

Capacitive load C = 30 pF

•

Measurement points are done at CMOS levels: 0.5 ₓ VDD

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output
alternate function characteristics (CK,SD,FS).
Table 81. SAI characteristics(1)
Symbol

Parameter

Conditions

Min

Max

Unit

fMCLK

SAI Main clock output

-

-

50

MHz

Master transmitter
2.7 ≤ VDD ≤ 3.6
Voltage Range 1

-

18.5

Master transmitter
1.71 ≤ VDD ≤ 3.6
Voltage Range 1

-

12.5

Master receiver
Voltage Range 1

-

25

SAI clock frequency(2) Slave transmitter
2.7 ≤ VDD ≤ 3.6
Voltage Range 1

-

22.5

Slave transmitter
1.71 ≤ VDD ≤ 3.6
Voltage Range 1

-

14.5

Slave receiver
Voltage Range 1

-

25

Voltage Range 2

-

12.5

Master mode
2.7 ≤ VDD ≤ 3.6

-

22

Master mode
1.71 ≤ VDD ≤ 3.6

-

40

fCK

tv(FS)

FS valid time

MHz

ns

th(FS)

FS hold time

Master mode

10

-

ns

tsu(FS)

FS setup time

Slave mode

1

-

ns

th(FS)

FS hold time

Slave mode

2

-

ns

Master receiver

2

-

Slave receiver

1.5

-

Master receiver

5

-

Slave receiver

2.5

-

tsu(SD_A_MR)
tsu(SD_B_SR)
th(SD_A_MR)
th(SD_B_SR)

Data input setup time

Data input hold time

DS11451 Rev 4

ns

ns

145/156
148

Electrical characteristics

STM32L432KB STM32L432KC
Table 81. SAI characteristics(1) (continued)

Symbol

tv(SD_B_ST)

th(SD_B_ST)

tv(SD_A_MT)

th(SD_A_MT)

Parameter

Conditions

Data output valid time

Data output hold time

Data output valid time

Data output hold time

Min

Max

Slave transmitter (after enable edge)
2.7 ≤ VDD ≤ 3.6

-

22

Slave transmitter (after enable edge)
1.71 ≤ VDD ≤ 3.6

-

34

Slave transmitter (after enable edge)

10

-

Master transmitter (after enable edge)
2.7 ≤ VDD ≤ 3.6

-

27

Master transmitter (after enable edge)
1.71 ≤ VDD ≤ 3.6

-

40

Master transmitter (after enable edge)

10

-

Unit

ns

ns

ns

ns

1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.

Figure 29. SAI master timing waveforms
1/fSCK

SAI_SCK_X
th(FS)
SAI_FS_X
(output)

tv(FS)

th(SD_MT)

tv(SD_MT)

SAI_SD_X
(transmit)

Slot n
tsu(SD_MR)

SAI_SD_X
(receive)

Slot n+2
th(SD_MR)

Slot n
MS32771V1

146/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Electrical characteristics
Figure 30. SAI slave timing waveforms
1/fSCK

SAI_SCK_X
tw(CKH_X)
SAI_FS_X
(input)

tw(CKL_X)

th(FS)

tsu(FS)

th(SD_ST)

tv(SD_ST)

SAI_SD_X
(transmit)

Slot n

Slot n+2

tsu(SD_SR)
SAI_SD_X
(receive)

th(SD_SR)
Slot n
MS32772V1

USB characteristics
The STM32L432xx USB interface is fully compliant with the USB specification version 2.0
and is USB-IF certified (for Full-speed device operation).
Table 82. USB electrical characteristics(1)
Symbol

Min

Typ

Max

Unit

3.0(2)

-

3.6

V

USB crystal less operation temperature

-15

-

85

°C

RPUI

Embedded USB_DP pull-up value during idle

900

1250

1600

RPUR

Embedded USB_DP pull-up value during
reception

1400

2300

3200

28

36

44

VDDUSB
Tcrystal_less

ZDRV(3)

Parameter

Conditions

USB transceiver operating voltage

Driving high
and low

Output driver impedance(4)

Ω

Ω

1. TA = -40 to 125 °C unless otherwise specified.
2. The STM32L432xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics
which are degraded in the 2.7-to-3.0 V voltage range.
3. Guaranteed by design.
4. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.

CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).

DS11451 Rev 4

147/156
148

Electrical characteristics

STM32L432KB STM32L432KC

SWPMI characteristics
The Single Wire Protocol Master Interface (SWPMI) and the associated SWPMI_IO
transceiver are compliant with the ETSI TS 102 613 technical specification.
Table 83. SWPMI electrical characteristics
Symbol

148/156

Parameter

Conditions

tSWPSTART

SWPMI regulator startup time

tSWPBIT

SWP bit duration

Min

Typ

-

-

300

VCORE voltage range 1

500

-

-

VCORE voltage range 2

620

-

-

SWP Class B
2.7 V ≤ VDD ≤ 3,3V

DS11451 Rev 4

Max Unit
μs
ns

STM32L432KB STM32L432KC

7

Package information

Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.

7.1

UFQFPN32 package information
Figure 31. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
D
A

e

A1
A3

ddd C
C
SEATINGPLANE

D1
b

e

E2

b
E1 E

1
L
32
D2
PIN 1 Identifier

L
A0B8_ME_V3

1. Drawing is not to scale.
2. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this backside pad to PCB ground.

DS11451 Rev 4

149/156
152

Package information

STM32L432KB STM32L432KC

Table 84. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
inches(1)

millimeters
Symbol
Min

Typ

Max

Min

Typ

Max

A

0.500

0.550

0.600

0.0197

0.0217

0.0236

A1

-

-

0.050

-

-

0.0020

A3

-

0.152

-

-

0.0060

-

b

0.180

0.230

0.280

0.0071

0.0091

0.0110

D

4.900

5.000

5.100

0.1929

0.1969

0.2008

D1

3.400

3.500

3.600

0.1339

0.1378

0.1417

D2

3.400

3.500

3.600

0.1339

0.1378

0.1417

E

4.900

5.000

5.100

0.1929

0.1969

0.2008

E1

3.400

3.500

3.600

0.1339

0.1378

0.1417

E2

3.400

3.500

3.600

0.1339

0.1378

0.1417

e

-

0.500

-

-

0.0197

-

L

0.300

0.400

0.500

0.0118

0.0157

0.0197

ddd

-

-

0.080

-

-

0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 32. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint
5.30
3.80

25

32
1

0.60
24

3.45
3.80

5.30

3.45
0.50
0.30

8

17
16

9

3.80

0.75

A0B8_FP_V2

1. Dimensions are expressed in millimeters.

Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
150/156

DS11451 Rev 4

STM32L432KB STM32L432KC

Package information

Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 33. UFQFPN32 marking (package top view)

Product identification(1)

L432KC6

Y

WW
A

Date code

Revision code

Pin 1 identifier
MSv40151V1

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

DS11451 Rev 4

151/156
152

Package information

7.2

STM32L432KB STM32L432KC

Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 21: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•

TA max is the maximum ambient temperature in °C,

•

ΘJA is the package junction-to-ambient thermal resistance, in °C/W,

•

PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),

•

PINT max is the product of all IDDXXX and VDDXXX, expressed in Watts. This is the
maximum chip internal power.

PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ ((VDDIOx – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 85. Package thermal characteristics
Symbol

ΘJA

7.2.1

Parameter
Thermal resistance junction-ambient
UFQFPN32 - 5 × 5 mm / 0.5 mm pitch

Value

Unit

39

°C/W

Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org

152/156

DS11451 Rev 4

STM32L432KB STM32L432KC

8

Ordering information

Ordering information
Table 86. STM32L432xx ordering information scheme
Example:

STM32

L

432

K

C

T

6

TR

Device family
STM32 = Arm® based 32-bit microcontroller
Product type
L = ultra-low-power
Device subfamily
432: STM32L432xx
Pin count
K = 32 pins
Flash memory size
B = 128 kB of Flash memory
C = 256 KB of Flash memory
Package
U = QFN ECOPACK®2
Temperature range
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)
7 = Industrial temperature range, -40 to 105 °C (125 °C junction)
3 = Industrial temperature range, -40 to 125 °C (130 °C junction)
Packing
TR = tape and reel
xxx = programmed parts

For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.

DS11451 Rev 4

153/156
155

Revision history

9

STM32L432KB STM32L432KC

Revision history
Table 87. Document revision history
Date

Revision

08-Feb-2016

1

Initial release.

2

Updated document title.
Updated Table 1: STM32L432Kx family device features
and peripheral counts.
Updated Section 3.24: Universal
synchronous/asynchronous receiver transmitter
(USART).
Updated Table 14: STM32L432xx pin definitions.
Updated Table 16: Alternate function AF8 to AF15.
Updated Table 18: Voltage characteristics.
Updated Table 21: General operating conditions.
Added Figure 11: VREFINT versus temperature.
Updated Table 23: Embedded reset and power control
block characteristics.
Updated Table 25 to Table 27 and Table 31 to Table 39.
Updated Table 39: Low-power mode wakeup timings.
Added Table 41: Wakeup time using USART/LPUART.
Updated Table 46: MSI oscillator characteristics.
Added Table 47: HSI48 oscillator characteristics.
Added Figure 17: HSI48 frequency versus temperature.
Updated Table 49: PLL, PLLSAI1 characteristics.
Updated Table 52: EMS characteristics.
Updated Table 53: EMI characteristics.
Updated introduction of Section 6.3.14: I/O port
characteristics.
Added note to Figure 20: Recommended NRST pin
protection.
Updated Table 62: Analog switches booster
characteristics.
Updated Table 63: ADC characteristics.
Updated Table 71: COMP characteristics.
Updated Table 82: USB electrical characteristics.
Added Section : SWPMI characteristics.
Updated Table 85: Package thermal characteristics.

3

Added 1x LPUART on cover page.
Replaced all references to RM0393 by RM0394
(Reference Manual).
Added Table 3: STM32L432xx modes overview.
Updated baudrate in Section 3.24: Universal
synchronous/asynchronous receiver transmitter
(USART).

31-May-2016

12-Jun-2017

154/156

Changes

DS11451 Rev 4

STM32L432KB STM32L432KC

Revision history
Table 87. Document revision history (continued)

Date

12-Jun-2017

21-May-2018

Revision

3
(continued)

4

Changes
Updated Section 6.1.7: Current consumption
measurement.
Added footnote to Table 56: I/O current injection
susceptibility.
Updated Table 57: I/O static characteristics.
Updated Section 6.3.18: Analog-to-Digital converter
characteristics.
Added FADC min in Table 63: ADC characteristics.
Updated Table 69: DAC characteristics.
Added Ibias parameter in Table 71: COMP
characteristics.
Updated Section 7.2: Thermal characteristics.
Updated DAC terminology in all the document for
clarification: single DAC instance (= DAC1) with 2 output
channels.
Added ECOPACK2® information in Features.
Updated Section 3.9.1: Power supply schemes.
Added Figure 3: Power-up/down sequence.
Updated Clock-out capability in Section 3.11: Clocks
and startup.
Updated Figure 4: Clock tree.
Updated Section 3.14.1: Nested vectored interrupt
controller (NVIC).
Updated Section 6.3.2: Operating conditions at powerup / power-down.
Updated ACoeff in Table 24: Embedded internal voltage
reference.
Added Section 6.3.16: Extended interrupt and event
controller input (EXTI) characteristics.
Updated Table 57: I/O static characteristics.

DS11451 Rev 4

155/156
155

STM32L432KB STM32L432KC

IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved

156/156

DS11451 Rev 4

Mouser Electronics
Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:
STM32L432KCU6 STM32L432KBU6 STM32L432KBU6TR STM32L432KCU3



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : No
Page Count                      : 157
Page Layout                     : SinglePage
Page Mode                       : UseNone
Producer                        : iTextSharp 5.1.0 (c) 1T3XT BVBA
Create Date                     : 2018:07:03 08:19:02-05:00
Modify Date                     : 2018:05:25 11:00:23+02:00
Creator                         : C2 v4.2.0220 build 670 - c2_rendition_config : Techlit_Active
Revision                        : 4
Title                           : Datasheet - STM32L432KB STM32L432KC - Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS, up to 256KB Flash, 64KB SRAM, USB FS, analog, audio
Alternate Name                  : DS11451
Classification                  : Unclassified
Doc ID                          : DS11451
Subject                         : The STM32L432xx devices are the ultra-low-power microcontrollers based on the high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all Arm® single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.
Document Type                   : Datasheet
Author                          : STMICROELECTRONICS
EXIF Metadata provided by EXIF.tools

Navigation menu