Futaba T10CG-24G Radio Control(Transmitter) User Manual 10CG ENG 1M23N21005
Futaba Corporation Radio Control(Transmitter) 10CG ENG 1M23N21005
Futaba >
User manual
10CAG/10CHG/10CG-2.4GHz 10-CHANNEL RADIO CONTROL SYSTEM INSTRUCTION MANUAL Technical updates and additional programming examples available at: http://www.futaba-rc.com/faq Entire Contents ŠCopyright 2009 1M23N21005 TABLE OF CONTENTS Curve, Prog. mixes 5-8 ............................................. 71 INTRODUCTION ........................................................... 3 Additional Technical Help, Support and Service ........ 3 GYA gyro mixing (GYRO SENSE) ............................... 73 $SSOLFDWLRQ([SRUWDQG0RGLÂżFDWLRQ ........................ 4 Other Equipment ....................................................... 74 Meaning of Special Markings ..................................... 5 Safety Precautions (do not operate without reading) .. 5 GLIDER (GLID(1A+1F)(2A+1F)(2A+2F)) FUNCTIONS . 75 Introduction to the 10CG ............................................ 7 Table of contents........................................................ 75 &RQWHQWVDQG7HFKQLFDO6SHFLÂżFDWLRQV........................ 9 Getting Started with a Basic 4-CH Glider ................ 76 Accessories ............................................................... 10 Transmitter Controls & GLIDER-SPECIFIC BASIC MENU FUNCTIONS ........ 78 6ZLWFK,GHQWLÂżFDWLRQ$VVLJQPHQWV ............................. 11 Model type (PARAMETER submenu) ........................... 78 Charging the Ni-Cd Batteries ................................... 15 MOTOR CUT ................................................................ 79 Stick Adjustments ..................................................... 16 GLIDER-SPECIFIC ADVANCE MENU FUNCTIONS ..... 80 Adjusting display contrast ........................................ 16 Changing mode.......................................................... 17 AILE/RUDD .................................................................. 81 Power Down mode .................................................... 17 AILE-FLAP (GLID(2A+2F) only) .................................... 82 CAMPacLQLWLDOL]LQJDQGGDWDFRQYHUVLRQ &&6WR&* .... 17 SPOILER MIX ............................................................... 83 Radio Installation & Range Checking ...................... 18 OFFSETs $GGLWLRQDOĂLJKWFRQGLWLRQV ...................... 84 Transmitter Displays and Buttons ............................. 23 START DELAY (GLID(1A+1F) only) ................................. 85 Warning and Error Displays ..................................... 24 CAMBER MIX ............................................................... 85 CAMBER FLAP .............................................................. 86 BUTTERFLY ................................................................... 87 AIRPLANE (ACRO) FUNCTIONS ................................ 25 Channel 3âs function selection (CONDITION/FUNCTION) 88 Map of Functions ........................................................ 26 Quick Guide to Setting up a 4-channel Airplane ...... 27 HELICOPTER FUNCTIONS.......................................... 89 ACRO BASIC MENU FUNCTIONS ................................ 30 Table of contents and reference info for helicopters . 89 MODEL Submenu: MODEL SELECT, COPY, NAME .......... 30 Getting Started with a Basic Helicopter ................... 90 PARAMETER Submenu: RESET, TYPE, MODUL, ATL, AILE-2, THRREV, CONTRAST, BACK-LIGHT, HOME-DISP, USER NAME ........ LOGIC SW ..................................................................... Servo REVERSE ........................................................... END POINT .................................................................. Idle Management: IDLE DOWN and THR-CUT .............. 'XDO7ULSOH5DWHVDQG([SRQHQWLDO D/R, EXP) .......... TIMER Submenu.......................................................... Auxiliary Channel assignments and CH9 reverse (AUX-CH) . TRAINER ..................................................................... TRIM and SUB-TRIM ................................................... SERVO Display ........................................................... Fail Safe and Battery FailSafe (F/S) ......................... 33 38 38 39 40 42 45 46 47 48 49 50 ACRO ADVANCE MENU FUNCTIONS ........................... Wing types ................................................................ FLAPERON ................................................................... FLAP TRIM .................................................................. Aileron Differential (AILE-DIFF) ................................. Using Twin Aileron Servos: AILE-2 ........................... ELEVON (see tail types) ............................................... Tail types ................................................................... ELEVON ....................................................................... Twin Elevator Servos (AILEVATOR) ............................ V-TAIL ......................................................................... SNAP ROLL .................................................................. 0L[HVGHÂżQLWLRQVDQGW\SHV ..................................... ELEV-FLAP .................................................................... AIRBRAKEBUTTERFLY (crow) ..................................... THROTTLE-NEEDLE ........................................................ THROTTLE DELAY ......................................................... THROTTLE CURVE ........................................................ Linear, Prog. mixes 1-4 ............................................. 51 51 52 53 54 55 56 56 56 57 58 59 61 62 63 65 66 67 68 HELI-SPECIFIC BASIC MENU FUNCTIONS ................ MODEL TYPE (PARAMETERS submenu) ........................ SWASH AFR (swashplate surface direction and travel correction) (not in H-1) .............................................. Setting up the Normal Flight Condition ................... THR-CUT VSHFLDOL]HGVHWWLQJVIRUKHOLFRSWHUVSHFLÂżF models) ..................................................................... 93 93 95 97 98 HELI-SPECIFIC ADVANCE MENU FUNCTIONS ........... 99 THROTTLE HOLD .......................................................... 99 THR-CURVE, PIT-CURVE and REVO ............................. 100 Idle-ups ................................................................... 101 7ULPVRIIVHW............................................................. 102 Delay ....................................................................... 103 Hovering setups ...................................................... 104 +LJKORZSLWFK ........................................................ 105 Gyros and governors ............................................... 106 THROTTLE MIX ............................................................ 96 SWASH RING .............................................................. 96 Glossary ........................................................................ 110 Note that in the text of this manual, beginning at this point, any time we are using a featureâs specialized name or abbreviation, as seen on the screen of the 10C, that name, feature, or abbreviation will be exactly as seen on the radioâs screen, including capitalization and shown in a DIFFERENT TYPE STYLE for clarity. Any time we mention a specific control on the radio itself, such as moving SWITCH A, KNOB VR(B), or the THROTTLE STICK, those words will be displayed as they are here. INTRODUCTION Thank you for purchasing a FutabaÂŽ FASST-2.4GHz* &* VHULHV GLJLWDO SURSRUWLRQDO 5& V\VWHP 7KLV V\VWHP LV extremely versatile and may be used by beginners and pros alike. In order for you to make the best use of your system DQGWRĂ\VDIHO\SOHDVHUHDGWKLVPDQXDOFDUHIXOO\,I\RXKDYHDQ\GLIÂżFXOWLHVZKLOHXVLQJ\RXUV\VWHPSOHDVHFRQVXOWWKH manual, our online Frequently Asked Questions (on the web pages referenced below), your hobby dealer, or the Futaba Service Center. *FASST: Futaba Advanced Spread Spectrum Technology Ownerâs Manual and Additional Technical Help This manual has been carefully written to be as helpful to you, the new owner, as possible. There are many pages of setup procedures and examples. However, it need not be your sole resource of setup guidelines for your 10CG. For example, pages 27-29 include setup instructions for a basic 4-channel airplane. The Frequently Asked Questions web page referenced below includes this type of step-by-step setup instructions for a variety of other model types, including multiengine, complex gear installation, 7-servo aerobatic models, 140 degree CCPM, etc. KWWSZZZIXWDEDUFFRPIDT Due to unforeseen changes in production procedures, the information contained in this manual is subject to change without notice. Support and Service: It is recommended to have your Futaba equipment serviced annually during your hobbyâs âoff seasonâ to ensure safe operation. IN NORTH AMERICA Please feel free to contact the Futaba Service Center for assistance in operation, use and programming. Please be sure to UHJXODUO\YLVLWWKH&*)UHTXHQWO\$VNHG4XHVWLRQVZHEVLWHDWZZZIXWDEDUFFRPIDT7KLVSDJHLQFOXGHVH[WHQVLYH programming, use, set up and safety information on the 10CG radio system and is updated regularly. Any technical XSGDWHVDQG86PDQXDOFRUUHFWLRQVZLOOEHDYDLODEOHRQWKLVZHESDJH,I\RXGRQRWÂżQGWKHDQVZHUVWR\RXUTXHVWLRQV there, please see the end of our F.A.Q. area for information on contacting us via email for the most rapid and convenient response. Donât have Internet access? Internet access is available at no charge at most public libraries, schools, and other public UHVRXUFHV:HÂżQGLQWHUQHWVXSSRUWWREHDIDEXORXVUHIHUHQFHIRUPDQ\PRGHOHUVDVLWHPVFDQEHSULQWHGDQGVDYHGIRU future reference, and can be accessed at any hour of the day, night, weekend or holiday. If you do not wish to access the internet for information, however, donât worry. Our support teams are available Monday through Friday 8-5 Central time to assist you. FOR SERVICE ONLY: Futaba Service Center 3002 N. Apollo Drive, Suite 1 Champaign, IL 61822 Phone: 217-398-0007 ZZZIXWDEDUFFRPVHUYLFHKWPO Email: service@futaba-rc.com FOR SUPPORT : (PROGRAMMING AND USER QUESTIONS) Please start here for answers to most questions: ZZZIXWDEDUFFRPIDT FACSIMILE: 217-398-7721 PHONE: 217-398-8970 option 2 OUTSIDE NORTH AMERICA Please contact your Futaba importer in your region of the world to assist you with any questions, problems or service needs. Please recognize that all information in this manual, and all support availability, is based upon the systems sold in North America only. Products purchased elsewhere may vary. Always contact your regionâs support center for assistance. $SSOLFDWLRQ([SRUWDQG0RGLÂżFDWLRQ 1. This product may be used for model airplane or surface (boat, car, robot) use. It is not intended for use in any application other than the control of models for hobby and recreational purposes. The product is subject to regulations of the Ministry RI5DGLR7HOHFRPPXQLFDWLRQVDQGLVUHVWULFWHGXQGHU-DSDQHVHODZWRVXFKSXUSRVHV 2. Exportation precautions: (a) When this product is exported from the country of manufacture, its use is to be approved by the laws governing the country of destination which govern devices that emit radio frequencies. If this product is then re-exported to other countries, it may be subject to restrictions on such export. Prior approval of the appropriate government authorities may be required. If you have purchased this product from an exporter outside your country, and not the authorized Futaba distributor in your country, please contact the seller immediately to determine if such export regulations have been met. (b) Use of this product with other than models may be restricted by Export and Trade Control Regulations, and an application for export approval must be submitted. This equipment must not be utilized to operate equipment other than radio controlled models. 0RGLÂżFDWLRQDGMXVWPHQWDQGUHSODFHPHQWRISDUWV)XWDEDLVQRWUHVSRQVLEOHIRUXQDXWKRUL]HGPRGLÂżFDWLRQDGMXVWPHQW and replacement of parts on this product. Any such changes may void the warranty. Compliance Information Statement (for U.S.A.) 7KLVGHYLFHWUDGHQDPH)XWDED&RUSRUDWLRQRI$PHULFDPRGHOQXPEHU5+65+6FRPSOLHVZLWKSDUWRIWKH FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesiredoperation. The responsible party of this device compliance is: Futaba Service Center 3002 N Apollo Drive Suite 1, Champaign, IL 61822 U.S.A. TEL (217)398-8970 or E-mail: support@futaba-rc.com (Support) TEL (217)398-0007 or E-mail: service@futaba-rc.com (Service) The RBRC. SEAL on the nickel-cadmium battery contained in Futaba products indicates that Futaba Corporation of America is voluntarily participating in an industry-wide program to collect and recycle these batteries at the end of their useful lives, when taken out of service within the United States. The RBRC. program provides a convenient alternative to placing used nickel-cadmium batteries into the trash or municipal waste system, which is illegal in some areas. (for USA) You may contact your local recycling center for information on where to return the spent battery. Please call 1-800-8BATTERY for information on Ni-Cd battery recycling in your area. Futaba Corporation of Americaâs involvement in this program is part of its commitment to protecting our environment and conserving natural resources. *RBRC is a trademark of the Rechargeable Battery Recycling Corporation. Meaning of Special Markings Pay special attention to safety where indicated by the following marks: DANGER3URFHGXUHVZKLFKPD\OHDGWRGDQJHURXVFRQGLWLRQVDQGFDXVHGHDWKVHULRXVLQMXU\LIQRWFDUULHGRXW properly. WARNING - Procedures which may lead to a dangerous condition or cause death or serious injury to the user if QRWFDUULHGRXWSURSHUO\RUSURFHGXUHVZKHUHWKHSUREDELOLW\RIVXSHUÂżFLDOLQMXU\RUSK\VLFDOGDPDJHLVKLJK CAUTION - Procedures where the possibility of serious injury to the user is small, but there is a danger of injury, or physical damage, if not carried out properly. = Prohibited = Mandatory Warning: Always keep electrical components away from small children. FLYING SAFETY WARNING To ensure the safety of yourself and others, please observe the following precautions: Have regular maintenance performed. Although your 10CG protects the model memories with non-volatile EEPROM memory (which does not require periodic replacement) and not a battery, it still should have regular checkups for wear and tear. We recommend sending your system to the Futaba Service Center annually during \RXUQRQĂ\LQJVHDVRQIRUDFRPSOHWHFKHFNXSDQGVHUYLFH Ni-Cd Battery Charge the batteries! (See Charging the Ni-Cd batteries, p. 15, for details.) Always recharge the transmitter and UHFHLYHUEDWWHULHVIRUDWOHDVWKRXUVEHIRUHHDFKĂ\LQJVHVVLRQ$ORZEDWWHU\ZLOOVRRQGLHFDXVLQJORVVRIFRQWURO DQG D FUDVK :KHQ \RX EHJLQ \RXU Ă\LQJ VHVVLRQ UHVHW \RXU &*ÂśV EXLOWLQ WLPHU DQG GXULQJ WKH VHVVLRQ SD\ attention to the duration of usage. Stop flying long before your batteries become low on charge. Do not rely on your radioâs low battery warning systems, intended only as a precaution, to tell you when to recharge. Always check your transmitter DQGUHFHLYHUEDWWHULHVSULRUWRHDFKĂLJKW Where to Fly :HUHFRPPHQGWKDW\RXĂ\DWDUHFRJQL]HGPRGHODLUSODQHĂ\LQJÂżHOGShows the cumulated ON time. (hours:minutes) Up/down timer display (minutes:seconds) Model timer display Shows the cumulated ON time for each model.(hours:minutes) Resetting timers: Select the desired timer with CURSOR lever. The timer display flashes. To reset the timer, press Dial for one second. PUSH MODE key END key Rudder trim display Aileron trim display Dial Battery voltage MODE BUTTON: (key) Press and hold MODE BUTTON N for one second to open programming menus. Press MODE BUTTON N to switch between BASIC and ADVANCE menus. HELI only: Press MODE BUTTON N to scroll between conditions in certain functions. END BUTTON: (key) Press END BUTTON to return to previous screen. Closes functions back to menus, closes menus to start-up screen. CURSOR LEVER: Control CURSOR LEVER WR VFUROO XSVFUROO GRZQVFUROO OHIWVFUROO ULJKW DQG VHOHFW WKH RSWLRQ WR HGLW ZLWKLQ D function. Press CURSOR LEVERWRSDJHXSSDJHGRZQZLWKLQBASIC or ADVANCE menu or a function. Turn DIAL: Turn DIAL clockwise or counterclockwise to scroll through choices within an option of a function (for example, to VHOHFWZKLFKVZLWFKFRQWUROVGXDOWULSOHUDWHV Press DIAL: Press DIAL to select the actual function you wish to edit from the menu. Press DIAL DQGKROGRQHVHFRQGWRFRQÂżUPPDMRUGHFLVLRQVVXFKDVWKHGHFLVLRQWRVHOHFWDGLIIHUHQWPRGHOIURP memory, copy one model memory over another, trim reset, store channel position in FailSafe, change model type, reset entire model. System will ask if you are sure. Press DIAL again to accept change. 23 WARNING & ERROR DISPLAYS An alarm or error indication may appear on the display of your transmitter for several reasons, including when the transmitter power switch is turned on, when the battery voltage is low, and several others. Each display has a unique sound associated with it, as described below. MODEL SELECTION ERROR: Warning sound: 5 beeps (repeated 3 times) The MODEL SELECTION warning is displayed when the transmitter attempts to load a model memory from a memory module (optional CAMPac) that is not currently plugged into the transmitter. When this occurs, model No. 01 is automatically loaded. 'R QRW Ă\ XQWLO WKH SURSHU PRGHO LV ORDGHG LQWR PHPRU\ Reinsert the memory module, and recall the desired setup using the model select function. LOW BATTERY ERROR: Warning sound: Continuous beep until transmitter is powered off. The LOW BATTERY warning is displayed when the transmitter battery voltage drops below 8.5V. Land your model as soon as possible before loss of control due to a dead battery. MIXER ALERT WARNING: Warning sound: 5 Beeps (repeated until problem resolved or overridden) The MIXER ALERT warning is displayed to alert you whenever you turn on the transmitter with any of the mixing switches active. This warning will disappear when the offending switch or control is deactivated. Switches for which warnings will be issued at power-up are listed below: ACRO:Throttle cut, idle-down, snap roll, airbrake GLID%XWWHUĂ\FRQGLWLRQVHELI:Throttle cut, throttle hold, idle-up If turning a switch OFF does not stop the mixing warning: When the warning does not stop even when the mixing switch indicated by the warning display on the screen is turned off, the functions described previously probably use the same switch and the OFF direction setting is reversed. In short, one of the mixings described above is not in the OFF state. In this case, reset the warning display by pressing CURSOR LEVER. Then change one of the switch settings of the mixings duplicated at one switch. BACKUP ERROR: Warning sound: 4 beeps (repeated continuously) The BACKUP ERROR warning occurs when the transmitter memory is lost for any reason. If this occurs, all of the data will be reset when the power is turned on again. [Note] At this warning display, the transmitter transmits in 2.4G-10CH mode even if the set-up mode is 2.4G-7CH mode. Do not fly when this message is displayed: all programming has been erased and is not available. Return your transmitter to Futaba for service. MEMORY MODULE INITIALIZE DISPLAY This warning appears when an (optional) CAMPacPHPRU\PRGXOHLVXVHGLQWKHWUDQVPLWWHUIRUWKHÂżUVWWLPH:KHQWKH MODE BUTTON is pressed, initialization of the module begins, after which the memory module can be used. Once the module is initialized, the display will not appear again. The 10C CANNOT convert data from other radio types (i.e. 8U, 9Z). Installation of a CAMPac with data from another radio type will result in reinitialization of the CAMPac and loss of all data. RF ERROR: Warning sound: A single long beep. ĂDVKLQJ The single beep lets you know that the RF output has stopped for any reason. The blue RF light also goes out. Return your transmitter to Futaba for service. 24 AIRCRAFT (ACRO) MENU FUNCTIONS Please note that all BASIC menu functions are the same for airplanes (ACRO), sailplanes (GLID), and helicopters (HELI). The glider BASIC menu includes MOTOR CUT that is discussed in the Glider section and does not include IDLE-DOWN or THRCUT; the helicopter BASICPHQXLQFOXGHVDGGLWLRQDOIHDWXUHV VZDVKSODWHDGMXVWPHQWDQGWKURWWOHSLWFKFXUYHVDQGUHYRIRU 1RUPDOĂLJKWPRGH WKDWDUHGLVFXVVHGLQWKH+HOLFRSWHUVHFWLRQ ACRO ADVANCE MENU FUNCTIONS ........................... Wing types ................................................................ FLAPERON ................................................................... FLAP TRIM .................................................................. Aileron Differential (AILE-DIFF) ................................. Using a 5-channel receiver: AILE-2 ............................ ELEVON (see tail types) ............................................... Tail types ................................................................... ELEVON ....................................................................... Twin Elevator Servos (AILEVATOR) ............................ V-TAIL ......................................................................... SNAP ROLL .................................................................. 0L[HVGHÂżQLWLRQVDQGW\SHV ..................................... ELEV-FLAP .................................................................... AIRBRAKEBUTTERFLY (crow) ..................................... THROTTLE-NEEDLE ........................................................ THROTTLE DELAY ......................................................... THROTTLE CURVE ........................................................ Linear, Prog. mixes 1-4 ............................................. Curve, Prog. mixes 5-8 ............................................. GYA gyro mixing (GYRO SENSE) ............................... AIRPLANE (ACRO) FUNCTIONS ................................ 25 Map of Functions ........................................................ 26 Quick Guide to Setting up a 4-channel Airplane ...... 27 ACRO BASIC MENU FUNCTIONS ................................ 30 MODEL Submenu: MODEL SELECT, COPY, NAME .......... 30 PARAMETER Submenu: RESET, TYPE, MODUL, ATL, AILE-2, CONTRAST, BACK-LIGHT, HOME-DISP, USER NAME, LOGIC SW ............................................................................. 33 Servo REVERSE ........................................................... 38 END POINT .................................................................. 39 Idle Management: IDLE DOWN and THR-CUT .............. 40 'XDO7ULSOH5DWHVDQG([SRQHQWLDO D/R, EXP) .......... 42 TIMER Submenu.......................................................... 45 Auxiliary Channel assignments and CH9 reverse (AUXCH) ............................................................................. 46 TRAINER ..................................................................... 47 TRIM and SUB-TRIM ................................................... 48 SERVO Display ........................................................... 49 Fail Safe and Battery FailSafe (F/S) ......................... 50 25 51 51 52 53 54 55 56 56 56 57 58 59 61 62 63 65 66 67 68 71 73 MAP OF ACRO BASIC FUNCTIONS (Startup screen) To enter the Basic Menu, press the Mode key for one second. To return to the Startup screen, press the End key. ( for one second) ACRO Basic Menu (Basic Menu 1/2) (Basic Menu 2/2) Press Mode key to toggle back and forth between BASIC and ADVANCE menus. Press Cursor lever to page up and down through the 2 pages of screens in each menu. Note that all functions which have more than one page have a <1/2> indicator in the upper right hand corner to indicate page 1 of 2 or page 2 of 2. Use Cursor lever to highlight function in Menu screen. Then press the Dial to choose that function. Mode Select Switch Up Stick Up End Selection Switch at Center Stick Right Cursor Lever (Down/Up/Left/Right) Switch Down Stick Down Press Cursor Lever Turn Knob Right Stick Left Dial Left Turn Knob Left Dial Right Dial Right or Left Press Dial 26 A QUICK GUIDE: GETTING STARTED WITH A BASIC 4-CHANNEL AIRCRAFT This guide is intended to help you get acquainted with the radio, to give you a jump start on using your new radio, and to give you some ideas and direction in how to do even more than you may have already considered. It follows our basic format of all programming pages: a big picture overview of what we accomplish; a âby nameâ description of what we're doing to help acquaint you with the radio; then a step-by-step instruction to leave out the mystery when setting up your model. For additional details on each function, see that function's section in this manual. The page numbers are indicated in the goals column as a convenience to you. See p.26 for a legend of symbols used. GOALS of EXAMPLE Prepare your aircraft. STEPS INPUTS for EXAMPLE Install all servos, switches, receivers per your model's instructions. Turn on transmitter then receiver; adjust all linkages so surfaces are nearly centered. Mechanically adjust all linkages as close as possible to proper control throws. Check servo direction. Make notes now of what you will need to change during programming. Name the model. P. 32. Open the BASIC menu, then open the Turn on the transmitter. MODEL submenu. for 1 second. (If ADVANCE, [Note that you do not need to do anything to "saveâ or store this data. Only critical changes such as a MODEL RESET require additional keystrokes to Go to MODEL NAME. accept the change.] Input aircraft's name. Close the MODEL submenu. again.) as needed to highlight MODEL. to choose MODEL. to NAME. (First character of model's name is highlighted.) WRFKDQJHÂżUVWFKDUDFWHU When proper character is displayed, to move to next character. Repeat as needed. to return to BASIC menu. Reverse servos as needed for proper I n t h e BASIC m e n u , o p e n ( s e r v o ) control operation. REVERSE. P. 38. Choose desired servo and reverse its direction of travel. (Ex: reversing rudder servo.) to REVERSE. to choose REVERSE. to CH4: RUDD. so REV is highlighted. Repeat as needed. Adjust Travels as needed to match From BASIC menu, choose END POINT. model's recommended throws (usually listed as high rates). Adjust the servo's end points. P. 39. (Ex: throttle servo) Close the function. to END POINT. to choose END POINT. to THROTTLE. THROTTLE STICK. until carb barrel closes as desired. THROTTLE STICK. until throttle arm just opens carb fully at full THROTTLE STICK. Repeat for each channel as needed. 27 With digital trims you donât shut the engine off with THROTTLE TRIM. Let's set up IDLE-DOWN and "throttle cut" (THR-CUT) now. GOALS of EXAMPLE Set up IDLE-DOWN. P. 40. STEPS INPUTS for EXAMPLE From the BASIC menu, choose IDLE- C to IDLE-DOWN. DOWN. to choose IDLE-DOWN. IDLE-DOWN slows the engine's idle for Activate and adjust IDLE-DOWN. landings, sitting on the runway, and maneuvers such as spins. The normal (higher idle) setting (when IDLE-DOWN is off) is for engine starting, taxi, and most ĂLJKWPDQHXYHUVWRPLQLPL]HFKDQFHRI DĂDPHRXW to MIX. to OFF. C to center position. Screen now reads ON. to RATE. to increase rate until engine idles reliably but low enough to sit still. Optional: change switch command from (Not needed in this example.) C center-and-down to any other switch. Close the Function. THR-CUT shuts the engine off completely From the BASIC menu, choose THR-CUT. ZLWKWKHĂLSRIDVZLWFK P. 41. Activate, assign SWITCH and adjust. (NOTE: DO NOT assign IDLE-DOWN and Close the function. THR-CUT to both positions of a 2position switch. See IDLE-DOWN for details.) to THR-CUT. to choose THR-CUT. to MIX. to OFF. to SW. to C. to POSI. to DOWN. to RATE. C to down position. THROTTLE STICK. until throttle barrel closes completely. 6HW XS GXDOWULSOHUDWHV DQG H[SRQHQWLDOFrom the BASIC menu, choose D/R,EXP. to D/R,EXP. (D/R,EXP). to choose D/R,EXP. P. 42. Choose the desired control, and set A to up position. (Note that in the middle of the left the first (Ex: high) rate throws and C to CH:. side of the screen is the name of the exponential. to choose CH>2 (elevator). channel AND the switch position you are adjusting. Two or even THREE [note the screen reads ELEV (UP)] rates may be set per channel by simply to D/R. c h o o s i n g t h e d e s i re d s w i t c h a n d programming percentages with the ELEVATOR STICK. switch in each of its 2 or 3 positions.) to set desired âUPâ percentage. ELEVATOR STICK. as needed to adjust âDOWNâ percentage (normally set the same as down.) 28 to EXP. ELEVATOR STICK. to set. ELEVATOR STICK. to set. GOALS of EXAMPLE STEPS INPUTS for EXAMPLE Set the second (low) rate throws and A to down position. exponential. to D/R. Repeat steps above to set low rate. Optional: change dual rate switch C to SW. to G or E. assignment. Ex: elevator to switch G or E to center position. G (10CAG) or E (10CHG) with 3 Repeat steps above to set 3rd rate. positions. Where next? (Other functions you may wish to set up for your model.) TRAINER p. 47. 0XOWLSOHZLQJDQGRUWDLOVHUYRVVHHZLQJW\SHVDQGWDLOW\SHVS Elevator-to-flap, Rudder-to-aileron, flap-to-elevator, and other programmable mixes p. 68. Retractable Gear, Flaps on a Switch, Smoke systems, kill switches, and other auxiliary channel setups. p. 46. 29 $/22.$77+(5$',2 6)81&7,21667(3%<67(3 MODEL submenu: includes three functions that manage model memory: MODEL SELECT, MODELCOPY and MODELNAME. Since these functions are all related, and are all basic features used with most models, they are together in the MODEL submenu of the BASIC menu. MODEL SELECT: This function selects which of the 15 model memories in the WUDQVPLWWHU RU LQ WKH RSWLRQDO CAMPac-... WR VHW XS RU Ă\)RUFODULW\WKHPRGHO VQDPHDQGDQLPDJHRILWVW\SHDUHLQGLFDWHGDIWHULWV number. (Each model memory may be a different model type from the other memories.) Note: If you are using the optional CAMPac-16K, your choices in MODEL SELECT and MODEL COPY will include 16-19, which are the model memories in the CAMPac. You do not have to COPY from the CAMPac to the transmitter prior to working with that model. T10CG/T10C CAMPac data compatibility A CAMPac data which saved the data of a T10CG or conventional T10C transmitter can be used calling directly by a T10CG and T10C transmitter. As for the data of a function added by T10CG; (T10C data -> T10CG): an initial value is set up at this time. 7&*GDWD!7& WKHIXQFWLRQGRHVQ WZRUNUHJDUGOHVVRILWVGDWD$QGWKHUHLVQRWDQLQĂXHQFHHLWKHU T9C/T9CS CAMPac data conversion Although a CAMPac GDWD ZKLFK VDYHG WKH GDWD RI D FRQYHQWLRQDO 7&7&6 WUDQVPLWWHU cannot be used calling directly, it is possible to use it by the following method, copying to the model memories of a T10C transmitter. When using the CAMPac, it will be displayed, for example as "01<-Pac 01." Press DIAL for 1 second in this state and the check display of "Are you sure?" will appear. Press DIAL again, the data of CAMPac will be copied to model number"01" of the T10CG transmitter. As for the data of a function added by T10CG, an initial value is set up at this time. 3OHDVHGRQRWIRUJHWWKHFKHFNRIVHWWLQJGDWDEHIRUHDĂLJKW In addition, refer to p.17 for the initializing method of the CAMPac. ĂDVKLQJ NOTE: When you choose a new model in the MODEL SELECT function, if the new model is set to the other modulation, you must cycle the transmitter power to change PRGXODWLRQV,I\RXGRQRWF\FOHWKHSRZHUWKHPRGXODWLRQW\SHZLOOĂDVKRQWKHKRPH screen to remind you. You are still transmitting on the other modulation until you affect this change. GOAL: Select Model #3. STEPS: INPUTS: for 1 second. (If ADVANCE, Open BASIC menu, then open MODEL submenu. if required to MODEL. NOTE: This is one of several to 3. functions for which the radio requires Choose Model #3. for 1 second. &RQÂżUP\RXUFKDQJH FRQÂżUPDWLRQWRPDNHDFKDQJH again.) Are you sure? displays. Close. Confirm proper modulation of new If 2.4GLVĂDVKLQJLQWKHXSSHUULJKWKDQGFRUQHUWKHQWKHQHZPRGHOLVVHWIRU model memory. WKHRWKHUUHFHLYHUW\SH7XUQWKHWUDQVPLWWHURIIRQWRFKDQJHWKHPRGXODWLRQ Where next? NAME the model: see p. 32. Change MODEL TYPE (aircraft, heli, glider): see p. 34. Change modulation (2.4G-10CH or 2.4G-7CH): see p. 35. Utilize servo REVERSE: see p. 38. Adjust END POINTs: see p. 39. Set up IDLE-DOWN and THR-CUT for throttle management: see p. 40, 41. 30 MODEL COPYFRSLHVWKHFXUUHQWPRGHOGDWDLQWRDQRWKHUPRGHOPHPRU\ LQWKHWUDQVPLWWHURUWKHRSWLRQDO'3.. 128K CAMPac). The name of the model memory you are copying into is displayed for clarity. Notes: ⢠Any data in the model copied to will be written over and lost, including name, type and modulation. It cannot be recovered. ⢠To copy from one T10CG to another, use an optional CAMPac. (Note: The model may be flown directly off the CAMPac's memory, not requiring recopying into the 2nd transmitter. For more information on CAMPacs, please see p. 10.) ⢠With the trainer FUNC mode it is not necessary to have the student radio contain the setup of the aircraft. See TRAINER, p. 47. 'DWDFDQQRWEHFRQYHUWHGIURP8RU=PHPRU\W\SHV,IDCAMPac is installed into the T10CG that has data on it from another radio type, it will have to be re-initialized which deletes all data. Examples: ⢠Start a new model that is similar to one you have already programmed. ⢠Copy the current model data into another model memory as a backup or before experimenting with new settings. ⢠Store your model data to an optional CAMPac prior to sending your radio for service. Â(GLWDFRS\RI\RXUPRGHOÂśVGDWDWRĂ\WKHPRGHOLQGLIIHUHQWFRQGLWLRQV LH+HOLFRSWHUXVLQJKHDYLHUQLJKWEODGHVJOLGHU in extreme wind; airplane model at extreme altitudes). ⢠Store your model data to an optional CAMPac to use or copy the settings into a friend's T10CG (A or H) transmitter so KHFDQĂ\\RXUPRGHORUXVHLWDVDVWDUWLQJSRLQWIRUVHWWLQJXSDVLPLODUPRGHO GOAL of EXAMPLE: STEPS: INPUTS: Open the BASIC menu, then open MODEL Copy model 3 into model 5. again.) for 1 second. (If ADVANCE, N O T E : T h i s i s o n e o f s e v e r a l submenu. to MODEL. functions for which the radio requires Confirm you are currently using the If SELECT does not indicate 3, use MODEL FRQÂżUPDWLRQWRPDNHDFKDQJH proper model memory. (Ex: 3) SELECT, p. 25. Go to MODEL COPY and choose the model to copy into. (Ex: 5) &RQÂżUP\RXUFKDQJH to COPY. to 5. for 1 second. Are you sure? displays. Close. Where next? SELECT the copy you just made: see p. 30. Rename it (it is currently named exactly the same as the model copied): see p. 32. Turn off the transmitter and remove the CAMPac for safe keeping or insertion LQWRDQRWKHUUDGLRWRĂ\ *Radio emits a repeating "beep" and shows progress on screen as the model memory is being copied. Note that if the power switch is turned off prior to completion, the data will not be copied. 31 MODEL NAME: assigns a name to the current model memory. By giving each model a name that is immediately recognizable, \RXFDQTXLFNO\VHOHFWWKHFRUUHFWPRGHODQGPLQLPL]HWKHFKDQFHRIĂ\LQJWKHZURQJPRGHOPHPRU\ZKLFKFRXOGOHDGWR a crash. Adjustability and values: ⢠Up to 10 characters long. ⢠Each character may be a letter, number, blank, or a symbol. ⢠The default names assigned by the factory are in MODEL-xxxx format (MODEL-0001 IRUÂżUVWPRGHOPHPRU\HWF NOTE: When you COPY one model memory over another, everything is copied, including the model's name. Similarly, if you change MODEL TYPE or do a MODEL RESET, the entire memory is reset, including MODEL NAME6RWKHÂżUVWWKLQJ\RXZLOO want to do after you COPY a model, change its type, or start from scratch, is rename the new copy to avoid confusion. If using multiple frequency modules to be able to transmit on multiple channels, we recommend using the last 2 characters to indicate the receiver's channel for clarity. For more information on frequency transmission, see p. 8. GOAL of EXAMPLE: STEPS: Name model 3 âCap-232_â (where the Open MODEL submenu. underline represents a blank space.) INPUTS: for 1 second. (If ADVANCE, to MODEL. Confirm you are currently using the If SELECT does not indicate 3, proper model memory. (Ex: 3) perform MODEL SELECT, p. 25. G o t o NAME a n d c h a n g e t h e f i r s t character. (Ex: M to C) Choose the next character to change. Repeat the prior steps to complete naming the model. to M to C. to a (note: lower case is available) Repeat. Close. Where next? Change the MODEL TYPE to glider or helicopter: see p. 34. Change modulation [2.4G-10CH or 2.4G-7CH]: see p. 35. Utilize servo REVERSE: see p. 38. Adjust servo travel with END POINT: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. 32 again.) PARAMETER submenu: sets those parameters you would likely set once, and then not disturb again. Once you have selected the correct model you wish to work with, the next step is setting up the proper parameters for this VSHFLÂżFPRGHO ⢠What is the model's type? ⢠What type is the receiverâs modulation [2.4G-10CH or 2.4G-7CH]? ⢠Does the model have a normal throttle on channel 3 or do you need full range trim on channel 3 (ATL)? ⢠(GLID only): The separate THR-REV settings for each model can be set. (ACRO) First it is important to clear out any old settings in the memory from prior use, using the MODEL RESET. MODEL RESET: completely resets all data in the individual model you have currently selected. Don't worry - there is no way you can accidentally delete all models in your radio with this function. Only a service center can completely reset your radio's entire memory at once. To delete each model in your radio's memory (for example when selling), you must SELECT each model, reset that memory, then go SELECT the next memory, etc. (GLID) Note that when you COPY one model memory into another or change the model's type, you need not delete all existing data ÂżUVWE\XVLQJWKLVIXQFWLRQ COPY completely overwrites anything in the existing model memory, including MODEL NAME. The MODEL TYPE function overwrites all data except name and MODUL. GOAL of EXAMPLE: Reset model memory 1. STEPS: INPUTS: Confirm you are currently using the On home screen, check model name and proper model memory. (Ex: 1) number on top left. If it is not correct, use MODEL SELECT, p. 30. N O T E : T h i s i s o n e o f s e v e r a l Open PARAMETER submenu. again.) for 1 second. (If ADVANCE, functions for which the radio requires to 2nd page of menu. FRQÂżUPDWLRQWRPDNHDFKDQJH Reset the Memory. &RQÂżUPWKHFKDQJH to PARAMETER. for one second. Are you sure? displays. Close. Where next? Now that the memory is reset, name has returned to the default (Ex: MODEL-0001). NAME the model: p. 32. COPY a different model into this memory: p. 31. SELECT a different model to edit or delete: p. 30. Change the MODEL TYPE to glider or helicopter: see p. 34. Change the receiver modulation [2.4G-10CH or 2.4G-7CH]: see p. 35. Utilize servo REVERSE: see p. 38. Adjust servo travel with END POINT: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. *Radio emits a repeating âbeepâ and shows progress on screen as the model memory is being reset. Note that if the power switch is turned off prior to completion, the data will not be reset. 33 MODEL TYPE: sets the type of programming used for this model. The T10CG has 15 model memories, which can each support: â˘one powered aircraft (ACRO PHPRU\ W\SH ZLWK PXOWLSOH ZLQJ DQG WDLO FRQÂżJXUDWLRQV 6HH WZLQ DLOHURQ VHUYRV WZLQ elevator servos, ELEVON, and V-TAIL for further information.); ÂWKUHHJOLGHUZLQJW\SHV DJDLQZLWKPXOWLSOHWDLOFRQÂżJXUDWLRQV 6HH*OLGHUMODEL TYPE for details, p. 78; â˘eight helicopter swashplate types, including CCPM. See Helicopter MODEL TYPE for details, p. 93. %HIRUHGRLQJDQ\WKLQJHOVHWRVHWXS\RXUDLUFUDIWÂżUVW\RXPXVWGHFLGHZKLFKMODEL TYPEEHVWÂżWVWKLVSDUWLFXODUDLUFUDIW (Each model memory may be set to a different model type.) If your transmitter is a T10CAG, the default is ACRO. If it is a T10CHG, the default is HELI(H1). ACRO is the best choice for most powered airplanes, but in some circumstances, GLID(2A+1F) may be a better choice. ACRO is usually a better choice because of functions it offers that the GLID types do not: â˘ACRO adds: â˘SNAP-ROLL â˘AILEVATOR (twin elevator servo support) â˘For fuel-powered airplanes: IDLE-DOWN, THR-CUT, THROTTLE-NEEDLE mixing and THROTTLE DELAY programming. â˘But ACRO lacks: â˘5 seperate conditions for optional setups (STARTSPEEDDISTANCELANDING) If you are using a glider or heli MODEL TYPE, please go to that chapter now to select the proper model type and support your model setup. Note that changing MODEL TYPE resets all data for the model memory, including its name. GOAL of EXAMPLE: STEPS: INPUTS: Select the proper MODEL TYPE for your Open the BASIC menu, then open the Turn on the transmitter. model. Ex: ACRO. PARAMETER submenu. for 1 second. (If ADVANCE, [NOTE: This is one of several functions that requires confirmation to make a change. Only critical changes require additional keystrokes to accept the Go to MODEL TYPE. change.] Select proper MODEL TYPE. Ex: ACRO. &RQÂżUPWKHFKDQJH Close PARAMETER. 34 then again.) to highlight PARAMETER. to choose PARAMETER. to TYPE. to ACROBATIC. Are you sure? displays. for 1 second. WRFRQÂżUP to return to BASIC menu. Modulation select (MODUL): sets the type of modulation transmitted. The modulation of your receiver will determine whether you utilize 2.4G-10CH or 2.4G-7CH setting in MODUL during transmission. Note that you have to turn your transmitter off and back on before a modulation change becomes effective. Be sure you understand and set the FailSafe (F/S ) settings as you intended (see p. 50). 2.4G-10CH7CH = FASST-2.4GHz system (10CHPRGH7CH mode) Adjustability: ⢠2.4G-10CH setting for all Futaba FASST-2.4G Multi-ch mode receivers, UHJDUGOHVVRIQXPEHURIFKDQQHOV LH5+65+65)65)6 ⢠2.4G-7CH setting for all Futaba FASST-2.4G 7ch mode receivers, regardless of QXPEHURIFKDQQHOV LH5))5))05)65)6 NOTE: When you change models in MODEL SELECT, if the new model is set to the other modulation type, \RXPXVWF\FOHWKHWUDQVPLWWHUSRZHUWRFKDQJHPRGXODWLRQV7KHPRGXODWLRQZLOOĂDVKRQWKHKRPHVFUHHQ to remind you until you do so. See p. 30, MODEL SELECT, for details. GOAL of EXAMPLE: STEPS: INPUTS: Change model 1 from 2.4G-10CH to Confirm you are currently using the On home screen, check model name and proper model memory (Ex: 1) number on top left and the modulation 2.4G-7CH. on top right. If it is not the correct model, use MODEL SELECT, p. 30. Open BASIC menu, then open PARAMETER submenu. Go to MODUL and change setting. for 1 second. (If ADVANCE, again.) to 2nd page of menu. to PARAMETER. to MODUL. to 2.4G-7CH. cycle power ĂDVKHVRQVFUHHQ Close menu and cycle power. POWER OFF. POWER ON. Where next? Now that the model is in the proper modulation, the T10CG should communicate ZLWKWKHUHFHLYHU,ILWGRHVQRWFRQÂżUPWKHW\SHRIWKHUHFHLYHU Change MODEL TYPEWRJOLGHUKHOLFRSWHUVHHS Set F/S settings for when 2.4G receiver sees interference: see p. 50. Utilize servo REVERSE: see p. 38. Adjust servo travel with END POINT: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. 35 Second aileron (AILE-2) (ACROGLID 1A+1FGLID 2A+1F only): changes the default choice for dual aileron servos from channels 6 (FLAPERON) to channels 5 and 6 or channels 3 and 6 (GLID 1A+1F only), or 7 (AIL-DIF ) to channels 5 and 7. NOTE: Changing AILE-2 only tells the system which servos to utilize if FLAPERON or AIL-DIF is activated. You still must activate that function and complete its setup. For details on twin aileron servos, including using AILE-2, see p. 55. (GLID 1A+1F only): If using channel 3 for second aileron, the receiver's Battery Fail-Safe function does not work. Adjustable travel limit (ATL): makes the channel 3 TRIM LEVER (THROTTLE TRIM) effective only at low throttle, disabling the trim at high throttle. This prevents pushrod jamming due to idling trim changes. This function defaults to ON. If you are not using channel 3 for throttle, you may want trim operation the same as on all other channels. To do so, set ATL to OFF. If you need the ATL to be effective at the top of the stick instead of the bottom, reverse the THR-REV setting. Note that this affects all models in the radio, not just the model you are currently editing. See servo REVERSE, p. 38. GOAL of EXAMPLE: STEPS: INPUTS: Change ATL from ON to OFF for battling O p e n B A S I C m e n u , t h e n o p e n for 1 second. (If ADVANCE, robot, tank, airbrake and other channel PARAMETER submenu. to 2nd page of menu. 3 uses. to PARAMETER. Go to ATL and Change. (Ex: to OFF) to ATL. again.) to OFF. Close. Where next? Set up ELEVONIRUWDQNVW\OHFRQWUROWKURWWOHVWHHULQJRQRQH67,&.VHHS Set up IDLE-DOWN and THR-CUT to adjust channel 3 servo at low-stick: see p. 40. 5HDVVLJQDX[LOLDU\FKDQQHOV H[IURPGLDOWRVZLWFKVOLGHU VHHS Utilize servo REVERSE: see p. 38. Adjust servo travel with END POINT: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Throttle Reverse (THR-REV) (GLID only): is a special function that reverse the throttle control, including moving the trim functionality to the stick's upper half. The separate THR-REV settings for each model can be set. Default setting depends on the THR-REV setting in the TX SETTING menu, see p.17. LCD screen adjustment (CONTRASTBACK-LIGHT): Adjustability: The following LCD screen adustments are possible. ⢠Contrast adjustment ⢠Backlighting brightness adjustment CONTRAST: set a LCD contrast from +10(dark) to -10(bright). Also it can be set from the home screen. See Adjusting Display Contrast, p.16. BACK-LIGHT MAXVHWDEDFNOLJKWLQJEULJKWQHVVIRUWKHVSHFLÂżFSHULRG DSSUR[LPDWHO\VHFRQGV DIWHURSHUDWLQJWKHHGLW keys. Setting range: OFF(0) to 20(bright). BACK-LIGHT MINVHWDEDFNOLJKWLQJEULJKWQHVVDIWHUWKHDERYHVSHFLÂżFSHULRG6HWWLQJUDQJH2)) WRMAX setting. GOAL of EXAMPLE: Change CONTRAST from 0 to +2. STEPS: INPUTS: Open BASIC menu, then open for 1 second. (If ADVANCE, PARAMETER submenu. to PARAMETER. Go to CONTRAST and change setting. (Ex: +2) Close. 36 to CONTRAST. to +2. again.) Home screen display mode selection (HOME-DISP) (HELI only): selects the display item in the home screen for HELI. ILLUST mode ILLUST: displays the illustration of helicopter in the home screen. (default) THR/PIT: displays the current throttle and pitch position in the home screen. THR/PIT mode GOAL of EXAMPLE: STEPS: INPUTS: Change the display mode from ILLUST to O p e n B A S I C m e n u , t h e n o p e n for 1 second. (If ADVANCE, THR/PIT. PARAMETER submenu. to PARAMETER. Go to HOME-DISP and change setting. (Ex: THR/PIT) again.) to HOME-DISP. to THR/PIT. Close. USER NAME: assigns your transmitter's name which is displayed in the home screen. Adjustability and values: ⢠Up to 8 characters long. ⢠Each character may be a letter, number, blank, or a symbol. ⢠The default name assigned by the factory is "Futaba" logo. GOAL of EXAMPLE: Name USER NAME âFutabaâ. STEPS: INPUTS: Open BASIC menu, then open for 1 second. (If ADVANCE, PARAMETER submenu. to 2nd page of menu. Go to USER NAME and select the first character. (Ex: _ to F) to PARAMETER. to 2nd page of menu. to USER NAME to F. Choose the next character to change. Repeat the prior steps to complete naming the model. Close. 37 to u (note: lower case is available) Repeat. again.) Logic switch selection (LOGIC SW): The various functions in the T10CG can be selected by switch. The Logic switch can be assigned to the following functions: THR-CUT, IDLE DOWN, AUX-CH, TIMER, PROG. MIX, AIRBRAKE, ELEV-FLAP, and AILEFLAP functions. The logic switch can activate functions by two switches combination. The 2 types of logic, either AND or OR, can be selected. Logic combination table: Adjustability: ⢠Three logic switches can be used. SWITCH LOGIC SW(1) SW(2) AND OR (Lsw1, Lsw2, and Lsw3) off off off off ⢠SW(1): Any SWICH A-H or THRoff on off on STKS, SW(2): Any SWICH A-H on off off on ⢠Switch position (POSI) on on on on ⢠Logic mode: AND or OR (MODE) GOAL of EXAMPLE: STEPS: INPUTS: Ex: Switch A and B are calculated by Open BASIC menu, then open LOGIC for 1 second. (If ADVANCE, AND logic. (A = down, B = down) SW menu. to 2nd page of menu. Go to POSI and change setting. (Ex: DOWN) Next, SW= B, POSI=DOWN to LOGIC SW. to POSI. again.) to DOWN. Repeat. Close. Servo reversing (REVERSE): changes the direction an individual servo responds to a CONTROL STICK motion. [Since channel 9 and 10 are switch only, its servo REVERSE is in the AUX-CH control screen with its switch assignment. See p. 46.] For CCPM helicopters, be sure to read the section on SWASH AFR (p. 95) before reversing any servos. Except with CCPM helicopters, always complete your servo reversing prior to any other programming. If you use pre-built ACROGLID functions that control multiple servos, such as FLAPERON or V-TAIL, it may be confusing to tell whether the servo needs to be reversed or a setting in the function needs to be reversed. See the instructions for each specialized function for further details. Always check servo direction prior to every flight as an additional SUHFDXWLRQWRFRQÂżUPSURSHUPRGHOPHPRU\KRRNXSVDQGUDGLRIXQFWLRQ NOTE: THR-REV is a special function that reverses the entire throttle control, including moving the trim functionality to the Stickâs upper half. To use THR-REV, turn off the transmitter, hold down the MODE and END keys, turn on. CURSOR DOWN to THR-REV and turn the DIAL to REV. Turn the transmitter off and back on. This change affects all models in the radio. (GLID only): The separate THR-REV settings for each model can be set, see p.36. GOAL of EXAMPLE: STEPS: Reverse the direction of the elevator Open REVERSE function. servo. Choose proper channel and set direction. (Ex: ELE REV) INPUTS: for 1 second. (If ADVANCE, to REVERSE. to ELE. to REV. Close. Where next? Adjust servo travel with END POINT: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. 6HWXSĂLJKWWLPHUVVHHS Set up trainer functions: see p. 47. 38 for 1 second. again.) End Point of servo travel adjustment (END POINT, also called EPA): the most flexible version of travel adjustment available. It independently adjusts each end of each individual servoâs travel, rather than one setting for the servo that affects both directions. Again, for CCPM helicopters, be sure to see SWASH AFR (see p. 95) prior to adjusting end points. Adjustability: ⢠Can set each direction independently. ⢠Ranges from 0% (no servo movement at all) to 140%. At a 100% setting, the throw of the servo is approximately 40° for channels 1-4 and approximately 55 ° for channels 5-8. ⢠Reducing the percentage settings reduces the total servo throw in that direction. Examples: ⢠Adjust the throttle high end to avoid binding at the carburetor, and low end to allow for proper carburetor closure. Â$GMXVWĂDSVRXSWUDYHOLVRQO\VXIÂżFLHQWIRUVWUDLJKWDQGOHYHOĂLJKWWULPPLQJZLWKIXOOGRZQWUDYHO ⢠END POINTPD\EHDGMXVWHGWRWRNHHSDVHUYRIURPPRYLQJRQHGLUHFWLRQVXFKDVĂDSVQRWLQWHQGHGWRDOVRRSHUDWHDV spoilers. ⢠Retract servos are not proportional. Changing END POINT will not adjust the servo. END POINT adjusts only the individual servo. It will have no effect on any other servo that is operated in conjunction with this servo via mix or preset programming such as FLAPERON, AILEVATOR, etc. This is so that each individual servo can be FDUHIXOO\ÂżQHWXQHGWRDYRLGELQGLQJDQGRWKHUFRQĂLFWV7RDGMXVWWKHWRWDOWUDYHORIDIXQFWLRQVXFKDV FLAPERON, make the adjustments in that function's controls. For CCPM helicopters, adjust the total travel of the function, such as collective pitch, in SWASH AFR. Adjust the linkage or the END POINT? It is nearly always best to adjust your linkages to get as close as possible prior to utilizing END POINT. The higher the END POINT setting, the better position accuracy and the more servo power available at nearly any position (except if using digital servos). Higher END POINT values also mean longer travel time to reach the desired position, as you are utilizing more of the servo's total travel. (For example, using 50% END POINT would give you only half the steps of servo travel, meaning every click of trim has twice the effect and the servo gets there in half the time). ⢠end point (and moving the linkage) = torque, accuracy, but transit time to get there. ⢠end point (instead of adjusting linkages) = travel time, but torque, accuracy. GOAL of EXAMPLE: STEPS: INPUTS: Decrease the flap servo throw in the Open END POINT function. again.) for 1 second. (If ADVANCE, upward direction to 5% to allow to END POINT. WULPPLQJRIOHYHOĂLJKWRQO\DQGGRZQ Choose proper channel and move stick to FLAP. travel to 85% to prevent binding. or knob in direction you want to adjust ĂDSFRQWURO>GHIDXOWLVVR(A)]. DQGVHWVHUYRWKURZ ([ĂDSXS to 5%.* VR(A). to 85%. Close. Where next? Go to SERVOGLVSOD\WRFRQÂżUPGHVLUHGHQGUHVXOWVHHS 0RYHDX[LOLDU\FKDQQHOVWRGLIIHUHQWGLDO V VZLWFK HV VOLGHU V VHHS Set up IDLE-DOWN and THR-CUTWRVORZFXWWKHHQJLQHVHHS 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. 6HWXSĂLJKWWLPHUVVHHS Set up trainer functions: see p. 47. Set up twin aileron servos: see p. 51. Set up twin elevator servos: see p. 57. *You can reset to the initial values by pressing the DIAL for one second. 39 Engine idle management: IDLE-DOWN and THR-CUT: functions which work with the digital THROTTLE TRIM to provide a simple, consistent means of engine operation. No more fussing with getting trim in just the right spot for landings or take offs! For additional engine adjustments, see THROTTLE-NEEDLE (p. 65) and THROTTLE DELAY (p. 66). IDLE-DOWN (ACRO only): lowers the engine idle for: sitting on the runway prior to take off, stalls and spins, and landings. 7KHQRUPDOLGOHVHWWLQJLVDOLWWOHKLJKHUIRUHDVLHUVWDUWVDQGVDIHĂLJKWVZLWKOHVVULVNRIGHDGVWLFNV Important note: The IDLE-DOWN function is not normally used when starting the engine, and its accidental operation may keep your engine from starting. The 10CG warns that IDLE-DOWN is on when the transmitter is turned on. Be sure to turn off the function, or override the warning by pressing CURSOR lever if you intended the function to be on. 7KLVPD\EHDVVLJQHGWRDQ\VZLWFKSRVLWLRQ6RPHPRGHOHUVDFFLGHQWDOO\DVVLJQ IDLE-DOWN to one side of a switch and THR-CUT to the other. There is no ânormalâ setting to start the engine. By default IDLE-DOWN is set to SWITCH C center and down. This works well with THR-CUT also on SWITCH CGRZQ7KH6:,7&+XSLVQRUPDOĂLJKWVWDUWLQJ FHQWHUIRUVORZHUPDQHXYHUVODQGLQJDQGGRZQWRFXWWKHHQJLQH,I\RXDVVLJQ IDLE-DOWN or THR-CUT to the springloaded TRAINER SWITCH F (10CAG) or H (10CHG), then use the trainer function, you may risk loss of throttle control or deadstick for your student. GOAL of EXAMPLE: STEPS: INPUTS: Decrease the throttle setting at idle Open BASICmenu, then open IDLE-DOWN for 1 second. (If ADVANCE, with the flip of a switch for spins and function. to IDLE-DOWN. landings. Activate the function. to MIX. to OFF. With THROTTLE STICK at idle, adjustthe rate until engine idles as desired.* Optional: change switch assignment. Choose desired switch and position.** again.) THROTTLE STICK. to RATE. desired. until engine idles as to SW. to desired SWITCH. to POSI. to desired position. Close. Where next? THR-CUT: see p. 41. *Normally a value of 10- 20%. Secure the fuselage, engine running. Set the THROTTLE STICK to idle. Adjust the IDLE-DOWNUDWHZKLOHĂLSSLQJWKH switch ON and OFF until the desired idle is achieved. Be sure to throttle up periodically to allow the engine to âclean outâ and idle reliably. *Also LOGIC SW(Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. 40 Throttle cut (THR-CUT) (ACROHELI SURYLGHV DQ HDV\ ZD\ WR VWRS WKH HQJLQH E\ ĂLSSLQJ D VZLWFK ZLWK THROTTLE STICK at idle). The movement is largest at idle and disappears at high throttle to avoid accidental dead sticks. In HELI, there is an additional setting, THR-HOLD. See p. 99. The switch's location and direction must be chosen. It defaults to NULL to avoid accidentally assigning it to a switch, which might result in an unintentional dead VWLFNLQĂLJKW3OHDVHVHHIRUIDLE-DOWN and THR-CUT on p. 40. GOAL of EXAMPLE: STEPS: INPUTS: Decrease the throttle setting (at idle) Open BASICmenu, then open THR-CUT again.) for 1 second. (If ADVANCE, to stop the engine with the flip of a function. to THR-CUT. switch.(Note that you MUST assign to MIX. a switch. The default is NULL . We Activate the function. Choose desired recommend SWITCH C in the down switch, and the position which activates C to to C. SW. position, with IDLE-DOWN programmed the function.** to POSI. to DOWN. to SWITCH C in the center and down positions.) With THROTTLE STICK at idle, adjust C to down position. the rate until the engine consistently THROTTLE STICK. shutsoff but throttle linkage is not to RATE. until shuts off. binding.* Close. Where next? 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Set up TRAINER functions: see p. 47. Set up twin aileron servos: see p. 51. Set up twin elevator servos: see p. 57. 1RUPDOO\DVHWWLQJRILVVXIÂżFLHQW9LHZLQJWKHFDUEXUHWRUEDUUHOXQWLOLWIXOO\FORVHVLVDGHTXDWHWRJHWDQDSSUR[LPDWHVHWWLQJWKHQWHVWZLWK HQJLQHUXQQLQJWRFRQÂżUP **Also LOGIC SW(Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. 41 'XDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): assigns adjusted rates and exponential. Dual/Triple Rates: UHGXFHLQFUHDVH WKH VHUYR WUDYHO E\ IOLSSLQJ D VZLWFK RU (ACROGLID) they can be engaged by any stick position. Dual rates affect the control listed, such as aileron, not just a single (ex: channel 1) servo. For example, adjusting aileron dual rate will affect both aileron servos when using FLAPERON or AIL-DIF, and both aileron and elevator servosâ travel when using AILEVATOR or ELEVON or a CCPM helicopter. Activation: ⢠Any SWITCH, A-H. If you choose a 3-position switch, then that dual rate instantly becomes a triple rate (see example). ⢠The glider programming offers you the choice of Cond. This option allows you to have a separate rate for each of condition. (GLID) ⢠Stick position (ACROGLID ([ 2Q UXGGHU \RX QRUPDOO\ XVH RQO\ WKH FHQWHU RI WKH VWLFN PRYHPHQW H[FHSW IRU H[WUHPH PDQHXYHUV VXFK DV VQDSVVSLQVVWDOOV$V ORQJ DV \RXU 58''(5 67,&. GRHV QRW H[FHHG RI PD[LPXP throw, the rudder responds at your lower rate, allowing small, gentle corrections. When the stick passes 90% (ie. stall turn), the rudder goes to high rateâs 90%, which is a MUCH higher amount of travel than your low rate at 89%.) Ex: (At 100% = 1â) Low Rate = 50% High Rate = 100% At 89% Low Rate = .45â At 90% High Rate = .9â [Note] Only if any stick is chosen by the item of "SW1", a switch can also be chosen by the item of "SW2." When operated simultaneously, the switch operation has priority over the stick operation. (ACRO) 100% 90% 0% 90% 100% High Rate Low Rate High Rate 0% 30% Low Rate 100% High Rate Adjustability: ⢠Range: 0 - 140% (0 setting would deactivate the control completely.) Initial value=100% ⢠Adjustable for each direction (ACROGLID LH8SGRZQOHIWULJKW ([0RVW PRGHOVĂ\XSULJKWZLWKRXWDQ\HOHYDWRUWULPEXWUHTXLUHVRPHGRZQHOHYDWRU ZKHQLQYHUWHGMXVWWRPDLQWDLQOHYHOĂLJKW%\LQFUHDVLQJWKHGRZQWUDYHOE\ the amount required to hold the model inverted, the model now has equal travel available from level upright or level inverted.) Exponential:FKDQJHVWKHUHVSRQVHFXUYHRIWKHVHUYRVUHODWLYHWRWKHVWLFNSRVLWLRQWRPDNHĂ\LQJPRUHSOHDVDQW . Set rate and exponential (Ex: high rate = 95%, 0% exponential.) to D/R>. Go to 2nd switch position and set rate and exponential. Optional: if using a 3 position switch, set 3rd rate. Optional: assign dual rates to have one for each condition. 43 again.) to UP. to 95%. &RQÂżUP0% EXP. to No>. to DN. Repeat above. to No>. to CT. Repeat above. to SW. to COND. Repeat steps above to adjust for each condition. GOAL of EXAMPLE: STEPS: Set up aileron triple rates on SWITCH Open D/R,EXP function. C with travel settings of 75% (normal), 25% (slow roll) and 140% (extreme aerobatics) and exponential settings of Choose the channel to change (Ex: aileron is already selected) 0%, +15%, and -40% respectively. Optional: change switch assignment. NOTE: This normal rate has no exponential so it has a very linear, Confirm switch is in desired position normal feel. This slow roll rate has and set rate. (Ex: up = high rate, 75%). positive exponential (the opposite of what most people normally use), which makes the servos more responsive around center. This makes the servos Move SWITCH to 2nd rate position and feel the same around center in the set this particular rate. normal and low rates, but still gives a (Ex: center = low rate, 25%). very slow roll rate at full stick. INPUTS: for 1 second. (If ADVANCE, to D/R,EXP. to desired channel. to SW1. to D/R>. again.) to C. C to up position. AILERON STICK. to 75%. AILERON STICK. to 75%. C to center position. AILERON STICK. to 25%. AILERON STICK. to 25%. C to down position. The 3D rate (extreme aerobatics) has Optional: if using a 3 position SWITCH, move SWITCH to 3rd position and set a very high distance of travel B nearly AILERON STICK. to 140%. twice that of the normal rate. Therefore, this rate (Ex: down = 3D rate, 140%). AILERON STICK. to 140%. using a very high negative exponential setting softens how the servos respond Optional: instead of using a switch, C to SW1. to AILE (90%). around center stick. This makes the you can set high rates to be triggered C to D/R>. servos respond similarly around center when the stick moves past a certain AILERON STICK. to 25%. point. To test this, set aileron high rate stick for a more comfortable feel. to 25%. Now set switch assignment to AILERON STICK. to 25%. Many modelers like to set up all 3 triple AIL (90%). Move AILERON STICK AILERON STICK and watch rates on a single 3-position switch, to the right and notice the huge jump in screen graph. See the change?! creating a âslow and pretty modeâ, travel after the stick moves 90% of its a ânormal modeâ, and a âwild stunts distance. You may also change the trigger point modeâ all with the flip of a single by holding the stick at the desired point, switch. To do so, simply set up rates then pressing and holding the DIAL. for all 3 controls and assign all 3 to the Set each rateâs EXP. to EXP>. same 3-position switch. (Ex: 0%, +15%, -40%) C to up position. &RQÂżUPEXP reads 0. C to down position. AILERON STICK. to +15%. AILERON STICK. to + 15%. C to center position. repeat to set low rate expo to -40%. Repeat above steps for elevator and rudder. Close. Where next? 6HWXSĂLJKWWLPHUVVHHS Set up TRAINER functions: see p. 47. Adjust the sensitivity of the trims: see p. 48. Set up twin aileron servos: see p. 51. Set up twin elevator servos: see p. 57. 6HWXSSURJUDPPDEOHPL[HVWRPHHW\RXUVSHFLÂżFQHHGVVHHS 44 TIMER submenu (stopwatch functions): controls three electronic clocks used to keep track of time remaining in a FRPSHWLWLRQWLPHDOORZHGĂ\LQJWLPHRQDWDQNRIIXHODPRXQWRIWLPHRQDEDWWHU\HWF TIMER<1> TIMER<2> TIMER<3> (Home screen) Adjustability: ⢠Count down timer: starts from the chosen time, displays time remaining. If the time is exceeded, it continues to count below 0. ⢠Count up timer: starts at 0 and displays the elapsed time up to 99 minutes 59 seconds. ⢠Count down timer (Stop type): starts from the chosen time, displays time remaining, and stops at 0. ⢠Model timer: cumulates ON time up to 99 hours 59 minites each model. Once Model timer function is turned off, the cumulate time will also be reset to "0:00". ⢠Independent to each model, and automatically updates with model change. ⢠In either TIMER mode, the timer beeps once each minute. During the last twenty seconds, there's a beep each two seconds. 'XULQJWKHODVWWHQVHFRQGVWKHUH VDEHHSHDFKVHFRQG$ORQJWRQHLVHPLWWHGZKHQWKHWLPHVHOHFWHGLVUHDFKHG 83 DOWN TIMER) ⢠To Reset, choose the desired timer with the CURSOR lever (while at the startup screen), then press and hold DIAL for 1 second. ⢠Activation by either direction of SWITCH A-H, by THROTTLE STICK (STK-THR) (Using the THROTTLE STICK is convenient if you are keeping track of fuel remaining, or for an electric, how much battery is left), by LOGIC SWITCH Lsw1-Lsw3 or by the power SWITCH (PWR SW). Set up LOGIC SW: See p. 38. ⢠Also the reset switch can be assigned (SWITCH A-H or LOGIC SWITCH Lsw1-Lsw3) GOAL of EXAMPLE: STEPS: INPUTS: 6HWWLPHUWRFRXQWGRZQPLQXWHVOpen BASIC menu, then open TIMER for 1 second. (If ADVANCE, b e i n g c o n t r o l l e d b y T H R O T T L E function. to page 2. STICK position. This is utilized to keep to TIMER. track of actual Throttle on time to better FRUUHODWHZLWKIXHOEDWWHU\XVDJH Go to TIMER<2>. to 10 (TIMER<2>). Adjust time to 4 min. 30 sec., count down. Assign to THROTTLE STICK and set trigger point. to 4. again.) to 00 (TIMER<2>). to 30. to ON>SwA (TIMER<2>). to STK THR. to 50%. for 1 second to NULL. THROTTLE STICK to desired SRVLWLRQ ([VWLFN for 1 second to set. Close. Where next? Adjust END POINTsDIWHUÂżUVWĂLJKWWHVWVHHS $GMXVWDX[LOLDU\FKDQQHODVVLJQPHQWV H[PRYHĂDSVWRDVZLWFK VHHS Set up TRAINER functions: see p. 47. 45 Auxiliary channel function (including channel 9-10 controls)(AUX-CH GHÂżQHVWKHUHODWLRQVKLSEHWZHHQWKHWUDQVPLWWHU controls and the receiver output for channels 5-10. Also, the CH9-10 POSI are used to change the CH9-10 servo direction. Note that the CH9-10 functions are only visible in the AUX-CH screen when 2.4H-10CH modulation is selected. The 8-10th channels are not supported in 2.4G-7CH modulation. Adjustability: ⢠Channels 5-8 may be assigned to any SWITCH (A-H), LOGIC SWITCH (Lsw1-Lsw3), slider [VR(D) and VR(E)], or knob [VR(A-C)] (for example, moving flaps to a switch or slider), but not the primary control sticks (use programmable mixes to do so, p. 68). (GLID 1A+1F only): Channel 6 may be assigned to Airbrake control stick (STK-ARBK). ⢠Channel 9-10 may be assigned to any SWITCH (A-H), LOGIC SWITCH (Lsw1-Lsw3) and the servo direction may be changed. ⢠Multiple channels may be assigned to the same switch, slider or knob; ⢠Channels set to "NULL" are only controlled by mixes. (Ex: utilizing 2 channels for 2 rudder servos. See mixes, p. 68.) ⢠If GYRO SENSE, GOVERNOR, and THR-NEEDLE functions are activated, AUX-CH settings of related channels become invalid automatically. Related channels: GYRO SENSE (ACRO): ch. 5, 7, or 8: see p. 73. GYRO SENSE (HELI): ch. 5: see p. 107. GOVERNOR (HELI): ch. 7, or ch. 7 and 8: see p. 108. THR-NEEDLE (ACROHELI): ch. 8: see p. 65. Remember that if you assign primary control of a channel to a switch which you later use for other functions (like GXDOWULSOHUDWHVRUDLUEUDNHV HYHU\WLPH\RXXVHWKDWRWKHUIXQFWLRQ\RXZLOODOVREHPRYLQJWKHDX[LOLDU\FKDQQHO GOAL of EXAMPLE: STEPS: INPUTS: $VVLJQĂDSVWRWKHULJKWVOLGHU>VR(E)] Open BASIC menu, then open AUX-CH for 1 second. (If ADVANCE, and set channel 7 to NULL in preparation function. to page 2. C to AUX-CH. to use it as a smoke system control (the smoke system being activated later by a Choose the channel to change. (ex: ch. C to Ch 7. 6.) throttle-to-ch.-7 mix). Change primary control. (ex: to slider.) Repeat as needed. (ex: ch. 7 to NULL.) to Vr-E. to Ch 7. to NULL. Close. Where next? Programmable mixes: see p. 68. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Adjust SUB-TRIM of auxiliary channel to adjust center SWITCH position: see p. 49. Adjust END POINTs (sets end points of travel even when using a switch): see p. 39. 46 again.) TRAINER: for training novice pilots with optional trainer cord connecting 2 transmitters. The instructor has several levels of controllability. Adjustability: ⢠NORM: When the TRAINER SWITCH is ON, the channel set to this mode can be controlled by the student. The set channel is controlled according to any programming set at the student's transmitter. ⢠FUNC: When the TRAINER SWITCH is ON, the channel set to this mode can be controlled by the student, controlled according to any mixing set at the instructor's transmitter. ⢠MIX: When the TRAINER SWITCH is ON, the channel set to this mode can be controlled by both the student and the instructor, controlled according to any mixing set at the instructor's transmitter. And the student's mixing rate is adjustable. (default 30%) [Note] However, it becomes invalid even if it sets up the channel which is not in a student's transmitter. The channel serves as operation by the instructor's transmitter automatically. ⢠OFF: The channel set to this mode cannot be controlled by the student even when the TRAINER SWITCH is ON. The set channel is controlled by the instructor only, even when the TRAINER SWITCH is ON. ⢠SWITCH: controlled by spring-loaded SWITCH F (10CAG) or H (10CHG) only. Not assignable. ⢠Compatibility: The 10CG may be master or student with any Futaba transmitter compatible with the cord. Simply plug the optional trainer cord (For 10CG series, sold separately) into the trainer connection on each transmitter, and follow the guidelines below. Examples: Â:KHQ WKURWWOHFROOHFWLYH DUH VHW WR FUNC, 5-channel helicopter practice is possible with a 4-channel transmitter. ⢠Set up the model in a second transmitter, use NORM mode to quickly and safely check proper operation of all functions, then allow WKHVWXGHQWUDGLRWRIXOO\Ă\WKHPRGHO ⢠Using NORM mode, set lower throws, different exponentials, even different auxiliary channel settings on the student radio (if it has these features). ⢠To ease the learning curve, elevator and aileron may be set to the NORM or FUNC mode, with the other channels set to OFF and controlled by the instructor. Precautions: ⢠NEVER turn on the student transmitter power. ⢠ALWAYS set the student transmitter modulation mode to PPM. As for a T10CG transmitter, PPM signal is always sent by the trainer jack regardless of the modulation mode. ⢠BE SURE that the student and instructor transmitters have identical trim settings and control motions. Verify by switching back and forth while moving the control sticks. ⢠Always remove the student transmitter's RF module (if it is a moduletype transmitter). ⢠When the TRAINER function is active, the snap roll function is deactivated. Other functions, such as IDLE-DOWN and THR-CUT, which have been assigned to the same switch, are not deactivated. Always double check your function assignments prior to utilizing the TRAINER function. ⢠When you select a different model, the TRAINER function is deactivated in the current model for safety reasons. GOAL of EXAMPLE: STEPS: INPUTS: Turn on the TRAINER system and set up Open BASICmenu, then open TRAINER again.) for 1 second. (If ADVANCE, so student has: fully functional control function. to page 2. C to TRAINER. of aileron and elevator to support to OFF. FL APERON a n d AILEVATOR ; n o r m a l Activate TRAINER. control of rudder to allow lowered Choose desired channel(s) and proper C past AIL and ELE (default OK). travel; and no throttle channel control training type(s). to THR, to OFF. (with the instructor for safety). to RUD, to NORM. Close. 7(67VWXGHQWUDGLRIXQFWLRQIXOO\SULRUWRDWWHPSWLQJWRĂ\ Where next? 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP) on student 10CG: see p.42. Reset trims on student 10CG: see p. 48. 47 TRIM submenu: resets and adjust effectiveness of digital trims. The 10CG has digital trims which are different from conventional mechanical trim sliders. Each TRIM LEVER is actually a two-direction switch. Each time the TRIM LEVER is pressed, the trim is changed a selected amount. When you hold the TRIM LEVER, the trim speed increases. The current trim position is graphically displayed on the start up screen. The TRIM submenu includes two functions that are used to manage the trim options. HELI models only: OFFSET is available in the idle ups. If OFFSET is inhibited, adjustment of the TRIM LEVERS will adjust WKHWULPVIRUDOOĂLJKWFRQGLWLRQV,I OFFSET is active, then moving the trims within any one condition will effect only that condition. See OFFSET, p. 102. Trim reset (RESET): electronically centers the trims to their default values. Note that the SUB-TRIM settings and the trim STEP rate are not reset by this command. GOAL of EXAMPLE: STEPS: INPUTS: Reset trims to neutral after having Open BASIC menu, then open TRIM for 1 second. (If ADVANCE, submenu. adjusted all linkages. to TRIM. NOTE: This is one of several Request DQGFRQÂżUPWKHUHVHW. for 1 second. functions for which the radio requires FRQÂżUPDWLRQWRPDNHDFKDQJH Beep sounds. again.) Close. Where next? Adjust SUB-TRIMs: see p. 49. Adjust trim rate (STEP): see below. Adjust END POINTs: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Trim step (STEP): changes the rate at which the trim moves when the TRIM LEVER is activated. It may be set from 1 to 40 units, depending on the characteristics of the aircraft. Most ordinary aircraft do well at about 2 to 10 units. Generally ODUJHUWULPVWHSVDUHIRUPRGHOVZLWKODUJHFRQWUROWKURZVRUIRUÂżUVWĂLJKWVWRHQVXUHVXIÂżFLHQWWULPWRSURSHUO\FRUUHFWWKH PRGHO6PDOOHUWULPVWHSVDUHODWHUXVHGWRDOORZYHU\ÂżQHDGMXVWPHQWVLQĂLJKW GOAL of EXAMPLE: STEPS: INPUTS: Double the sensitivity (larger step) ofthe Open TRIM submenu and choose the for 1 second. (If ADVANCE, AILERON TRIM LEVERS for a first STEP you wish to change. (Ex: aileron) to TRIM. flight of an aerobatic model to ensure to AILE. to 8. sufficient range to trim the model for Adjust the size of the step. (Ex: incr. to 8) OHYHOĂLJKW Repeat as desired for other channels. to ELEV. to new setting. Repeat as needed. Close. Where next? Adjust sub trims: see p. 49. Adjust END POINTs: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. 48 again.) SUB-TRIM: makes small changes or corrections to the neutral position of each servo. Range is -120 to +120, with 0 setting, the default, being no SUB-TRIM. We recommend that you center the digital trims before making SUB-TRIM changes, and that you try to keep all of the SUB-TRIM values as small as possible. Otherwise, when the SUB-TRIMs are large values, the servo's range of travel is restricted on one side. The recommended procedure is as follows: ⢠measure and record the desired surface position; ⢠zero out both the trims (TRIM RESET menu) and the SUB-TRIMs (this menu); ⢠mount servo arms and linkages so that the control surfaceâs neutral is as correct as possible; and ⢠use a small amount of SUB-TRIMWRPDNHÂżQHFRUUHFWLRQV GOAL of EXAMPLE: STEPS: INPUTS: $GMXVWWKHĂDSVHUYR VSUB-TRIM untilits Open BASICmenu, then open SUB-TRIM. again.) for 1 second. (If ADVANCE, center exactly matches the aileron to SUB-TRIM. servo's center, as they are to work Choose the channel to adjust, andadjust C to FLAP WRJHWKHUDVĂDSHURQV XQWLOVXUIDFHVPDWFK ([ĂDS as needed. C to each channel, Repeat for other channels. as needed. Close. Where next? Adjust trim steps: see p. 48. Adjust END POINTs: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. SERVO display and cycle submenu: displays radio's output to channels 1-10. The servo submenu includes two features: ⢠real-time bar-graph display to demonstrate exactly what commands the transmitter is sending to the servos. (This can be particularly handy in setting up models with complicated mixing functions, because the results of each stick, lever, knob, switch input and delay circuit may be immediately seen.) ÂVHUYR F\FOH IXQFWLRQ WR KHOS ORFDWH VHUYR SUREOHPV SULRU WR LQĂLJKW IDLOXUHV (channels 1-8) GOAL of EXAMPLE: STEPS: INPUTS: View the result of reassigning channel C o m p l e t e d e s i r e d p r o g r a m m i n g See AUX-CH for details. (p. 39.) 6 from VR(A) knob to three-position function. (Ex: in AUX-CH, move ch. 6 to SWITCH C) SWITCH C. Cycle the channel 6 servo. Open the SERVO function. for 1 second. (If ADVANCE, again.) to SERVO. Move each control to see exactly how C to center position. operating. (Ex: SWITCH C in all Note change in position of ch. 6 servo. positions) Prepare all servos to be cycled and cycle. Plug in servos. POWER ON. End cycling and close. Where next? 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Set up desired programmable mixes: see p. 61. Set up dual aileron servos: see p. 51. Set up dual elevator servos: see p. 57. 49 FailSafe (loss of clean signal and low receiver battery) submenu (F/S): sets responses in case of loss of signal or low Rx battery. FailSafe (F/S): instructs a 2.4G receiver what to do in the event radio interference is received. Adjustability: ⢠Each channel may be set independently. (2.4G-7CH mode: ch3 only) ⢠The NOR (normal) setting holds the servo in its last commanded position. ⢠The F/S (FailSafe) function moves each servo to a predetermined position. ⢠NOTE: the setting of the throttle's F/S also applies to the Battery F/S (see below). Examples: ⢠The F/SVHWWLQJLVXVHGLQFHUWDLQFRPSHWLWLRQVWRVSLQWKHDLUFUDIWWRWKHJURXQGSULRUWRĂ\LQJDZD\DQGGRLQJSRWHQWLDO GDPDJHHOVHZKHUH&RQYHUVHO\PD\DOVREHXVHGWRJRWRQHXWUDORQDOOVHUYRVKRSHIXOO\NHHSLQJWKHSODQHĂ\LQJDVORQJ as possible. ⢠Competition modelers often maintain the NOR function so that brief interference will not affect their model's maneuver. ⢠Set the throttle channel so that the engine idles when there is interference (ACRO 7KLVPD\JLYHHQRXJKWLPHWRĂ\DZD\ from and recover from the radio interference and minimize damage if crashed. ⢠For helicopters, NOR is typically the safest choice. ⢠We also recommend setting a gasoline engine's electronic kill switch to the OFF position in the F/S function for safety reasons. Updating F/S Settings: If you specify a F/S setting, the FailSafe data is automatically transmitted. When you choose the F/S mode, check that your settings are as desired by turning off the transmitter power switch and verifying that the servos move to the settings that you chose. GOAL of EXAMPLE: STEPS: INPUTS: Change the receiver FailSafe command Open the BASIC menu, then open F/S again.) for 1 second. (If ADVANCE, for channel 8 (gasoline engine kill function. to F/S. switch) to a preset position. Choose Channel to change. (ex: Ch. 8) to Ch 8. N O T E : T h i s i s o n e o f s e v e r a l Set and FRQÂżUP fail safe command. that controls channel 8 to desired functions for which the radio requires OFF position. FRQÂżUPDWLRQWRPDNHDFKDQJH for 1 second to store. Repeat as desired. Close. Where next? Read below for information on Battery FailSafe. Adjust END POINTs to gain proper F/S responses if needed: see p. 39. Adjust SUB-TRIM to gain proper F/S responses if needed: see p. 49. Battery FailSafe (F/S): a second battery low warning feature (separate from the transmitter low voltage warning). When the airborne battery voltage drops below approximately 3.8V, the 2.4G receiverâs battery F/S function moves the throttle to a predetermined position. When the Battery F/S function is activated, your engine will move to idle (if you haven't set a position) or a preset position. You should immediately land. You may temporarily reset the Battery F/S function by moving the THROTTLE STICK to idle. You will have about 30 seconds of throttle control before the battery function reactivates. Adjustability: ⢠NOR F/S setting for throttle results in Battery F/S going to the servo position reached by moving THROTTLE STICK to the bottom with TRIM LEVER centered; ⢠F/S position setting for throttle results in Battery F/S also going to the same throttle servo position as the regular F/S. If using a 6V (5-cell) receiver battery, it is very likely that your battery will be rapidly running out of charge before battery FailSafe takes over. It is not a good idea to count on battery FailSafe to protect your model at any time, but especially when using a 5-cell battery. 50 ACRO ADVANCE MENU FUNCTIONS: Aircraft wing types (ACROGLID): There are 3 basic wing types in aircraft models: ⢠Simple. Model uses one aileron servo (or multiple servos on a Y-harness into a single receiver channel) and has a tail. This is the default setup and requires no specialized wing programming. ⢠Twin Aileron Servos. Model uses 2 aileron servos and has a tail. see Twin Aileron Servos. ⢠Tail-less model (flying wing). Model uses 2 wing servos working together to create both roll and pitch control. see ELEVON. Twin Aileron Servos (with a tail) (ACROGLID): Many current generation models use two aileron servos, plugged into two VHSDUDWHUHFHLYHUFKDQQHOV ,I\RXUPRGHOLVDĂ\LQJZLQJZLWKRXWVHSDUDWHHOHYDWRUVVHHELEVON, p. 56.) %HQHÂżWV ⢠Ability to adjust each servo's center and end points for perfectly matched travel. ⢠Redundancy, for example in case of a servo failure or mid-air collision. ⢠Ease of assembly and more torque per surface by not requiring torque rods for a single servo to drive 2 surfaces. Â+DYLQJPRUHXSDLOHURQWUDYHOWKDQGRZQWUDYHOIRUVWUDLJKWHUUROOVDLOHURQGLIIHUHQWLDO VHHJORVVDU\IRUGHÂżQLWLRQ Â8VLQJWKHWZRDLOHURQVQRWRQO\DVDLOHURQVEXWDOVRDVĂDSVLQZKLFKFDVHWKH\DUHFDOOHGĂDSHURQV ⢠Set a negative percentage to reverse the operation of one of the servos. Options: ⢠FLAPERON: â˘Uses CH6 for the second servo. Â$OORZVĂDSDFWLRQDVZHOODVDLOHURQDFWLRQIURPWKHDLOHURQV â˘Provides FLAP-TRIMIXQFWLRQWRDGMXVWWKHQHXWUDOSRLQWRIWKHĂDSHURQVIRUOHYHOĂLJKW â˘Also allows aileron differential in its own programming (instead of activating AIL-DIFF). ⢠Aileron Differential (AIL-DIFF): â˘Uses CH7 for the 2nd servo. Â/HDYHV&+ &+IUHHIRUĂDSRSHUDWLRQVXFKDVĂDSHURQDQGĂDSDFWLRQWRJHWKHULQAIRBRAKE. (see p. 63). â˘Allows for more up aileron travel than down for straighter rolls. You will need to choose which of FLAPERON or AIL-DIFF is the better choice for your model's setup. If you need the ailerons WRDOVRRSHUDWHDVĂDSV\RXPRVWOLNHO\ZDQWWRXVH FLAPERON,I\RXUPRGHOKDVDLOHURQVHUYRVDQGĂDSVWKHQ AIL-DIFF is probably the easiest choice. (For details on setting up a complex aerobatic plane, such as one with 4 wing servos using IXOOVSDQDLOHURQVDQGIXOOVSDQĂDSVDVZHOODVAIRBRAKEFURZDQGRWKHUIHDWXUHVSOHDVHYLVLWRXU)$4DWZZZIXWDEDUF com\faq\. Many other setup examples are also available at this location.) NOTE: Only one of the three wing-type functions (FLAPERON, AIL-DIFF, and ELEVON) can be used at a time. All three IXQFWLRQVFDQQRWEHDFWLYDWHGVLPXOWDQHRXVO\7RDFWLYDWHDGLIIHUHQWZLQJW\SHWKHÂżUVWPXVWEHGHDFWLYDWHG GOAL of EXAMPLE: STEPS: De-activate FLAPERON so that AIL-DIFF or Open the FLAPERON function. ELEVON can be activated. De-activate the function. INPUTS: for 1 second. (If BASIC, to FLAPERON. to MIX. Close function. Where next? Set up AILE-DIFF (see p. 54) or ELEVON (see p. 56). 51 to INH. again.) Using FLAPERON (ACROGLID 1A+1F ): (ACRO) (GLID 1A+1F) The FLAPERONPL[LQJIXQFWLRQXVHVRQHVHUYRRQHDFKRIWKHWZRDLOHURQVDQGXVHVWKHPIRUERWKDLOHURQDQGĂDSIXQFWLRQ )RUĂDSHIIHFWWKHDLOHURQVUDLVHORZHUVLPXOWDQHRXVO\2IFRXUVHDLOHURQIXQFWLRQ PRYLQJLQRSSRVLWHGLUHFWLRQV LVDOVR performed. [Note] When changing the polarity of a rate, "change rate dir?" is displayed for a check. Please set up after pressing DIAL for 1 second and canceling an alarm display. (GLID only) Once FLAPERONLVDFWLYDWHGDQ\WLPH\RXSURJUDP&+RUĂDS LH ELEVATOR-FLAP mixing), the radio commands both VHUYRV WR RSHUDWH DV ĂDSV7KH DPRXQW RI WUDYHO DYDLODEOH DV ĂDSV LV LQGHSHQGHQWO\ DGMXVWDEOH LQ FLAPERON. A trimming feature is also available (see FLAP-TRIM WR DGMXVW ERWK QHXWUDO SRVLWLRQV WRJHWKHU IRU VWUDLJKWDQGOHYHO ĂLJKW RU VOLJKW LQFUHDVHVGHFUHDVHVRIWKHĂDSDQJOHEND POINT and SUB-TRIM both still adjust each servo individually. Adjustability: ⢠Each aileron servo's up travel can be set separate from its down travel, creating aileron differential. (See example). Â(DFKDLOHURQVHUYR VWUDYHOZKHQDFWXDWHGDVDĂDSLVVHSDUDWHO\DGMXVWDEOH ⢠The separate FLAPERON settings for each condition can be set. (GLID) 127($FWLYDWLQJĂDSHURQVRQO\PDNHVWKHDLOHURQVZRUNDVDLOHURQVDQGWHOOVWKHUDGLRKRZIDU\RXZDQWWKHPWRPRYH DVĂDSV,)\RXWKHQDFWLYDWHRWKHUSURJUDPPLQJWKDWPRYHVWKHPDVĂDSV FLAP-TRIMLVWKHĂDSWULPPLQJIHDWXUHWKDWDOORZVWKHĂDSVWRPRYHLQUHDFWLRQWRWKHFKDQQHOFRQWURO,WLVPHDQWRQO\ IRUWULPPLQJWKHĂDSV FHQWHUEXWFDQDOVREHXVHGDVIXOOĂDSFRQWURO 6HHS AIRBRAKELVDIHDWXUHWKDWGURSVĂDSHURQVDVĂDSDQGDOVRFRPSHQVDWHVZLWKHOHYDWRULIGHVLUHG 6HHS ELEVATOR-FLAPZRXOGDGGHOHYDWRUPL[LQJLQWRWKHĂDSPRYHPHQWIURPWKHĂDSGLDODIWHUFLAP-TRIM is activated. GOAL of EXAMPLE: STEPS: Activate twin aileron servos, FLAPERON. Open the FLAPERON function. Input 10% less down travel than up travel (aileron differential) within the Activate the function. FLAPERON programming. (Decrease right Optional: adjust the up/down travel aileron is down travel to 90%, decrease separately for the 2 servos.(Ex: 90% left aileron's down travel to 90%.) down.) INPUTS: for 1 second. (If BASIC, again.) to FLAPERON. to MIX. to ACT. to AIL1. AILERON STICK. to 90%. $GMXVWWRWDOĂDSWUDYHODYDLODEOHWR of aileron travel available. to AIL2. AILERON STICK. to 90%. Optional: adjust the aileron's travel so WKH\PRYHDVĂDSV ([HDFKVHUYRĂDS travel to 50%.) to FLP2. to +50%. to FLP1. to -50%. Close menu. Where next? Set FLAP-TRIM: see p. 53. Set up AIRBRAKE mix: see p. 63. 0L[ĂDSHURQ VĂDSPRWLRQWRDQRWKHULQERDUGĂDS SOXJJHGLQWRDX[ VHHS 9LHZDGGLWLRQDOPRGHOVHWXSVRQWKHLQWHUQHWZZZIXWDEDUFFRPIDT * If you receive an error message that OTHER WING MIXING IS ON, you must deactivate AIL-DIFF or ELEVON. see p. 51. 52 Using FLAP-TRIM FDPEHU WRDGMXVWĂDSHURQV (ACROGLID ) (ACRO) (GLID) FLAP-TRIM assigns the primary flaperon control [defaults to VR(A)] to allow trimming in flight of the flap action of ĂDSHURQV 1RWHHYHQLIFLAP-TRIM is made active with AIL-DIFF, it will not have any effect. The ONLY function that allows FRQWURORIWKHDLOHURQVDVĂDSVLQWKH AIL-DIFFFRQÂżJXUDWLRQLV AIRBRAKE.) Most modelers use AIRBRAKE, or programmable PL[HVWRPRYHWKHĂDSVWRDVSHFLÂżHGSRVLWLRQYLDPRYHPHQWRIDVZLWFK FLAP-TRIMPD\DOVREHXVHGDVWKHSULPDU\ĂDSFRQWUROLQĂLJKW%\GRLQJVR\RXFDQDVVLJQ&+WRDSRVLWLRQVZLWFK ZLWK D VSRLOHURQ QHXWUDO DQG IODSHURQ SRVLWLRQ DQG HYHQ DGMXVW WKH SHUFHQWDJH WUDYHOHG DV IODSHURQVSRLOHURQ E\ changing the Flap Trim travel. (Note that there is only one setting, not independent settings for up and down travel.) GOAL of EXAMPLE: STEPS: INPUTS: Add FLAP-TRIM to allow the model's Open the FLAP-TRIM function. again.) for 1 second. (If BASIC, DLOHURQVWREHWULPPHGWRJHWKHUDVĂDSV to FLAP-TRIM. at any time during the flight,with a maximum travel of 5%RIWKHWRWDOĂDSThe function is automatically activated with FLAPERON; however, the default travel is 0. travel set in FLAPERON. Adjust the travel available to the to 5%. flaperons when turning the CH6 DIAL.(Ex: 5%). Optional: Use as total flap control. Reassign CH6 is primary control in AUX-CHWR\RXUGHVLUHGĂDSFRQWURO (Ex: right slider) to 50%. to AUX-CH. to CH6. to Vr-E. Close menu. Where next? Adjust individual servo's SUB-TRIMs: see p. 49 and END POINTs: see p. 39. Set up AIRBRAKE mix: see p. 63 and ELEV-FLAP mix: see p. 62. 0L[ĂDSHURQ VĂDSPRYHPHQWWRDQDGGLWLRQDOLQERDUGĂDS SOXJJHGLQWRDX[ see p. 61. View additional model setups on the internet: www.futaba-rc.com\faq\. 53 Using Aileron Differential (AILE-DIFF)(ACROGLID 2A+1FGLID 2A+2F): (ACRO) (GLID 2A+1FGLID 2A+2F) $LOHURQGLIIHUHQWLDOLVSULPDULO\XVHGRQRUVHUYRZLQJVZLWKRQHVHUYR V RSHUDWLQJLQERDUGĂDS V RQ&+RU&+ & CH6, and AILE-DIFF controlling proper aileron operation of 2 aileron servos, plugged into CH1 and CH7. The ailerons FDQQRWEHPRYHGOLNHĂDSVZKHQXVLQJAILE-DIFF, except if using AIRBRAKE (see p. 63.) (Note that even if you make FLAPTRIM active while using AILE-DIFF, it will not have any effect. ONLY AIRBRAKEFRQWUROVWKHDLOHURQVDVĂDSVLQWKHAILE-DIFF FRQÂżJXUDWLRQ >1RWH@ :KHQ FKDQJLQJ WKH SRODULW\ RI D UDWH LQ FDPEHUĂDS FKDQJH UDWH GLU" LV GLVSOD\HG IRU D FKHFN Please set up after pressing DIAL for 1 second and canceling an alarm display. (GLID only) Â)/$3IXQFWLRQDOORZV\RXWRVHWXSRUVHUYRVIRUĂDSDFWLRQ ⢠The separate AILE-DIFF settings for each condition can be set. (GLID only) GOAL of EXAMPLE: STEPS: INPUTS: Activate twin aileron servos using AIL- Open the AIL-DIFF function. again.) for 1 second. (If BASIC, DIFF. to AIL-DIFF. Note that the function defaults to no to MIX. to ACT. difference in down travel vs. up travel. Activate the function. If you want differential travel, simply 2SWLRQDO DGMXVW WKH XSGRZQ WUDYHO C to AILERON STICK. AIL1. adjust each side. (Ex: 90%) separately for the 2 servos. to 90%. (Ex: adjust to 90%.) to AIL2. AILERON STICK. to 90%. Close menu. Where next? Adjust individual servo's SUB-TRIMs: see p. 49 and END POINTs: see p. 39. Set up AIRBRAKE mix: see p. 63. Set up ELEV-FLAPPL[ RQO\LIPRGHOKDVDĂDSVHUYRLQ&+ VHHS Set up SNAP-ROLL Function: see p. 59. View additional model setups: www.futaba-rc.com\faq\. *If you receive an error message that OTHER WING MIXING IS ON, you must deactivate ELEVON or FLAPERON. See p. 51. 54 Using Twin Aileron Servos, AILE-2 (ACROGLID ): AILE-2 only tells the radio that you are using CH5 and CH6 (FLAPERON), or CH5 and CH7 (AIL-DIFF), not CH6 or CH7, as the second servo in FLAPERON or AILEDIFF. You still must activate and set up the FLAPERONAILE-DIFF function. Note that selecting CH6&5 or CH7&5 does NOT free up CH6 or CH7 to be used for other functions when using a receiver with more than 5 channels. Both 5 and 6 (FLAPERON AILE-DIFF) are dedicated to the FLAPERON or AILE-DIFF programming. >7KLVLVEHQHÂżFLDOZLWKIRXUDLOHURQVHUYRVWKDWQHHGWRKDYHWKHLUHQGSRLQWVRUVXEWULPVVHWVHSDUDWHO\&+&+DQG CH6 are already fully set up to operate as ailerons. Mix CH7 or CH8 (the second aileron servo on the other side) into ailerons to function properly.] GOAL of EXAMPLE: STEPS: Adjust the second aileron servo output Open the PARAMETER submenu. from CH6or7 to channels CH6&5. Allows twin aileron servo operation Select AILE-2 and change to CH6&5. with a 5-channel receiver. Close menu. Where next? INPUTS: for 1 second. (If ADVANCE, to PARAMETER. to AILE-2. to CH6&5. Finish setting up FLAPERON or AILE-DIFF. see Twin Aileron Servos: p. 51. View additional model setups on the internet: www.futaba-rc.com\faq\ 55 again.) Aircraft tail types (ACROGLID): There are 4 basic tail types in aircraft models: ⢠Simple. Model uses one elevator servo and one rudder servo (or multiple servos on a Y-harness). This is the default. ⢠Dual Elevator servos. Model uses 2 elevator servos. see AILEVATOR (ACRO) see p. 57. ⢠Tail-less model. Model uses 2 wing servos together to create roll and pitch control. see ELEVON(ACROGLID 1A+1F). see p. 56. ⢠V-TAIL. Model uses 2 surfaces, at an angle, together to create yaw and pitch control. see V-TAIL (ACROGLID). see p. 58. Note: Only one of the three tail-type functions (AILEVATOR, V-TAIL, and ELEVON) can be used at a time. The radio provides a ZDUQLQJDQGZLOOQRWDOORZWKHDFWLYDWLRQRIDQRWKHUWDLOW\SHXQWLOWKHÂżUVWLVGHDFWLYDWHG$QHUURUPHVVDJHRIOTHER WING MIXING IS ON will display. (See the wing type example on page 51.) Using ELEVON(ACROGLID 1A+1F XVHGZLWKGHOWDZLQJVĂ\LQJZLQJVDQGRWKHUWDLOOHVVDLUFUDIWWKDWFRPELQHDLOHURQDQG HOHYDWRU IXQFWLRQV XVLQJ WZR VHUYRV RQH RQ HDFK HOHYRQ7KH DLOHURQHOHYDWRU UHVSRQVHV RI HDFK VHUYR FDQ EH DGMXVWHG independently. This is also popular for ground model use, such as tanks, which drive two motors together for forward, and RQHPRWRUIRUZDUGRQHEDFNZDUGIRUWXUQLQJ Adjustability: ⢠Requires use of CH1 and CH2. ⢠Independently adjustable aileron travel allows aileron differential. ⢠Independently adjustable elevator travel allows for differences in up vs. down travel. ⢠The separate ELEVON settings for each condition can be set. (GLID only) [Note] When changing the polarity of a rate, "change rate dir?" is displayed for a check. Please set up after pressing DIAL for 1 second and canceling an alarm display. (GLID only) (ACRO) NOTE: If ELEVON is active, you cannot activate FLAPERON , AILE-DIFF , or AILEVATOR. An error message OTHER WING MIXING IS ON displays and you must deactivate the last function to activate ELEVON. (GLID 1A+1F) 127(%HVXUHWRPRYHWKHHOHYDWRUDQGDLOHURQVWLFNVWRIXOOGHĂHFWLRQGXULQJ setup. If large travels are specified, when the AILERON and ELEVATOR STICKS are moved at the same time the controls may bind or run out of travel. For details on setting up a complex aerobatic plane, please visit www.futabarc.com\faq\. Many other setup examples are also available at this location. ) GOAL of EXAMPLE: STEPS: Activate ELEVON. Open the ELEVON function. Adjust aileron down travel to 90% of up travel, creating aileron differential. Activate the function. Optional: adjust the up/down travel separately for the servos as ailerons. (Ex: down to 90%.) INPUTS: for 1 second. (If BASIC, again.) to ELEVON. to MIX. to ACT. to AIL1. AILERON STICK. to 90%. to AIL2. AILERON STICK. to 90%. Optional: adjust the elevator travel of each servo. (Ex: right servo elev. travel to 98%, left to 105%.) to ELE2. to 98%. to ELE1. to 105%. Close menu. Where next? Adjust individual servo's SUB-TRIMs: see p. 49 and END POINTs: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. View additional model setups on the internet: www.futaba-rc.com\faq.html 56 Dual Elevator Servos (with a rudder) (AILEVATOR) (ACRO): Many models use two elevator servos, plugged in separate receiver channels. (Flying wings without a separate aileron control use ELEVON. V-shaped tail models use V-TAIL, p. 58. %HQHÂżWV ⢠Ability to adjust each servo's center and end points for perfectly matched travel. ⢠Ease of assembly, not requiring torque rods for a single servo to drive 2 surfaces. Â(OHYDWRUVDFWLQJDOVRDVDLOHURQVIRUH[WUHPHVWXQWĂ\LQJRUPRUHUHDOLVWLFMHW Ă\LQJ RSWLRQDO ⢠Redundancy, for example in case of a servo failure or mid-air collision. Adjustability: ⢠CH2 and CH8 only. (With programmable mixing, could utilize CH5 as the 2nd elevator servo. See www.futaba-rc.com\ faq\ for examples.) THROTTLE-NEEDLE uses CH8 and cannot be active simultaneously. ⢠Direction of each servo's travel may be reversed in REVERSE or the set percentages may be reversed here. ⢠Elevator travels independently adjustable (both directions and percent). ⢠Optional action as ailerons (defaults to 50% UHVSRQVH 7KLV UHVSRQVH FDQQRW EH DFWLYDWHGGHDFWLYDWHG LQ ĂLJKW 6HWWLQJ AIL1 and 2 to 0GLVDEOHVWKLVIHDWXUH1RWHLI\RXZDQWWKLVEXWRQRIIZLWKDVZLWFKVHW AIL1 and 2 to 0 here, and use 2 mixes . AIL-to-ELEV and AIL-to-AUX2 OLQNWULPRIIDVVLJQDVZLWFK WRJHWDLOHURQDFWLRQIURPWKHHOHYDWRUVHUYRVZKHQWKH assigned switch is on. See p. 68. )RUGHWDLOVRQVHWWLQJXSDFRPSOH[DHUREDWLFSODQHVXFKDVRQHZLWKZLQJVHUYRVIXOOVSDQDLOHURQVĂDSV AIRBRAKE/ crow etc, please visit www.futaba-rc.com\faq\. Many other setups are also available.) The AILEVATOR mixing function uses one servo on each of the two elevators, and combines the elevator function with the aileron function (unless aileron travel is set to 0). For aileron effect, the elevators are raised and lowered opposite of one another in conjunction with the ailerons. Once AILEVATORLVDFWLYDWHGXQOHVV\RX]HURRXWWKHDLOHURQÂżJXUHV VHHEHORZ DQ\WLPH\RXPRYH\RXUDLOHURQVRUDQ\ programming moves your ailerons (ie. RUDDER-AILERON mixing), the radio automatically commands both elevator servos to also operate as ailerons. To deactivate this action, simply set the 2 aileron travel settings to 0 in the AILEVATOR function. This way the elevators will work only as elevators. ,IXVLQJWKHHOHYDWRUVDVDLOHURQVDVZHOOEHVXUHWRPRYHWKHHOHYDWRUDLOHURQVWLFNZKLOHFKHFNLQJWKHVHUYRPRWLRQV,ID ODUJHWUDYHOLVVSHFLÂżHGZKHQWKHVWLFNVDUHPRYHGDWWKHVDPHWLPHFRQWUROVPD\ELQGRUUXQRXWRIWUDYHO GOAL of EXAMPLE: STEPS: INPUTS: Activate twin elevator servos.Deactivate Open the AILEVATOR function. for 1 second. (If BASIC, the elevator-acting-as-ailerons portion to AILEVATOR. of this function. Activate the function. to MIX. to ACT. Note: Depending upon your model's Optional: adjust up/down travel when C to to 0%. AIL3. geometry, you may need to reverse one operating as ailerons. (Ex: 0.) to AIL4. to 0%. servo or set a negative percentage here. Optional: adjust total elevator travel C to ELE2. to 98%. of each servo. (Ex: right servo elevator C to ELE1. to 96%. travel to 98%, left to 96%.) again.) Close menu. Where next? Adjust individual servo's SUB-TRIMs: see p. 49 and END POINTs: see p. 39. Set up Twin Aileron Servos: see p. 51. Set up AIRBRAKE mix: see p. 63. 57 Using V-TAIL (ACROGLID): V-TAIL mixing is used with v-tail aircraft so that both elevator and rudder functions are combined for the two tail surfaces. Both elevator and rudder travel can be adjusted independently on each surface. NOTE: If V-TAIL is active, you cannot activate ELEVON or AILEVATOR functions. If one of these functions is active, an error message will be displayed and you must deactivate the last function prior to activating ELEVON. see the wing example on page 51. NOTE: Be sure to move the elevator and rudder sticks regularly while checking the servo motions. If a large value of WUDYHOLVVSHFLÂżHGZKHQWKHVWLFNVDUHPRYHGDWWKHVDPHWLPHWKHFRQWUROVPD\ELQGRUUXQRXWRIWUDYHO'HFUHDVHWKH travel until no binding occurs. Adjustability: ⢠Requires use of CH2 and CH4. ⢠Independently adjustable travels allow for differences in servo travels. ⢠Rudder differential is not available. (To create rudder differential, set RUD1 and 2 to 0, then use two programmable mixes, RUD-ELE and RUD-RUD, setting different percents for up and down. These are your new rudder travels. Trim and link off, switch assignment null so you canât accidentally turn off rudder. see PROG.MIX, p. 68.) (For details on setting up a complex plane, such as one with a v-tail AND a separate steerable nosewheel, please visit our FAQ at www.futaba-rc.com\faq\. Many other setup examples are also available at this location.) GOAL of EXAMPLE: Activate V-TAIL. STEPS: Open the V-TAIL function. Adjust left elevator servo to 95% travel Activate the function. to match to right servo's travel. INPUTS: for 1 second. (If BASIC, to V-TAIL. to MIX. again.) to ACT. optional: adjust the travels separately C to ELE1. to 95%. for the 2 servos as elevators. (Ex: set Repeat as necessary for other servos. left to 95%.) Close menu. Where next? Adjust END POINTs: see p. 32 and SUB-TRIMs: see p. 49. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Set up ELEV-FLAP mix: see p. 62. View additional model setups on the internet: www.futaba-rc.com\faq\. 58 6QDS5ROOVDWWKHĂLFNRIDVZLWFK SNAP-ROLL) (ACRO): 7KLV IXQFWLRQ DOORZV \RX WR H[HFXWH VQDS UROOV E\ ĂLSSLQJ D VZLWFK SURYLGLQJ the same input every time. It also removes the need to change dual rates on the 3 channels prior to performing a snap, as SNAP-ROLL always takes the servos to the same position, regardless of dual rates, inputs held during the snap, etc. Note: Every aircraft snaps differently due to its C.G., control throws, moments, etc. Some models snap without aileron; others snap on elevator alone. Most models snap most precisely with a combination of all 3 surfaces. Additionally, rate of speed and acceleration when using the snap switch will affect how the model snaps. For information on using gyros with airplanes for cleaner precision maneuvers, such as snaps and spins without over rotation, see p. 74. Adjustability: ⢠Travel: Adjust the amount of elevator, aileron and rudder travel automatically applied. ⢠Range: -120 to +120 on all 3 channels. Default is 100% of range of all 3 channels. ⢠Directions:8SWRVHSDUDWHVQDSVPD\EHVHWXSRQHIRUHDFKRIWKHGLUHFWLRQFKRLFHV XSULJKWGRZQULJKWXSOHIW GRZQOHIW (DFKVQDSLVIXOO\DGMXVWDEOHUHJDUGLQJWUDYHOVDQGGLUHFWLRQRQHDFKRIWKHFKDQQHOV Note: for simplicity, the radio refers to snaps that use âUPâ or positive elevator as âUâ or âUPâ snaps. This is more commonly referred to as a positive or inside snap. âDâ or âDOWNâ snaps are more commonly referred to as negative or outside snaps. ⢠R/U = Right positive R/D = Right negative L/U = Left positive L/D = Left negative snap roll ⢠Assignment of the 2 switches (DIR-SW1/2) to change snap directions is fully adjustable and optional. If you wish to have only one snap, leave the switches as NULL. (If assigned, SW1 XSGRZQSW2 OHIWULJKW ⢠Caution: it is critical that you remember if you assigned switches to select the three additional snaps. ⢠For example, assign SWITCH A IRU 8' VQDS GLUHFWLRQ DQG WKHQ DOVR DVVLJQ SWITCH A for elevator dual rates. :KLOHĂ\LQJRQHOHYDWRUORZUDWH SWITCH A DOWN) you pull your snap SWITCH. The model will: â˘use the throws set in the snap programming (the low rate elevator has no effect); and ÂEHDGRZQ QHJDWLYHRXWVLGH VQDSQRWDQXS SRVLWLYHLQVLGH VQDS â˘Both of these may come as a great surprise and risk crashing if you are unprepared. ⢠Safety Switch (SAFE-MOD): a safety may be set up on your landing gear SWITCH, preventing accidental snap rolls while the landing gear is down. The safety switch is turned on and off with the landing gear SWITCH. ⢠ON: the safety mechanism is activated when the landing gear SWITCH is in the same position as at the time this feature is changed to ON. Snap rolls will not be commanded even if the snap roll SWITCH is turned on with the gear SWITCH in this position. When the landing gear SWITCH is moved to the opposite position, snap rolls may be commanded. ⢠OFF: activates the safety mechanism in the opposite position from the ON function. ⢠FREE: the safety mechanism is completely turned off. Snaps can be commanded regardless of the gear SWITCH POSITION. Note: The location of the safety switch always follows channel 5. If channel 5 is reassigned to switch C, for example, switch C is now the safety. If channel 5 is nulled or used as the second aileron servo, the safety function will not be available. ⢠Trainer Safety: SNAP-ROLL is automatically disabled when the trainer function is activated. 59 GOAL of EXAMPLE: STEPS: INPUTS: A c t i v a t e S N A P - R O L L . A d j u s t Open the SNAP-ROLL function. again.) for 1 second. (If BASIC, elevatortravel to 55%, rudder travel to to SNAP-ROLL. 120% LQ WKH ULJKWXS VQDS $FWLYDWH to MIX. to OFF or ON. SAFE-MOD so snaps can not be performed Activate the function. when gear is down. Adjust the travels as needed. (Ex: C to ELEV. to 55%. elevator to 55%, rudder to 120%.) to RUDD. to 120%. $GMXVW UXGGHU WUDYHO LQ WKH OHIWGRZQ snap to 105%. Optional: Activate SAFE-MOD . [Ex: E or G up. C to SAFE-MODE ON when SWITCH E (10CAG) or to ON. (Note: using negative percents can G (10CHG) is down, meaning snap change any of the 4 snap directions. For function is deactivated when that switch snap switch. example, change snap 1 to "down" by is in the down position.] Notice MIX reading is still OFF. changing the elevator percent to -100%.) E or G down. Notice MIX reading changes to ON. Optional: Assign switches to up/down and left/right. (Ex: Change to the left/ down snap and adjust rudder to 105%.) to SW1. to A. to SW2. to B. A down B down. Repeat steps above to set percentages. Close menu. Where next? Set up programmable mixes: see p. 61. View additional setups on the internet:www.futaba-rc.com\faq\. 60 MIXES: the backbone of nearly every function Mixes are special programs within the radio that command one or more channels to act together with input from only one source, such as a stick, slider or knob. There are a variety of types of mixes. Types: ⢠Linear: Most mixes are linear. A 100% linear mix tells the slave servo to do exactly what the master servo is doing, using 100% of the slave channelâs range to do so. An example is FLAPERONZKHQDLOHURQVWLFNLVPRYHGWKHĂDSVHUYRLVWROG to move exactly the same amount. A 50% linear mix would tell the slave servo, for example, to move to 50% of its range when the masterâs control is moved 100%. (see p. 52.) ⢠Offset: An OFFSETPL[LVDVSHFLDOW\SHRIOLQHDUPL[:KHQWKHPL[LVWXUQHGRQ XVXDOO\DĂLSRIDVZLWFK WKHVODYH servo is moved a set percent of its range. An example of this is AIRBRAKEPRYLQJĂDSVĂDSHURQVDQGHOHYDWRUDOOWRD VHWSRVLWLRQDWWKHĂLSRIDVZLWFK VHHS ⢠Curve: Curve mixes are mostly used in helicopters, but may also be used in airplanes and gliders. An example is THROTTLE-NEEDLE mixing, where the in-flight needleâs servo is moved, changing the mixture, as the throttle servo is moved. (see p. 65.) ⢠Delay: Delay mixes are part of a few very special functions that make the servo move to its desired range more slowly. THROTTLE DELAY (simulates turbine engines, p. 66) and the elevator delay in AIRBRAKE are two examples of this (see p. 62). DELAY in HELI (see p. 103) is another example that slows the servo movement to the trim settings for the other conditions. (VVHQWLDOO\HYHU\IHDWXUHLQWKHUDGLRÂśVSURJUDPPLQJLVUHDOO\DPL[ZLWKDOODVVLJQPHQWVSURJUDPPLQJVHWXSDQGUHDG\ to use. Additionally, the 10CG ACRO and GLID programs both provide 4 linear and 4 curve fully-programmable mixes (HELISURYLGHVOLQHDUDQGFXUYH WKDWDOORZ\RXWRVHWXSVSHFLDOPL[HVWRUHVROYHĂLJKWGLIÂżFXOWLHVDFWLYDWHDGGLWLRQDO functions, etc. Letâs look quickly at a few examples that are features weâve already covered. This may help to clarify the mix types and the importance of mixes. Additional examples: ⢠Exponential is a preprogrammed curve mix that makes the servosâ response more (+) or less (-) sensitive around center stick (works in conjunction with dual rate, a linear mix that adjusts the total range). see D/R,EXP, p. 42. ⢠IDLE-DOWN and THR-CUT are two OFFSET pre-programmed mixes. These tell the throttle servo, when below a certain point, to move toward idle an additional set percentage to help close the carburetor. see p. 40. ⢠ELEV-TO-FLAP PL[LQJ LV D SUHSURJUDPPHG OLQHDU PL[ WR PRYH WKH ĂDSV SURSRUWLRQDOO\ WR HOHYDWRU FRQWURO KHOSLQJ WKH model loop even tighter than it can on elevator alone. (see p. 62.) ⢠THROTTLE-NEEDLE mixing is a curve mix (like PROG.MIX 5 to 8 IRUSURSHULQĂLJKWQHHGOHVHWXS VHHS ⢠THROTTLE DELAY mixing is a pre-programmed delay mix that slows down the response of the CH3 servo. (see p. 66.) Next, we'll get an in-depth look at some pre-programmed mixes (PL[HV ZKRVH FKDQQHOV DUH SUHGHÂżQHG E\ )XWDED IRU simplicity) weâve not covered yet, and last, look at the fully-programmable mix types. 61 ELEV-FLAP mixing (ACROGLID): ELEV-FLAPPL[LQJLVWKHÂżUVWSUHSURJUDPPHGPL[ZH OOFRYHU7KLVPL[PDNHV WKH ĂDSV GURS RU ULVH ZKHQHYHU WKH ELEVATOR STICK is moved. It is most commonly used to make tighter pylon turns or squarer corners in maneuvers. In PRVWFDVHVWKHĂDSVGURRS DUHORZHUHG ZKHQXSHOHYDWRULVFRPPDQGHG (ACRO) Adjustability: ⢠Rate IXOO XS ĂDS WR IXOO GRZQ ĂDS ZLWK D GHIDXOW RI RQHKDOIRIWKHĂDSUDQJHLVDFKLHYHG when the ELEVATOR STICK is pulled to provide full up elevator.) ⢠Switch: fully assignable. Also LOGIC SW (Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. *IF you set it to NULL, the mix does not work. (ACRO) (GLID) â˘Range (GLID): The range that mixing does not work near neutral of an elevator stick can be set up. Hold the stick to the desired point (upper or lower side) , then press DIAL and hold one second to set the range. ⢠Condition (GLID): The separate ELEV-FLAP settings for each condition can be set. GOAL of EXAMPLE: STEPS: Activate ELEV-FLAP mixing. Adjust flap Open the ELEV-FLAP function. travel to 0%ĂDSVZLWKQHJDWLYHHOHYDWRU (push) and 45% flaps with positive Activate the function. elevator. Adjust the travels as needed. (Ex: 0%,to 45%.) INPUTS: for 1 second. (If BASIC, to ELEV-FLAP. to MIX. to RATE. to ACT. ELEVATOR STICK. to 0%. ELEVATOR STICK. to 45%. Close menu. Where next? $GMXVWĂDSHURQV ĂDSWUDYHODYDLODEOH FLAPERON): see p. 52. Set up AIRBRAKE FURZEXWWHUĂ\ VHHS Set up programmable mixes (ex: FLAP-ELEVATOR): see p. 68. View additional setups on the internet: www.futaba-rc.com\faq\. 62 again.) AIRBRAKEBUTTERFLY (crow) mixing (ACROGLID): (ACRO) (GLID) Like FLAPERON and AILEVATOR, AIRBRAKE is one function that is really made up of a series of pre-programmed mixes all done for you within the radio. AIRBRAKE(often called "crow" or BUTTERFLY - see GLID, p. 80 for details) simultaneously PRYHVWKHĂDS V LILQVWDOOHG WZLQDLOHURQV LILQVWDOOHG DQGHOHYDWRU V DQGLVXVXDOO\XVHGWRPDNHVWHHSGHVFHQWVRUWR limit increases in airspeed in dives. 7KLVIXQFWLRQLVRIWHQXVHGHYHQRQPRGHOVZLWKRXWĂDSVDVDQHDV\ZD\WRXVHWKHĂDSHURQVDQG FLAP-ELEVATOR mixing together. Adjustability: ⢠Activation: Proportional by moving the THROTTLE STICKRUVHWSRVLWLRQVE\ĂLSSLQJWKHDVVLJQHGVZLWFK ⢠Switch: Mix SWITCH is selectable. *Also LOGIC SW (Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. ⢠Linear(Inversely proportional to THROTTLE STICK): provides a proportional increase in amount of AIRBRAKE action as THROTTLE STICK is lowered and assigned switch is on. Provides gradually more AIRBRAKE as you slow the engine. Includes selectable stick position where AIRBRAKE begins, gradually increasing to the same setting as the THROTTLE STICK is lowered. If you would like to have the airbrake be directly proportional to throttle stick, you will need to reverse the THR-REV function. Note that this changes the throttle stick direction for all models. See page 38 for instructions. ⢠Offset: Provides AIRBRAKE response immediately upon switch movement, going to a pre-set travel on each active channel ZLWKRXWDQ\PHDQVRILQĂLJKWDGMXVWPHQW ⢠During Airbrake operation, the elevator travel is displayed on the elevator trim display in the Startup screen. ⢠Delayed reaction: You can suppress sudden changes in your model's attitude when AIRBRAKEBUTTERFLY is activated by setting the delay (delay-ELEV LWHP WR VORZ GRZQ WKH HOHYDWRU UHVSRQVH DOORZLQJ WKH ĂDSVDLOHURQVHOHYDWRU WR DOO reach their desired end point together. A setting of 100% slows the servo to take approximately one second to travel the prescribed distance. (GLID: B.FLY-ELEV function) ⢠$GMXVWDEOHLQĂLJKW ACRO): Using the aileron (when AILE-DIFF or FLAPERONLVDFWLYDWHG DQGHOHYDWRUWULPOHYHULQĂLJKW can be set to adjust the aileron and elevator settings in your airbrake rather than adjusting the model's actual aileron and HOHYDWRUWULP7KLVDOORZVHDV\DGMXVWPHQWIRUDQ\EDOORRQLQJZKLOHLQĂLJKW:KHQWKHDLUEUDNHVZLWFKLVPRYHGWRRII the trims are again adjusting the normal elevator trim. ⢠Channels controlled(OHYDWRU V WZLQDLOHURQVDQGĂDS V PD\EHVHWLQGHSHQGHQWO\LQ AIRBRAKE, including set to 0 to have no effect. ⢠Twin aileron servos: If FLAPERON, ELEVON and AIL-DIFF functions are inhibited, then AIL1 and AIL2 settings will have no effect. ⢠If FLAPERON is active, the travel of the ailerons can be independently adjusted for the servos plugged into CH1 and &+7KHĂDSFKRLFHKDVQRHIIHFWRQWKHĂDSHURQV ⢠If AIL-DIFF is active, then CH1 and CH7 may be independently adjusted. ⢠Normally both ailerons are raised equally in AIRBRAKE, and the elevator motion is set to maintain trim when the ailerons rise. Different amounts may be set for each aileron to correct for torque reactions and other unique characteristics of the model. Be sure you understand what dropping ailerons will do when in AIRBRAKEBUTTERFLY. Along with creating an enormous amount of drag (desireble for spot landings), this also creates "wash-in", a higher angle of attack where the ailerons are, and cncourages tip stalling. If you are using this for aerobatic performance and not "sudden stops", FRQVLGHUUDLVLQJWKHDLOHURQVDQGGURSSLQJWKHĂDSVLQVWHDGDVVKRZQLQWKHGLDJUDPDERYH 63 ⢠Twin elevator servos: ⢠If AILEVATOR is active, the AIL1 and AIL2 settings still only affect FLAPERON or AIL-DIFF servos, NOT the elevator servos. (they would have the AIL3 and AIL4 settings.) GOAL of EXAMPLE: STEPS: Activate AIRBRAKE on a FLAPERON . &RQÂżUPFLAPERON is active. model. Adjust the flaperon travel to Open the AIRBRAKE function. 75%,with negative elevator (push) of 25%. Activate the function. Adjust the travels as needed. (Ex:Ailerons each 75%, Elevator -25%.) Optional: delay how quickly the elevator servo responds. INPUTS: see FLAPERON instructions. for 1 second. (If BASIC, again.) to AIRBRAKE. Switch C in up position. to MIX. to OFF. to AIL1. to 75%. to ELEV. to -25%. to AIL2. to 75%. to delay-ELEV. to 25%. Optional: change the mixing from full C to MODE. to Linear (0%). amount upon switch to proportional to THROTTLE STICK to desired 0 the THROTTLE STICK's proximity to point. idle. for 1 sec, until beeps (display changes if new setting is different from prior setting). Close menu. Where next? $GMXVWĂDSHURQV WRWDOĂDSWUDYHODYDLODEOH FLAPERON): see p. 52. Set up ELEV-FLAP mixing: see p. 62. Set up programmable mixes, for example, FLAP-ELEVATOR: see p. 67. View additional model setups on the internet: www.futaba-rc.com\faq\. 64 THROTTLE-NEEDLE mixing (ACROHELI): (ACRO) (HELI) THROTTLE-NEEDLELVDSUHSURJUDPPHGPL[WKDWDXWRPDWLFDOO\PRYHVDQLQĂLJKWPL[WXUHVHUYR &+ LQUHVSRQVHWRWKH THROTTLE STICK inputs for perfect engine tuning at all throttle settings. This function is particularly popular with FRQWHVW SLORWV ZKR Ă\ LQ D ODUJH YDULHW\ RI ORFDWLRQV QHHGLQJ UHJXODU HQJLQH WXQLQJ DGMXVWPHQWV DQG UHTXLULQJ SHUIHFW HQJLQHUHVSRQVHDWDOOWLPHVDQGLQDOOPDQHXYHUV$OVRSRSXODUWRPLQLPL]HĂRRGLQJDWLGOHRILQYHUWHGHQJLQHLQVWDOODWLRQV or installations with a high tank position. Not needed for fuel injection engines, which do this automatically. Adjustability: ⢠Five-point curve allows adjustment of engine mixture at varied throttle settings. Â7KHLQĂLJKWPL[WXUHVHUYRPXVWFRQQHFWWRUHFHLYHU&+ Â,QĂLJKWPL[WXUHVHUYRPD\DOVREHXVHGDVDVHFRQGVHUYRIRUWXQLQJDWZLQ Â7KURWWOHFXWIHDWXUHDOVRPRYHVWKHLQĂLJKWQHHGOHVHUYR ⢠The CH8 knob adjusts the high throttle mixture (may be deactivated. see AUX-CH). ⢠Because both use CH8, this function cannot be used simultaneously with AILEVATOR. ⢠An acceleration (ACCE) function (ACRO only) helps the engine compensate for sudden, large amounts of throttle input by making the mixture suddenly richer, then easing it back to the proper adjustment for that throttle setting. This function UHTXLUHVVRPHDGMXVWPHQWWREHVWÂżW\RXUHQJLQHDQG\RXUĂ\LQJVW\OH$GMXVWHQJLQHÂśVUHVSRQVHXQWLOQRKHVLWDWLRQRFFXUV on rapid throttle input. ⢠Separate curves are available (HELI only) for normal, idle-ups 1 and 2 combined, and idle-up 3. Immediately below MIX the radio displays the curve you are editing; ex: >NORML; and then which condition is currently active by your switches ex: (ID1/2). Note that you can edit the mix for a different condition without being in that condition, to allow editing without having to shut off the helicopterâs engine every time. Be sure you are editing the proper curve by checking the name after the > and not the one in parentheses. GOAL of EXAMPLE: STEPS: Activate THROTTLE-NEEDLE mixing. Open the THROTTLE-NEEDLE function. Adjust the points as follows to resolve a slight lean midrange problem: 1: 40% 2: 45% 3: 65% 4: 55% 5: 40% INPUTS: for 1 second. (If BASIC, again.) to page 2. to THROTTLE-NEEDLE. Activate the function. to MIX. to ACT. HELI only. Select the condition to edit. to MIX. to ACT. as needed. Adjust the travels as needed to match your engine by slowly moving the stick to each of the 5 points, then adjusting the percentage at that point until the engine is properly tuned. to POINT-. THROTTLE STICK to POINT1. to 40%. until POINT 2 is highlighted. to 45%. 65 to POINT 3. to 65%. to POINT 4. to 55%. to POINT 5. to 40% ACRO only. Optional: increase mixture when throttle is applied rapidlyACCE.(see above for details.) to ACCE. THROTTLE STICK to idle. THROTTLE STICK full open quickly. as needed. HELI only: set curves for other conditions. to condition name. to next condition to edit. Repeat above steps as needed. Close menu. Throttle delay function THR-DELAY (ACRO): The THR-DELAY function is used to slow the response of the throttle servo to simulate the slow response of a turbine engine. A 40% delay setting corresponds to about a one-second delay, while a 100% delay takes about eight seconds to respond. For helicopters, see DELAYS, p. 103. This function may also be used to create a âslowed servoâ on a channel other than throttle. This is accomplished by plugging the desired servo (Ex: gear doors) into CH3 (THR), throttle into an auxiliary channel such as 8, and then using VRPHFUHDWLYHPL[HV3OHDVHVHHRXU)UHTXHQWO\$VNHG4XHVWLRQVDUHDDWZZZIXWDEDUFFRP?IDT?IRUWKLVVSHFLÂżFH[DPSOH GOAL of EXAMPLE: STEPS: Activate THR-DELAY for a ducted-fan Open the THR-DELAY function. replica of a turbine-powered aircraft. Slow the servo response byone second. INPUTS: for 1 second. (If BASIC, to page 2. to THR-DELAY. Activate the function. to MIX. Adjust the RATE to match the desired servo speed. (Ex: 40%.) to RATE. to ACT. to 40%. Close menu. Where next? Set up THROTTLE-NEEDLE mixing: see p. 65. Adjust throttleâs END POINT: see p. 39. Adjust throttle exponential (D/R,EXP): see p. 42. Set up AILEVATOR: see p. 57. Set up programmable mixes, for example, RUDDER-AILERON: see p. 68. View additional model setups on the internet: www.futaba-rc.com\faq\ 66 again.) Throttle curve (THR-CURVE)(ACRO): This function adjust the throttle operation curve for optimum the engine speed to throttle stick movement. NOTE: If the throttle EXP function is activated, you can not use THR-CURVE function simultaneously. Adjustability: ⢠Separate curves for each switch position are available. ⢠Moving and deleting the curve point: The curve point (-stk-) can be moved to the left or right by turning the DIAL (up to LQIURQWRIWKHDGMRLQLQJSRLQW DQGGHOHWHGUHWXUQHGE\SUHVVLQJWKHDIAL for one second alternately. GOAL of EXAMPLE: STEPS: Base point: Adjust base point of throttle Open the THR-CURVE function. curve until engine idles reliably. -out-: output, servo position. -stk-: curve point, stick position. Activate the function. $GMXVWWKHÂżUVWSRLQW Optional: Assign the switch. Next point: INPUTS: for 1 second. (If BASIC, to THR-CURVE. to MIX. to ON. to point 1 (-out-). throttle servo position. to SW. again.) to desired to desired switch. Optional: Move the curve point. (Ex: point 3) to point 3 (-stk-). to desired curve point to move to left or right. Optional: Delete the curve point. And return the curve point. (Ex: point 3) to point 3 ( -stk- ). for one second to delete the curve point. Adjust the next point. Repeat as needed. Close. 67 to point 3 ( -stk- ). second to return. for one LINEAR PROGRAMMABLE MIXES (PROG.MIX1-4): Your 10CG contains four separate linear programmable mixes. (Note that mixer #5-8âs mixing RATEs are set with a 5-point curve. HELI has mixer #5-6's mixing. see CURVE MIXES, p. 71.) There are a variety of reasons you might want to use these mixes. A few are listed here. All of the adjustable parameters are listed below, but donât let them VFDUH\RX)RU\RXUÂżUVWIHZWLPHVH[SHULPHQWLQJZLWKPL[HVMXVWWXUQRQWKH default mixes, adjust them how you think they need to be, then use the servo screen to check and see if you were correct. As with all functions, a sample setup follows, step by step, to assist you. Sample reasons to use linear programmable mixes: ⢠To correct bad tendencies of the aircraft (such as rolling in response to rudder input). ⢠To operate 2 or more servos for a single axis (such as two rudder servos). Â7RDXWRPDWLFDOO\FRUUHFWIRUDSDUWLFXODUDFWLRQ VXFKDVORZHULQJHOHYDWRUZKHQĂDSVDUHORZHUHG Â7RRSHUDWHDVHFRQGFKDQQHOLQUHVSRQVHWRPRYHPHQWLQDÂżUVWFKDQQHO VXFKDVLQFUHDVLQJWKHDPRXQWRIVPRNHRLOLQ response to more throttle application, but only when the smoke switch is active). Â7RWXUQRIIUHVSRQVHRIDSULPDU\FRQWUROLQFHUWDLQFLUFXPVWDQFHV VXFKDVVLPXODWLQJRQHHQJLQHĂDPLQJRXWRQDWZLQ or throttle-assisted rudder turns, also with a twin). Adjustability: ⢠Defaults: The 4 programmable mixes default to the most frequently used mixes for simplicity. If you want to use one of these mixes, simply select that mix number so that the master and slave servos are already selected for you. ⢠PROG.MIX1 aileron-to-rudder for coordinated turns ⢠PROG.MIX2HOHYDWRUWRĂDSIRUWLJKWHUORRSV HELI mixes default to elev-to-pitch.) ⢠PROG.MIX3ĂDSWRHOHYDWRUWRFRPSHQVDWHSLWFKLQJZLWKĂDSV HELI mixes default to pitch-to-elev.) ⢠PROG.MIX4 throttle-to-rudder ground handling compensation â˘Channels available to mix: All four mixes may use any combination of CH1-8. (CH9-10 are not proportional and cannot be mixed.) Offset and dials may also be set to the master channels. (see below.) â˘Master: the controlling channel. The channel whose movement is followed by the slave channel. â˘Another channel: Most mixes follow a control channel. (Ex: rudder-to-ailerons, 25%, no switch, corrects roll coupling.) MASTER SLAVE LINK TRIM SWITCH POSITION RATE OFFSET ANY RUDD AILE ON OFF NULL 25% â˘Offset as master: To create an OFFSETPL[VHWWKHPDVWHUDV2)67 ([PRYHĂDSHURQVDVĂDSVRIWKHLUWRWDO throw when SWITCH C is in down position.) MASTER SLAVE LINK TRIM SWITCH POSITION RATE OFFSET 1$ OFST FLAP ON DOWN 20% ⢠Dial as master: To directly effect one servoâs position by moving a dial, set the master as the desired dial. (Ex: create a second throttle trim on left slider.) MASTER SLAVE LINK TRIM SWITCH POSITION RATE OFFSET 1$ ANY VR(D) THRO OFF NULL 5% â˘Slave: the controlled channel. The channel that is moved automatically in response to the movement of the master channel. The second channel in a mixâs name (i.e. aileron-to-rudder). â˘Link: link this programmable mix with other mixes. Ex: PMIX FLAP-ELEVATORPL[LQJWRFRUUHFWIRUEDOORRQLQJZKHQĂDSVDUHORZHUHGEXWPRGHOKDVD9WDLO:LWKRXW LINK, 68 WKLVPL[RQO\PRYHV&+HOHYDWRUZKHQĂDSLVFRPPDQGHGUHVXOWLQJLQDGDQJHURXVFRPELQDWLRQRI\DZDQGUROO:LWK LINK ON, mixing is applied to both CH2 and CH4. MASTER SLAVE LINK TRIM SWITCH POSITION RATE OFFSET ANY FLAP ELEV ON OFF NULL 5% â˘Trim: masterâs trim affects slave. Not displayed if master is not CH 1-4, because 5-9 have no trim. Ex: two rudder servos. With TRIM OFF, rudder trim would bind the two servos. TRIM ON resolves this. ⢠On/off choices: ⢠SWITCH: Any of the positions of any of the 8 switches may be used to activate a mix. Up&Cntr, Cntr&Dn options allow the mix to be ON in 2 of the 3 positions of a 3-position SWITCH. ⢠NULL: No SWITCH can turn this mix OFF. This mix is active at all times. ⢠LOGIC SW (Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. ⢠STk-THR7XUQHGRQRIIE\THROTTLE STICKPRYHPHQW7ULJJHUSRLQWGLUHFWLRQDUHVHOHFWDEOH([ OFST-to-(gear doors) mix to open gear doors at idle, which is only active if throttle is below half. MASTER SLAVE LINK TRIM SWITCH POSITION RATE OFFSET OFST AUX2 OFF NO STK-THR Stick at 1/2, 100% for 1 sec. ⢠Rate: the percentage of the slaveâs range it will move upon maximum input from the master channel. Ex: RUDDERAILERONPL[$LOUDQJH ´:KHQUXGGHULVPRYHGIXOOULJKWDLOHURQVPRYH´ MASTER SLAVE LINK TRIM SWITCH POSITION RATE OFFSET ANY RUDD AILE OFF OFF NULL 50% ⢠Offset: Offsets the slaveâs center relative to the master. Ex: Smoke valve opens wider per throttle servo position when smoke SWITCH is ON. Smoke servoâs neutral is moved down from THROTTLE STICK center to the bottom. MASTER SLAVE LINK TRIM SWITCH POSITION RATE OFFSET THRO AUX2 OFF OFF DOWN 100% 100% 69 GOAL of EXAMPLE: Set up a FLAP-ELEV mix: STEPS: INPUTS: Open an unused programmable mix. for 1 second. (If BASIC, (Ex: use PROG.MIX3 since it is already C to PROG.MIX-. ON when SWITCH C is in the down set-up for FLAP-ELEVATOR.) to 3 >. position. again.) Activate the function. to MIX. to ON. 1RHOHYDWRUPRYHPHQWZKHQĂDSVPRYH Choose master and slave channels. already CH6 up (spoilers), (Ex: no need to change MASTER/SLAVE.) already CH2 5% elevator movement when flaps Optional: set Master as OFST or VR(A-E). C to MASTER. to desired choice. move down, See above for details. LINK should be ON if model has twin Set LINK and TRIM as needed. e l e v a t o r s e r v o s . O t h e r w i s e , LINK (Ex: leave LINK OFF, TRIM not available.) remains OFF. Assign SWITCH and position. (Ex: change from E to C, DOWN.) (Flap has no trim lever, so TRIM is not Optional: set switch to STk-THR to an option.) activate mix with THROTTLE STICK. (See above for details.) to SW. to C. to POSI. to DOWN. to SW. to STk-THR. to POSI. THROTTLE STICK to desired point. for 1 second to set. Optional: set switch position to NULL. Makes mix active at all times. Not compatible with STk-THR. Set rates. (Ex: Lo=0%, Hi=5%.) to POSI. to RATE. to NULL. VR(A) past center. Leave at 0%. VR(A) past center. Set OFFSET, if needed. (Ex: 0.) to 5%. to OFFSET. Leave at 0%. Close menu. Where next? Adjust servo END POINTs: see p. 39. 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Set up additional programmable mixes, ex: RUDDER-AILERON: see p. 68. View numerous additional mix setups: www.futaba-rc.com\faq\ Other Examples: ⢠RUD-ELEV (ACROGLID) mix: Compensate for pitching up or down when rudder is applied. ⢠AIL-RUD mix (ACRO): Coordinate turns by applying rudder automatically with aileron input. All model types. ⢠ELEV-PIT (HELI) mix: compensate for the loss of lift of tilting the model. 70 CURVE PROGRAMMABLE MIXES (PROG.MIX5-8)(HELI: PROG.MIX5-6 ): Your 10CGâs ACROGLID programs contain four separate curve programmable mixes. HELI contains two. There are a variety RIUHDVRQV\RXPLJKWZDQWFXUYHPL[HVXVXDOO\ZKHUHDOLQHDUPL[GRHVQÂśWÂżW\RXUQHHGVDORQJWKHZKROHUDQJH2QHSUH programmed curve mix is the THROTTLE-NEEDLE function. This curve is adjustable at 5 points, allowing you to adjust the motorâs tuning at 5 points along its RPM range. One programmable curve mix defaults to RUDDER-AILERON. A linear mix that keeps the model from rolling in knife-edge is SUREDEO\WRRPXFKDLOHURQZKHQUXGGHULVDSSOLHGLQOHYHOĂLJKW&UHDWHDFXUYHPL[DQGVHWDOOSRLQWVWRPDWFKWKHOLQHDU mix. Inhibit the linear mix, then adjust the curve to get the right response all along the rudder channelâs travel. $GMXVWDELOLW\IRUGHWDLOHGGHÂżQLWLRQVVHH/LQHDU3URJUDPPDEOH0L[HVDQG*ORVVDU\ ⢠ACROGLID Defaults: The 4 programmable curve mixes default to the most frequent choices, but can be set to any channel. ⢠PROG.MIX5 rudder-to-aileron for roll coupling compensation (GLID mixes default to aileron-to-elev.) ⢠PROG.MIX6 rudder-to-aileron for roll coupling compensation (GLID mixes default to aileron-to-elev.) ⢠PROG.MIX7 rudder-to-elevator for pitch coupling compensation (GLID mixes default to elevator-to-airbrake.) ⢠PROG.MIX8 rudder-to-elevator for pitch coupling compensation (GLID mixes default to elevator-to-airbrake.) ⢠HELI Defaults: ⢠PROG.MIX5 aileron-to-elevator for coordinated turns ⢠PROG.MIX6 aileron-to-elevator for coordinated turns ⢠Master: The controlling channel can only be a channel. Cannot be OFFSET or dial. ⢠Trim: not available in curve mixes. ⢠Offset: not available in curve mixes. 71 GOAL of EXAMPLE: STEPS: INPUTS: Set up a RUDD-ELEV curve mix on a Open an unused curve programmable for 1 second. (If BASIC, model that pitches down severely at mix. (Ex: use PROG.MIX7 since it is C to PROG.MIX-. full rudder and not at all with minimal already set-up for RUDDER-ELEV.) to 7 >. rudder input, and pitches worse on right rudder than left: Activate the function. to page 2. Point 1: 25% Point 2: 8% Point 3: 0% Point 4: 10% Point 5: 28% ON when SWITCH C is down. Choose master and slave channels. (Ex: do not change MAS or SLV). Set LINK as needed. (Ex: off) Assign SWITCH and position. (Ex: change from F to C, DOWN.) LINK should be ON if model has twin Optional: set switch to STk-THR to e l e v a t o r s e r v o s . O t h e r w i s e , LINK activate mix with THROTTLE STICK. remains OFF. (See above for details.) to MIX. again.) to ON. already RUDD already ELEV to SW. to C. to POSI. to DOWN. to SW. to STk-THR. to POSI. THROTTLE STICK to desired point. (Note that point 3 is 0%. Otherwise,the elevator would be retrimmed when the for 1 second to set. mix is active and no rudder input is Optional: set switch position to NULL. to POSI. to NULL. given.) Makes mix active at all times. Not compatible with STk-THR. Set desired percent at the stick points. to page 1. (Ex: listed at left.) to POINT-1. to 25%. Repeat for points 2-5. Close menu. Where next? Adjust servo END POINTs: see p. 39. Set up AILEVATOR: see p. 57. Set up linear programmable mixes, ex: RUDDER-to-Aux2(twin rudder servos):see p. 68, or additional curve mix, ex: RUDDER-AILERON: see p. 71. View numerous mix setups: www.futaba-rc.com\faq\ 72 GYA gyro mixing GYA series gyros: GYA series gyros are a high performance, compact, and light weight AVCS gyro developed for model airplane. Integrated sensor and control circuit make it easy to mount. ⢠GYA350: for airplane aileron, elevator, or rudder. ⢠GYA351: for airplane ailerons, especially two servos such as when using FLAPERON. ⢠GYA352: for airplane aileron, elevator, or rudder control. Two of these surfaces (axis) can be controlled by GYA352. GYA series gyro operation modes: The GYA gyros have two operations modes: AVCS mode and Normal mode. ⢠Normal mode: This mode performs general proportional control operation. For instance, it controls the gyro so that changes are countered when the attitude of the aircraft is changed by cross-wind, etc. ⢠AVCS mode: This mode performs both proportional and integrated control operation. The difference between Normal mode and AVCS mode operation is that where as the Normal mode only counters changes in attitude, the AVCS mode returns to the original controlled variable simultaneously with countering changes in attitude. For example, during NQLIHHGJHĂ\LQJDLOHURQDQGHOHYDWRUPHHWLQJUXGGHULVQRUPDOO\QHFHVVDU\EXWLQWKH$9&6PRGHPHHWLQJUXGGHULV performed automatically by the gyro. Adjustability: ⢠Plug the gyro's sensitivity adjustment to channel 5, 7, or 8 of the receiver. (selectable) ⢠Full switch assignability (SWITCH A-H) ⢠Each rate setting may be set from 0 to NOR100% or AVC100% gain. NOR: Normal mode gain. AVC: AVCS mode gain ⢠Larger percentages indicate more gain, or gyro responsiveness. ⢠MIX-1,2: Two surfaces' sensitivity can be adjusted independently. Gyro gain adjustment: ⢠When the servo hunts, the gyro gain is too high. Lower the gain until the hunting stops. Â7KH J\UR ZLOO GLVSOD\ EHVW SHUIRUPDQFH DW D JDLQ MXVW EHIRUH KXQWLQJ RFFXUV 3HUIRUP DGMXVWLQJ E\ Ă\LQJ WKH DLUFUDIW repeatedly. Precautions: ⢠When taking off and landing, always switch to the Normal mode. Taking off and landing in the AVCS mode is dangerous. ⢠We recommend that you use the rudder control gyro in the Normal mode. In the AVCS mode, rudder operation is necessary when turning because the weathervane effect is lost. Use the gyro in the Normal mode unless you are an expert in rudder operation. ⢠And we recommend that you also set to off (0%) mode for safety as follows. GOAL of EXAMPLE: STEPS: INPUTS: Set up a GYA gyro setting. (Ex: MIX-1) Open and activate the GYRO SENSE for 1 second. (If BASIC, function. to GYRO SENSE. Activate the function. to MIX-1. Optional: change switch assignment. Ex: select E. to SW Adjust gyro rates as needed. (Ex: UP to NOR70%, CNTR to 0% (off), DOWN to AVC70% as starting points.) to ON. to E. to gyro rate E up. to NOR 70%. (0%). E down. Close menu. 73 to AVC 70%. again.) Special Additions, Functions, And Added Equipment Commonly Used On Powered Aircraft Gyros: -XVW DV WRUTXH URWDWHV DQ DLUFUDIW RQ WKH UXQZD\ GXULQJ WDNHRII KHOLFRSWHUV VWUXJJOH ZLWK WRUTXH WZLVWLQJ WKH model every time throttle is applied. For many years gyroscopes have been used on model helicopters to control this. In competition aerobatics and scale aircraft competition alike, the usefulness of gyros has recently come to light. For in-depth information on gyro types, please see p. 106. )RUDHUREDWLFVJ\URVRQUXGGHUDQGHOHYDWRUÂż[RYHUURWDWLRQRIVQDSVDQGVSLQVDVZHOODVWDLOZDJJLQJLQVWDOOWXUQV )XWDED offers a twin-axis gyro, GYA-352, that controls two axes with a single gyro.) For 3D aerobatics (below stall speed, such as WRUTXHUROOV KHDGLQJKROG$9&6J\URVRQUXGGHUDQGHOHYDWRUGUDPDWLFDOO\VLPSOLI\WKHVHPDQHXYHUV)RUVFDOHPRGHOV gyros are frequently used to simplify take-offs and landings by keeping the model straight during throttle application. $OZD\V EH FDUHIXO LI XVLQJ D KHDGLQJKROG$9&6 J\UR DV LW ZLOO FRUUHFW DQ\ FKDQJH LQ \DZ WKDW LV QRW FDXVHG E\ PRYHPHQW RI WKH UXGGHU OLNH PDNLQJ D WXUQ ZLWK MXVW DLOHURQ DQG HOHYDWRU 7\SLFDOO\ PRGHOHUV XVH KHDGLQJKROG $9&6VHWWLQJVRQO\IRUVSHFLÂżFPDQHXYHUVVXFKDVWDNHRIIVDQGWRUTXHUROOVWKHQVZLWFKWRQRUPDOPRGHRU2))IRU WKHUHPDLQGHURIWKHĂLJKWWRDYRLGWKLVULVN Retracts: Retractable landing gear is often used on scale models for increased realism and on high performance models to decrease drag. The gear servo is typically plugged into CH5, which defaults to a 2-position switch for simplicity. Mechanical retracts require the use of a specialized non-proportional retract servo. Retract servos go from full travel one direction to full travel the other direction, then mechanically hold the gear into the locked position. A regular servo used for mechanical retracts will continue to draw full power the entire time, prematurely draining the battery and risking crash of your model. End point will not adjust a retract servo. Pneumatic (air driven) retracts use a standard servo to control an air valve which directs air into or out of the retract units, moving the gear up or down. Pneumatics are easier to install but require added maintenance of the air system. Gear Doors: Some scale models with retracts also have separate gear doors to cover the scale gear. For one example of how to operate the gear doors separately from the retracts, please visit our website: www.futaba-rc.com\faq\. Smoke Systems: Many scale and aerobatic models use smoke systems to provide increased realism or a more impressive GHPRQVWUDWLRQ 7KHUH DUH PDQ\ VPRNH V\VWHPV DYDLODEOH ZLWK YDU\LQJ W\SHV RI FRQWURO 0RVW XVH D VHUYR WR LQFUHDVH GHFUHDVHWKHĂRZRIVPRNHĂXLGLQWRWKHVSHFLDOL]HGVPRNHPXIĂHU7KHRLOLVKHDWHGLQWKHPXIĂHUFUHDWLQJVPRNH It is a good practice to set up a "safety" that shuts off the smoke oil if the throttle is lowered below half-stick. For a detailed example of a smoke system setup, please visit our website: www.futaba-rc.com\faq\. Kill Switches: For safety reasons, it is strongly recommended that an electronic kill switch be installed in all gasolineSRZHUHGDLUFUDIW,QFDVHRIDQ\W\SHRILQĂLJKWSUREOHP VXFKDVSURSIDLOXUHH[KDXVWYLEUDWLQJRIIWKURWWOHVHUYRIDLOXUH UDGLRLQWHUIHUHQFH WKHPRGHOHUFDQVKXWWKHHQJLQHRIITXLFNO\DQGVDIHO\LQĂLJKW$GGLWLRQDOO\)DLO6DIH )6 VHWWLQJV DUHUHFRPPHQGHGWRVKXWWKHHQJLQHRIILQFDVHRIVXIÂżFLHQWLQWHUIHUHQFHWRWULJJHUWKH)DLO6DIHVHWWLQJV Lastly, an electronic kill switch set to "off" prior to the aircraft's power being shut off adds an additional safety should someone accidentally turn on the mechanical kill switch on the exterior of the model. Bomb Drops, Paratroopers, and other Released Items: Many sport and scale models include one or more of these fun addons. Typically, all are controlled by a simple micro-switch plugged into CH9 or CH10. The switch is assigned in AUX-CH. 74 GLIDER MODEL FUNCTIONS Please note that nearly all of the BASIC menu functions are the same for airplane (ACRO setup), sailplane (GLID 1A+1F 2A+1F2A+2F setups), and helicopter (HELI setups). The features that are identical refer back to the ACRO chapter. The glider BASIC menu includes MOTOR CUT and does not include IDLE-DOWN or THR-CUT. Note that in all cases where ACRO programming labels channel 3 as throttle, GLID programming labels channel 3 as ARB (airbrake), since airbrakes are normally operated on channel 3 in gliders. This includes STK-THR reading STK-ARB. GLIDER (GLID(1A+1F)(2A+1F)(2A+2F)) FUNCTIONS . 75 Table of contents........................................................ 75 Getting Started with a Basic 4-CH Glider ................ 76 GLIDER ADVANCE MENU FUNCTIONS ..................... FLAPERON ................................................................... FLAP TRIM .................................................................. Aileron Differential (AILE-DIFF) ................................. ELEVON (see tail types) ............................................... ELEVON ....................................................................... V-TAIL ......................................................................... Linear, Prog. mixes 1-4 ............................................. Curve, Prog. mixes 5-8 ............................................. ELEV-FLAP .................................................................... BUTTERFLY (modifyed version of AIRBRAKE) ............. BUTTERFLY ................................................................... AILE/RUDD .................................................................. AILE-FLAP (GLID(2A+2F) only) .................................... SPOILER MIX ............................................................... OFFSETs $GGLWLRQDOĂLJKWFRQGLWLRQV ...................... START DELAY (GLID(1A+1F) only) ................................. CAMBER MIX ............................................................... CAMBER FLAP .............................................................. Channel 3âs function selection (CONDITION/FUNCTION) GLIDER BASIC MENU FUNCTIONS .......................... 78 MOTOR CUT ................................................................ 79 MODEL Submenu: MODEL SELECT, COPY, NAME .......... 30 PARAMETER Submenu: RESET , MODUL , ATL , AILE-2 , CONTRAST, BACK-LIGHT, USER NAME, LOGIC SW ........ 33 Model type (PARAMETER submenu) ........................... 78 Servo REVERSE ........................................................... 38 END POINT .................................................................. 39 'XDO7ULSOH5DWHVDQG([SRQHQWLDO D/R, EXP) .......... 42 TIMER Submenu.......................................................... 45 Auxiliary Channel assignments and CH9 reverse (AUXCH) ............................................................................. 46 TRAINER ..................................................................... 47 TRIM and SUB-TRIM ................................................... 48 SERVO Display ........................................................... 49 Fail Safe and Battery FailSafe (F/S) ......................... 50 75 80 52 53 54 56 56 58 68 71 62 63 87 81 82 83 84 85 85 86 88 GETTING STARTED WITH A BASIC 4-CHANNEL (Aileron/Flap/Rudder/Elevator) GLIDER This guideline is intended to help you get acquainted with the radio, to give you a jump start on using your new radio, and to give you some ideas and direction in how to do even more with this powerful system than you may have already considered. It follows our basic format of all programming pages: a big picture overview of what weâre trying to accomplish; a âby nameâ description of the steps to help acquaint you with the radio; and a step-by-step instruction to leave out the mystery and challenge of setting up your model. For additional details on utilizing each function, see that functionâs section in this manualâthe page numbers are indicated LQWKHÂżUVWFROXPQDVDFRQYHQLHQFHWR\RX GOAL of EXAMPLE: Prepare your aircraft. STEPS: INPUTS: Install all servos, switches, receiver per your modelâs instructions. Turn on transmitter then receiver; adjust all linkages so surfaces are nearly centered. Mechanically adjust all linkages to get as close as possible to proper control throws and minimize binding prior to radio set up. Check servo direction and throws. Make notes now of what you will need to change during programming. Select the proper MODEL TYPE for your In the BASIC menu, open the PARAMETER Turn on the transmitter. submenu. model. (Ex: GLID 1A+1F.) See p. 78. for 1 second. (If ADVANCE, [NOTE: This is one of several functions that requires confirmation to make a change. Only critical changes such as a MODEL RESET require additional key Go to MODEL TYPE. strokes to accept the change.] Select proper MODEL TYPE. Ex:GLID(1A+1F). &RQÂżUPWKHFKDQJH Close the PARAMETER submenu. then again.) to highlight PARAMETER. to choose PARAMETER. to MODEL TYPE. to GLID(1A+1F). for 1 second. Are you sure? Displays. WRFRQÂżUP to return to BASIC menu. NAME the model. P. 32. In the BASIC menu, open the MODEL submenu. (Note that you do not need to do Go to MODEL NAME. anything to "save" or store this data.) Input aircraftâs name. Close the MODEL submenu when done. as needed to highlight MODEL. to choose MODEL. to NAME. (1st character of modelâs name is highlighted.) WRFKDQJHÂżUVWFKDUDFWHU When proper character is displayed, to move to next character and repeat. to return to BASIC menu. REVERSE servos as needed for proper I n t h e BASIC m e n u , o p e n ( s e r v o ) control operation. REVERSE. P. 38. Choose desired servo and reverse its direction of travel. (Ex: reverserudder servo.) to REVERSE. to choose REVERSE. to CH4:RUDD. so REV is highlighted. Are you sure? Displays. for 1 second. Repeat as needed. to return to BASIC menu. 76 GOAL of EXAMPLE: STEPS: Adjust travels as needed to match In the BASIC menu, choose END POINT. modelâs recommended throws (usually listed as high rates).P. 39. Adjust the servosâ end points. ([ĂDSVHUYR Close the function. INPUTS: to END POINT. to choose END POINT. to FLAP. VR(A) until travel as desired. VR(A). Repeat as needed. 6HW XS GXDOWULSOHUDWHV DQG H[SRQHQWLDOChoose D/R,EXP. (D/R,EXP) P. 42. Choose the desired control, and set C (Note that in the middle of the left the first (Ex: high) rate throws and sideof the screen is the name of the exponential. channel and the SWITCH position (UP)] you are adjusting. Two or even three rates maybe set per channel by simply choosing the desired SWITCH and programming percentages with the SWITCHLQHDFKRILWVSRVLWLRQV to D/R,EXP. to choose D/R,EXP. to CH>. to choose CH>2 (elevator). A to up position. [Note screen reads ELEV to D/R. ELEVATOR STICK. to set. ELEVATOR STICK. to set. (Normally the same for both directions.) Set the second (low) rate throws and exponential. Optional: change dual rate SWITCH assignment. Ex: elevator to SWITCH G with 3 positions. to EXP. ELEVATOR STICK. to set. ELEVATOR STICK. to set. to D/R. A to down position. Repeat above to set low rate. to SW. to G. G to center position. Repeat steps above to set 3rd rate. 0RYHĂDSFRQWUROIURPWKH95 $ GLDOIn the BASICmenu, open AUX-CH. to the left slider [VR(D)]. (AUX-CH) Choose CH6 ĂDS p. 46. Change primary control to VR(D). Change other channels as needed. to AUX-CH. to CH6. to choose AUX-CH. to VR(D). Repeat as required. Return to the home screen. Where next? (Other functions you may wish to set up for your model.) TRAINER p. 47. Multiple wing or tail servos. See wing types and tail types: p. 51, 56. OFFSETS, BUTTERFLY(AIRBRAKEFURZ DQGRWKHUSURJUDPPDEOHPL[HVS Retractable Gear, Smoke systems, kill switches, and other auxiliary channel setups: p. 46. Adjusting SUB-TRIMs to match servo centers: p. 49. 77 $/22.$77+(5$',2 6GLID-SPECIFIC FUNCTIONS STEP BY STEP. Those functions which are identical to the ACRO setups are referred directly to those pages. MODEL TYPE: This function of the PARAMETER submenu is used to select the type of model programming to be used. GLIDER TYPES: GLID(2A+1F) GLID(1A+1F) (FLAPERON) AIL2 FLP1 (CH6) AIL2 (CH7) AIL1 FLP2 (CH1) FLP (CH6) GLID(2A+2F) AIL1 (CH1) AIL2 FLP1 FLP2 AIL1 (CH7) (CH6) (CH5) (CH1) %HIRUHGRLQJDQ\WKLQJHOVHWRVHWXSDJOLGHURUVDLOSODQHÂżUVW\RXPXVWGHFLGHZKLFKMODEL TYPEEHVWÂżWV\RXUDLUFUDIW ⢠ACROIRUVRPHDHUREDWLFVORSHJOLGHUVACRO is a better choice because of functions it offers that the GLID types do not. ⢠ACRO provides: ⢠SNAP-ROLL, ⢠AILEVATOR (twin elevator servo support), ⢠AIRBRAKE (a more assignable version of BUTTERFLY). ⢠For nitro-powered sailplanes: IDLE-DOWN, THR-CUT, THROTTLE-NEEDLE mixing and THROTTLE DELAY programming. ⢠But ACRO ODFNV SURJUDPPLQJ IRU IXOOVSDQ DLOHURQV DQG VHSDUDWH 2))6(7 WULPV IRU HDFK ĂLJKW FRQGLWLRQ 1RUPDO Start, Speed, Distance and Landing. ⢠GLID(1A+1F): The GLID(1A+1F) MODEL TYPE is intended for sailplanes with one or two aileron servos (or none), and a single ĂDS VHUYR RU WZR FRQQHFWHG ZLWK D \FRQQHFWRU 7KLV TYPE is meant to be a very simplistic version to set up a basic JOLGHUZLWKRXWDORWRIDGGHGIHDWXUHV$GGLWLRQDOĂLJKWFRQGLWLRQVDYDLODEOH ⢠GLID(2A+1F): The GLID(2A+1F) MODEL TYPELVLQWHQGHGIRUVDLOSODQHVZLWKGXDODLOHURQVHUYRVDQGDVLQJOHĂDSVHUYR RU WZRFRQQHFWHGZLWKD\FRQQHFWRU $GGLWLRQDOĂLJKWFRQGLWLRQVDYDLODEOH7KHVHĂLJKWFRQGLWLRQVFRQWDLQGLIIHUHQWRIIVHW trims and aileron differentials to make the sailplane perform certain maneuvers more easily. ⢠GLID(2A+2F): The GLID(2A+2F) MODEL TYPE supports dual flap servos that can also act as ailerons, creating full-span DLOHURQVDQGĂDSV$GGLWLRQDOĂLJKWFRQGLWLRQVDYDLODEOH7KHVHĂLJKWFRQGLWLRQVFRQWDLQGLIIHUHQWRIIVHWWULPVDQGDLOHURQ differentials to make the sailplane perform certain maneuvers more easily. GOAL of EXAMPLE: STEPS: INPUTS: Change model1 is MODEL T YPE to Confirm you are currently using the On home screen, check model nameand proper model memory. (Ex: 1) number on top left. GLID(1A+1F). NOTE: This is one of the several functions that the radio requires Open PARAMETER submenu. FRQÂżUPDWLRQWRPDNHDFKDQJH If it is not the correct model (Ex: 1), use MODEL SELECT, p. 25. for 1 second. (If ADVANCE, again.) to 2nd page of menu. Change the MODEL TYPE. &RQÂżUPWKHFKDQJH to PARAMETER. to TYPE. to GLID(1A+1F). for one second. Are you sure?&RQÂżUPDWLRQGLVSOD\V WRFRQÂżUP Close. 78 Motor cut function (MOTOR CUT) (GLID SURYLGHV DQ HDV\ ZD\ WR VWRS WKH PRWRU E\ ĂLSSLQJ D VZLWFK UHJDUGOHVV RI WKH AIRBRAKE STICK position. The servo movement is largest at -30%. The switch's location and direction must be chosen. It defaults to NULL to avoid accidentally assigning it to a switch, which might result in an unintentional dead VWLFNLQĂLJKW Adjustability: ⢠RATE range of -30 to +30. The servo movement at 0% is maximum slow position of AIRBRAKE STICK. The servo movement is largest at -30%. ⢠SWITCH A-H fully assignable. Also LOGIC SW (Lsw1 to 3) may be assigned. ⢠POSITION fully assignable, including NULL (mix always off) and Up&Cntr and Cntr&Dn to activate the mix in 2 separate positions of the same SWITCH. GOAL of EXAMPLE: STEPS: INPUTS: Decrease the rate to stop the motor Open BASICmenu, then open THR-CUT again.) for 1 second. (If ADVANCE, ZLWKWKHĂLSRIDVZLWFK 1RWHWKDW\RXfunction. to THR-CUT. MUST assign a switch. The default is Activate the function. Choose desired to MIX. to OFF or ON. NULL.) switch, and the position which activates C to SW. to desired switch. the function. to POSI. to desired position. to RATE. until turns off. Close. Where next? 6HWXSGXDOWULSOHUDWHVDQGH[SRQHQWLDO D/R,EXP): see p. 42. Set up TRAINER functions: see p. 47. Set up twin aileron servos: see p. 51. Set up twin elevator servos: see p. 57. *Also LOGIC SW(Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. 79 GLIDER ADVANCE MENU Varied wing types and tail types (twin aileron servos, twin elevator servos, elevon, v-tail, etc). See p. 51-58 for basic information. ⢠FLAPERON (GLID 1A+1FRQO\ DLOHURQVHUYRVRSHUDWHLQRSSRVLWHGLUHFWLRQVDVDLOHURQVDQGVDPHGLUHFWLRQDVĂDSV6HH p. 45. ⢠CAMBER FLAPSURYLGHVFDPEHUPRYHPHQWRUWULPPLQJRIĂDSV6HHS ⢠For sailplanes, this function is also used as wing camber. The amount depends on the model, but usually a small amount (less than 10%) is preferred, since too much camber produces excess drag. Donât use more than about ´ WUDYHO XS RU GRZQ IRU JOLGHU FDPEHU 6RPH DLUIRLOV VXFK DV WKH 5* VKRXOG EH ĂRZQ ZLWK 12 UHĂH[ camber. Be sure to consult your modelâs manual for guidelines. ⢠Note that even though you may make CAMBER FLAP active while using AILE-DIFF, it will not have any effect. The 21/<IXQFWLRQWKDWDOORZVFRQWURORIWKHDLOHURQVDVĂDSVLQWKHAILE-DIFFFRQÂżJXUDWLRQLVDLUEUDNHEXWWHUĂ\ ⢠Aileron Differential (AILE-DIFF): allows twin aileron servos to provide differential down travel from up travel. See p. 54. ⢠Using Twin Aileron Servos with FLAPERON and AILE-DIFF. See AIL-2, p. 55. ⢠ELEVONIRUĂ\LQJZLQJV6HHS ⢠V-TAIL: for models with 2 servos operating together to create roll and pitch control. See p. 58. ⢠AILEVATOR: not available in GLID model types. Mixes: ⢠Linear Programmable mixes (PROG.MIX1-4): fully assignable programmable mixes with a linear response. see p. 68. ⢠Curved Programmable mixes (PROG.MIX5-8): fully assignable programmable mixes with a curved response. See p. 71. ⢠ELEV-FLAPSUHSURJUDPPHGPL[FUHDWHVHOHYDWRUPRYHPHQWIURPWKHLQERDUGĂDSVDVZHOODVHOHYDWRUV6HHS ⢠BUTTERFLY: Often called crow, BUTTERFLY is the glider version of AIRBRAKE. (BUTTERFLY does not have the option to activate it solely from a switch, and its activation switch. It always provides progressively more BUTTERFLY as the CHANNEL 3 (THROTTLE) STICK is lowered, or raised if used THR-REV, p.38.) See AIRBRAKE, p. 63. Full Span Mixing: Flap-to-Aileron and Aileron-to-Flap ⢠CAMBER-MIXAILE-FLAP 7KLV SUHSURJUDPPHG PL[ LV XVHG WR FUHDWH IXOO VSDQ ĂDSDLOHURQ DFWLRQ RQ D JOLGHU ZLWK ZLQJVHUYRV7KLVFKDQJHVWKHFDPEHURYHUWKHHQWLUHZLQJZKLFKSURGXFHVOHVVGUDJWKDQMXVWGURSSLQJWKHĂDSVE\ themselves. NOTE: When you have ELEV-FLAP mixing also, the trailing edge droops with the elevators, increasing pitch response. 80 AILERUDD(GLID): You can select a pre-programed mix which is used to mix the rudders with aileron operation or the ailerons with rudder operation. Aileron-to-rudder mix (AILEÄşRUDD): automatically creates a "coordinated turn". Rudder -to-aileron mix (RUDDÄşAILE): used to counterract undesirable roll (roll coupling) that happens with rudder input, especially in knife-edge. Adjustability: ⢠RATE range of -100 to +100. Negative setting would result in opposite rudder (aileron) action from aileron (rudder). ⢠SWITCH A-H fully assignable. Also LOGIC SW (Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. ⢠POSITION fully assignable, including NULL (mix always on) and Up&Cntr and Cntr&Dn to activate the mix in 2 separate positions of the same SWITCH. ⢠Condition: The separate AILERUDDVHWWLQJVIRUHDFKĂLJKWFRQGLWLRQFDQEHVHW GOAL of EXAMPLE: STEPS: ([ 58''Äş$,/( QR VZLWFKOpen AILERUDD mix submenu. corrects roll coupling. INPUTS: for 1 second. (If BASIC, again.) to 2nd page of menu. to AILERUDD. Select the mixing mode. to MODE. Activate the function. to MIX Set the rate. (Ex: 100% each way) to FLP1. to RUDDÄşAILE to ON. RUDDER STICK. to +25%. RUDDER STICK. to +25%. Repeat as needed. Close. Where next? ELEV-FLAP mixing. See p. 62. BUTTERFLY. See p. 63. Use a mix to OFFSETWKHĂDSVDVHWGLVWDQFHRQDVSHFLÂżHGVZLWFKVHHS View additional model setups on the internet: www.futaba-rc.com\faq\ 81 AILE-FLAP(GLID 2A+2F only): This pre-programmed mix is used to create full span aileron action on a glider with 4wing servos. This increases the roll rate and decreases induced drag. )RUQRUPDOĂ\LQJDYDOXHRIDERXWLVRIWHQXVHG)RUVORSHUDFLQJRU)% models in speed runs, you may wish to use a larger value approaching 100%. Adjustability: ⢠RATEUDQJHRIWR1HJDWLYHVHWWLQJZRXOGUHVXOWLQRSSRVLWHDLOHURQDFWLRQIURPĂDSV ⢠SWITCH A-H fully assignable. Also LOGIC SW (Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. ⢠POSITION fully assignable, including NULL (mix always on) and Up&Cntr and Cntr&Dn to activate the mix in 2 separate positions of the same SWITCH. ⢠Condition: The separate AILE-FLAPVHWWLQJVIRUHDFKĂLJKWFRQGLWLRQFDQEHVHW GOAL of EXAMPLE: STEPS: Turn on AILE-FLAP mixing. Set rate Open AILE-FLAP submenu. to100% for maximum possible flap travel with ailerons. Assign to SWITCH C center. INPUTS: for 1 second. (If BASIC, again.) to 2nd page of menu. to AILE-FLAP. Activate the function. to MIX Set the rate. (Ex: 100% each way) to FLP1. to ON. AILERON STICK. to +100%. AILERON STICK. to +100%. Repeat above to set FLP2. Assign the SWITCH and position. to SW. to POSI. to C. to CENTER. Close. Where next? ELEV-FLAP mixing. See p. 62. BUTTERFLY. See p. 63. Use a mix to OFFSETWKHĂDSVDVHWGLVWDQFHRQDVSHFLÂżHGVZLWFKVHHS View additional model setups on the internet: www.futaba-rc.com\faq\ 82 SPOILER MIX (GLID PRYHVWKHVSRLOHU V E\ĂLSSLQJWKHDVVLJQHGVZLWFKDQGLVXVHGWRPDNHVWHHSGHVFHQWV$QGSPOILER MIX works linking with BUTTERFLY function. Adjustability: ⢠Position: -100% to +100%, with a default of -50% (off), +50% (on) ⢠Channel: Spoiler 1: ch8, 5 or 3 (ch8 or 3*), Spoiler 2: NULL, ch5 or 3 (NULL or ch3*) *GLID (2A+2F) mode ⢠Elevator setting: Rate: -100% to +100%, Delay: 0% to 100% ⢠SWITCH A-H fully assignable. Also LOGIC SW (Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. GOAL of EXAMPLE: STEPS: INPUTS: Open the SPOILER MIX function and 2-servo spoiler mode. for 1 second. (If BASIC, Adjust the spoiler servo position to move to 2nd page. to SPOILER MIX. 60%. to 2nd page. Activate the function. to MIX. Assign the SPO2-CH. (Ex: CH3) to SPO2-CH. Adjust the spoiler servo position. (Ex: SPO1SPO2=+55% to +60%) to +50%. (SPO1) to +60%. to +50%. (SPO2) to +60%. Optional: Set the elevator rate. (EX: 10%) to rate-ELE. Optional: Set the delay. (EX: 25%) to dly-ELE. Close menu. Where next? again.) Set up BUTTERFLY mixing: see p. 87. 83 to ON. to CH3. to 10%. to 25%. OFFSETsDGGLWLRQDOĂLJKWFRQGLWLRQVDYDLODEOHVSHFLÂżFDOO\IRUVDLOSODQHV These additional flight conditions contain different offset trims to make the saiplane perform certain maneuvers more easily. Aileron differential functions may be set to provide separate rates per condition selected. Prior to setting up OFFSET, you must active the conditions and assign the switches in the CONDITION/FUNCTION. Unnecessary fusulage motion is generated when there are sudden changes in the servo position and variations in the operating time between channels can be suppressed by using the delay function (-dly-). NOTE: The same delay amount for elevator and rudder is recommended when using V-tail function. 7KH&*SURYLGHVRIIVHWWULPVWRDOORZWKHPRGHOHUDGGLWLRQDOVHWXSVDORQJZLWKWKHQRUPDOĂLJKWFRQGLWLRQ NORMAL, START, SPEED, DISTANCE and LANDING) These offset trims have same setting abilities basically except the switch and dial assignment. For an example of trim settings, please see the following: Adjustability: Â6HSDUDWHDGMXVWPHQWVIRUHDFKDLOHURQHOHYDWRUUXGGHUDQGĂDSVHUYRIRUHDFK condition. ⢠SWITCH G (10CAG) or E (10CHG) is programmed for NORMAL, START, and SPEED trims. SWITCH C is programmed for DISTANCE and LANDING trims. 7KHVHVZLWFKSRVLWLRQDVVLJQPHQWLVDGMXVWDEOH CONDITION/FUNCTION) ⢠TRIM item (Digital trim operation mode): NORM: normal trim operation mode, MIX: offset rate trim operation mode while mixing is on. ⢠Optional assignable knob (CAMBER MIX) to allow trimming in flight of the DLOHURQDQGĂDSDFWLRQRIHDFKĂLJKWFRQGLWLRQ *During OFFSET operation, the aileron and elevator travels are displayed on each trim display in the Startup screen. GOAL of EXAMPLE: STEPS: INPUTS: Set up a START to gain maximum Open OFFSET function. again.) for 1 second. (If BASIC, possible lift on launch. to OFFSET. Each Aileron: 50%. Switch to the START condition. G (10CA) or E (10CH) from Each Flap: 100%. NORMAL to START. Elevator: -5% to compensate. Set the rates. (Ex: AIL1 and 2, 50%, FLP1 C to AIL1. to +50%. SWITCH (10CAG=G, 10CHG=E.) and 2, 100%, ELEV -5%.) to AIL2. to +50%. Note: switch is assignable. (CONDITION) Repeat for, FLP1 and 2, ELEV. KNOB(null) Close the function. Note: knob is assignable. (CAMBER MIX) Where next? View additional model setups on the internet: www.futaba-rc.com\faq\ 84 START DELAY (GLID 1A+1F only): START DELAY automatically switch the offset trims (OFFSET) from the START condition's trims to the normal cndition's trims after proceeding the delay time (max.10sec.) which is set by the -dly- item when activating the START condition. (It is convenient for hand launch glider.) NOTE: The same delay amount for elevator and rudder is recommended when using V-tail function. Adjustability: ⢠Delay time (-dly-) range of 0 to 100%. The delay time is 10 second at 100%. GOAL of EXAMPLE: Ex: delay time=5 second. STEPS: INPUTS: Open ADVANCE menu, then open START for 1 second. (If ADVANCE, DELAY function. to START DELAY. Activate the function. to MIX. Set the delay time. (Ex: 50% each surface) to ELEV. to RUDD. again.) to OFF or ON. to 5O%. to 5O%. Repeat as needed. Close. Camber Mixing (CAMBER MIX)(GLID): This function adjusts the mixing rate of camber operation which operates the ZLQJ FDPEHU DLOHURQV DQG ĂDSV LQ WKH QHJDWLYH DQG SRVLWLYH GLUHFWLRQV 7KH DLOHURQĂDSDQGHOHYDWRUUDWHVFDQDOVREHDGMXVWHGLQGHSHQGHQWO\DQGDWWLWXGH changes caused by camber operation can be corrected. Also the operation reference point of camber control can be offset. (PRE) NOTE: Camber control is not assigned at initial. Adjustability: ⢠Rate: -100% to +100%, with a default of +30% ⢠Reference point (PRE): The operation reference point of camber control can be offset. -100% to +100%, with a default of 0%. GOAL of EXAMPLE: STEPS: Ex: Set the mixing amount for aileron Open the CAMBER MIX function. to 40 %, camber control to VR(E), reference point to desired point. Choose desired slider. Adjust the mixing amount for AILE. (Ex: adjust to 40%.) Set the reference point. Close menu. 85 INPUTS: for 1 second. (If BASIC, to CAMBER MIX. to VR. to VR(E). to AILE. VR(E). VR(E). to 40%. to PRE . desired point. again.) to 40%. or VR(E) to for one second. Flap Setting (CAMBER FLAP)(GLID): CAMBER FLAP assigns the primary flap control [defaults to VR(A)] to allow WULPPLQJLQĂLJKWRIWKHĂDSDFWLRQ 7KH XSGRZQ WUDYHO RI HDFK IODS FDPEHU IODSV FLP1 2 ) can be adjusted LQGHSHQGHQWO\$OVRWKHFHQWHUSRVLWLRQRIĂDSVHUYRFDQEHRIIVHW NOTE: If FLAP-TRIM is activated, you can not use CAMBER FLAP function simultaneously. Adjustability: ⢠Rate: -100% to +100%, with a default of +30% ⢠Center position (CENTER 7KHRSHUDWLRQUHIHUHQFHSRLQWRIĂDSFDQEHRIIVHWWRZLWKDGHIDXOWRI [Note] When changing the polarity of a rate, "change rate dir?" is displayed for a check. Please set up after pressing DIAL for 1 second and canceling an alarm display. GOAL of EXAMPLE: STEPS: Ex: Set the maximum travel of 35% of Open the CAMBER FLAP function. WKHWRWDOĂDSWUDYHO INPUTS: for 1 second. (If BASIC, again.) to CAMBER FLAP. $ G M X V W W K H X S G R Z Q W U L P D P R X Q W separately. (Ex: adjust to 35%.) to FLP1. VR(A). VR(A). to 35%. Repeat. Option: Adjust the center position of ĂDSVHUYR Close menu. 86 to CENTER. to 35%. to desired point. BUTTERFLY (crow) mixing (GLID): BUTTERFLY (often called "crow"- see GLID S IRU GHWDLOV VLPXOWDQHRXVO\ PRYHV WKH ĂDS WZLQ DLOHURQV DQG HOHYDWRU and is usually used to make steep descents or to limit increases in airspeed in dives. Separate two BUTTERFLY settings are available. (CIR1CIR2) Adjustability: ⢠Activation: Proportional by moving the THROTTLE STICK. ⢠Switch: Mix SWITCH is selectable. A to H: SWITCH A to H NULL: always on. Also LOGIC SW (Lsw1 to 3) may be assigned. Set up LOGIC SW: See p. 38. ⢠Inversely proportional to THROTTLE STICK: provides a proportional increase in amount of airbrake action as THROTTLE STICK is lowered (when SWITCH A (assignable) is in down position). Includes selectable stick position where airbrake begins. If you would like to have the airbrake be directly proportional to throttle stick, you will need to reverse the THR-REV function. Note that this changes the throttle stick direction for all models. See page 38 for instructions. ⢠Elevator settings: (adjustable in the B.FLY-ELE) B.FLY-ELE works linking with BUTTERFLY function. Elevator rate is adjustable in a 3 point curve. Point 1: PRESET point. (Fixed) Point 2: MID point. Position and rate are adjustable. Point 3: END point. Position and rate are adjustable. ⢠Delayed reaction: You can suppress sudden changes in your model's attitude when BUTTERFLY is activated by setting the delay (DELAY LWHPWRVORZGRZQWKHHOHYDWRUUHVSRQVHDOORZLQJWKHĂDSVDLOHURQVHOHYDWRUWRDOOUHDFKWKHLUGHVLUHGHQG point together. A setting of 100% slows the servo to take approximately one second to travel the prescribed distance. ⢠Channels controlled:7ZLQDLOHURQVĂDSDQGVSRLOHUPD\EHVHWLQGHSHQGHQWO\LQBUTTERFLY, including set to 0 to have no effect. ⢠Twin aileron servos: If AIL-DIFF function is inhibited, then AIL1 and AIL2 settings will have no effect. ⢠If AIL-DIFF is active, then CH1 and CH7 may be independently adjusted. ⢠Normally both ailerons are raised equally in BUTTERFLY, and the elevator motion is set to maintain trim when the ailerons rise. Different amounts may be set for each aileron to correct for torque reactions and other unique characteristics of the model. Be sure you understand what dropping ailerons will do when in BUTTERFLY. Along with creating an enormous amount of drag (desireble for spot landings), this also creates "wash-in", a higher angle of attack where the ailerons are, and encourages tip stalling. If you are using this for aerobatic performance and not "sudden stops", consider raising the DLOHURQVDQGGURSSLQJWKHĂDSVLQVWHDGDVVKRZQLQWKHGLDJUDPDERYH 87 GOAL of EXAMPLE: STEPS: Activate BUTTERFLY. Open the BUTTERFLY function. Adjust the aileron and flap travel to 75%. Activate the function. Elevator settings are adjustable in the Adjust the travels as needed. B.FLY-ELE. (Ex: Ailerons each 75%, Flap 75%.) Mix switch is selectable. INPUTS: for 1 second. (If BASIC, again.) to BUTTERFLY. SWITCH A in up position. to MIX to OFF. to AIL1 to 75%. to FLAP to 75%. to AIL2 to 75%. Close menu. Where next? View additional model setups on the internet: www.futaba-rc.com\faq\ Channel 3's function selection (CONDITION/FUNCTION): Channnel 3's function is selectable in the ARBK-FUNC item. (Throttle stick, switches, or knobs) By choosing except STK, channel 3's function may be separated from BUTTERFLY's function, so channel 3 can be used for other functions. Adjustability: ⢠Channel 3's function: STK: THROTTLE STICK Sw-A to H: SWITCH A to H Vr-A to Vr-E: KNOB A to E 88 HELICOPTER MODEL FUNCTIONS Please note that nearly all of the BASIC menu functions are the same for airplane (ACRO setup), sailplane (GLID setups), and helicopter (HELI) setups. The features that are identical refer back to the ACRO chapter. The Helicopter BASIC menu includes the normal condition's throttle and collective pitch curves and revo. mixing. (idle-ups and throttle hold are advanced features and are in the ADVANCE menu). HELI ADVANCE MENU FUNCTIONS ............................. 99 THROTTLE HOLD .......................................................... 99 THR-CURVE, PIT-CURVE and REVO ............................. 100 Idle-ups ................................................................... 101 7ULPVRIIVHW............................................................. 102 Delay ....................................................................... 103 Hovering setups ...................................................... 104 +LJKORZSLWFK ........................................................ 105 Gyros and governors ............................................... 106 0L[HVGHÂżQLWLRQVDQGW\SHV ..................................... 61 Linear, Prog. mixes 1-4 ............................................. 68 Curve, Prog. mixes 5-6 ............................................. 71 THROTTLE-NEEDLE ........................................................ 65 THROTTLE MIX ............................................................ 96 SWASH RING .............................................................. 96 HELICOPTER FUNCTIONS.......................................... 89 Table of contents and reference info for helicopters . 89 Getting Started with a Basic Helicopter ................... 90 HELI BASIC MENU FUNCTIONS .................................. 93 MODEL Submenu: MODEL SELECT, COPY, NAME .......... 30 PARAMETER Submenu: RESET , MODUL , ATL , AILE-2 , CONTRAST, BACK-LIGHT, HOME-DISP, USER NAME, LOGIC SW ............................................................................. 33 MODEL TYPE (PARAMETERS submenu) ........................ 93 Servo REVERSE ........................................................... 38 SWASH AFR (swashplate surface direction and travel correction) (not in H-1) .............................................. 95 END POINT .................................................................. 39 Setting up the Normal Flight Condition ................... 97 THR-CUT VSHFLDOL]HGVHWWLQJVIRUKHOLFRSWHUVSHFLÂżF models) ..................................................................... 98 'XDO7ULSOH5DWHVDQG([SRQHQWLDO D/R, EXP) .......... 42 TIMER Submenu.......................................................... 45 Auxiliary Channel assignments and CH9 reverse (AUXCH) ............................................................................. 46 TRAINER ..................................................................... 47 TRIM and SUB-TRIM ................................................... 48 SERVO Display ........................................................... 49 Fail Safe and Battery FailSafe (F/S) ......................... 50 89 GETTING STARTED WITH A BASIC HELICOPTER This guideline is intended to help you set up a basic (H-1) heli, to get acquainted with the radio, to give you a jump start on using your new radio, and to give you some ideas and direction on how to do even more with this powerful system than you may have already considered. It follows our basic format of all programming pagesâa big picture overview of what we're trying to accomplish; a âby nameâ description of the steps to help acquaint you with the radio; and then a step-bystep instruction to leave out the mystery and challenge of setting up your model. %ULHĂ\WKHW\SLFDOKHOLFRSWHUÂśVFRQWUROVDUHDVIROORZV ⢠Aileron: changes cyclic lateral (roll) . Rolls the helicopter. Tilts the swashplate to the left or right. CH1. ⢠Elevator: changes cyclic pitch. Changes the helicopterâs angle of attack (nose up or nose down). Tilts the entire swashplate fore and aft. CH2. ⢠Rudder: changes the angle of the tail rotor. Yaws the helicopter left or right. CH4. ⢠Collective Pitch: adjusts main rotor collective [angle of the paddles], changing the main bladesâ pitch. Increased collective pitch (with throttle) causes the helicopter to rise. Moves in conjunction with throttle on the THROTTLE STICK. CH6. ⢠Throttle:RSHQVFORVHVFDUEXUHWRU0RYHVLQFRQMXQFWLRQZLWKFROOHFWLYHSLWFKRQWKHTHROTTLE STICK. CH3. ⢠REVO: mix that adds rudder in conjunction with pitch. This helps compensate for rotation of the helicopter caused by the LQFUHDVHGHQJLQHWRUTXH 1HYHUXVHUHYRPL[LQJZLWKDKHDGLQJKROG$9&6J\URWKHJ\URDOUHDG\GRHVWKLV )RUDGGLWLRQDOGHWDLOVVHHWKDWIXQFWLRQ VVHFWLRQLQWKLVPDQXDO²WKHSDJHQXPEHUVDUHLQGLFDWHGLQWKHÂżUVWFROXPQIRU\RX GOAL of EXAMPLE: Prepare your helicopter. STEPS: INPUTS: Install all servos, switches, receiver per your model's instructions. Set all trims, dials and sliders to neutral. &RQÂżUPDOOFRQWUROOLQNDJHVDUHGHJUHHV RUSHULQVWUXFWLRQV IURPWKHVHUYR horn to the ball link for proper geometry and that no slop is present. Mechanically adjust all linkages to get as close as possible to proper control throws and minimize binding prior to radio set up. Select the proper MODEL TYPE for your In the BASIC menu, open the PARAMETER Turn on the transmitter. submenu. model. Ex: HELI (H-1). See p. 93. for 1 second. (If ADVANCE, again.) then C to highlight PARAMETER. [NOTE: This is one of several functions for which the radio requires to choose PARAMETER. confirmation to make a change. to TYPE. Onlycritical changes require additional Go to MODEL TYPE. key strokes to accept the change.] Select proper MODEL TYPE. to HELICOPTER. for 1 second. Ex: HELI ( H-1 ). Confirm the change. WRFRQÂżUP Are you sure? displays. (If the correct model type was already Close PARAMETER. displayed, be sure to do a model reset to to SWASH. discard any unwanted settings.) to H-1. for 1 second. Are you sure? displays. WRFRQÂżUP to return to BASIC menu. Then, NAME the model. P. 32. In the BASIC menu, open the MODEL submenu. (You do not need to do anything to Go to MODEL NAME. â saveâ or store this data.) as needed to highlight MODEL. to choose MODEL. to NAME. (First character of model'sname is highlighted.) Input aircraft's name. Close the MODEL submenu when done. WRFKDQJHÂżUVWFKDUDFWHU When proper character is displayed, to move to next character. Repeat. 90 to return to BASIC menu. GOAL of EXAMPLE: STEPS: INPUTS: Reverse servos as needed for proper In the BASIC menu, open REVERSE. to REVERSE. control operation. Ex: LEFT RUDDER to choose REVERSE. STICK results in leading edge of tail rotor blades moving left. Reverse to Choose desired servo and reverse its C to CH4:RUDD. direction of travel. (Ex: reverse rudder operate properly. P. 38. so REV is highlighted. servo.) Are you sure? Displays. for 1 second. Repeat as needed. to return to BASIC menu. Adjust Travels as needed to match In the BASIC menu, choose END POINT. model's recommended throws (usually listed as high rates).P. 39. Adjust the servosâ end points. (Ex: elevator servo) to END POINT. to choose END POINT. to ELEV. ELEVATOR STICK. until up travel is as desired. Return to BASIC menu. ELEVATOR STICK. until down travel is as desired. Repeat as needed. Activate THR-CUT. P. 98. Open THROTTLE-CUT function. Activate the function. Choose desired switch and position to activate. to MIX to OFF. to SW. to C. to POSI. to THROTTLE-CUT. to choose THR-CUT. With THROTTLE STICK at idle, adjust the rate until the engine consistently shuts off, but throttle linkage is not binding.1 Close. Set up throttle curve for normal.2 Open the THR-CURV/NOR function. (Usually changes will not need to be Adjust if needed. PDGHSULRUWRÂżUVWĂLJKW 3 Close the function. to DOWN. C to down position. THROTTLE STICK. to RATE. to THR-CURV/NOR. to 5%. until shuts off. to 1 >. to 1 >. to next point. Repeat. Set up collective pitch curve for normal Open the PIT-CURV/NOR function. to PIT-CURV/NOR. as base of -4, center of +5,end of Adjust each point to match desired to 8%. C to next point. +8 to +10 degrees of blade pitch for FXUYH ([ÂżUVWSRLQW8%.) Repeat. aerobatics.2 (If just learning to fly, ask Close the function. your instructor.) P. 97. Set up revo. mixing for normal. (For Open the REVO./NOR function. heading-hold gyros, inhibit revo.) P. 97. Adjust to your desired starting point. (Ex: 10%.) Close the function. to REVO./NOR. to 10%. to 1 >. to next point. Repeat. &RQÂżUP*\URGLUHFWLRQ 1RWHLIXVLQJWith radio on, move helicopterâs tail to the right by hand. D KHDGLQJKROG$9&6 J\UR XVH WKHThe gyro should give right rudder input (leading edge of the tail rotor blades GYRO programming for proper setup. move left). If the gyro gives the opposite input, reverse direction on the gyro unit itself. See p. 106.) 91 GOAL of EXAMPLE: STEPS: INPUTS: Learn how to operate HOVERING PITCH Notice at half throttle, the VR(C) dial for 1 second. (If ADVANCE, and HOVERING THROTTLE. See p. 104. adjusts the throttle separately from the C to SERVO. pitch. VR(A) adjusts the pitch separately throttle to center from the throttle. VR(C) again.) VR(A) center dials. %H VXUH WR IROORZ \RXU PRGHOÂśV LQVWUXFWLRQV IRU SUHĂLJKW FKHFNV EODGH WUDFNLQJ HWF 1HYHU DVVXPH D VHW RI EODGHV DUH properly balanced and will track without checking. Check receiver battery voltage! Always check voltage with a voltmeter prior to each and every engine start.(Never DVVXPHEHLQJSOXJJHGLQDOOQLJKWPHDQV\RXUUDGLRJHDULVUHDG\WRĂ\ ,QVXIÂżFLHQWFKDUJHELQGLQJVHUYROLQNDJHV and other problems can result in a dangerous crash with the possibility of injury to yourself, others and property. &RQÂżUPWKHVZDVKSODWHLVOHYHODWWUDYHO$GMXVWDUPVLIQHHGHG Apply full collective and check that the swashplate remained level and there is no binding. Repeat for full cyclic pitch and roll. If not, adjust as needed to correct in END POINT: see p. 39. Important note: prior to setting up throttle hold, idle-ups, offsets, etc, be sure to get your normal condition operating properly. Checking setup prior to going airborne: Check voltage! Then, with the assistance of an instructor, and having completed all range checks, etc, gradually apply throttle until the helicopter becomes âlight on the skids.â Adjust trims as needed to correct for any roll, pitch, or yaw tendencies. If the tail âwags,â the gyro gain is too high. Decrease gyro gain. Where next? (Other functions you may wish to set up for your model.) THROTTLE HOLD: P. 99. SUB-TRIM p. 49 and separate trims for conditions (OFFSETS): p. 102. Governor setup: p. 108. IDLE-UP p. 101. DELAYs to ease servo response when switching idle-ups: p. 103. Rudder-to-throttle and other programmable mixes p. 68. Periodically move the throttle stick to full and back down to ensure proper servo settings. It is critical that dials A and C be centered when the pitch and throttle curves are setup. 92 HELI-SPECIFIC BASIC MENU FUNCTIONS MODEL TYPE: This function of the PARAMETER submenu is used to select the type of model programming to be used. Before GRLQJDQ\WKLQJHOVHWRVHWXS\RXUPRGHOÂżUVW\RXPXVWGHFLGHZKLFKMODEL TYPEEHVWÂżWV\RXUDLUFUDIW,I\RXUWUDQVPLWWHU is a 10CAG, the default is ACRO. If it is a 10CH, the default is HELI(H-1). HELICOPTER SWASHPLATE TYPES: The 10CG radios support 8 basic swashplate setups, including "single servo" (H-1-most helicopters use this type) and 7 types of CCPM (cyclic and collective pitch mixing). A "single servo" swashplate uses one servo for each axis: aileron, elevator (cyclic pitch), and collective pitch. CCPM helicopters utilize a combination of servos working together to achieve the 3 axes of motion. There are 7 basic CCPM types, displayed below. CCPM has several advantages, the most obvious of which is far less mechanical complexity to properly move the swashplate of the helicopter. Additionally, several servos working in unison (ex: HR3, all 3 servos together create elevator movement) dramatically increases the torque available as well as the precision and centering. Please note that some helicopters are type HR3 or HN3, except off by 180 degrees. For example, the KyoshoÂŽ Caliber is HR3 but with the 2 parallel servos to the rear of the helicopter, not front. If your model's swashplate is off by 180 degrees, you will still use that swashplate type, but also use SWASH AFR (p.95) to adjust the functions as needed until it operates properly. Additionally, different angles of CCPM may also be created utilizing the fully assignable programmable mixes. (See our Frequently Asked Questions area at www.futaba-rc.com\faq\.) Not operating quite like you expected? ,QPDQ\&&30LQVWDOODWLRQV\RXQHHGWRHLWKHUUHYHUVHWKHGLUHFWLRQRIDVSHFLÂżF function (SWASH AFR) or reverse a single servo's direction (REVERSE). See SWASH AFR for details. (p.95) Swashplate Types H-1 HR3 FRONT PIT H-3 AIL 120Ë (PIT) (Normal linkage type) (AIL) H-1:each servo linked to the swashplate 120Ë 120Ë independently. AIL (PIT) PIT (AIL) ELE HN3 HE3 PIT (AIL) ELE H-2 ELE H-4 H4X ELE1 ELE AIL (PIT) PIT ELE1 120Ë AIL 120Ë PIT AIL PIT (AIL) AIL (PIT) 120Ë PIT ELE2 93 ELE2 AIL GOAL of EXAMPLE: STEPS: INPUTS: Change the MODEL TYPE and SWASH Confirm you are currently using the On home screen, check model name and # on top left. TYPE of model #3 from aircraft to 120 proper model memory. (example: 3) degree CCPM with 2 servos working in If it is not the correct model (example:3), unison for collective pitch and aileron see MODEL SELECT, p. 25. [HELI(HR3)]. Open PARAMETER submenu. again.) for 1 second. (If ADVANCE, to 2nd page of menu. Select proper MODEL TYPE. (HELICOPTER) &RQÂżUPWKHFKDQJH to PARAMETER. to TYPE. to HELICOPTER. Are you sure? displays. Change to the desired SWASH TYPE (example, HR3.) &RQÂżUPWKHFKDQJH for 1 second. WRFRQÂżUP1 to SWASH. to HR3. for 1 second. Are you sure? displays. WRFRQÂżUP Close. Where next? If a single servo is not operating properly, REVERSE: see p. 38. If a control is operating backwards (i.e. Elevator), see SWASH AFR, p. 95. If unsure see SWASH AFR. Radio emits a repeating âbeepâ and shows progress on screen as the model type is being changed. Note that if the power switch is turned off prior to completion, the model type will not be changed. 94 SWASH AFR (not in SWH1): Swashplate function rate settings (SWASH AFR UHGXFHLQFUHDVHUHYHUVHWKHUDWH (travel) of the aileron, elevator (except H-2 ) and collective pitch functions, adjusting or reversing the motion of all servos involved in that function, only when using that function. Since these types utilize multiple servos together to create the controls, simply adjusting a servo's REVERSE or END POINT would not properly correct the travel of any one control. Since H-1 uses one servo for each function, there is no need for AFR in H-1. This is fairly hard to explain but easy to see, so let's set up KyoshoÂŽ Caliber's swashplate settings as an example. With everything installed per factory instructions, set the model to HELI(HR3). Now let's adjust the swashplate properly. 6LQFH DLOHURQ DOZD\V XVHV QR PRUH WKDQ VHUYRV FKHFN LW ÂżUVW (LWKHU ERWK RSHUDWH SURSHUO\ QR FKDQJH QHHGHG ERWK operate backwards (reverse the whole function), or one servo operates backwards (reverse that servo alone). Next check elevator. Remember, the aileron servo(s) operate correctly, so if elevator does not, we should only have 2 choices leftâthe whole function needs to be reversed, or the servo(s) not shared with aileron need to be reversed. Last is collective. If aileron and elevator are working properly, the only thing that could be wrong is the whole direction collective operates (reverse the whole function). In our example, HR3 is 180 degrees off from the swashplate of the Caliber. Therefore, it is very likely that several functions will not operate properly. The collective pitch operation is backwards; but reversing all three servos would also reverse the aileron and elevator operations. Changing the collective pitch rate, however, from +50% to -50%, will reverse the collective pitch without affecting the aileron action. HR3 Swash Type AILERON STICK. ELEVATOR STICK. RUDDER STICK. THROTTLE STICK. CHECKING FOR PROPER MOTION ON AN HR3 SWASHPLATE PROPER MOTION WRONG MOTION HOW TO FIX Swashplate tilts right. Swashplate tilts left. Reverse AIL setting in SWASH to -50%. Back of Swashplate moves Ch6 servo moves incorrectly; up. REVERSE. Back of Swashplate moves Ch1 servo moves incorrectly; down. REVERSE. Front of swash plate moves S w a s h p l a t e m o v e s t h e Reverse ELE setting in SWASH. down; back of swashplate opposite. (ex: +50 to -50) moves up. Entire swashplate moves up. Ch2 servo moves incorrectly; REVERSE. The leading edges of tail Blades rotated right. REVERSE the rudder servo. blades rotate left. Entire Swashplate lifts. Swashplate lowers. Reverse PIT setting in SWASH. GOAL of EXAMPLE: STEPS: Adjust the travel of the collective pitch Open SWASH AFR function. from +50% to -23%, reversing the travel of all 3 servos and decreasing their travel in collective pitch only, on an Adjust PITC travel to -23%. HR3 SWASH TYPE. Close the menu. Where next? INPUTS: for 1 second. (If ADVANCE, to SWASH AFR. to PITC. again.) to -23%. &RQÂżUPWKHVZDVKSODWHLVOHYHODWWUDYHO$GMXVWDUPVLIQHHGHG Apply full collective and check that the swashplate remained level. If not, adjustservois travels as needed to correct. END POINT: see p. 39. Set up the normal condition: (THR-CURV/NOR, PIT-CURV/NOR, REVO./NORM): see p. 97. Set up D/R,EXP: see p. 42. 95 Throttle Mixing (THROTTLE MIX): This function can be set for each flight condition, and is used to correct the tendency of the model to change altitude when the rotor is tilted by aileron, elevator, and rudder controls. Adjustability: Â0L[LQJPD\EHVHWIURPWRHDFKĂLJKWFRQGLWLRQ GOAL of EXAMPLE: STEPS: Correct the tendency of the model to Open THROTTLE MIX function. change altitude. INPUTS: for 1 second. (If BASIC, again.) to 2nd page of ADVANCE menu. to THROTTLE MIX. Activate the function. to MIX Adjust the rate. Ex: IDL1 (AIL to TH) 10% Repeat as needed. to IDL1 (AIL to TH) to ON. to 10%. Close the menu. Where next? HI/LOW-PIT : see p. 105. GOVERNOR set up: see p. 108. Swash Ring (SWASH RING OLPLWVWKHVZDVKSODWHWUDYHOWRZLWKLQDÂż[HGUDQJH 7KLVIXQFWLRQOLPLWVWKHVZDVKWUDYHOWRZLWKLQDÂż[HGUDQJHWRSUHYHQWGDPDJLQJ of the swash linkage by simultaneous operation of the ailerons and elevators. It is effective in 3D aerobatics which use a large travel. Elevator operation Adjustability: ⢠Initial value: 100%. ⢠Adjustment range: 0 to 200%. â˘Swash travel by simultaneous operation of the ailerons and elevators is limited within the circle(SWASH RING rate). Aileron operation GOAL of EXAMPLE: STEPS: To prevent damaging of the swash Open SWASH RING function. linkage by simultaneous operation of the ailerons and elevators, set the limit point where swash throw stops. Activate the function. *Adjust the rate at the maximum swash tilt by simultaneous operation of the Adjust the rate. Ex: 90% ailerons and elevators Close the menu. 96 INPUTS: for 1 second. (If BASIC, again.) to 2nd page of ADVANCE menu. to SWASH RING. to MIX to RATE to ON. to 90%. Setting up the Normal Flight Condition:7KH1RUPDOĂLJKWFRQGLWLRQLVW\SLFDOO\XWLOL]HGIRUKRYHULQJ7KHWKURWWOHDQG FROOHFWLYHSLWFKFXUYHVDUHDGMXVWHGWRSURYLGHFRQVLVWHQWHQJLQH530GHVSLWHWKHLQFUHDVHGHFUHDVHLQFROOHFWLYHSLWFKRI the blades. This keeps the engine from âbogging downâ under excessive load (like trying to accelerate a car on a steep hill LQWKJHDU RUH[FHVVLYH530XQGHULQVXIÂżFLHQWORDG OLNHĂRRULQJWKHWKURWWOHZKLOHLQQHXWUDO ULVNLQJHQJLQHGDPDJH $VWKHFXUYHVDQGUHYRPL[LQJDUHDOOLQWHUUHODWHGZHZLOOGLVFXVVDOOWKUHHÂżUVWWKHQFRPSOHWHDVDPSOHVHWXS Note that the normal throttle, pitch and revo curves are all available in the BASIC menu for simplicity. These may also be updated later in the ADVANCE menu with the settings for the other 4 conditions [idle-up 1 (IDL1), idle-up 2 (IDL2) and idleup 3 (IDL3), plus throttle hold (HOLD)]. Note: The throttle and pitch curves for the normal condition are always on. They cannot be inhibited. The other four conditions are activated with their throttle curves or throttle hold. For idle-ups, see p. 90. For throttle hold, see p. 99. ⢠THR-CURV/NOR: inputs the normal (NORM) throttle curve, which is usually not a linear response to THROTTLE STICK motion. Adjusting point 4 of the curve adjusts the engineâs RPM at the THROTTLE STICK midpoint . the desired position for hovering. The other 6 points are then adjusted to create the desired idle and maximum engine speed, and a smooth transition in-between. For more on throttle curves, see p. 101. ⢠PIT-CURV/NOR: inputs the normal (NORM) collective pitch curve, the collective pitch curve for flight near hover. The normal collective pitch curve is adjusted to match the throttle curve, providing the best vertical performance at a constant engine speed, with a starting curve of .4 base, +5 neutral, and +8 to +10 degrees of blade pitch maximum*. You can program the response over a 7-point curve for the best collective pitch angle relative to THROTTLE STICK movement. For more on collective pitch curves, see p. 101. ⢠REVO./NORM: mixes collective pitch commands to the rudder (a PITCH-RUDDER mix) to suppress the torque generated by changes in the main rotor's collective pitch angle, keeping the model from yawing when throttle is applied. REVO. is H[WUHPHO\KHOSIXOLQÂłWDPLQJWKHWDLO´RIPRGHOVQRWXVLQJKHDGLQJKROGAVCS gyros. NOTE: There are three revo. mixes available: normal (NORM LGOHXS IDL1/2), and idle-up 3 (IDL3). All 3 are adjustable in the ADVANCEPHQX1HYHUXVHUHYRPL[LQJLQFRQMXQFWLRQZLWKKHDGLQJKROG$9&6J\URV)RUGHWDLOVRQ revo, including default points for clockwise and counterclockwise rotating rotors, see p. 101. 7KHVH GHIDXOW UHFRPPHQGDWLRQV DVVXPH \RX DUH GRLQJ IRUZDUG ĂLJKW ,I \RX DUH MXVW OHDUQLQJ SOHDVH IROORZ \RXU LQVWUXFWRUÂśV JXLGDQFH 6RPH LQVWUXFWRUVOLNHDEDVHSRLQWIRUWUDLQLQJVRWKDWWKHKHOLFRSWHUFRPHVGRZQYHU\VORZO\HYHQLI\RXULQVWLQFWVSXOOWKHWKURWWOHFROOHFWLYHVWLFNWR the bottom in a hurry. 97 GOAL of EXAMPLE: STEPS: Set up Normal Flight Condition Open the THR-CURV/NOR function. Throttle/Collective Pitch Curves and $GMXVWWKHÂżUVWSRLQW ([5%.) Revo. Base point: Adjust base point of throttle curve until engine idles reliably on Open the PIT-CURV/NOR function. ground. Adjust base point of collective $GMXVWWKHÂżUVWSRLQW ([8%.) pitch curve to achieve -4 degrees of blade pitch. Apply throttle until the Open the REVO. /NORM function. model sits âlightâ on its skids. Adjust $GMXVWWKHÂżUVWSRLQW ([4%.) base point of REVO. until model does not rotate its nose at all. INPUTS: for 1 second. (If ADVANCE, Hover point: Adjust collective pitch Adjust THR-CURV/NOR. curve to +5 degrees. Ease heli into a Adjust PIT-CURV/NOR. KRYHU /DQGVKXW HQJLQH RII$GMXVW Adjust REVO. /NORM. throttle curves and rudder trim. Repeat until model hovers smoothly at half WKURWWOH5DSLGO\DSSO\WKURWWOHIURP WRVWLFN$GMXVWREVO. points 2 and 3 until the model does not rotate its nose up on throttle application. Repeat above as needed. High point: Adjust collective pitch Adjust THR-CURV/NOR. curve to +8 to +10 degrees. From hover, Adjust PIT-CURV/NOR. throttle up rapidly. If engine bogs, Adjust REVO. /NORM. increase the throttle curve. If engine over-revs, increase the collective pitch curve at points 6 or 7. Apply full throttle while hovering, then descend back to hover. Adjust REVO. until the nose does not change heading. Repeat above as needed. Where next? to THR-CURV/NOR. to POINT-1. to PIT-CURV/NOR. to POINT-1. to REVO. /NORM. to MIX. to POINT-1. again.) to 5%. to 8%. to ON. to 4%. Repeat above as needed. Repeat above as needed. Repeat above as needed. Repeat above as needed. GYRO function: see p. 107. Adjust HOV-THR and HOV-PIT if needed: see p. 104. Setting up Throttle Hold: see p. 99. Setting up idle-ups 1, 2 and 3: Throttle and collective pitch curves and revo. mixing (THR-CURVE, PIT-CURVE, REVO. MIX): see p. 101. GOVERNOR function: see p. 108. D/R,EXP: see p. 42. THROTTLE CUT: The THROTTLE-CUT function is used to kill the engine at the end of a flight. The engine can be stopped with one touch of any switch, eliminating the need WR PRYH WKH WULP WR NLOO WKH HQJLQH DQG WKHQ UHDGMXVW SULRU WR HDFK ĂLJKW7KH helicopter THROTTLE-CUT LQFOXGHV DQ 212)) WKURWWOH SRVLWLRQ QRUPDOO\ D little above idle). You must move the THROTTLE STICK back below the set point before the THROTTLE-CUT function can be reset, to avoid sudden engine acceleration. For a detailed example of throttle cut setup, see ACRO p. 41. Note: Be sure to add the step of setting a trigger point by cursoring to THRO, then putting the THROTTLE STICK in the desired position and pressing and holding the dial for one second. Notice that this function cannot be reversed to trigger only above the stick point. 98 HELI-SPECIFIC ADVANCE MENU FUNCTIONS THR-HOLD: This function holds the engine in the idling position and disengages it from the THROTTLE STICK when SWITCH E (10CHG) or G (10CAG) is moved. It is commonly used to practice auto-rotation. Prior to setting up THR-HOLD, hook up the throttle linkage so that the carburetor is opened fully at high throttle, then use the digital trim to adjust the engine idle position. To have THR- HOLD maintain idle, move the THROTTLE STICK to the idle position, then move the hold SWITCH on and off and keep changing the offset value until the servo does not move. To lower the engine idle speed, or if you want to shut off, input a more negative number. Adjustability: ⢠Idling position: Range of -50% to +50% centered about the throttle idle position to get the desired engine RPM. ⢠Switch assignment: Assigned to SWITCH G (10CAG) or E (10CHG) down. Adjustable in the CONDITION SELECT (THR-HOLD item). (2-position type switch only) ⢠Throttle curve: Since the throttle is moved to a single preset position, no curve is available for THR-HOLD. ⢠Collective pitch curve: Independent curve, typically adjusted to create a blade pitch range of -4% to +10% to +12%, is automatically activated with THRHOLD. ⢠Revo. mix: Since revo. mix adjusts for torque from the engine, no revo. mix is available for THR-HOLD. ⢠Priority: The throttle hold function has priority over idle-up. Be sure that the throttle hold and idle-up SWITCHES are in the desired positions before trying to start the engine. (We recommend starting your engine in throttle hold for safety reasons.) ⢠Gyro: Gyro programming includes an option to have a separate gyro setting for each condition, including THR-HOLD. This avoids the potential problem of the user being in the wrong gyro setting when going to THR-HOLD, resulting in an improper rudder offset and the model pirouetting. GOAL of EXAMPLE: Set up throttle hold. STEPS: Open THR-HOLD function. Determine desired throttle position by Activate the function. idling engine, turn on THR-HOLD, and Set desired engine position. adjust percentage as required to reach Close. the desired running point. Where next? INPUTS: for 1 second. (If BASIC, to THR-HOLD. to MIX. to POSI. again.) to OFF. to desired percent. PIT-CURVE for THR-HOLD: see p. 101. DELAY for THR-HOLD (to ease collective pitch response): see p. 103. GYRO setup: see p. 107. Setting up the Idle-Ups: Throttle and Collective pitch Curves and Revo. Mixing(TH-CURVE, PIT-CURVE, REVO. MIX) for idle-ups: see p. 101. D/R,EXP: see p. 42. 99 THR-CURVE and PIT-CURVE: These 7-point curves are utilized to best match the blade collective pitch to the engine RPM for consistent load on the engine. Curves are separately adjustable for normal, idle-up 1, idle-up 2, and idle-up 3. In addition, a separate collective pitch curve is available for throttle hold. Sample curves are displayed in the appropriate setup types (ex: QRUPDOĂLJKWFRQGLWLRQS IRUFODULW\ Suggested defaults: ⢠Normal: Collective pitch curve that results in points 1, 4 and 7 providing .4, +5, (+8 to +10)* degrees pitch. A throttle curve setting of 0, 25, 36, 50, 62.5, 75, 100%. Â,GOHXSV ,GOHXSVDQGDUHW\SLFDOO\WKHVDPHH[FHSWIRUWKHJ\URVHWWLQJVZLWKRQHEHLQJKHDGLQJKROG$9&6 and the other being normal mode. The pitch curve will likely be similar to the normal curve above. ⢠Idle-up 3: Collective pitch curve that results in points 1, 4 and 7 providing (.8 to .10), 0, (+8 to +10) degrees. A throttle curve of 100, 75, 62.5, 50, 62.5, 75, 100 to provide full throttle for inverted maneuvers. ⢠Throttle Hold pitch curve: Start with the normal pitch curve (for inverted autos, start from the idle-up 3 pitch curve), but LQFUHDVHWKHODVWSRLQWDSSUR[LPDWHO\ÂLIDYDLODEOHWRHQVXUHVXIÂżFLHQWSLWFKDWODQGLQJ 7KHVH GHIDXOW UHFRPPHQGDWLRQV DVVXPH \RX DUH GRLQJ IRUZDUG ĂLJKW ,I \RX DUH MXVW OHDUQLQJ SOHDVH IROORZ \RXU LQVWUXFWRUÂśV JXLGDQFH 6RPH LQVWUXFWRUVOLNHDEDVHSRLQWIRUWUDLQLQJVRWKDWWKHKHOLFRSWHUFRPHVGRZQYHU\VORZO\HYHQLI\RXULQVWLQFWVSXOOWKHWKURWWOHFROOHFWLYHVWLFNWR the bottom in a hurry.) Adjustability: ⢠Normal condition curves are editable in the BASIC menu for convenience. ⢠All curves may be adjusted in the ADVANCE menu. ⢠Automatically selected with the proper condition. Â7KHLGOHXSFXUYHVDUHSURJUDPPHGWRPDLQWDLQFRQVWDQW530HYHQZKHQWKHFROOHFWLYHSLWFKLVUHGXFHGGXULQJĂLJKW (including inverted). ⢠To change which conditionâs curve is being edited, cursor up to COND> and change the curve named. ⢠For clarity, the name of the condition currently active (switched on in the radio) is shown in parentheses behind name of condition whose curve is being edited. (Example: see curve displays below. Note that the normal condition is active but the idle-up 1 conditionâs curves are currently being edited. ⢠Moving and deleting the curve point: The curve point (-stk-) can be moved to the left or right by turning the DIAL (up to LQIURQWRIWKHDGMRLQLQJSRLQW DQGGHOHWHGUHWXUQHGE\SUHVVLQJWKHDIAL for one second alternately. ⢠Copying the curve: To copy the current curve onto another conditionâs curve, cursor up to COND> and press the DIAL for one second. Then select to desired condition and press the DIAL for one second. ⢠Idle-ups and throttle hold pitch curves may be edited even before the conditions have been made active. Activating their throttle curves activates these conditions. REVO. MIX: This 5-point curve mix adds opposite rudder input to counteract the changes in torque when the speed and collective pitch of the blades is changed. Adjustability: ⢠Three separate curves available: normal for hovering; idle-ups 1 and 2 combined; and idle-3. ⢠Normal condition curves are editable in the BASIC menu for convenience. ⢠All curves may be adjusted in the ADVANCE menu. Â&RUUHFWPL[LVDXWRPDWLFDOO\VHOHFWHGLQĂLJKWZLWKHDFKFRQGLWLRQDQGDXWRPDWLFDOO\DFWLYDWHGZKHQWKHWKURWWOHVHWXSIRU that condition is activated in the programming (i.e. THROTTLE HOLD or THR-CURVE.) ⢠To change which conditionâs curve is being edited, cursor up above POINT5 and select. For clarity, the name of the condition currently active (switched on at the radio) is shown in parentheses behind the name of the condition whose curve is being edited. 100 Revo. mixing rates are 5-point curves. For a clockwise-turning rotor, the rudder is mixed in the clockwise direction when collective pitch is increased; for counterclockwise-turning, the opposite. Change the operating direction setting by changing the signs of the numbers in the curve from plus (+) to minus (-) and vice versa. Suggested defaults: Clockwise rotation: -20, -10, 0, +10, +20% from low throttle to high. Counterclockwise rotation: +20, +10, 0, -10, -20% from low throttle to high. Adjust to the actual values that work best for your model. Revo. curves for idle-ups are often v-shaped to provide proper rudder input with negative pitch and increased throttle GXULQJ LQYHUWHG ĂLJKW 5XGGHU LV QHHGHG WR FRXQWHU WKH UHDFWLRQ ZKHQHYHU WKHUH LV LQFUHDVHG WRUTXH ,Q LQYHUWHG ĂLJKW throttle stick below half has increased throttle and negative pitch, therefore increasing torque and rotating the helicopter unless the revo. mix is also increasing appropriately.) IDLE-UPS: DGGLWLRQDO ĂLJKW FRQGLWLRQV DYDLODEOH VSHFLÂżFDOO\ IRU KHOLFRSWHUV7KHVH DGGLWLRQDO ĂLJKW FRQGLWLRQV FRQWDLQ different throttle curves, collective pitch curves, revo. mixing, and trims (except IDLE-3) to make the helicopter perform certain maneuvers more easily. Lastly, the gyro and dual rate functions may be set to provide separate rates per condition selected, including one for each idle-up. 2QHRIWKHPRVWFRPPRQĂLJKWFRQGLWLRQVFDQHDVLO\ĂLSIURPXSULJKWWRLQYHUWHGDQGEDFN7RGRVRWKHSLWFKFXUYHLVVHW to 0 pitch at half stick, positive pitch (climb upright) above half, and negative pitch (climb when inverted) below half stick. The throttle curve is adjusted to allow the engine to run consistently throughout the changes in pitch. Additional idle-ups may be used to maximize the helicopter's flight characteristics in certain types of flight (i.e. fast forward motion, backward) or maneuvers (loops, rolls, stall turns), or even the same maneuver but changing from headingKROG$9&6J\URPRGHWRQRUPDOJ\URPRGH7KH&SURYLGHVLGOHXSVWRDOORZWKHPRGHOHUDGGLWLRQDOVHWXSVDORQJ ZLWKWKHQRUPDOĂLJKWFRQGLWLRQ 1RWHWKDWIDL3 does not include governor settings.) Adjustability: ⢠SWITCH G (10CAG) or E (10CHG) is programmed for normal (NORM), idleup 1 (IDLE-UP1), and idle-up 2 (IDLE-UP2) curves. Adjustable in the CONDITION SELECT (IDLE-UP1/2, IDLE-UP3 items). (IDLE-UP1/2 3-position type switch only, IDL3 2-position type switch only) ⢠Activated with the throttle curve for that condition in THR-CURVE. ⢠Curves are adjusted to maintain constant RPM even when the collective pitch is negative (inverted). ⢠Note that REVO.mixing has one curve for idle-ups 1 and 2 and a second curve just for idle-up3. ⢠Gyro settings may be set separately for each idle-up. (See p. 101.) Â*RYHUQRU VHWWLQJV PD\ EH VHW XS WR IROORZ 1RUPDO,GOH,GOH EXW GR QRW RIIHU D VHWWLQJ WR DGMXVW IRU HDFK RI WKH conditions like gyro. (See p. 101.) ⢠Activating OFFSET makes the TRIM LEVERS adjust the trim separately in each of the idle-up conditions. For an example of throttle and pitch curves and revo, please see Normal Flight Condition Setup, p. 97. 101 OFFSET: Optional separate trims in addition to those for the normal condition. This function is used to automatically change WKH WULP RI D KHOLFRSWHU IRU H[DPSOH ZKHQ WUDQVLWLRQHG IURP KRYHU WR Ă\LQJ DW KLJK VSHHG$ FORFNZLVHURWDWLRQ URWRU helicopter tends to drift to the right at high speed, so an aileron offset may be applied to offset the helicopter to the left. The necessary elevator offset varies with model geometry, so it must be determined by noting collective pitch changes at high speed. The rudder offset is affected by both revo. mixing and trim lever movement while in the offset function. Adjustability: ⢠Complete switch assignability, plus a CONDITION SELECT RSWLRQ WKDW FUHDWHV switches between individual trims for each of the idle-ups. ⢠When OFFSET is active (its switch is on), moving the TRIM LEVERS adjust the stored offset, not the trims in the normal condition. ⢠When OFFSET is inactive (its switch is off), the OFFSET and any trim adjustments WRLWKDYHQRHIIHFW PRGHOREH\VWKHWULPVHWWLQJVRIWKHFXUUHQWO\DFWLYHĂLJKW condition.) ⢠When OFFSETLVLQKLELWHGWULPDGMXVWPHQWVPDGHLQDQ\ĂLJKWFRQGLWLRQDIIHFW DOOĂLJKWFRQGLWLRQV ⢠Rapid jumps caused by large offsets can be slowed using the DELAY function. *During OFFSET operation, the aileron, elevator, and rudder travels are displayed on each trim display in the Startup screen. NOTE: 5HPHPEHU RIIVHWV DQG UHYR PL[HV DUH QRW UHFRPPHQGHG ZKHQ XVLQJ KHDGLQJKROG$9&6 J\URV EHFDXVH WKH\ FRQĂLFWZLWKWKHDXWRPDWLFFRUUHFWLRQVWRWULPDQGWRUTXHWKDW$9&6SURYLGHV GOAL of EXAMPLE: STEPS: Set up separate trims for each of the Open the OFFSET function. three idle-up conditions. Adjust the idle-up 2 rudder trim to Activate the function. correct for torque at high speeds. Change switch setting to Cond. (No need to change SW.) to OFFSET. to MIX. again.) to OFF or ON. already Cond. Select IDL2. to No. Adjust trim settings as needed. (Ex:rudder to +8%.) to RUDD. &ORVH PHQXV DQG FRQÂżUP GLIIHUHQFH LQ trims between normal and idle-up 2. Where next? INPUTS: for 1 second. (If BASIC, to IDL2. to +8%. E (T10CHG) or G (T10CAG) from NORMAL to IDL2. Check that rudder trim changes. DELAY: see p. 103. THR-HOLD: see p. 99. Setting up the Idle-Ups: Throttle and Collective pitch Curves and Revo. Mixing (THR-CURVE, PIT-CURVE, REVO. MIX) for idle-ups: see p. 101. 102 DELAY: The Delay function provides a smooth transition between the trim positions whenever OFFSET, REVO. MIXING, or THROTTLE HOLD functions are turned on and off. Adjustability: ⢠Separate delay times are available for aileron, elevator, rudder, throttle, and pitch. ⢠With a 50% delay setting, the servo takes about a half-second to move to its new position...quite a long time. Â,QJHQHUDOGHOD\VRIDSSUR[LPDWHO\DUHVXIÂżFLHQW GOAL of EXAMPLE: STEPS: INPUTS: Set up a delay on all channels to ease Open the DELAY function. for 1 second. (If BASIC, WKH WUDQVLWLRQ IURP RQH ĂLJKW FRQGLWLRQ to DELAY. to another so there are no "hard jumps." Adjust AILE response as needed. (Ex: to +8%. aileron to +8%.) Repeat for other channels. Close menus and confirm slowed transitions. Where next? again.) to ELEV. Repeat step above. E (T10CHG) or G (T10CAG) from NORMAL to IDL2. Check that servos move gradually to new positions. THR-HOLD: see p. 99. Setting up the Idle-Ups: Throttle and Collective pitch Curves and Revo. Mixing (THR-CURVE, PIT-CURVE, REVO. MIX) for idle-ups: see p. 101. 103 HOVERING ADJUSTMENTS (HOV-THR and HOV-PIT): +RYHULQJWKURWWOHDQGKRYHULQJSLWFKDUHÂżQHWXQLQJDGMXVWPHQWVIRUWKHWKURWWOHDQGFROOHFWLYHSLWFKFXUYHVLQGLYLGXDOO\ DIIHFWLQJSHUIRUPDQFHRQO\DURXQGWKHFHQWHUSRLQWDQGRQO\LQWKHQRUPDOFRQGLWLRQ7KH\DOORZLQĂLJKWWZHDNLQJRIWKH curves for ideal setup. Adjustability: Â5RWRUVSHHGFKDQJHVFDXVHGE\WHPSKXPLGLW\DOWLWXGHRURWKHUFKDQJHVLQĂ\LQJFRQGLWLRQVDUHHDVLO\DFFRPPRGDWHG ⢠Both adjustments may be inhibited if not desired. ⢠Both adjustments may also be set to NULL, temporarily turning off the knob but maintaining the last memorized setting. ⢠Adjustments may be memorized and then the knobs returned to center point to use that amount of adjustment. Allows easy use of the trimming knobs for multiple models. (Note that when memorization is repeated with the knob offset from center, the trim value accumulates.) ⢠Adjustments are quickly reset to the initial value by turning the dial until the trim reads 0%, memorizing, then returning the knob to its center position. ⢠Note that all functions, including these, assume the model hovers at half stick. ⢠Available in normal (NORM RUQRUPDOLGOHXS NORM/IDL1) condition only. GOAL of EXAMPLE: STEPS: INPUTS: Fine-tune hovering with the hovering Open the HOV-THR function. again.) for 1 second. (If BASIC, adjustments. Remember these affect to HOV-THR. only the hovering (normal) condition. Optional: change which knob adjust to VR. Adjust throttle and collective pitch seach hovering curve. NULL locks in to desired knob and direction. curves until model hovers nicely. In curve in last stored position. ĂLJKWDGMXVWFROOHFWLYHSLWFKDQGWKURWWOHStore the current dial settings prior to C to RATE. curves near hover point independently selecting another model. for one second to store. with HOV-THR and HOV-PIT knobs. or VR(C) to center. 6WRUHQHZVHWWLQJVDIWHUĂLJKW Close. Open the HOV-PIT function. to HOV-PIT. Store the current dial settings prior to selecting another model. to RATE. for one second to store. or VR(A) to center. Close. Where next? THR-HOLD: see p. 99. Setting up the Idle-Ups: Throttle and Collective pitch Curves and Revo. Mixing (TH-CURVE, PIT-CURVE, REVO. MIX) for idle-ups: see p. 101. D/R,EXP: see p. 42. 104 HIGH/LOW PITCH (HI/LO-PIT): 7KLVIXQFWLRQPD\EHXVHGWRDGMXVWWKHFXUYHVKLJKDQGORZVLGHLQGLYLGXDOO\IRUHDFKĂLJKWFRQGLWLRQ QRUPDOLGOHXS idle-up 2, idle-up 3, throttle hold). Adjustability:  5HTXLUHD ]HUR GHOWDSHDNFKDUJHUODEHOHGVSHFLÂżFDOO\IRUXVHZLWK1L0+EDWWHULHV@ NORMAL: trainer mode that does not give student radio the computer programming features of the master radio. See Trainer. NT8S: standard transmitter battery pack. See Accessories. NULL: not assigned or never changed. Ex: a mix which has a null switch assignment is always active, and can never be FKDQJHGLQĂLJKW WXUQHGRII QRPDWWHUZKLFKVZLWFKLVPRYHG OFFSET: (HELI) separate trim settings available to each idle-up (using CONDITION) setting, or assigned to separate switches from the condition switches. When offset is ON, movement of the trim levers adjusts the OFFSET, not the normal condition's trims. .................................................................................................................................................................................. 102 OFFSETsDGGLWLRQDOĂLJKWFRQGLWLRQVDYDLODEOHVSHFLIÂżFDOO\IRUVDLOSODQHV ......................................................................... 84 Offset mix: mix that independently moves the slave servo a set percentage of its total throw, not in relation to any master. See Programmable mix. PA2: Pilot Assist. Optional onboard device that uses optical sensors to correct modelis orientation to upright. PARAMETERVXEPHQXVHWVVSHFLÂżFSDUDPHWHUV,QFOXGHVUHVHWW\SHPRGXODWLRQVHFRQGDLOHURQVHUYRVHWXSDQGATL. ... 33 Peak Charger: charger that automatically stops charging when the battery is fully charged (commonly called ipeakedi). See Battery care and charging. Piezo gyro: gyro that uses a piezo crystal to sense angular changes. See Gyros and Governors. Pitch-to-rudder mix: see REVO. PITCH CURVE: (HELI FXUYH WKDW VHWV WKH UHVSRQVH RI WKH FROOHFWLYH SLWFK VHUYR V WR PRYHPHQW RI WKH WKURWWOHFROOHFWLYH STICK ,QGHSHQGHQWO\ DGMXVWDEOH LQ WKH QRUPDO ĂLJKW PRGH RQH IRU HDFK RI WKH LGOHXSV DQG RQH IRU WKURWWOH KROG Adjusted to provide ideal blade response for various types of maneuvers being performed. For simplicity, the normal condition's curve may be set in the BASIC menu. All 5 curves are also adjustable in the ADVANCE menu. ......................... 99 PPM: Pulse Position Modulation. Type of signal transmission. Programmable mix: used to cause specific servo responses to specific inputs separate from the basic control setups. ,QFOXGHVH[WHQVLYHGHÂżQLWLRQVRIW\SHVDQGH[DPSOHV ........................................................................................................ 68 5DQJHFKHFNRUWHVWWRWHVWWKHWUDQVPLWWHULVFRQWURORYHUWKHPRGHODWDVSHFLÂżFGLVWDQFHDVDSUHFDXWLRQLQFKHFNLQJLWV SURSHURSHUDWLRQSULRUWRĂLJKW............................................................................................................................................ 18 Rate: amount of control given. Ex: see Programmable mix. RESET: to delete all data in the existing model only. User CANNOT erase all data in the radio. Only service center can do so. Part of PARAMETER submenu. ......................................................................................................................................... 33 5HWUDFWDEOHODQGLQJJHDUODQGLQJJHDUWKDWLVEURXJKWXSLQWRWKHPRGHOGXULQJĂLJKW ..................................................... 74 REVERSE: servo reversing. Used to reverse the direction of a servo to ease installation and set up. .................................... 38 Rudder-to-aileron mix: (ACRO GLID) used to counteract undesirable roll (roll coupling) that happens with rudder input, especially in knife-edge. Gives proper aileron input to counteract roll coupling when rudder is applied. Not a preprogrammed mix. See Programmable mix. This is the default programming for one linear and one curve mix in ACRO and GLID. Rudder-to-elevator mix: used to counteract undesirable pitch (pitch coupling) with rudder input, especially in knife edge ĂLJKW1RWDSUHSURJUDPPHGPL[6HHProgrammable mix. This is the default programming for one curve mix in ACRO. Rudder-to-throttle mix: (HELI) adds throttle to counter the added load from increasing pitch of the tail blades, maintaining a constant head-speed with rudder. (This is a minor effect and is not critical in most helicopters.) Not a preprogrammed mix. 116 See Programmable mix. Rx: receiver. SAFE MODE: feature in snap roll programming that does not allow a snap roll if landing gear is lowered. See Snap roll. Sailplane: glider, non-powered model aircraft type. See GLIDMODEL TYPE. Select a model: see MODEL SELECT. Service Center. ....................................................................................................................................................................... 3 SERVOEDUJUDSKGLVSOD\RQVFUHHQWRVKRZUHDOWLPHPRYHPHQWFRPPDQGVVHQWWRVHUYRVE\WUDQVPLWWHULQUHVSRQVHWR user movements. Also includes a servo test feature. ............................................................................................................ 49 Servo reversing: see REVERSE. Servo Slow: see Channel delay. Servo testing, servo display: See SERVO. SET: to accept. Usually done by pressing and holding the dial when instructed. Slave: channel that moves in response to the command of the master. See Programmable mix. Slaving servos: see programmable mix. ............................................................................................................................. 68 Slider assignability: sliders on side of radio, known as VR(D) and VR(E) in programming, may be assigned to control channels 5-8 in AUX-CH, used as the primary control of a mix in programmable mixes, etc. Slow: see Channel delay. Smoke system: injects a specialized smoke oil into the hot exhaust to create air-show like smoke trails. ......................... 74 SNAP ROLL: (ACRO FRPELQHVUXGGHUHOHYDWRUDQGDLOHURQPRYHPHQWWRFDXVHWKHDLUFUDIWWRVQDSRUVSLQDWWKHĂLSRID switch. 10CG of fers 4 separate snaps with 1 or 2 switches used for selection. .................................................................. 59 6SHHG)ODSVPDLQĂDSVRQDVHUYRJOLGHU SPOILER MIX (GLID PRYHVWKHVSRLOHU V E\ĂLSSLQJWKHDVVLJQHGVZLWFKDQGLVXVHGWRPDNHVWHHSGHVFHQWV$QG SPOILER MIX works linking with BUTTERFLY function. ....................................................................................................................... 83 START DELAY (GLID 1A+1F only): automatically switch the offset trims (OFFSET) from the START condition's trims to the normal cndition's trims after proceeding the delay time (max.10sec.) which is preset when activating the START condition. It is convenient for hand launch glider. ................................................................................................................................ 85 Stick adjustments: change stick tension and height. ............................................................................................................ 16 STk-THR: assigned to THROTTLE STICK. See AIRBRAKE for example. SUB-TRIMXVHGWRÂżQHWXQHWKHFHQWHURUQHXWUDOSRLQWRIHDFKVHUYR$OORZVIXOOWULPIXQFWLRQIURPWKHWULPVOLGHUVIRU ĂLJKWWULPPLQJ .................................................................................................................................................................... 49 SWASH AFR: (HELI, CCPM types only) adjustment of the travel of all servos involved in the particular controlis movement only during the movement of that control. Ex: reverse the direction of movement of collective pitch while not affecting the direction of movement of either cyclic control. ................................................................................................................... 95 Swashplate type: (HELI 3DUWRIWKHPRGHOW\SHVHOHFWLRQSURFHVV6HOHFWVVSHFLÂżFKHOLVZDVKSODWHJHRPHWU\VXFKDVRQHRI four available types of "CCPM." ......................................................................................................................................... 95 SWASH-RING (HELI OLPLWVWKHVZDVKSODWHWUDYHOWRZLWKLQDÂż[HGUDQJH .......................................................................... 96 SWASH-THR (HELI): is corrected the tendency of the model to change altitude when the rotor is tilted by aileron, elevator, and other controls. ................................................................................................................................................................ 85 Switch programmability: MOST features are reassignable to a variety of switches, including simply moving an auxiliary FRQWUROVXFKDVĂDSVIURPWKHVWRFNGLDOWRDVZLWFKRURWKHUORFDWLRQ6HHAUX-CH. 117 7HFKQLFDO6SHFLÂżFDWLRQV........................................................................................................................................................ 9 7KHUPDOKXQWLQJVHWXSXVLQJVSHFLÂżFSURJUDPPLQJVHWXSVWRKDYHWKHPRGHOUHVSRQGQRWLFHDEO\WRWKHOLIWRIDWKHUPDO Not a preprogrammed mix. See Programmable mix. THR-DELAY: (ACRO) throttle delay, slows engine servo response to imitate the spool-up action of a turbine engine. May also be used creatively to create a delayed servo on a different function (see www.futaba-rc.com\faq\faq-9c.html.) ............... 66 THR-REV: reverses the throttle trim function to the top of the THROTTLE STICK. ........................................................... 38 THROTTLE-NEEDLE: (ACRO HELI) curve mix that adjusts a second servo, controlling the engineâs mixture, to get optimum RPM and performance from the engine at all settings. ........................................................................................................ 65 Throttle-to-rudder mix: used to compensate with rudder when throttle is applied on take off. Not a preprogrammed mix. See Programmable mix. This is the default setting of a mix in ACRO and GLID. THROTTLE CURVE: (HELI) adjusts how the servo responds to the THROTTLE STICK position along a 5 point curve. Separate curves available for each idle-up and normal. For simplicity, normal curve may be edited from BASIC menu. All curves may be edited together in the ADVANCE menu. Activating an idle-upâs throttle curve is what activates that idle-up. .86,89 Throttle cut or throttle kill: THR-CUT. (ACRO HELI) Offset mix which closes the throttle servo to a set position when the DVVLJQHGVZLWFKLVPRYHGWRVKXWWKHHQJLQHRIIZLWKRXWKDYLQJWRÂżGGOHZLWKWULPVHWWLQJV............................................. 40 THROTTLE HOLD: (HELI) makes the throttle servo non-responsive to THROTTLE STICK position, and moves the throttle to idle. Used to practice autorotations. NOTE: THR-HOLD must be activated, then the default pitch curve adjusted properly. ............................................................................................................................................................................................. 99 THROTTLE MIX (HELI FDQ EH VHW IRU HDFK ĂLJKW FRQGLWLRQ DQG LV XVHG WR FRUUHFW WKH WHQGHQF\ RI WKH PRGHO WR FKDQJH altitude when the rotor is tilted by aileron, elevator, and rudder controls. .......................................................................... 96 Throttle trim adjustment: see ATL to change throttle trim from âidle onlyâ to full trim control like all other channels. See THR-REV to reverse THROTTLE STICK completely, including moving trim to the top of the THROTTLE STICK. See also Idle management for details on idle down and throttle cut functions. TIMERDGMXVWWKHWLPHUIXQFWLRQVXVHGWRNHHSWUDFNRIĂLJKWWLPHRQDWDQNRIIXHOHWF7KHÂłWULJJHU´WRWXUQWLPHUVRQRII may be programmed. ........................................................................................................................................................... 45 TRAINER: software that allows 2 radios to be connected via trainer cord, giving student control of all or some of the FKDQQHOVRIWKHDLUFUDIWDWWKHĂLSRIDVZLWFKFUNC trainer mode allows student to use mixing in the master transmitter, for H[DPSOHGXDOUDWHVH[SRQHQWLDOĂ\DFKDQQHOKHOLFRSWHUZLWKDFKDQQHOEXGG\ER[HWF........................................... 47 Trainer box: stripped-down radio system which does not have the ability to transmit, is used only as a studentâs radio when instructing while using a trainer cord and the trainer programming. 7UDLQHUFRUGFRUGXVHGWRFRQQHFWWZRFRPSDWLEOHUDGLRVWRXVHIRUĂLJKWLQVWUXFWLRQ6HHAccessories. TRIM menu: adjusts rate at which the trim responds to movement of the trim sliders. Also has a reset function to reset the modelâs electronic trims to zero. .......................................................................................................................................... 48 TRIM OFFSET: (HELI) sets an offset or adjustment of trim when switching between conditions. See OFFSET. TRIM option in mixes: ability to adjust the slave servoâs center when the master servoâs center is adjusted using the trim VOLGHUV IRUH[DPSOHZKHQXVLQJWZRVHSDUDWHĂDSVHUYRV 6HHProgrammable mix. ........................................................ 61 7ULSOHUDWHUGFRQWUROWUDYHOVHWWLQJDYDLODEOHLQĂLJKW6HHD/R,EXP. 7ZLQ DLOHURQ VHUYRV XVH RI RU PRUH VHUYRV RQ VHSDUDWH FKDQQHOV WR FRQWURO DLOHURQ DFWLRQ ,QFOXGHV ĂDSHURQ DLOHURQ differential, and elevon. ....................................................................................................................................................... 51 Twin elevator servos: use of 2 or more servos on separate channels to control the elevator of a model. Includes elevon, ailevator, V-tail. .................................................................................................................................................................... 58 Tx: transmitter. Voltmeter, voltage reading: displays transmitter voltage on home screen. .......................................................................... 23 118 VR(A-E): variable rate controls. Knobs and sliders on the radio. See switch assignment chart for default assignments. VR(A-C) are knobs; VR(D-E) are sliders on the case sides. V-tail model Mix: (ACRO GLID) programming used to control a V-tail modelâs tail surfaces, with 2 servos operating 2 control surfaces as both rudder and elevator. See Twin elevator servos. Warning messages: cautions provided by the radio when certain potential problems exist. See Error messages. Warranty information. ............................................................................................................................................................ 3 Website: www.futaba-rc.com. Internet location of extensive technical information Futaba products. ................................. 3 119 FEDERAL COMMUNICATIONS COMMISSION INTERFERENCE STATEMENT This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: -- Reorient or relocate the receiving antenna. -- Increase the separation between the equipment and receiver. -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. -- Consult the dealer or an experienced radio/TV technician for help. CAUTION: To assure continued FCC compliance: Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment. Exposure to Radio Frequency Radiation To comply with FCC RF exposure compliance requirements, a separation distance of atleast 20cm must be maintained between the antenna of this device and all persons. Thisdevice must not be co-located or operating in conjunction with any other antenna or transmitter.
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : No XMP Toolkit : 3.1-701 Producer : Acrobat Distiller 7.0.5 (Windows) Create Date : 2009:02:14 10:21:47+09:00 Modify Date : 2009:03:19 15:51:22+08:00 Metadata Date : 2009:03:19 15:51:22+08:00 Creator Tool : PScript5.dll Version 5.2.2 Thumbnail Format : JPEG Thumbnail Width : 256 Thumbnail Height : 256 Thumbnail Image : (Binary data 9452 bytes, use -b option to extract) Document ID : uuid:DFBFD49635FADD11BE48FD870EE74B7C Instance ID : uuid:1ac96a7e-6fa5-4716-9566-d460fe5abd77 Derived From Instance ID : uuid:ee714069-d739-472a-9e2d-6c84ef1aeaef Derived From Document ID : adobe:docid:indd:5cc8eece-f108-11dd-b01a-c856414f3e4b Derived From Rendition Class : proof:pdf Format : application/pdf Title : 10CG_ENG_1M23N21005.pdf Creator : morimoto Has XFA : No Page Count : 120 Author : morimotoEXIF Metadata provided by EXIF.tools