JBL $$front.SCH TI 86 Guidebook (Chinese) 86booksch
User Manual: JBL TI-86 guidebook (Chinese) TI-86 Guidebook
Open the PDF directly: View PDF
.
Page Count: 427
| Download | |
| Open PDF In Browser | View PDF |
TI-86!D7¯í!l D
© 1997 Texas Instruments Incorporated
IBM
International Business Machines Corporation X¼`Û
Texas Instruments Incorporated X è Û
Macintosh
Apple Computer Inc. X¼`Û
$$front.SCH TI-86, Title Page, Chinese Bob Fedorisko Revised: 98-10-13 13:19 Printed: 98-10-14 9:56 Page i of 2
ii
¡UµC
Texas Instruments áÍÏ)ßcê:6m0âBê¬X±ÈÙÀÄá$bÅÍbM^ÂXXÔ`ÖüX¬±Ä
omáÿÏ)±5Ä
üÏ)ßÈ Texas Instruments ÑáÍ´DêSüomôäXÏ)M^XÃÈyXÃãêXòúX3S÷
ÏÄáu Texas Instruments ª)¡(S~ÈWóXÔ÷ÏáhY {XDËÄ8êÈ Texas Instruments
áÍJªØ´Süomà¤ÎXÏ)6ãXiS÷ÏÄ
GbØeFDX US FCC µC
ÛÆ£©JrúÜq; FCC í 15 VXnÍ B OD+ÛXUÄ noUZÃÑS!D+Û
ü#Y]Ê{óÝXFDÄ ÛÑ{óÃSüJdØØeÑ£ÄVpáI;Èâ:]`SüÈÃÑÍ´ îôä
ÝXFDÄÈáѱüM^X]3áî{óFDÄ
ÛúFDSê Xy ÈÃîGÁ`'Ô¹Û9BnÄÃñ©¹ßÔMêîM~9\8FDÖ
♦
♦
♦
♦
×Hy ýXåê!BÄ
S Û°y ÛÄ
Ú Ûây ÛXo ²ÃÚÔÈGáUÚøÙ²yàÔ ÃX¦{Ä
|¶ÔêÝ£`X´ à
T,¹Ï}Ä
$$front.SCH TI-86, Title Page, Chinese Bob Fedorisko Revised: 98-10-13 13:19 Printed: 98-10-14 9:56 Page ii of 2
iii
ù:TI-86 P¥¡
1
ÛSüX TI-86........................................................................2
] AAA 4 ...........................................................................2
Ô`GÁ TI-86 .......................................................................2
×Vͨz ................................................................................2
á!ÝY,`ÕB .......................................................3
ü#)Þuk.............................................................................3
ukÔþDX7ú................................................................3
ÚÞõ(,|¬£............................................................3
<ãSü¬£....................................................................4
êe<ã ................................................................................4
áD§p ............................................................................5
üÑDSüD....................................................................5
DrDXHD¼Ú ...................................................6
ÏDÄÔÎŰ)....................................................................6
G .....................................................................................7
ukÐD.....................................................................................7
kÃêeJ¡uk!Ôþg9.......................................8
Ú"ãýz6kãýz ...................................................8
ÚþukX<ã,|߬£.......................................9
üÒ5#)Þ¬ ÑD ............................................................... 9
üßêe<Jg9ÑD .......................................... 9
¬ÑDXÒ6 ã............................................................. 10
üÒ6#)Þ¬ ÑD......................................................... 11
³þÑD.................................................................................. 11
ukn x ÊX y ijþóÈÅ ................................ 12
¬k·¬£X ................................................................. 12
ª\ÝnÑD ......................................................................... 13
ûÒ6#)Ô¼Ú............................................................. 14
1 :Öår TI-86
15
]êÈ6 4 .......................................................................... 16
È6 4ÊÈ ......................................................................... 16
Ô`GÁ TI-86......................................................................... 17
×Vͨz .......................................................................... 17
#)........................................................................................... 18
g9`§p ..................................................................... 18
g9D+....................................................................................... 19
g9óD.................................................................................. 19
Sü¥:ê¹ßD©......................................................... 20
g9áD.................................................................................. 20
$$Toc.SCH TI-86, TOC, Chinese Bob Fedorisko Revised: 98-10-13 18:38 Printed: 98-10-14 9:57 Page iii of 10
iv
TI-86 Â)<
g9Jª+ú ...............................................................................21
`sÑ ..............................................................................21
ALPHA ...................................................................................21
ûm+¡Õ`ãm+¡Õ .....................................................22
BîÛ...................................................................................22
Ûå ..............................................................................23
¦9Ãô8`Ù8+ú..........................................................23
g9<ã`Û¸.......................................................................24
g9<ã ..............................................................................24
ü<ãSüÑD..............................................................25
SüÛ¸...................................................................................25
g9ÑDÃÛ¸`¡0ú .....................................................25
g9²Ág9M ......................................................................26
Û<...................................................................................26
ukêÒ5 ......................................................................26
íà .......................................................................................27
7íÃ...................................................................................27
¡ü¹!g9Þõ§p ..........................................................28
ªÎÞõg9 ..........................................................................28
ªÎJêeÞõg9..............................................................28
ªÎ¹!g9 ..........................................................................28
ªÎîþg9 ..........................................................................29
Ù8 ENTRY ,|³..............................................................29
ªÎÞõ§p ..........................................................................29
üÑD!Sü Ans .................................................................. 30
±,§p¬£ ..................................................................... 30
Sü TI-86 °) ............................................................................ 31
°).................................................................................. 31
°) ...................................................................................... 32
ݽ°)M.............................................................................. 32
ÔÎÄô8Ű) ................................................................. 33
¹ßJ ¬ã .......................................................................... 34
‹B ......................................................................... 34
2 :Ö CATALOG $ß[
o
37
CATALOG........................................................................................ 38
,|DB£ .......................................................................... 39
ïά£á.............................................................................. 39
,|D¬£á ................................................................. 40
,|þuk<ã ................................................................. 40
,|§p.................................................................................. 41
á ¬£.............................................................................. 41
£.............................................................................. 41
×ü¬£.............................................................................. 42
¬£ÝDBO_ÚO.................................................................. 42
CATLG-VARS Ä CATALOG ü ¬£Å°)............................. 43
ݽ¬£á.............................................................................. 44
CUSTOM °)................................................................................ 44
g9 CUSTOM °)M ............................................................. 44
$$Toc.SCH TI-86, TOC, Chinese Bob Fedorisko Revised: 98-10-13 18:38 Printed: 98-10-14 9:57 Page iv of 10
TI-86 Â)<
Ù8 CUSTOM °)M ..............................................................45
¢Y,ô8¬£..................................................................45
CHAR Ä+úŰ).....................................................................45
CHAR MISC ÄJªÅ°).......................................................46
CHAR GREEK °) .....................................................................46
CHAR INTL ÄÑŰ)........................................................46
ÏtÂDúÇ..................................................................46
3 :Ök§éJ[Bw+
47
¬D:ÑD ...............................................................................48
MATH °).....................................................................................49
MATH NUM ÄDŰ) ......................................................49
MATH PROB ÄV[Ű) .....................................................50
MATH ANGLE °)....................................................................51
MATH HYP Ä ÆÅ°)........................................................51
MATH MISC ÄJªÅ°) ......................................................52
Y¦àê|êe<....................................................................53
CALC ÄÃÚŰ) .................................................................54
TEST ÄGÏŰ) ......................................................................55
ü<ã`Û¸Sü© .................................................56
4 :Öß§¯k[k
57
SüYB`ü ïÎ £ ..........................................................58
CONS Ä £Å°) ................................................................58
CONS BLTIN ÄYB £Å°) .............................................58
v
ïÎê¡nü ïÎ £ ............................................ 60
CONS EDIT Ä £êe<Ű)........................................... 60
ü<ãg9 £á......................................................... 61
6kz£)! .............................................................................. 61
6kz£)! ......................................................................... 61
CONV Ä6kŰ)............................................................... 62
CONV LNGTH ÄSzŰ)................................................... 63
CONV AREA Ä6ÃŰ) ..................................................... 63
CONV VOL Ä'ÃŰ) ....................................................... 63
CONV TIME ÄÊÈŰ)...................................................... 63
CONV TEMP ÄýzŰ)..................................................... 63
CONV MASS Äü£Å°)..................................................... 64
CONV FORCE ÄoŰ) ....................................................... 64
CONV PRESS Ä_Ű) .................................................... 64
CONV ENRGY ÄѣŰ)................................................... 64
CONV POWER Äs[Ű).................................................. 64
CONV SPEED ÄózŰ).................................................... 64
6k¹¨[<X............................................................. 65
D ............................................................................................... 65
D ×È.................................................................................. 66
¡Õ`9Õ.............................................................................. 66
ÄDÅ BASE °) ............................................................... 66
BASE Õ-ÚÄA¯ +úŰ) ......................................... 67
g9A¯ D+ ................................................................. 67
$$Toc.SCH TI-86, TOC, Chinese Bob Fedorisko Revised: 98-10-13 18:38 Printed: 98-10-14 9:57 Page v of 10
vi
TI-86 Â)<
BASE TYPE ÄO_Ű)........................................................67
BASE CONV Ä6kŰ) ......................................................68
6kD ...................................................................................68
BASE BOOL Ä×èŰ).......................................................68
×è¤k§p ..........................................................................69
BASE BIT Ä!Ű) ...............................................................69
SüáD .......................................................................................70
áD§p...................................................................................70
<ãSüáD..................................................................71
CPLX ÄáDŰ) .................................................................71
5 :Ö=kD7
73
nÒ5 .......................................................................................74
BÒ5ã ...............................................................................74
GRAPH °) ...................................................................................75
Süßêe<...........................................................................76
ßêe< (GRAPH y (x)=) °)............................................76
üßêe<nÑD .....................................................77
GbnÑDßXÈâ .....................................................78
ݽÒ5 ã ..........................................................................79
üßêe<BÒ5 ã .............................................80
SüEÒÚÑD..........................................................80
¹ß` ¬³uÒXÔàGÕ...........................................81
Bk·¬£ ...............................................................................81
k·êe< ......................................................................82
¬k·¬£ ..................................................................... 82
ü @x ` @y BÒ5z .................................................... 83
BÒ5ã .............................................................................. 83
Ò5....................................................................................... 85
V0ê06¬ XÒ5..................................................... 85
 Ƭ XÒ5 ................................................................. 85
¬ Æ£.............................................................................. 86
¬Ò.................................................................................. 86
6 :ÖD7Ôå
87
TI-86 Ò5¹K ............................................................................. 88
GRAPH °).............................................................................. 88
Sü¾Ï|Û ................................................................. 89
Ò5z.................................................................................. 89
³þÒ5....................................................................................... 90
06`¡Ô³þ............................................................. 91
ü ZOOM ¡0×HÒ5#)XÌ......................................... 91
GRAPH ZOOM °) .................................................................. 91
nn û ......................................................................... 93
Bý´$ ......................................................................... 93
û`ýãÒ5 ..................................................................... 93
,|`¡×üýk·¬£ ........................................ 95
SüxfD:ÑD...................................................................... 95
GRAPH MATH °)................................................................... 95
E¡ GRAPH MATH ¡0XB............................................. 96
$$Toc.SCH TI-86, TOC, Chinese Bob Fedorisko Revised: 98-10-13 18:38 Printed: 98-10-14 9:57 Page vi of 10
TI-86 Â)<
Sü ROOT Ã FMIN Ã FMAX ê INFLC...................................97
Sü ‰f(x)Ã DIST ê ARC ..........................................................98
Sü dyàdx ê TANLN...............................................................99
Sü ISECT ...............................................................................100
Sü YICPT...............................................................................100
ÍÛn x ukÑD.............................................................101
üÒ5Þ¬ .............................................................................101
üÒ5Þ¬ !................................................................102
±,`¡×üƬ XÒ6 ...........................................102
Ù8Ƭ XÒ6................................................................103
GRAPH DRAW °) .................................................................103
EÒ5³ ........................................................................104
¬ .................................................................................105
¬ VÈêG............................................................106
¬ Ú.....................................................................................106
¬ ÑDÃ7Ûê¡ÑD ...............................................107
f¬ Ã`Æ........................................................107
üÒ5ÞB[ ................................................................108
'ÔêGÁ ........................................................................108
7 :Öå¯-
109
¤k< .................................................................................110
TABLE Ĥk<Ű) .........................................................110
¤k<.....................................................................................110
¤k2E
Ò6êÄ
ßêe
<°)
h´ÅÄ
$=k|Dpù+
üßêe<Èü£þߺXÒÛ<È'߬
ãÄ
EÝ 7 ¡ÒõãÈ¡á
Ý ( Ã#áàXÒ
ãÄ
1
ÚÛÏ y1 Ä
$
2
ßêe<°)XßÔþ°)ÄÄü
°)ÿX 4 <8°)ÝÈîXMÄÅ
/
3
¢ßêe<°)ݽ STYLE y1 B ¼
ÄkÅÒ6 ãÄ
(
üÒ6#)ÞÊȹßXÒ6
Ò6¢ÒÛ
00qwikst.SCH TI-86 È Quick Start È Chinese Bob Fedorisko Revised: 98-10-14 13:44 Printed: 98-10-14 13:46 Page 10 of 14
¿ó9¼
11
ôDp·õßÒ=k
1
¢ GRAPH °)ݽ GRAPH üÒ6#
)Þ¬ÒÄ x $ÛHÃ y $ÛH`
GRAPH °)Ä âÝüßêe<ë
ÎNcÍ£þÝnXÒ¯ ¬ Ä
-i
¾Ï|Û
2
Ò6¬ âÈùüÒ6#)Þ¾Ï|
"#!$
Ï|Û ( + ) ÄüÒ6i¼Û$ÛÄ
Ì
=k
1
¢ GRAPH °)ݽ TRACE ³þ
ÛÈó}8ÛÈù³þÏ)ÝnÑDX
Ò6Ä'!ÑDXËÕÄ y1 X 1 Å
üÇÞ¦Ä
)
³þÛ
2
¢ÑD y1 Ï|³þÛÑD y2 ÄÇÞ¦ $
X 1 ¬ä 2 × y ¬ y2 ü x=0 ØXÄ
ÄÁ Å
00qwikst.SCH TI-86 È Quick Start È Chinese Bob Fedorisko Revised: 98-10-14 13:44 Printed: 98-10-14 13:46 Page 11 of 14
12
¿ó9¼
3
³þÑD y2 Äc³þÈX y
5(cos x) ü'! x ØX§pÈ8ê x
"` !
3ü#)ÞÄ
¯Ê¾ x | y ÄÌ
1
g9Ôþü'!Ò6#)XÌ×ÈY
XrDÄêuk§prDX<ãÅÄ
'g9 Ôþ+úÊÈ x= ¤Ä
6
2
ukü x=6 Ê y2 XijþÛÈyÏ
§pØÄ y Èêßü x ØX§pÈ
ü#)ÞÄ
b
$
k·¬£XnÒ6#)
XÌÄ
Ð.Å
>$ß|
1
GRAPH °)Ä
6
2
¢ GRAPH °)ݽ WIND ¹k·
êe<Ä
'
ÄÁ Å
00qwikst.SCH TI-86 È Quick Start È Chinese Bob Fedorisko Revised: 98-10-14 13:44 Printed: 98-10-14 13:46 Page 12 of 14
¿ó9¼
3
Ú,|ük·¬£ xMin X¬ 0 Ä
0
4
ü¡nX#)Þ¬ÒÄ´ xMin=0 È
¹¾ZÒ6G6X Ô` ¯5$Ä
*
S?¡¾=k
1
¢ GRAPH °)ݽ y(x)= ßêe
<`ßêe<°)Ä GRAPH °)ÞÏè
y(x)= Ä
&
2
¢ßêe<°)ݽ SELCT ª\Ýn
ÑD y1=ÄËáatÄ
*
3
üÒ6#)Þ¬ÒÄ´ª\Ýn y1 È
TI-86 ¾¬ y2 ÄUüßêe<ݽ
ÑDÈË¡áo9xÄÄ SELCT ùÝ
½`ª\ÝnÑDÄÅ
-i
00qwikst.SCH TI-86 È Quick Start È Chinese Bob Fedorisko Revised: 98-10-14 13:44 Printed: 98-10-14 13:46 Page 13 of 14
13
14
¿ó9¼
9MDp·õ]J
1
ݽ ZOOM ¹ GRAPH ZOOM °)Ä
GRAPH °)ÞÏè ZOOM Ä
(
2
¢ GRAPH ZOOM °)ݽ BOX ¹
ýÛÄ
&
3
ÚýÛÏ¡nXÒ6#)X
Ô¦ÞÈ âüÔþã769ÛWÄ
"#!$
b
4
ÚÛ¢ã76Ï¡nXÒ6#
)XͦÞÄüÏ|ÛÊÈüÒÞ
ZÔþS6Ä
"#!$
5
ûÒ6Äk·¬£¾|¬ýXÛn
DÄ
b
6
¢Ò6#)ÞÙ8°)Ä
:
00qwikst.SCH TI-86 È Quick Start È Chinese Bob Fedorisko Revised: 98-10-14 13:44 Printed: 98-10-14 13:46 Page 14 of 14
1
år
TI-86
]êÈ6 4..............................................................16
Ô`GÁ TI-86.............................................................17
×Vͨz..............................................................17
#) ..............................................................................18
g9D+ ..........................................................................19
g9Jª+ú..................................................................21
g9<ã`Û¸..........................................................24
íà ..........................................................................27
¡ü¹!g9Þõ§p.............................................28
Sü TI-86 °)................................................................31
¹ßJ ¬ã..............................................................34
TI-86
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
01oper.SCH TI-86, Chap 1, Chinese Bob Fedorisko Revised: 98-10-14 17:49 Printed: 98-10-14 17:49 Page 15 of 22
16
1 ´Ö¤
TI-86
äÞΧÔ
X TI-86 Sü¯V AAA û
4Æ£]üuk
?
-{
-|
-}
<
B
-‚
-~
sin Ä7úÅ
C
E ÄÛDÅ
N Ä£Å
¹Ä,Å
àÄ8Å
M ĪóÅ
ÄGÅ
‡ÄG Å
L1
ÄÚÅ
^ÄÅ
10^Ä 10 XÅ
2
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 48 of 10
cos Ä-úÅ
tan Ä7ÛÅ
sinL1 Ä¡7ú×7úX¡ÑDÅ
cosL1 Ä¡-ú×-úX¡ÑDÅ
tanL1 Ä¡7Û×7ÛX¡ÑDÅ
log ÄÍDÅ
ln ľ
ÍDÅ
D e XÅ
p Ä D pi × 3.1415926535898 Å
ex Ä
3 ´ÖD:ÃÃÚ`©¡0
49
MATH i] - Œ
NUM
PROB
D°)
ANGLE
HYP
¦z°)
V[°)
Æ
°)
MISC
4
JªD:
ÑD°)
INTER
Y¦
êe<
MATH NUM ÄkÅi] - Œ &
NUM
round
Dù<ãÃDÃ
å£ê½ ÄÝGK'Á©
ÝM`_XºµCÈË
Ù A Z ×Ä
PROB
iPart
ANGLE
fPart
HYP
int
MISC
abs
4
sign
min
max
mod
round(value[,#ofDecimals])
Ú value ¯áh9 12 !ãDê #ofDecimals !ãD
iPart value
¨² value XHD¼Ú
¨² value XãD¼Ú
¨²ãbêb value XÔûHD
¨² value X±Íêõ
Vp value 7Ȩ² 1 ×Vp value 0 Ȩ² 0 ×Vp value óÈ
¨² L1
¨² valueA ` valueB WãXÔþ
¨²D list XÔãô
¨² valueA ` valueB WûXÔþ
¨²D list XÔûô
¨² numberA Í numberB X-D
fPart value
int value
abs value
sign value
min(valueA,valueB)
min(list)
max(valueA,valueB)
max(list)
mod(numberA,numberB)
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 49 of 10
50
3 ´ÖD:ÃÃÚ`©¡0
MATH PROB ÄHÅi] - Œ '
NUM
!
!Ä ,ÅÍ2HDÝÄ
randInt à randNorm `
randBin ü MATH PROB
°)ýmÄ
PROB
nPr
ANGLE
nCr
MISC
randIn
4
value!
¨²rD value X
,
items nPr number
¨²¢ items (n) ª number (r) XfëD
items nCr number
¨²¢ items (n) ª number (r) XÜD
rand
¨²Ôþ > 0 è < 1 XcD×U{ cDcëÈÚÔþHDK
,| rand Ä_V 0¶rand Å
randInt(lower,upper
ã,#ofTrialsä )
ÄcHDŨ²ÔþcHD integer ȵÖ
lower integer upper ×U¨²ÔþcHDDÈí #ofTrials Ûn
Ôþ > 1 XHD
randNorm(mean,
Äc7ÕŨ²ÔþcrDÈWᢠmean ` stdDeviation Ûn
X7ÕÚ×ÄU¨²cDDÈí #ofTrials ÛnÔþ > 1 XHD
stdDeviation
ã,#ofTrialsä )
randBin(#ofTrials,
probabilityOfSuccess
ã,#ofSimulationsä )
HYP
rand
randN
randBi
Äc`MãŨ²ÔþcrDÈWá¢`MãÚ×ÈJ
#ofTrials ‚ 1 È 0 probabilityOfSuccess 1 ×U¨²cDDÈ
í #ofSimulations ÛnÔþ > 1 XHD
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 50 of 10
3 ´ÖD:ÃÃÚ`©¡0
51
MATH ANGLE °) - Œ (
NUM
o
¦zù ¡Ã r ` 4DMS XD
Ä
üukÈg9M
degrees'minutes'seconds' X
§p¾ü Degree ¦zãx
zÈü Radian ¦zãß
xûzÄ
PROB
r
ANGLE
'
HYP
4DMS
MISC
angle¡
Zª'!¦zãBüz< angle
angler
Zª'!¦zãBüûz< angle
degrees'minutes'seconds'
üz degrees ÃÚ minutes `¦ seconds 9Ûn¦z
¹z ¡ Ú ' ¦ " ã¦z angle ÈGSü degrees'minutes'seconds'g
9 DMS ¦z
angle4DMS
MATH HYP ÄwNÅi] - Œ )
NUM
sinh
Dù<ãÃDÃå£
ê½ ÄÝGK'XÁ©ÝM`
_XºµCÈËÙ
A Z ×Ä
PROB
cosh
ANGLE
tanh
HYP
sinh- 1
MISC
cosh- 1
4
tanh- 1
sinh value
¨² value X
Æ7ú
cosh value
¨² value X
Æ-ú
tanh value
¨² value X
Æ7Û
sinhL1 value
¨² value X
Æ¡7ú
coshL1
value
¨² value X
Æ¡-ú
tanhL1 value
¨² value X
Æ¡7Û
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 51 of 10
52
3 ´ÖD:ÃÃÚ`©¡0
MATH MISC ÄÚÇÅi] - Œ *
NUM
sum
Dù<ãÃDÃå
£ê½ ÄÝGK'XÁ©Ý
M`_XºµCÈËÙ
A Z ×Ä
PROB
prod
ANGLE
seq
HYP
lcm
MISC
gcd
4
4Frac
%
pEval
x
‡
eval
sum list
¨²D list ôX`
prod list
¨²D list ôX,Ã
seq(expression,variable,
begin,end[,step])
¨²ÔþDÈJ£þô<ã expression ͬ£ variable
XÈ¢K begin end È9S step
lcm(valueA,valueB)
¨² valueA ` valueB XÔã@áD
gcd(valueA,valueB)
¨² valueA ` valueB XÔû@Ú¡
value4Frac
Ú value ÔþÚD
value%
¨² value 8¹ 100 Ä,¹ 0.01 ÅX§p
percent%number
¨²D number XRÚ¨ percent
pEval(coefficientList,xValue)
¨²îMãÄÏDü coefficientList ÎÅü xValue ØX
x throotx‡value
¨²D value X x õ
eval value
¨²ÔþDÈô'!Ò6ãßÝÝnÑDü¾¬£r
D value ÊX
x throot
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 52 of 10
3 ´ÖD:ÃÃÚ`©¡0
àjN
53
÷í - Œ / &
SüY¦àê|êe<ÈünøþƹDBÍ`þ¹DBÍX x ê y ÊÈùûY¦
êê|kþ¹DBÍXºÔþÄ
Uü#)Y¦ y Èí¢
CATALOG ݽ inter(È
âg9 inter(x1,y1,x2,y2,x)Ä
1
Y¦àê|êe<Ä
-Œ/&
2
g9 ÔþƹDBÍ (x1,y1) XrDÄ
ù<ãÄ
3b5b
Uü#)Y¦ x Èíg9
inter(y1,x1,y2,x2,y)Ä
3
g9 `þƹDBÍ (x2,y2) XÄ
4b4b
4
g9þ¹DBÍX x ê y Ä
1b
5
UÊÚÛÏU·XÄ x ê y Å
ØÄ
$ê#
6
ݽ SOLVE Ä
*
ùü X ,|þÿ
Ä 2 ´ÅÄ
Y¦êê|§pJ׬£ x ` y á¬Ä
1 ëXr+<Y¦êê|Ä
'·ÔþâÈù»ÁSüY¦àê|êe<Ä
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 53 of 10
54
3 ´ÖD:ÃÃÚ`©¡0
CALC ÄéJÅi] - †
USüÃÚÑDÈO
B Dec ãÄ
evalF
nDer
der1
ÃÚÑD¨²GbÏÔü
q ÅXÄ
der2
4
fMin
fMax
arc
ïά£ÃYB¬£ eqn ` exp ¹Ò5¬£Ä_V x à t `
evalF(expression,variable,value)
Íb evalF à nDer à der1 `
der2 Ȭ£ variable ù
rDêáDêDÄ
ü<ãùSü der1 `
der2 ľÑü<ãSü
nDer Ä
fnInt
¨²<ã expression ü¬£ variable value ÊX
nDer(expression,variable ã,valueä) ¨²<ã expression ü¬£ variable '!êÛn value
ÊX¥DÐD
der1(expression,variableã,valueä) ¨²<ã expression ü¬£ variable '!êÛn value
ÊXÔ
ÐD
der2(expression,variableã,valueä) ¨²<ã expression ü¬£ variable '!êÛn value
ÊX` ÐD
Íb fnInt à fMin ` fMax È
O± lower < upper Ä
fnInt(expression,variable,
lower,upper)
¨²<ã expression ü¬£ variable XÞß lower ` upper
ÊXDÃÚ
fMin(expression,variable,
lower,upper)
¨²<ã expression ü¬£ variable XÞß lower ` upper
ÊXÔã
fMax(expression,variable,
lower,upper)
¨²<ã expression ü¬£ variable XÞß lower ` upper
ÊXÔû
arc(expression,variable,
start,end)
¨²<ã expression ü¬£ variable Øb start ` end ÈÊ
nXÆSz
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 54 of 10
3 ´ÖD:ÃÃÚ`©¡0
55
YB¬£ d nuk nDer(ľü dxNDer ÚãßÅ` arc( ÊX9SÄYB¬£ tol nu
k fnInt( Ã fMin( Ã fMax( ` arc( ÊXÃÂÄWÀO >0 Äo´ôE¡ukzÄd ^
ãÈ¥Ô ^BÄ_VÈVp d=0.01 È nDer(A^3,A,5) ¨² 75.0001 ×àVp d=0.0001 Èí
¨² 75 ÄÙ)ÅÄ
ÑDÃÚñ,¬£ fnIntErr ÄÙ)ÅÄ
ü dxDer1 ãÊÈÍb arc( ` fnInt( ȹßÑDü<ã expression ´Ö
evalF( à der1( à der2( à fMin( à fMax( à nDer( à seq( `Ï)߬£ÄV y1 ÅÄ
ùüß6X@ã¥'!ØX¯ ÐDÖ
nDer(nDer(der2(x^4,x),x),x)Ä
TEST ÄùÅi] - ˜
==
GÏÑDÍøþSzÌàXD
ÝXÄ' valueA `
valueB DÊȨ²Ô
þDÈJôäþ
ôukkXÄ
<
>
{
‚
4
ƒ
valueA==valueB ÄbÅVp valueA b valueB Ȩ² 1 ×úí¨² 0 × valueA ` valueB ù
rDêáDÃDÃå£Ã½ ê+ú
valueAvalueB
ÄûbÅVp valueA ûb valueB Ȩ² 1 ×úí¨² 0 × valueA ` valueB O
rDêD
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 55 of 10
56
3 ´ÖD:ÃÃÚ`©¡0
valueA valueB ÄãbêbÅVp valueA ãbêb valueB Ȩ² 1 ×úí¨² 0 × valueA `
valueB OrDêD
valueA‚valueB
ÄûbêbÅVp valueA ûbêb valueB Ȩ² 1 ×úí¨² 0 × valueA `
valueB OrDêD
valueAƒvalueB
ÄábÅVp valueA áb valueB Ȩ² 1 ×úí¨² 0 × valueA ` valueB
ùrDêáDÃDÃå£Ã½ ê+ú
ô-I+[¦'B
ùSüGÏÑD9{ ßc
åÄ 16 ´ÅÄ
TI-86 Evaluation Operating SystemÄÙ)Åü; GÏÑD!; 8×è¡0ú¹ê
XÝ¡0Ä_VÖ
♦ <ã 2+2==2+3 uk 0 ÄTI-86 ; t©È â¨W 4 ` 5 Ä
♦ <ã 2+(2==2)+3 uk 6 ÄTI-86 ; ÀËX©È â; 2 t 1 t 3 Ä
03math.SCH TI-86, Chap 3, Chinese Bob Fedorisko Revised: 98-10-15 13:23 Printed: 98-10-15 13:24 Page 56 of 10
4
ß§¯
k[k
TI-86
SüYB`ü ïÎ £.............................................58
6kz£)!..................................................................61
D ...................................................................................65
SüáD ..........................................................................70
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 57 of 16
58
4 ´Ö £Ã6kÃD `áD
'[Pß
£,|ZMnX¬£Ä CONS BLTIN °)M TI-86 YBX@ü £ÄáÑêeYB
£XÄ
bϪÈùïÎü
£JÚWÀrtü ïÎ £°)¹bÂÄUg9ü
ïÎ £ÈOSüü ïÎ £êe<Ä 60 IÅ×áÑü X ê = 9ïÎ £Ä
CONS ÄßÅi]
BLTIN
YB
£°)
EDIT
ü ïÎ
£êe<
-‘
USER
ü ïÎ
£°)
CONS BLTIN ÄßÅi]
ù¢ CONS BLTIN °)Ý
½YB £ÈêSü¬`
CHAR GREEK °)g9WÀÄ
BLTIN
Na
EDIT
k
USER
Cc
ec
-‘&
Rc
4
Gc
g
Me
Mp
Mn
4
m0
H0
h
c
u
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 58 of 16
4 ´Ö £Ã6kÃD `áD
YB £
USü p ÈÝ - ~ ê¢
CATALOG ݽÄ
USü e^ÈÝ - ‚Ä
USü e ÈÝ - n ãEäÄ
£á
£
Na
ã+ D
k
Boltzman
Cc
g¥ £
ec
$ K
1.60217733EL19 C
Rc
è' £
8.31451 Jà=è K
Gc
¡o £
6.67259EL11 N m 2àkg 2
g
סotóz
9.80665 màs2
£
6.0221367E23 =èL1
1.380658EL23 JàK
8.9875517873682E9 N m 2àC 2
Me
$ü£
9.1093897EL31 kg
Mp
ü$ü£
1.6726231EL27 kg
Mn
$ü£
1.6749286EL27 kg
m0
óNëãû
1.2566370614359EL6 NàA 2
H0
óNü D
8.8541878176204EL12 Fàm
h
Bë D
6.6260755EL34 J s
c
óNó
299,792,458 màs
u
s$ü£)!
1.6605402EL27 kg
p
Pi
3.1415926535898
e
¾ ÍDi
2.718281828459
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 59 of 16
59
60
4 ´Ö £Ã6kÃD `áD
PÞ®d¾CPß
CONS USER °)MÝ+¡
1
CONS °)Ä
2
£êe<Ä Name= ¤Ã Value= ¤
'
ûm+¡ÕÔÄ
` CONS USER °)Î9Ä
196.9665 ¥ (Au) Xs$
¡£Ä
3
g9 £áÄùg9Ôþ¹+¡ÔÃSz 1
8 þ+úXá+ê¢ CONS USER °)Ý
½Ôþá+ÄÛÏ Value= ¤ØJ
CONS EDIT °)ÄËß6ÅÄ
ãAä - n
ãUä b
ùáâg9ÔþDÄ
4
g9rDêáD £Èù<ãÄg9¹
âÈW,|¹ £Ä¹ü ïÎX £ä
Ôþ CONS USER °)MÄ
196 ` 9665
Ncfë<¼Æ£,|Xü
ïÎ £áÄ
Vpü Ôþ £áÊ
ݽ PREV ÈêüÔâÔþ
£áÊݽ NEXT È
CONS USER °)ÚÓ6
CONS EDIT °)Ä
3ù¢ MEM DELET CONS
#)ô8 £Ä
CONS EDIT Äß ÷íÅi]
PREV
NEXT
-‘
- ‘ ' ß× b Þ #
DELET
PREV
CONS USER °)!Ôþ £á`ÄVpÝÅ
NEXT
CONS USER °)ßÔþ £á`ÄVpÝÅ
DELET ô8 £êe<'!X
£á`
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 60 of 16
4 ´Ö £Ã6kÃD `áD
61
ô-I+¦Rß×
ùüß6Ý¡©Ôü<ãg9 £Ä
♦ ¢ CONS BLTIN °)ê CONS USER °)ݽ £áÄ
♦ ¢ VARS CONS #)ݽü ïÎ £áÄ
♦ üûm+¡Ããm+¡`Jª+ú9g9 £áÄ
§¯Þß]¡
ùüÏ)<ãÝX
g96k<ãÄ
ó} TI-86ÈùÚüÔ¡z£)!<X6kºÔ¡z£)!<XËÄ_VÈ
ùÚÅÌ6kÕÈÚ 6k@ÈêÚ"ãýz6kãýzÄ
UÌf6kXz£)!OPÄ_VÈáÑÚÅÌ6kä"ãýzÈêÚÕ6kä5Ã
Ä CONV °)ÞX£þ°)MÄ 62 IÅ·<Ôz£)!ȨVSz (LNGTH)Ã'Ã
(VOL)Ã`_ (PRESS)Äü£þ°)MYÈÝ)!ÑPÄ
§¯Þß]¡
Sü6kÛ¸XÁ©Ö
(value)currentUnit4newUnit
ü_ÈL2 ãz6kä
"ãzÄ'DóÊÈÔ
SüÀËÄ
1
g9U6kXrDÄ
Da2E
2
CONV °)Ä
-’
3
ݽ TEMP 6kÄ
*
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 61 of 16
62
4 ´Ö £Ã6kÃD `áD
4 ¢6k°)ݽ'!Xz£)! (¡C)Ä)!ý
m`6kú ( 4 ) lÛ!BÄ
&
5 ¢6k°)ݽz£)! (¡F)Ä)!ýml
Û!BÄ
'
6
b
6kz£)!Ä
CONV ħ¯Åi]
LNGTH
AREA
-’
VOL
Sz°)
TIME
'ð)
6ð)
TEMP
ýz°)
ÊȰ)
4
MASS
4
SPEED
FORCE PRESS ENRGY POWER
óz°) o°)
ü£°)
Ñ£°)
_°)
s[°)
×Ö'6kóÊÈOüÀËÚ`óËÀK9ȨV (L4)ÄúíÈTI-86 ukNcî
; 6kÈ âÍ6k§p; ó¤kÄ
Vpg9…
...TI-86 6k§p…
(L4)¡C4¡F
24.8 "ãzÄL4¡ ãz6kä"ãzÅ
L4¡C4¡F
L39.2 "ãzÄ 4¡ ãz6kä"ãzÈ
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 62 of 16
âªóÅ
4 ´Ö £Ã6kÃD `áD
CONV LNGTH Ä
mm
cm
m
in
ft
ÞÅi]
¿G
lG
G
ÅÌ
Å
yd
km
mile
nmile
lt-yr
CONV AREA ÄÂéÅi]
2
ft
m2
mi 2
GÅ
GG
GÅ
cm3
in3
ft3
m3
cup
day
yr
week
CONV TEMP ĨÞÅi]
¡F
¿Ì
èG
ÅÏ
GG
Å}
GÅÌ
cm 2
yd 2
ha
GlG
GÕ
@K
lG
ÅÌ
Å
G
C
tsp
tbsp
ml
galUK
ozUk
í
û8í
¿
t¥ÄÅÅ
¢ÌÄÅÅ
ms
ms
ns
¿¦
¦
¦
-’)
¦
Ú
ãÊ
¡C ãz
mil
Ang
fermi
rod
fath
-’(
@
t¥
¢Ì
CONV TIME Ä.Åi]
sec
mn
hr
Õ
G
Å
K
H
-’'
km 2
acre
in 2
CONV VOL ÄéÅi]
liter
gal
qt
pt
oz
-’&
ý
H
<
-’*
"ãz
¡K ±Íýz
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 63 of 16
¡R Rankin z
63
64
4 ´Ö £Ã6kÃD `áD
CONV MASS Ä
gm
kg
lb
CONV FORCE ÄÆÅi]
N
dyne
-’/&
ßÅi]
amu
slug
s$£)!
/S
´
tonf
kgf
üo
o
lbàin2 /GÅÌ
mmHg ¿G2Å
mmH2 ¿GÅ
CONV ENRGY ÄßÅi]
-’/)
ú
5Ã
Å Á£)!
CONV POWER ÄÖHÅi]
@o
ºM
CONV SPEED Ä¥ÞÅi]
ftàs
màs
Å/¦
G/¦
lbf
o
-’/(
atm
ûè_
bar
È
Nàm2 /S/GG
hp
W
ü
@ü
-’/'
CONV PRESS ĹÅi]
J
cal
Btu
ton
mton
ft-lb
kw-hr ºãÊ
eV
$ãM
inHg ÅÌ2Å
inH2O ÅÌÅ
erg
l-atm
è
@ûè_
-’/*
ftlbàs
calàs
/¦
5Ã /¦
Btuàm Å
-’//&
miàhr Å
kmàhr @
/ãÊ
/ãÊ
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 64 of 16
knot
½
Á£)!/Ú
4 ´Ö £Ã6kÃD `áD
65
§¯2H-,|
Ug9p4 ( à )ÈùSü
F ê¢ CATALOG lÄ
Uü#)Þ6k¹¨[<XÈùSüÀË`8©¡0ú ( à )Ä_VÈVpQ: 4 ã
ÊDZ 325 Å Èǹ'¹@ /ãÊ<XózÈíg9<ãÖ
(325à4)miàhr4kmàhr
¹<㨲 131 @ /ãÊįáh9âÅÄ
3ù¾üÔþp4¨²8§pȨVÖ 325mile4kmà4hr4hr
k
D ãBÄ 1 ´Å{ TI-86 V)·g9XD`V)ü#)Þ§pÄ
àÈùüD Û«úÄÜÃÝÃÞ ` ßÅg9¹ÏãD <XDÄ âùüD @6
ü#)Þ¹ÏãD <X§pÄ
ÝDüY¼Ñ¹¯ 6ã,|XÄVpü Dec ¹êXãBß; ¡0ÈTI-86
îÚ£õuk`<ã·§pþHD9; HD¤kÄ
_VÈ Hex ãßÈ 1à3+7 ¨² 7h Ä 1 8¹ 3 ȧpþ 0 È ât 7 ÅÄ
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 65 of 16
66
4 ´Ö £Ã6kÃD `áD
k*
TI-86 X`¯
Ã?¯
`A¯
O_
`¯
?¯
A¯
DX×ÈVßÄ
Ô"àÔ¬
˯ D
1000 0000 0000 0001b
0111 1111 1111 1111b
L32,767
5120 6357 4134 0001o
2657 1420 3643 7777o
L99,999,999,999,999
ÚÚÚÚ Õ50× ÙÚ85 ×001h
0000 5ÕÚ3 107Õ 3ÚÚÚh
L99,999,999,999,999
32,767
99,999,999,999,999
99,999,999,999,999
(i[Wi
UkÔþ`¯ DX¡ÕÈü`¯ D!g9 not ÑDÄ
ß not 111100001111 ¨² 1111000011110000ÜÄ
Uk`¯
DX9ÕÈüg9D!Ý a Ä_VÈü Bin ãß L111100001111 ¨²
1111000011110001ÜÄ
ÄkÅ BASE i]
Õ-Ú
A¯
+ú°)
68 IÅÄ_VÈü Bin ã
TYPE
D O_
°)
-—
CONV
D @6
°)
BOOL
×è¡0ú
°)
BIT
~àÏ!
°)
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 66 of 16
67
4 ´Ö £Ã6kÃD `áD
BASE Õ-Ú°)M` BASE
TYPE °)M`Ô X+¡
+úáàÄ
ü_ÈÞ6°)Dê
e<°)Ä - ” ü Dec D
<ãßÅÄ
Vp Hex D ãþBÈ
Og9 ßÛ«úÈGS¹D
ÙÿÔþA¯ M^+úÄ
BASE Õ-ÚÄ
oÅi]
-—&
ü#)ÞX BASE Õ-Ú°)ÄUSü ÕÈÝ - e Ä
Õ
Ö
TYPE
×
CONV
Ø
BOOL
Ù
BIT
Ú
'êe<°)äÞ6°)ÊÈÕ `
Ö ÜüÔþ)ÄVpÝ & ê /…
{
Õ-Ö
}
×
R
k
Ug9A¯
+úÄ
NAMES
Ø
DÈV¯
BASE TYPE Ä¢oÅi]
Õ-Ú
Ü
TYPE
ß
"
Ù
CONV
Ý
…Õ ` Ö ÏøþÚÔX)ÈÙ.` Ú Ô
ÜÄUÛ6²9ÈÝ * ê /Ä
OPS
Ú
Dw
4
{
Õ
}
Ö
NAMES
×
"
Ø
OPS
Ù-Ú
SüD+ÄÝÔU¢°)ݽ¢ Õ Ú XA¯
-—'
BOOL
Þ
BIT
ü<ãÈùüÏãD <DÈàá×%ãÄg9DâÈ¢ BASE TYPE °)
ݽÍhXD úËÄD úËlÛØÄß6´þ_$Ä
ü Dec ãßĬxÅÖ 10Ü+10 b
10ß+10 b
12 ü Oct ãßÖ
26
10Ü+10 b
10Þ+10 b
12Ý
22Ý
10ß+10 b
10Þ+10 b
10010Ü ü Hex ãßÖ
1100Ü
10Ü+10 b
10Þ+10 b
12ß
1Õß
ü Bin ãßÖ
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 67 of 16
68
4 ´Ö £Ã6kÃD `áD
BASE CONV ħ¯Åi]
Õ-Ú
4Bin
Dù<ãÃDÃå
£ê½ ÄGbºXÁ©£
ÄÈËÙ A Z ×Ä
value4Bin
value4Hex
TYPE
4Hex
CONV
4Oct
-—(
BOOL
4Dec
¹`¯ D
¹A¯ D
BIT
value4Oct
value4Dec
¹?¯
¹¯
D
D
§¯k
1
2
3
4
5
ü Dec ãßÈ· 10Ü + Úß + 10Ý + 10 Ä
§pt 1 J6kä Bin D Ä
§pt 1 J6kä Hex D Ä
§pt 1 J6kä Oct D Ä
§pt 1 J6kä Dec D Ä
BASE BOOL ÄZÅi]
Õ-Ú
and
TYPE
or
valueA and valueB
CONV
xor
10Ü+Úß+10Ý+10 b
35
Ans+14Bin b
100100Ü
Ans+14Hex b
25ß
Ans+14Oct b
46Ý
Ans+1 b
39
-—)
BOOL
not
BIT
valueA or valueB
valueA xor valueB
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 68 of 16
not value
69
4 ´Ö £Ã6kÃD `áD
Zå¯+
D`§pOünXD
×ÈYÄ 66 IÅÄ
Í×è<ãÊÈÚD@6A¯
Ä
HDÈ
â¨WøþDXÍh!ÈV<
§p
Vp valueA
b…
…valueB
b…
and
or
xor
not (valueA)
1
1
1
1
0
0
1
0
0
1
1
0
0
1
0
1
1
1
0
0
0
0
0
1
§p B'!ãBÄ_VÖ
♦ ü Bin ãßÈ 101 and 110 ¨² 100ÜÄ
♦
BASE BIT Ä¡Åi]
~`Ï!¡0Sü¹ 16
iXD+ÄSvÎíã
ÔåÈËü`¯ 6ãg
9DÄ
Õ-Ú
rotR
rotR value
rotL value
shftR value
shftL value
TYPE
rotL
-—*
CONV
shftR
BOOL
shftL
BIT
~ÇÏD value
~ºÏD value
ÇÏD value
ºÏD value
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 69 of 16
ü Hex ãßÈ 5 and 6 ¨² 4ßÄ
70
4 ´Ö £Ã6kÃD `áD
'k
,|áDX¬£áë
ü VARS CPLX #)Þ
Ä 2 ´ÅÄ
áDùDý `
å£XôÄ
áDÝøþÚ£ÖrDÚ£ (a) `.DÚ£ (+bi)Äü TI-86 ÞÈù g9áD a+bi Ö
♦ (real,imaginary) Ȧ$Ûã
♦ (magnitude±angle) U$Ûã
ù¹È¦$ÛêU$Ûãg9áDÈàá×%'!XáDãBÄÚhúÄ Èê ± Å
nJãÄ
♦ Ug9Ȧ$ÛãÈüëË (P) ÚhrD real `.D imaginary Ú£Ä
♦ Ug9U$ÛãÈü¦zúË (- ) Úhõ magnitude `¦z angle Ú£Ä
£þÚ£ÄrDÃ.DÃõ ê¦z ÅùrDê§prDX<ã×'Ý b ÊÍ
<ãÄ
' RectC áDãBÊȹȦ$ÛãáDÈà
á×%Jg9ÊãÄVÇ{ÅÄ
' PolarC áDãBÊȹU$ÛÏãáDÈà
á×%Jg9ÊãÄVÇ{ÅÄ
k+
Ò5ãB RectGC `
5 ´ÅBn
Ò5#)$ÛXáDãÄ
PolarGC Ä
§pXáDÈÙÀDý `å£ôȹãBÄ 1 ´Åê@6Û¸Ä
IÅÛnXãÄȦ$ÛêU$ÛÅÄ
♦ ' Radian ¦zãBÊȧp (magnitude±angle)Ä
♦ ' Degree ¦zãBÊȧp (real,imaginary)Ä
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 70 of 16
61
4 ´Ö £Ã6kÃD `áD
71
_VÈ' PolarC ` Degree ãBÊÈ(2,1)N(1±45) ¨² (1.32565429614±12.7643896828)Ä
-I+¦'k
♦
♦
♦
Èyg9áDÄ
Süûm+¡Ããm+¡`Jª+úg9áDÄ
¢ VARS CPLX #)ݽáDÄ
-‹
CPLX ÄkÅi]
conj
ùg9áDáêÙDÃå
£ê½ 0Ï) CPLX °)
MXDÄ
real
imag
abs
angle
4
4Rec
4Pol
conj (real,imaginary)
¨²áDÃDÃå£ê½
conj (magnitude±angle)
¨² (magnitude±Langle)
real (real,imaginary)
¨²áDÃDÃå£ê½
real (magnitude±angle)
¨²õâ¦z-úXà (magnitude¹cosine(angle))
imag (real,imaginary)
¨²áDÃDÃå£ê½
imag (magnitude±angle)
¨²õâ¦z7úXà (magnitude¹sine(angle))
abs (real,imaginary)
ıÍŨ²áDÃDÃå£ê½ Xõ×§p
‡(real 2+imaginary 2)
abs (magnitude±angle)
¨²õ magnitude
04cccb.SCH TI-86, Chap 4, Chinese Bob Fedorisko Revised: 98-10-14 17:35 Printed: 98-10-14 17:35 Page 71 of 16
XEAáD×§p (real,Limaginary)
Xr¼×§prD real
X.¼×§p imaginary
72
4 ´Ö £Ã6kÃD `áD
angle (real,imaginary)
¨² tanL1 (imaginaryàreal)Äü `5$` Ý5$Úÿ×H p
` Lp ÅukXáDÃDÃå£ê½ XU$Û¦z×§p
tanL1(imaginaryàreal)
¢ LIST °)ݽ { ` }Ä
Og9ëË9ÚhD
ôÄ
angle (magnitude±angle)
¨²¦z angle ÄJ Lp$ß
Ò5#)k·<üÒ5#)ÞX$ÛG6¼ÚÄî
Bk·¬£ÈùnÒ5#)k· Jª2ûÄ
xMin à xMax à yMin ` yMax Ò5#)X
Uô8øþ$ÛHXÛú
ËÈB xScl=0 ` yScl=0 Ä
Ä
xScl Ä x zÅü x $ÛHÞøþÌÛÈX±
<X)!DÄ
yScl Ä y zÅü y $ÛHÞøþÌÛÈX±<X)!DÄ
ãX xRes Ѥ¬Ò6Ú
|[ÃÑÐÈ TI-86 ¬Ò
È6Ä
xRes ¾BÑDÒ5X5ôÚ|[ÈSü 1 8 XHDÄ
♦
♦
ü xRes=1 ĬxÅÊÈÑDü x $ÛHX£þ5ôØukJ¬ Ä
ü xRes=8 ÊÈÑDü x $ÛHÞ£ 8 þ5ôØukJ¬ Ä
05func.SCH TI-86, Chap 5, Chinese Bob Fedorisko Revised: 98-10-13 14:05 Printed: 98-10-14 10:04 Page 81 of 14
82
5 ´ÖÑDÒ5
,
> ֒
Uk·êe<È¢ GRAPH °) ( 6 ' ) ݽ WIND Ä
£¡Ò5ãÑÝÔXk·êe<ÄÇXk·êe<
Zü Func Ò5ãßX¬xÄ$ < xRes=1 Ä x Ú|
[Åük·êe<X yScl ß6Ä
$
xMin$ß
1
k·êe<Ä
6'
2
ÚÛÏU Xk·¬£ØÄ
###
3
êe¹Èù<ãÄ
0
4
ukÝ<ãJ,|§pÄ
bê#
U¢#)êßcêe< ¬k·¬£Èíg9DÈ âÝ X Äù¢ VARS WIND
#) ( - w / / WIND) ݽk·¬£êg9)þ+úÄÝ b Ä
05func.SCH TI-86, Chap 5, Chinese Bob Fedorisko Revised: 98-10-13 14:05 Printed: 98-10-14 10:04 Page 82 of 14
5 ´ÖÑDÒ5
83
@x [ @y øD7±Þ
k·¬£ @x ` @y nøþÌ5ôÈX±Ä'Ò5ÊÈ@x ` @y Xüß
6X@ã xMin à xMax à yMin ` yMax ukkÖ
@x=(xMin+xMax)à126
@y=(yMin+yMax)à62
@x ` @y áük·êe<ÄUÂ WÀÈOÝÞÄ9x¢#)êßcêe< ¬k
·¬£Ä' ¬,|ü @x ` @y XÊÈTI-86 ¾|¢ @x à xMin Ã@y ` yMin ¡u
k xMax ` yMax ÈJ,|Ä
øD7Ã+
TI-86 £¡Ò5ã±,)
ÀXãBÄ
ü DifEq Ò5ãßÈÒ5
ã#)Xcë 6
/ &Ä 10 ´ÅÄ
UÒ5ã#)È¢ GRAPH °) (6 / () Ý
½ FORMT ÄÒ5ãBnÒ5XØ¡MUÄ'!
XBÄ
U ¬BÈÚÛÏXBÈ âÝ b Èâü
ã#)ÞÌàÄ
05func.SCH TI-86, Chap 5, Chinese Bob Fedorisko Revised: 98-10-13 14:05 Printed: 98-10-14 10:04 Page 83 of 14
84
5 ´ÖÑDÒ5
DifEq Ò5ãÝÔXÒ5
ãBÄ
10 ´ÅÄ
RectGC
üȦ$ÛXÒ5$Û x ` y Û!B×' RectGC BÊȬ Ò5ÈÏ|
¾Ï|Ûȳþ x ` y XÈ×Vp CoordOn ã3ݽÈí x ` y
PolarGC
üU$ÛXÒ5$Û R ` q ×' PolarGC BÊȬ Ò5ÈÏ|¾Ï|
Ûȳþ x à y à R ` q XÈ×Vp CoordOn ã3ݽÈí R ` q
CoordOn
üÒ5i¼ÛX$Û
CoordOff
áüÒ5i¼ÛX$Û
DrawLine
¬
DrawDot
¾¬ ßêe<ÑDukÎX
ÄNc¬ Åuk`¬ ÔþÑDX¹0<¼`äâauk`¬
SeqG
%Ý `ëZªÒ5#
)ÈWÀÚÿÍhb x ` y
HÞXÛÄ
ßêe<ÑDukÎXÈJüȲy
ÝÝnXÑDÈ
ßÔþÑD
SimulG
Äàʬ ÅÍ)þ x uk`¬
ÝÝnXÑD
GridOff
]X%
GridOn
%
AxesOn
$ÛH
AxesOff
]X$ÛH× AxesOff Zª LabelOffàLabelOn ãB
LabelOff
]X$ÛHÛ
LabelOn
Û$ÛHÈVp AxesOn 3Ýn× x ` y üb Func à Pol ` Param ã×ü
DifEq ãßÝáàXÛ
05func.SCH TI-86, Chap 5, Chinese Bob Fedorisko Revised: 98-10-13 14:05 Printed: 98-10-14 10:04 Page 84 of 14
âÍßÔþ x uk`¬
5 ´ÖÑDÒ5
85
,D7
üÇ6X_Ò5ÈÝâ
¬ ÝGXBѬxÄ
UÒ5Èí¢ GRAPH °)ݽ
GRAPH ÄÒ5#)ÄVp¹Ò5
nXÈíü TI-86 ¬ Ò5Ê
üÇÞ¦Û<Ä
U¹ßÒ5Èà GRAPH °)
áüi Èíü¬ Ò5
âÝ :Ä
♦
♦
ü SeqG ãßÈTI-86 ÝÑDáNcäþ¬ ÝnXÑDÄ_VȬ
y2 ÈqõO|ÅÄ
ü SimulG ãßÈTI-86 àʬ ÝÝnXÑDÄ
ù¢ßc`#Ò5Ä
½WÀêg9)þ+úÄ
y1 Èa¬
16 ´ÅÄUü#)ÞSüÒ5Q¸Èí¢ CATALOG Ý
÷+Þ+Ò¦|D7
'V0ÊÈÇÞ¦XÛ
<¬êÄ
♦
♦
UV0Ò5¬ ÈÝ b ÄU»Á¬ ÈaÝ b Ä
U06Ò5¬ ÈÝ ^ ÄU¡¬ È¢ GRAPH °)ݽ GRAPH Ä
/Ò|D7
U¢Ò5#)ô8oMÖ
ÝÄêݽÅÖ
ÛÃ$Ûê°)ÄU6á°)ÈÝ . ê 6 Å
:
¾Ï|Û`$ÛÈá°)
b
Û`$ÛÈá°)
6 ê GRAPH
05func.SCH TI-86, Chap 5, Chinese Bob Fedorisko Revised: 98-10-13 14:05 Printed: 98-10-14 10:04 Page 85 of 14
86
5 ´ÖÑDÒ5
ÒN#
Vpg9D0ßXDÈTI-86 íÍDX£þ¬ 8ÑDȢଠZÔ£Æ
Äü SimulG Nc¬ ãßÈTI-86 Í£þDX ÔþôNc¬ ÑDÈ âÍ
`þôÈqõO|Ä
'ü<ãSüøþ¹ÞX
DÊÈÝDXSzO
툀
_VÈ{2,4,6} sin x ¬ ÝþÑDÖ
2 sin x à 4 sin x ` 6 sin x Ä
ß {2,4,6} sin ({1,2,3} x)
3¬ ÝþÑDÖ
2 sin x È 4 sin (2x) ` 6 sin (3x)Ä
BÒD
¬ÒüÝ 6 Ê!ÔõXÒ5ȾUÝÐȹÒ5¡¬X´ô¾¹Ò5Þõ
¹9uÝ ¬ÄVp¾¹Ò5Þõ¹â; ß6XÏÔþ¡0ȬÒÒ5Ä
♦
¬ZE¡Ò5XãB
♦
¬Z¬ üÞþÒ5#)ÞXÑDê³uÒ
♦ ݽêª\ݽZÑDê³uÒ
♦
¬ZÝnÑD¬£X
♦
¬Zk·¬£B
♦
¬Ò5ãB
05func.SCH TI-86, Chap 5, Chinese Bob Fedorisko Revised: 98-10-13 14:05 Printed: 98-10-14 10:04 Page 86 of 14
6
D7Ôå
TI-86
TI-86 Ò5¹K.................................................................88
³þÒ5 ..........................................................................90
ü ZOOM ¡0×HÒ5#)XÌ ............................91
SüxfD:ÑD..........................................................95
ÍÛn x ukÑD................................................101
üÒ5Þ¬ ................................................................101
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 87 of 22
88
6 ´ÖÒ5¹K
TI-86 D7Ôå
5 ´£ÄZV)ü Func Ò5ãßSü GRAPH °)M y(x)=à WIND à GRAPH ` FORMT n
`ÑDÒ5Ä ´£ÄV)SüJª GRAPH °)M×HXBXÒ5#)ÌÃ#Ò
5J³þÛnÑDÃ; D:ÚdÃüÒ5Þ¬ ¹,|`¡×üÒ5`ÒÄ|ùü
ݯþÒ5ãßSüûîDXÒ5¹KÄ
GRAPH i]
ü Func Ò5ãßX
GRAPH °)Ä GRAPH °)
üáàÒ5ãÈÝá
áàÄ
y(x)=
6
WIND
ZOOM
TRACE GRAPH
4
MATH
DRAW FORMT STGDB RCGDB
4
EVAL
STPIC
RCPIC
ZOOM
GRAPH ZOOM °)×üoM×HXBXÒ5#)Ì
TRACE
³þÛ×ü8Û³þÛnXÑDÒ5
MATH
GRAPH MATH °)×ü8°)¢D:¦z#Ò5
DRAW
GRAPH DRAW °)×ü8°)üÒ5Þ¬
STGDB
Name= ¤` GDB °)×ü8¤g9 GDB ¬£
RCGDB
Name= ¤` GDB °)×ü8°)¡×ü GDB ¬£
EVAL
Eval x= ¤×ü8¤g9 x XÈUüg9Ø·'!ÑD
STPIC
Name= ¤` PIC °)×ü8¤g9 PIC ¬£
RCPIC
Name= ¤` PIC °)×ü8°)9¡×ü PIC ¬£
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 88 of 22
6 ´ÖÒ5¹K
'
ü_Ȭ ZÑD
y(x)=x^3+.3x 2-4x XÒ5Ä
89
$Å*
¢ GRAPH °)ݽ GRAPH ÊÈÒ5#)ȾÏ|
Ûü#)Ä
ÛÔþtËÈJ5ô¾ÄUÏ|ÛÈÝ
"Ã#Ã! ê $×WÝÝÛXåÏ|Ä
♦
DãBáE¡
$ÛÄ
♦
ü RectGC ãßÈ£õÛÏ|Ȭ£ x ` y Äü PolarGC ãßÈ£õÛÏ
|Ȭ£ x à y à R ` q Ä
ü CoordOn ãßÈ'Ï|ÛÊÈÛ$Û x ` y üÒ5#)Xi¼Ä
D7±Þ
'Ï|ÛÊX$ÛârXD:$Û¥ÈB×Èü5ôXzìzÈÄ
c xMin â xMax ÈXÂ` yMin â yMax ÈXÂ^9^ãÄ_VÈûÒ5Ê)È
Ò5ÈBè$ÛÈy¥rXD:$ÛÄ
¾Ï|ÛX$Û<ÛüÒ5#)ÞX!BÄüÑDX¬ ÈBÏ|¾Ï
|Û\ÄXÄUÇçÑDÏ|ÈSü³þÛÄ 90 IÅÄ
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 89 of 22
90
6 ´ÖÒ5¹K
Ì
D7
UÒ5JÔ³þÈ¢ GRAPH °)ݽ TRACE Ä
ü_Ȭ ZÑD
y(x)=x^3+.3x 2-4x XÒ5Ä
³þÛXê6Ôþã+ÈWX£þ¦ØÝÔ5¾X
ͦijþÛKñÎü ÔþÝnXÑDÞÈ!b
#)ÈÔ¥X x ØÄ
Vp CoordOn ãÝÈÛ$Ûü#)Xi¼Ä
UÏ|³þÛ...
'g9¾¬£X Ôþ+ú
ÊÈ x= ¤Äê q= ê
t=ÅÄg9ù<ãÄ
VpÑDü x ØunÈí
y NÄ
ÑDõûêõãX¬
Ýo
"ê!
'!ßÏ)ÝX¾¬£Ä x Ãq Ãê t ÅØ
value b
ü x Ø¢ÔþÑDºÔþÑDÈÝßêe<ÝÑDXNcêÌ¡
Nc
#ê$
¢Æ£XÔþä,ºÔþä,Ä
#ê$
5 ´Å
ÑDÏ|³þÛÊÈ y B x ukÄG y=yn(x)Ä'³þYÎÒ5#)XJ¼êi¼
ÊÈü#)ÞX$Û»Á¬êÈQ5Û¡ü#)ÞÄ
GÏÖU¹ß'!Ò5#)º{êÇ{XÑD$ÛÈü³þÊÝ# ! ê "ÄVpü³þÊ
GÏYÎZ#)Xº{êÇ{ÊÈTI-86 Ú¾| ¬ xMin ` xMax XÄ
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 90 of 22
6 ´ÖÒ5¹K
91
¿óýÖ³þÊÈÃ¹Ý b ×HÒ5#)ȹ³þÛX!BäÒ5#)X
ÈGSÆ£ÚÛÏÎZXJ¼êi¼ÄrÞÈVÈGÏÄ
+[®d*Ì
U06³þJ6á¾Ï|ÛÈÝ : ê 6 Ä
U¡Ô³þÈ¢ GRAPH °)ݽ TRACE ÄVp¬Òîþ¡¬ Ò5Ä
³þÛ!b06³þØÄ
5 ´ÅÈ
ZOOM w+¯sD7·õ|ÛA
U¹ß'!Xk·¬£È¢
GRAPH °)ݽ WIND Ä
ÛX TI-86 Ò5#),|ük·¬£Xn xy G6XÔ¼ÚÄSü GRAPH
¬ÔoêÝXk·¬£J¡Ò5Èî îÔõÏ
`äħp xy G6XÔþÈãêÈûX¼ÚÄ
ZOOM °)MÈù
GRAPH ZOOM i]
y(x)=
BOX
WIND
ZIN
6(
ZOOM
ZOUT
TRACE GRAPH
ZSTD ZPREV
4
ZFIT
ZSQR
4
ZRCL
ZFACT ZOOMX ZOOMY
4
ZSTO
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 91 of 22
ZTRIG ZDECM ZDATA
ZINT
92
6 ´ÖÒ5¹K
Uª\Ï) ZOOM °)MX
pJ¨²¬xXk·¬
£Èݽ ZSTD Ä
BOX
ZIN
ZOUT
ZSTD
ZPREV
ZFIT
Vp¬ ÔþÚÈßK95
ÚÈùü ZSQR 9á!k·
¬£È¹SÚXÒ5ßK9
Ú6Ä
ZSQR
ZTRIG
¬ Ôþ9nÒ5#)
ÄûÅü´$ xFact ` yFact ûÛ<ÈXÒ5
ÄýãÅü´$ xFact ` yFact Û<ÈÈîÒ5
¹ÛÌÒ5×á!¬xXk·¬£
Ú@ÞÔþý¡0×k·¬£²á¹!X
¡uk yMin ` yMax ¹ÙÀÝnÑDü'! xMin ` xMax ÈX y XÔû`
Ôã
ü x $ÛH` y $ÛHÞBÌûãX5ô×üÔþå×Hk·¬£È§p
@x=@y È à xScl ` yScl ±Õá¬×'!Ò5XÄá$ÛsÅäÒ5
X
BÖüb Radian ãßXݦÑDXYBk·¬£Ö
xMin=L8.24668071567
xScl=1.5707963267949 (pà2)
yMax=4
xMax=8.24668071567
ZDECM
ZDATA
ZRCL
ZFACT
ZOOMX
ZOOMY
ZINT
ZSTO
yMin=L4
yScl=1
B @x=.1 Ã@y=.1 Ã xMin=L6.3 Ã xMax=6.3 Ã xScl=1 Ã yMin=L3.1 Ã yMax=3.1
` yScl=1
Bk·¬£¹Ý³uDB×¾×H xMin ` xMax ȾÖübÈÒÃ
7ØÒÃ`³uÒÄ 14 ´Å
Sü,|üü nXý ü k·¬£ (ZSTO) Xk·¬£
ZOOM FACTORS #)
¾Ý xFact ´$ýã×àÑ9 yFact Ä 93 IÅ
¾Ý yFact ´$9ýã×àÑ9 xFact
ü$ÛHÞBHD×B @x=1 Ã@y=1 à xScl=10 ` yScl=10 ×'!ÛüÝ
b âäÒ5#)X
Ú'!k·¬£,|ü nXý ü k·¬£ (ZRCL)
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 92 of 22
6 ´ÖÒ5¹K
93
¾C¾9M
Sü BOX Èùû'!Ò5#)YXÏ)½6³Ä
üÔß6X9x!Èü
ßêe<g9ÔþÑDÄ
ü_Ȭ ZÑD
y(x)=x^3+.3x 2N4x XÒ5Ä
1
¢ GRAPH ZOOM °)ݽ BOX ÄýÛ
ü#)Ä
6(
&
2
ÚÛÏÏ)UnýJX!B×ü
ã+Û¹JÄ
"#!$
b
Uª\ BOX àá¡nÒ
5#)ÈÝ :Ä
3
¢ ÔþJÏ|ÛÈÚïÎÔþÃ×HXý
ÈWXͦJã+Û`ÛÄ
"#!$
'¡¬ Ò5ÊÈTI-86 îÈ
k·¬£Ä
4
ünýâÈüÒ5#)¡¬
ÝnXÑDÄ
b
5
¢#)Ù8°)Ä
Ý
:
øÁ9P
U¢#)êüßcêe<
,| xFact ê yFact Èù¢
VARS ALL #)ݽøþ
¬£êüûm+¡`ãm+
¡g9Ä
ý´$nûêýã´$È ZIN à ZOUT à ZOOMX ` ZOOMY üo´$ûêýã¤
<ÈXÒ5ÄUý´$êe<È¢ GRAPH ZOOM °)ݽ ZFACT ÄÝ 6
( / / 'ÅÄ xFact ` yFact O ‚ 1 Äøþ´$üÝÒ5ãßX¬xÑ 4 Ä
9M[ÁCD7
ZIN ûÛ!B<ÈXw¼ÚÒ5Ä ZOUT ¹Û!BÒ5XÈûÔ¼ÚÄ
xFact ` yFact BnýXßzÄß6X9x£ÄV)Sü ZIN ÄUSü ZOUT Èü9x 2
üW·Ó ZIN Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 93 of 22
94
6 ´ÖÒ5¹K
ü_Ȭ ZÑD
y(x)=x^3+.3x 2N4x XÒ5Ä
1
¹ xFact ` yFact ×VÝUÈí ¬WÀ
XÄ
6
(/
/'
'ݽ ZOOM sÑÊÈ
¬Ò'!Ò5Ä
2
¢ GRAPH ZOOM °)ݽ ZIN ýÛÄ
('
3
ÚýÛÏÒ5#)XÄ
"#!$
4
ûÄTI-86 Ý xFact ` yFact ×HÒ5#)È b
Èk·¬£ÈJ¹Û!B¡¬
ÝnÑDÄ
Uüý`ä!ª\WÈ
Ý :Ä
ùü'!Ò5Þ²ÁûÄêýãÅÈ82Ý b Ã"Ã#Ã! ê $ ¹êXÄ
♦ UüàÔaõûÄêýãÅÈÝ b Ä
♦ UüûÄêýãÅÈÏ|ÛJÝ b Ä
Uü xFact ´$¾üG$ÛHÞýãÒ5ÈüÞ6X9x 2 ü ZOOMX ·Ó ZIN Ä ZOOMX
¹Û!B¬ ÝnÑDJÈÔok·¬£× yMin ` yMax á¬Ä
Uü yFact ´$¾üVÈ$ÛHÞýãÒ5ÈüÞ6X9x 2 ü ZOOMY ·Ó ZIN Ä ZOOMY
¹Û!B¬ ÝnÑDJÈÔok·¬£× xMin ` xMax á¬Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 94 of 22
6 ´ÖÒ5¹K
ùüÏ)Ò5ãߢ
VARS WIND #)ݽÝ
Xýk·¬£Ä
3ù)Àg9¬£+úÄ
ýk·¬£üá!¬xB
Ê¡SüJÛ¬xÄ
95
@ü[®d¯Á9
>$ß
♦ UÚÝ'!ýk·¬£àÊ,|ü nXn ýsÑÈ¢ GRAPH ZOOM °
)ݽ ZSTO Ä
♦ U; ü nXn ýÈWÚÒ5#)á!,|Xýk·¬£È¢ GRAPH
ZOOM °)ݽ ZRCL Ä
ü¹ßÒ5ãßSü ZSTO Ö
,|¹ßýk·¬£Ö
Func à Pol à Param ` DifEq Ò5ã
zxMin à zxMax à zxScl à zyMin à zyMax ` zyScl
Pol Ò5ã
zqMin à zqMax ` zqStep
Param Ò5ã
ztMin à ztMax ` ztStep
DifEq Ò5ã
ztMin à ztMax à ztStep ` ztPlot
'ck§=k
'ݽ GRAPH MATH ¡0ÊȬÒü³þÛ'!Ò5ÄU;
Ý # ` $ ϹÑDÄ
GRAPH MATH ¡0È
' GRAPH MATH °)¡0¤Ûnº ÃÇ `uÊÈÛnXBzîE¡ TI-86
uk§p
XÊÈ×u^BÈukÊÈ^ÁÄ
GRAPH MATH i]
MATH
ROOT
6/&
DRAW FORMT STGDB RCGDB
dyàdx
‰f(x)
FMIN
FMAX
4
INFLC
4
TANLN
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 95 of 22
YICPT
ISECT
DIST
ARC
96
6 ´ÖÒ5¹K
GRAPH MATH °)Íb Pol
` Param Ò5ãÝááà
Ä
8 ´`
9 ´ÅÄ
DifEq Ò5ãuÝ GRAPH
MATH °)Ä
ROOT
üÛnXº
ÃÇ
`uÑDX
dyàdx
ü³þÛ!BØÑDXDÐDÄp[Å
‰f(x)
üÛnXº
`Ç
ÑDXDÃÚ
FMIN
üÛnXº
ÃÇ
`uÑDXÔã
FMAX
üÛnXº
ÃÇ
`uÑDXÔû
INFLC
üÛnXº
ÃÇ
`uÑDX¤
YICPT
ÑDâ y HxÄ y ü x=0 ÊXÅ
ISECT
üÛnXº
DIST
Ûnº
ARC
ÑDüøþÛnÈX±
TANLN
üÛnØ0Û
ÃÇ
`Ç
`uøþÑDXx
ÈXȱ
l0 GRAPH MATH w+|ø
♦
♦
♦
ì£ tol ÄÙ)ÅE¡ ‰f(x)à FMIN à FMAX ` ARC XzÄzcÃÂX
£ãबÄ
9S¬£ d ÄÙ)ÅE¡ dyàdx à dxNDer ÚãßX INFLC Ä 1 ´Åà ARC `
TANLN XzÄzc9SX£ãबÄ
ÚãBE¡ dyàdx à INFLC à ARC ` TANLN × dxDer1ÄBÅ㨠dxNDerÄD
ÅãÄ 1 ´ÅÈBÄ
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 96 of 22
6 ´ÖÒ5¹K
' ROOT FMIN FMAX Þ INFLC
8Z9x 1 X°)ݽêÈSü ROOT à FMIN à FMAX ` INFLC X9xÌàÄ
ü_ÈÑD
y(x)=x^3+.3x 2N4x ÝÄ
X9x 2 áUXÈ´
¾ÝÔþÑDÝÄ
Èyg9º ÃÇ ê
uÊÈ x= ¤üÒ5
#)i¼Ä
Bound? ¤Ä
¢ GRAPH MATH °)ݽ ROOT Ä Left
6/&
&
2
ÚÛÏU XÑDÞÄ
#$
3
Ûn x Xº ÄêÙÚ³þÛϺ
ÈêÙÈyg9Ä Right Bound? Ä
a3b
Äê ! "
bÅ
4
`9x 3 Ô
Ä
a1b
Äê ! "
bÅ
1
5
6
üº
Ûn x XÇ
`Ç
Ä Guess?
ÈuÔþy¥b
x ÄêÙÏ|ÛÈêÙg9Ä
X
· x ħpÛü§pÞÈÛ
$ÛÈè x ,| Ans Ä
! "Äê a 2Å
b
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 97 of 22
97
98
6 ´ÖÒ5¹K
' ‰f(x) DIST Þ ARC
8Z9x 1 X°)ݽêÈSü ‰f(x)à DIST ` ARC X9xÌàÄ
ü_ÈÑD
1
6/
&/)
X9x 2 ` 4 áUXÈ
´¾ÝÔþÑDÝÄ
¢ GRAPH MATH °)ݽ DIST Ä'!Ò5
` Left Bound? ¤ÔKÄ
2
ÚÛϺ
#$
3
ݽ x Xº ÄêÙÚÛϺ
êÙg9 x Ä Right Bound? Ä
4
Ä¾Í DIST ÅVpÇSÇ ºÔþÑD
ÞXÈÚÛϺÔþÑDÞÄ
#$
5
Ý½Ç ÄêÙÚÛÏÇ
g9WX x Ä
!"ê
value
y(x)=x^3+.3x 2N4x ÝÄ
Íb DIST È'7ÛnÇ
ÊÈÚ¬ Ô5¢º Ç
XÈÄ
6
ÔXÑDÞÄ
È
ÈêÙ
·Ä
Íb DIST ȧp DIST= J,|
Ans Ä
!"bê
value b
b
♦
♦
Íb ARC ȧp ARC= J,|
Ans Ä
♦
Íb ‰f(x)ȧp ‰f(x)= ÈEêÃ
J,| Ans ÄÑDÃÚÃÂ,|¬£ fnIntErr ÄÙ)ÅÄUô8EÈ¢ GRAPH
DRAW °)ݽ CLDRW Ä 103 IÅÄ
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 98 of 22
6 ´ÖÒ5¹K
' dyàdx Þ TANLN
8Z9x 1 X°)ݽêÈSü dyàdx ` TANLN X9xÌàÄ
ü_ÈÑD
y(x)=x^3+.3x 2N4x ÝÄ
TANLN Ä GRAPH MATH °
)Å` TanLn Ä GRAPH
DRAW °)ÅÑüÒ5Þ0
Û×¾Ý TANLN
·§pÈ dyàdx Ä
1
¢ GRAPH MATH °)ݽ dyàdx Ä'!Ò5
Ä
6/
&'
2
ÚÛÏU¤XÐDÃêp[XÑDÞÄ
#$
3
ÚÛϹÄêg9 x ÅÄ
!"
4
·Ä
b
♦
♦
Íb dyàdx ȧp dyàdx= J,|
Ans Ä
Íb TANLN È3ÛÄUô8Û`
dyàdx= ¤È¢ GRAPH DRAW °)ݽ CLDRW Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 99 of 22
99
100
6 ´ÖÒ5¹K
' ISECT
ü_ÈÑD
y(x)=x^3+.3x 2N4x `
y(x)=x 2+3xN3 ÝÄ
1
¢ GRAPH MATH °)ݽ ISECT Ä'!Ò5
È First Curve? üÒ5#)i¼Ä
6/
&/(
2
ݽ ÔþÑDÄÆÅÄÛÏßÔþÑD
è Second Curve? Ä
#$b
3
ݽ
#$b
4
uxÄêÙÚÛϱx\¥XÈê
Ùg9 x Ä
a1`5
Äê ! "Å
5
·Ä§pÛüxØÈÛ$Û§
pÈ x ,| Ans Ä
b
`þÑDÄÆÅÄ Guess? Ä
' YICPT
USü YICPT È¢ GRAPH MATH °) (6 / & / ') ݽ YICPT ÄÝ # ` $
ݽÑDÈ âÝ b ħpÛüÑDâ y HþØÈÛ$ÛÈ y ,
| Ans Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 100 of 22
6 ´ÖÒ5¹K
101
ê¾ x ¯=k
U¢ Eval x= ¤Ù8g9
XDÈÝ :Ä
1
¢ GRAPH °)ݽ EVAL ÄÒ5È
Eval x= üºß¦Ä
6/
/&
Uª\ EVAL ÈüÙ8 Eval x=
¤âÝ :Ä
2
g9k·¬£ xMin ` xMax ÈXrD x Ä
`5-~
<ãÍ x ÝÄ
3
·Ä§pÛü ÔþÝnXÑDÞÈ
!bg9X x ØÄ$ÛÈÇÞ¦Xê
Ë<;þÑD·Ä
b
ù²Ág9Ý x 9u
kÝnÑDÄ
4
Ú§pÛÏßÔþê!ÔþÝnÑDħ
pÛüßÔþê!ÔþÑDÞÈ!bg9X
x ØÈ$ÛÈÑDêË ¬Ä
$#
ôD7ßÒ
ùüÏãÒ5ãßSüÒ5¹KÄáÙÀ DrInv Åü'!Ò5Þ¬ ÃÃÚÃE
³`[ ÄÒ5¹KSüX x ` y $ÛÄ
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 101 of 22
102
6 ´ÖÒ5¹K
ôD7ßÒ
ÝXÒ6ÑÊX×WÀuÝ,|üÒ5DBgÄÏ)ÐȬҡ¬ Ò5X
¡0Ñîô8ÝXÒ6Ä´8ÈüSüÏ)Ò6¹K!ÈU×%úU; o¬ ¡
0Ä
♦
¬E¡Ò5XãB
♦ ݽê\Ýnêêe'!ÑDê³uÒ
♦
¬ÝnÑDSüX¬£
♦
¬k·¬£
♦
¬Ò5ãBêÒ5 ã
♦ ü CLDRW Ù8'!Ò6
ã@[®d¯/Ò|Dp
Ò5DBg (GDB) `Ò6
(PIC) ¬£áSzù 1
8 þ+úÄ Ôþ+ú
O+¡Ä
UÚn'!Ò5Xô,|Ò5DBg (GDB) ¬£È¢ GRAPH °)ݽ STGDB Äo
µCO_,| GDB ¬£Ö
♦ ßêe<ÑD
♦ k·¬£
♦ Ò5 ãB
♦ ãB
Uü¹â¡×ü,|X GDB È¢ GRAPH °)ݽ RCGDB È â¢ GRAPH RCGDB °)
ݽ GDB ¬£Ä'¡×ü GDB ÊÈ,|ü GDB XµCª·oO_X'!µCÄ
ßÔV£ÄV)üÒ5Þ¬
ÃÃÆ`[ ×
âùÚoÒ6,|
PIC ¬£Ä
UÚ'!Ò5ÄÙÀÒ6Å,|Ò6 (PIC) ¬£È¢ GRAPH °)ݽ STPIC ȾÝ
Ò5Ò6,|Ûn PIC ¬£Ä
Uü¹âÚÔþêÈîX,|Ò6ÏtÒ5È¢ GRAPH °)ݽ RCPIC È â¢
GRAPH RCPIC °)ݽ PIC ¬£Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 102 of 22
103
6 ´ÖÒ5¹K
9ù/Ò|Dp
'Ò5ÊUÙ8Ƭ XÒ6È¢ GRAPH DRAW °)ݽ CLDRW ÄÒ5¡¬ J
ÈÞ6áaݬ XôÄ
U¢#)Ù8Ƭ XÒ6È¢ CATALOG ݽ ClDrw Ä ClDrw lÛØÄÝ
b Ä Done ×'aõ¹Ò5ÊÈuÝÒ6Ä
GRAPH DRAW i]
DrInv ü Pol à Param ê
DifEq Ò5ãßáÃüÄ
MATH
Shade
6/'
DRAW FORMT STGDB RCGDB
LINE
VERT HORIZ CIRCL
4
DrawF
PEN
PTON
PTOFF PTCHG
4
CLDRW
PxOn
PxOff
PxChg
4
TEXT
TanLn
DrInv
¾Ñü#)êüêe<ßcSüß6X GRAPH DRAW °)MÄ
Íb PxOn à PxOff à PxChg
` PxTest È `ëHDÈJ
0row62 à
0column126 Ä
Íb DrawF Ã TanLn `
DrInv È<ã expression
Gb x XÑDÄ3áÑüü<
ã expression ÙÀD
X©9¬ Ô£ÆÄ
Shade(
EÒ5XÛn³ÄËÙ 104 I)
DrawF expression
Ú<ã expression 0ÑD¬
PxOn(row,column)
'Ô (row,column) ØX5ô
PxOff(row,column)
GÁ (row,column) ØX5ô
PxChg(row,column)
¬ (row,column) Ø5ôX'ÔàGÁÕ
PxTest(row,column)
Vp (row,column) ØX5ô'ÔÕÈí¨² 1 ×úí¨² 0
TanLn(expression,x)
Ú<ã expression 0ÑD¬
DrInv expression
¬ <ã expression XæD
Èè¬
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 103 of 22
<ã ü x ØXÛ
PxTest
104
6 ´ÖÒ5¹K
SlD7L®
UüuÝJªÒ5Xß
á 8_Èüg9X
Û¸!GÁÝXß`
³uÒÄ
EÒ5³XÁ©Ö
Shade(lowerFunc,upperFuncã,xLeft,xRight,pattern,patternResä)
pattern ÛnZ¯¡EÒÔÄ
1
2
3
4
VÈĬxÅ
G
¡p (45¡)
7p (45¡)
patternRes ÛnZ?¡EÚ|[ÔÄ
1
£þ5ôĬxÅ
2
£øþ5ô
3
£Ýþ5ô
4
£¯þ5ô
5
£hþ5ô
6
£Aþ5ô
7
£×þ5ô
8
£?þ5ô
♦
♦
♦
E lowerFunc ` upperFunc ÛnX³Ä
xLeft > xMin ` xRight < xMax OóÄ
xLeft ` xRight ÛnZEXº `Ç Ä xMin ` xMax ¬xÅÄ
o GRAPH DRAW °)MxfãXÄàèÈùü#)êüßcSü8 PEN êXÝ
MÄÙ A Z ×ÅÄ
LINE
ÛÛnXÔºÔ¬
VERT
¬
VÈÈùÚWÏÏãX x Ø
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 104 of 22
6 ´ÖÒ5¹K
HORIZ
¬
CIRCL
GÈùÚWÏÏãX y Ø
üÛÛnX`X¬
PEN
¬
PTON
'ÔÛü
Ú
ÛüÒ5#)ÞÏ|X<Í
PTOFF GÁÛü
¬ÛüX'ÔàGÁÕ
PTCHG
CLDRW ¢Ò5#)Ù8ÝÒ6ס¬
TEXT
üÒ5XÛ!B¬
Ò5
+ú
Ò#ä
ü_ÈÑD
y(x)=x^3+.3x2N4x `
y(x)=x2+3xN3 ÝÄ
1
¢ GRAPH DRAW °)ݽ LINE ÄÒ5
Ä
2 üÛnXÔþÃÄ
6/
''
"#!$
b
3
nXºÔþÃÄ'Ï|ÛÊÈÔ5
¢ ÔþnXÃÊ ÛÄ
"#!$
4
¬
b
U¬
Ä
î5È¡á9x 2 ` 3 ×Uª\ LINE ÈÝ :Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 105 of 22
105
106
6 ´ÖÒ5¹K
Ò#Þz³#
ü_ÈÑD
y(x)=x^3+.3x 2N4x ÝÄ
àèÈ ZIN ; ÔõÈ
8ÊýÛü (0,0)È
xFact=2 È yFact=2 Ä
¢ GRAPH DRAW °)ݽ VERT Äê
HORIZ ÅÄÒ5ÈèÔ5VÈêGü
ÛØ¬ Î9Ä
6/
'(
Äê )Å
2
ÚÈÏUWîX x ØÄVpGÈ
í y ØÅÄ
!"
Äê $ #Å
3
üÒ5Þ¬
b
1
U¬
Ä
î5È¡á9x 2 ` 3 ×Uª\ VERT ê HORIZ ÈÝ :Ä
ÒÌ
ü_ÈÑD
y(x)=x^3+.3x 2N4x ÝÄ
àèÈ ZIN ; ÔõÈ
8ÊýÛü (0,0)È
xFact=2 È yFact=2 Ä
ÊÚßK9ÚÈàá
uk·¬£XÄ'¢
CATALOG Sü
9¬ ÚÊÈ'!k·¬
£ÃÑî#J6Ä
1
¢ GRAPH DRAW °)ݽ CIRCL ÄÒ5
Ä
6/'
*
2
üÛnÚXÄ
"#!$
b
3
ÚÛÏWXÏãÄ
"#!$
4
¬
b
U¬
ÚÄ
îþÚÈ¡á9x 2 ` 5 ×Uª\ CIRCL ÈÝ :Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 106 of 22
6 ´ÖÒ5¹K
107
Ò=ku$#Þ(=k
Íb DrawF Ã TanLn `
DrInv ÈùÚÏ),|Ý
<ãX¬£ü0<ãÄÙ
Àƪ\ÝnX߬£ÅÄ
Íb DrawF Ã TanLn ` DrInv È<ã expression Gb x XÑDÄ'¢ GRAPH DRAW °)
ݽ DrawF à TanLn ê DrInv ÊȹMl#)êßcêe<Äü; ÊȨ²Ò6Ä
DrInv îü y $ÛHÞ¬ x `ü x $ÛHÞ¬ y 9¬ expression X¡ÑDÄ
DrInv ¾Ãüb Func Ò5ãßÄ
ü_È y1=x^3+.3x 2N4x
ÝÄ
DrawF expression
TanLn(expression,x)
DrInv expression
DrawF x^3+.3x 2+4x
TanLn(y1,1.5)
DrInv y1
EDÒ#[N#
ü_ÈÑD
y(x)=x^3+.3x 2N4x ÝÄ
àèÈ ZSTD Æ; Ä
U¬ ͦêÆÈË'Ô
èÈÝ b b ÈÝ !
$Äê # "ÈqõO|ÅÈJ
¡áÄ
1
¢ GRAPH DRAW °)ݽ PEN Ä
6/'
/'
2
ÚÛÏÔ¬ÒØÄ
"#!$
3
'
b
4
¬
5
G珀
U¬
Ǭ
XÏ)ðSÄ
"#!$
b
îþÃÃêÆÈ¡á9x 2 ` s ×Uª\ÈÝ :Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 107 of 22
108
6 ´ÖÒ5¹K
ôD7ß9ªþ
8_Í PEN X_Ò5
rtÄüÔ!ÈÃÑU
Ú,|Ò6¬£Ä
102 IÅÄ
1
¢ GRAPH DRAW °)ݽ TEXT Ä[
ÛÄ
2
ÚÛÏUg9[
g9[ Ä
UüSü TEXT ʺ8+úÈ
Ú TEXT ÛÏ+úÞ6
âÝ 1 ¤ ê n ¤ 9ZmWÄ
3
Bãm+¡ÕÈg9 min ÄÄãmÛ
( Ï ) üÇÞ¦Å
-n1
ãMä ãIä ãNä
4
ÚÛϺÔþ!BÄ
"#!$
5
g9 max Äãm+¡Õ±Õ'ÔÅÄ
ãMä ãAä ãXä
ØÄü[
Ûß6
6/ '
///
&
"#!$
LÞ
ü_ÈÑD
1
¢ GRAPH DRAW °)ݽ PTON Äê
PTOFF ÅÄ
6/'
/(
(L5,5)Ã(5,5)Ã(5,L5) `
(L5,L5) ØX'ÔÄ
2
ÚÛÏU¬
"#!$
3
'ÔÄêGÁÅÄ
y(x)=x^3+.3x 2N4x ÝÄ
àèÈ ZSTD Æ; Äü
U»Á¬
Äêº8ÅXÄ
b
È¡á9x 2 ` 3 ÄUª\ PTON ÈÝ :Ä
06tools.SCH TI-86, Chap 6, Chinese Bob Fedorisko Revised: 98-10-15 13:37 Printed: 98-10-15 13:38 Page 108 of 22
7
å¯TI-86
¤k< ....................................................................110
B¤k< ....................................................................113
Ù8¤k< ....................................................................114
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
07tables.SCH TI-86, Chap 7, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:18 Page 109 of 6
110
7 ´Ö¤k<
,å¯Ußêe<ÈÝ 6
&Ä 5 ´ÅÄ
¤k<üßêe<ÝnÑDX¾¬£`´¬£ÈÝnÑDÃÔî 99 þĤk
<X£þ´¬£·<Ôþßêe<,|XÝnÑDȹÑDÃüb'!Ò5ãßÄ
TABLE Äå¯-Åi]
7
TABLE TBLST
¤k<#)
¤k<Bêe<
å¯ü_ÈݽZ y1=x2+3x-4
` y2=sin (3x) JBݬ
xÄ
VpUȤk<üëým
DÄ
7&
¾¬£
´¬£ÄßÅ
¬£á
êe ÄÑDá`
'!)XBÅ
UêeßÈüߤk<ëÝ $ÈÈÛüJÃ
,|'!߬£X<ãüêe Ä
07tables.SCH TI-86, Chap 7, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:18 Page 110 of 6
'!)
¤k<°)
߬£È âÝ b Ä
7 ´Ö¤k<
111
å¯-|$ß[P$ß
Ò5ã
ü DifEq ãßÈVpß
Ýñ5ÊDȤk<ü
ÔþDô·ß
Ä 10 ´ÅÄ
¾¬£
´ÄßŬ£
Func ÄÑDÅ
x
y1 y99
Pol ÄU$Û)
q
r1 r99
Param ÄDÅ
t
xt1àyt1 xt99àyt99
DifEq ÄÚß)
t
Q1 Q9
©å¯U...
.Ö
¤k<Èî´¬£
Ý"ê!
Ï)ëDXWû
Ý #ľü Indpnt: Auto BÊ×
B TblStart Wã
ü¾¬£ëÝ $ÈÈÛÏ'! TblStart Ä
112 IÅ
üêe
Ý ! ê " ÚÛÏ߬£ëÈÝ# $ÈÈ
ÛßáÈ âÝ b ×ßüêe
ßÈùêeêª\ÝnW
07tables.SCH TI-86, Chap 7, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:18 Page 111 of 6
112 IÅ
112
7 ´Ö¤k<
å¯-i]
7&
¤k<Í£¡Ò5ãÝÔX°)ÈVßÄ
üÑDÒ5ãß
TBLST SELCT
üDÒ5ãß
x
y
q
r
üU$ÛÒ5ãß
TBLST SELCT
TBLST SELCT
TBLST SELCT
¤k<Bêe<
SELCT
üêe
ÞȪ\Ýnß
x ` y ×q ` r × t Ã
xt ` yt ê t ` Q
üêe
ÞÈÚ¬£lÛØ×¬£
♦
♦
♦
xt
t
Q
yt
üÚßÒ5ãß
TBLST
♦
t
BÒ5ãà¬
UÚßÏt¤k<Èüßêe<ݽßÄ 5 ´ÅÄ SELCT ¾¢¤k<ô
8ßÄ
U¢¤k<ëô8ßÈ¢¤k<°)ݽ SELCT Äô8ßâ6XJªßº
ÏÔëÄ
Uü SELCT ª\ÝnßÈß`ÛOüêe ÄVpßüêe àÛá
üÈÝ b Ä
U¨Wøþüßêe<2²ÁnX´¬£ÈSü¤k<#)°)X SELCT 9ª\
ÝnøÙÈX´¬£Ä
07tables.SCH TI-86, Chap 7, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:18 Page 112 of 6
7 ´Ö¤k<
113
øå¯USü'!X¤k<B9
¤k<È¢ TABLE °)ݽ
TABLE Ä
TblStart ` @Tbl OrD×
U¤k<Bêe<È¢ TABLE °)ݽ TBLST ÄÇ
X#)Z¤k<BX¬xÄ
TblStart Ûnü¤k<ľ' Indpnt: Auto ÝÊÅX
þ¾¬£Ä x Èq ê t ÅÄ
Ô
@Tbl Ĥk<9SÅÛn¤k<ÌXøþ¾¬£ÈXrtê£ã9SÄ
ùg9<ãÄ
♦
♦
ü DifEq Ò5ãßÈ
ÔQB TblStart = tMin
` @Tbl = tStep Ä
Indpnt: Auto ¾|¢ TblStart Ô¤k<
Vp @Tbl 7Èí'åß®|¤k<Ê x Ãq ê t XrûÄ
Vp @Tbl óÈí'åß®|¤k<Ê x Ãq ê t X£ãÄ
ÔëX¾¬£Ä
Indpnt: Ask ÔþN¤k<Ä'ü x= ¤ (x=value b) ßg9 x ÊÈ£þ?t
¾¬£ëèÍhX´¬£ukJÎ9Ä' Ask BÊÈáÑ®|YÎ'!ü¤k
<XAþ¾¬£Ä
07tables.SCH TI-86, Chap 7, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:18 Page 113 of 6
114
7 ´Ö¤k<
[
ü_ÈݽZ y1=x +3x-4
` y2=sin (3x) JBݬ
xÄ
2
'üêe ßÊȹë
᠎
÷P$ß1È
1
¤k<Ä
7&
2
ÚÛÏUêe´¬£üXëÈ â¹
ëÞÏÈÈ´¬£áÄ
"$
3
üêe
ßÄ
b
4 êeßÄ
"""5"
\1
5
b
g9ÆêeXßÄ
♦
♦
♦
´¬£¡ukÄ
Û²ÆêeX´¬£
ÔþÄ
ßêe<ÈÄ
9ùå¯'üßcSü ClTbl ÊȤ
k<üßc; ÊÙ8
Ä 16
´ÅÄ
Uü Indpnt: Ask BÊÙ8¤k<È¢ CATALOG ݽ ClTbl È âaÝ b Äݾ¬
£`´¬£ëÙ8Ä ClTbl ü Indpnt: Auto BÊ3á.Ä
07tables.SCH TI-86, Chap 7, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:18 Page 114 of 6
8
õ,*D7
TI-86
XÖU$ÛÒ5........................................................116
nU$ÛÒ5............................................................117
ü Pol ÄU$ÛÅÒ5ãßSü
Ò5¹K................................................................119
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 115 of 8
116
8 ´ÖU$ÛÒ5
¾Öõ,*D7
U$Ûß A sin (Bq) XÒ5XäZ ·X6Äß6¬
âèJü A ` B JªÊ ·X6Ä
U¢Ò5#)ô8 GRAPH
°)ÈVÒÈÝ : Ä
U¡ GRAPH °)È
Ý6Ä
ßü A=8 ` B=2.5 ÊXÒ5È
1
¢ã#)ݽ Pol ãÄ
-m###
#"b
2
ßêe<`U$Ûßêe<
°)Ä
6&
3
ÄVpÝX±Èª\Ýnêô8Ý
ßÄÅ,| r1(q)=8sin(2.5q)Ä
(/'/)
8=D2`5&E
4
¢ GRAPH ZOOM °)ݽ ZSTD Ä
r1 ¬ üÒ5#)ÞÄ
-g)
5
k·êe<È
4p Ä
'
#4-~
6
¢ GRAPH ZOOM °)ݽ ZSQR Ä
xMin ` xMax ¬¹Ý7BX¨
âaÚ qMax Â
(/'
_Ò5Ä
7
¬ A ` B XJ¡Ò5Ä
&Äg9JªX A
` B Å
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 116 of 8
8 ´ÖU$ÛÒ5
117
¾Cõ,*D7
nU$ÛÒ5X9xânÑDÒ5X9xÌÄ ´n|Æs]Z
5` 6 ´ÖÒ5¹KÄ 8 ´º£ÄU$ÛÒ5âÑDÒ5XÂÖÄ
5 ´ÖÑDÒ
øõ,*D71+
Uã#)ÈÝ - m ÄU¬ U$ÛßÈOüg9ßÃBãêêek
·¬£!ݽ Pol Ò5ãÄTI-86 £¡Ò5ãÚÿ±-ßÃã`k·DBÄ
GRAPH ÄD7Åi]
5 ´£ÄZ¹ß GRAPH °
)MÖ
GRAPH ` FORMT Ä
6 ´£ÄZ¹ß GRAPH °
)MÖ
ZOOM Ã TRACE Ã DRAW Ã
STGDB Ã RCGDB Ã EVAL Ã
STPIC ` RCPIC Ä
r(q)=
WIND
U$Û
ß
êe<
U$Û
k·
êe<
6
ZOOM
TRACE GRAPH
4
MATH
DRAW FORMT STGDB RCGDB
4
EVAL
STPIC
U$Û
Ò5¤k
°)
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 117 of 8
RCPIC
118
8 ´ÖU$ÛÒ5
,õ,*1È
֒
UU$Ûßêe<Èü Pol Ò5ã (6 &) ߢ GRAPH °)ݽ r(q)=Ä8Zü q
` r Ó6 x ` y êÈüi XU$Ûßêe<°)â Func ãßêe<°)Ô Ä
ü8êe<ÈVpY,óÈùÔîg9` 99 þ
U$ÛßÈG r1 r99 ÄßX¾¬£n q Ä
ü Pol Ò5ã߬xXÒ5 ã »ÄrÅľÄÞEÅ
` ¿ÄßEÅÒ5 ãáÑüb Pol Ò5ãÄ
øD7·õ
>$ß
UU$Ûk·êe<È¢ GRAPH °) (6 ') ݽ
WIND Ä Pol Ò5ãâ Func Ò5ãÝÌàXk·¬£È
8Z¹ß¬£Ö
♦ xRes áÑüb Pol Ò5ãÄ
♦ qMin ÃqMax ` qStep Ãüb Pol Ò5ãÄ
üÇ{Ò6XD Radian ãßX¬xÄ$ <
yMin=L10 Ã yMax=10 ` yScl=1 YÎZ#)Ä
qMin=0
ÛnUüÒ5#)ukX
qMax X¬x 2p Ä
qMax=6.28318530718
ÛnUüÒ5#)ukXÔâÔþ q
qStep X¬x pà24 Ä
qStep=.13089969389957
Ûn¢Ôþ q ßÔþ q Xr£
Ôþ q
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 118 of 8
8 ´ÖU$ÛÒ5
119
øD7Ã+
DrawLine Ò5ãÔ ¨
DrawDot Ò5ãÈÝ
ãXU$ÛÒ5Ä
Uü Pol Ò5ãßã#)È¢ GRAPH °) (6 / () ݽ FORMT Ä 5 ´
£ÄZãBÄuà XBÃüb Func à Pol ` Param Ò5ãÈ TI-86 üY,
Úÿ£¡ã±,ãBÄü Pol Ò5ãßÈ PolarGC ¹ r ` q X6ãÛ$ÛÈ
r ` q nßX¬£Ä
,D7
U¬ ÝnXU$ÛßÈù¢ GRAPH °)ݽ GRAPH à TRACE à EVAL à RCGDB
ê ZOOM à MATH à DRAW ê RCPIC ¡0ÄTI-86 Í£þ q uk r Ä¢ qMin qMax ÈÈ
h qStep Š⬠£þÄüÒ5¬ ߬£ q à r à x ` y XáÈÄ
ô Pol Äõ,*ÅD71+'D7Ôå
$Å*
¾Ï|Ûü Pol Ò5X¹0ãâü Func Ò5XÌàÄ
♦ ü RectGC ãßÈÏ|ÛÈ x ` y X×VpÝnZ CoordOn ãÈí x ` y Ä
♦ ü PolarGC ãßÈÏ|ÛÈ x à y à r ` q X×VpÝnZ CoordOn ãÈí
r`qÄ
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 119 of 8
120
8 ´ÖU$ÛÒ5
Ì
õ,*1È
UÔ³þÈ¢ GRAPH °)ÄÝ 6 )Åݽ TRACE ijþÛÎü ÔþÝ
ßX qMin ØÄ
♦ ü RectGC ãßÈÏ|³þÛÈ q à x ` y ×VpÝnZ CoordOn ãÈí
qÃx`yÄ
♦ ü PolarGC ãßÈÏ|³þÛÈ x à y à r ` q ×VpÝnZ CoordOn ãÈí
r`qÄ
¿óýÃüb Pol Ò5ß×
GÏíáÃüÄ 6 ´ÅÄ
UÏ|³þÛ…
ÝÖ
¹ qStep r£ê££ßÒ5
"ê!
ÔþߺÔþß
#ê$
VpÚ³þÛÏÎZÒ5#)XJ¼êi¼Èí#)i¼X$Û»ÁÌh ¬Ä
VpÆ£¬
ZÔ£ÆÈíüÏßÔþU$Ûß!Ãü # ` $ !Z£5ÆÄ
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 120 of 8
8 ´ÖU$ÛÒ5
SÌ
121
*$u q
UÚ³þÛÏ'!ßÞÏãÝX q Èg9¹DÄ'g9 ÔþD+ÊÈüºß
¦ q= ¤Äg9XÍ'!Ò5#)OÝÄ'`äg9âÝ b ¡³þ
ÛÄ
ü_Ú¬
XÒ5Ä
r1=8sin(2.5q)
üÇXÒ5ÞZ q à x
` y XȴݽX
RectGC Ò5ãÄ
'Á9w+
GRAPH ZOOM X°)MÈ8 ZFIT êÈü Pol Ò5X¹0ãâü Func Ò5XÌàÄ
ü Pol Ò5ãßÈ ZFIT ü x ` y øþå×HÒ5#)Ä
ý¡0¾E¡ x k·¬£Ä xMin à xMax ` Xscl Å` y k·¬£Ä yMin à yMax ` yScl ÅÈ
ZSTO ` ZRCL 8êÈWÀ3E¡ q k·¬£ÄqMin ÃqMax ` qStep ÅÄ
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 121 of 8
122
8 ´ÖU$ÛÒ5
GRAPH MATH ÄD7å¯Åi]
MATH
DIST
Jª GRAPH MATH °)M
` 6 ´£ÄXÔ Ä
dràdq
6/&
DRAW FORMT STGDB RCGDB
dyàdx dràdq
ARC TANLN
ÑDüÔØXDÐDÄp[Å
DIST ` ARC ukX±È¦$ÛG6ÞX±Ä dyàdx ` dràdq â RectGC ê PolarGC
ã´GÄ
üÐDþnXØÈ TANLN Ú¬
Ô5ÈÈuݧpê,| Ans Ä
êʾ| q G1È
'³þÛþÊÈ GRAPH X°)M EVAL ÍnX q üÒ5ÞÈy·ÝnXU$Û
ßÄßcê#)X eval ¨² r XDÄ
ôõ,*D7ßÒD
GRAPH DRAW °)Mü Pol Ò5X¹0ãâü Func Ò5XÌàÄü Pol Ò5ãßX
DRAW Û¸$ÛÛÒ5#)X x ` y $ÛÄ DrInv áÑüb Pol Ò5ãÄ
08pol.SCH TI-86, Chap 8, Chinese Bob Fedorisko Revised: 98-10-13 14:08 Printed: 98-10-14 10:19 Page 122 of 8
9
lk
D7
TI-86
XÖDÒ5............................................................124
nDÒ5................................................................125
üDÒ5ãßSüÒ5¹K ..............................128
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 123 of 8
124
9 ´ÖDÒ5
¾ÖlkD7
ß6¬ ÔþDßXÒ5ȹߣÄÔþoñóz 30 Gà¦Ãñ¦zâG6
ÄG6Å 25 zã×X² <ÍÄÂã×Ú² î°Û)ʺ۲ î¬Û
1
¢ã#)ݽ Param ãÄ
-m###
#""b
2
ßêe<`Dßêe<°)Ī
\ÝnÝß`³uÒÄVpÆnÅÄ
6&
(/ ' /)
3
nã×X<ÍÊÈ t XÑD xt1 ` yt1 Ä
GÖ xt1=tv0cos(q)
VÈÖ yt1=tv0sin(q)N1à2(g t2)
¡o DÖ g=9.8 Gঠ2
30 & > D 25
4
ÚVÈÚ£å£n xt2 ` yt2 ¹Ú
GÚ£å£n xt3 ` yt3 Ä
0#-g1#
-f1#0
5
Ú xt3àyt3 XÒ5 ã ¬ ¼ÄkÅÄ
Ú xt2àyt2 ` xt1àyt1 XÒ5 ã ¬ À
Ä<ÍÅÄ
./)$
$))$$
$))
ü_Ñ9Z8¡oê
XÝoÄÍbñóz v0
`¦z q Èã×X!BÊ
ÈXÑDÈÝG`VÈø
þÚ£Ä
-Œ(&
E # 30 - e
= D 25 & E T
9`8F2-e
I#
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 124 of 8
9 ´ÖDÒ5
6
g9ß6Xk·¬£Ä
tMin=0
tMax=5
tStep=.1
Uõ³² Xã×ÈÚ
xt1àyt1 XÒ5 ã ¬
ÁÄ|ÅÄ
xMin=L20
xMax=100
xScl=50
yMin=L5
yMax=15
yScl=10
125
-f0#5#
` 1 # a 20 #
100 # 50 # a 5
# 15 # 10
7
B SimulG ` AxesOff Ò5ãÈ ã
×X<Í`å£Úàʬ üÔþÆÙN
Ò5#)ÞÄ
/(###
"b##"
b
8
¬ Ò5Ĭ ¡0àʲ Xã×
`¤|XVÈ`GÚ£å£Ä
*
9
³þÒ59kD§pijþ¢ tMin Ø
ÔÈÝÊȳþ×X<ÍÄX x <
±× y <¬z× t <ÊÈÄ
)"
¾ClkD7
nDÒ5X9xânÑDÒ5X9xOÄ ´n|Æ£s]Z
` 6 ´ÖÒ5¹KÄ ´ºÄDÒ5âÑDÒ5XáàØÄ
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 125 of 8
5 ´ÖÑDÒ5
126
9 ´ÖDÒ5
ølkD71+
Uã#)ÈÝ - m ÄU¬ DßÈOüg9ßÃBãêêek·
¬£!ݽ Param Ò5ãÄTI-86 üY,£¡Ò5ãÚÿ±-ßÃã`k
·DBÄ
GRAPH ÄD7Åi]
5 ´£ÄZß6X GRAPH
°)MÖ
GRAPH ` FORMT Ä
6 ´£ÄZß6X GRAPH
°)MÖ
ZOOM Ã TRACE Ã DRAW Ã
STGDB Ã RCGDB Ã EVAL Ã
STPIC ` RCPIC Ä
DÒ5 üXhü¬
cÊÈà¬êßXÒ5Ä
E(t)=
WIND
D
ß
êe<
D
k·
êe<
,lk1È
6
ZOOM
TRACE GRAPH
4
MATH
DRAW FORMT STGDB RCGDB
4
EVAL
STPIC
RCPIC
D
Ò5¤k
°)
֒
UDßêe<Èü Param Ò5ã (6 &) ߢ GRAPH °)ݽ E(t)=Ä8Zü
t ` xt Ó6 x ` y à yt Ó6 INSf êÈüi Xßêe<°)â Func ãßêe<°
)툀
ü8êe<ÈVpY,óÈùg9JÔî 99 þ
DßX x ` y Ú£ÈG xt1 ` yt1 xt99 ` yt99 Ä£þ
Ú£X¾¬£Ñn t Ä
x ` y øþÚ£nÔþDßÄO£þßÑn
xt ` yt Ä Param ã߬xXÒ5 ã »ÄrÅÄÒ
5 ã ¾ÄÞEÅ` ¿ÄßEÅáÑüb Param ãÄ
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 126 of 8
9 ´ÖDÒ5
¡
127
[S?¡¾lk1È
'DßÝnÊÈ xt ` yt XË (=) ÄU ¬DßXݽÕÈÚÛÏ xt
ê yt ÞÈ â¢ßêe<°)ݽ SELCT Ä xt ` yt XÕ ¬Ä
Îùlk1È
Uü DELf ô8DßÈÚÛÏ xt ê yt ÞÈ â¢ßêe<°)ݽ DELf ÄøþÚ£
Ñô8Ä
Uü MEM DELET °)Ä
¡±-üY,Ä
øD7·õ
17 ´Åô8DßÈOݽ xt Ú£ÄVpݽ yt Ú£Èß
>$ß
UDk·êe<È¢ GRAPH °) (6 ') ݽ
WIND Ä Param Ò5ãâ Func Ò5ãk·¬£Î Ì
àȹ߬£8êÖ
♦ xRes áÑüb Param ãÄ
♦ tMin à tMax ` tStep Ãüb Param ãÄ
üÇ{Ò6XD Radian ãX¬xÄ$ <
yMin=L10 Ã yMax=10 ` yScl=1 YÎZ#)Ä
tMin=0
ÛnK t
tMax X¬x 2p Ä
tMax=6.28318530718
Ûn§3 t
tStep X¬x pà24 Ä
tStep=.13089969389957
Ûn t ¢ÔþßÔþXr£
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 127 of 8
128
9 ´ÖDÒ5
øD7Ã+
DrawLine Ò5ãÔ ¨
DrawDot Ò5ãÈÝ
ãXDÒ5Ä
Uü Param Ò5ãßã#)È¢ GRAPH °) (6 / () ݽ FORMT Ä 5
´£ÄZãBÄTI-86 üY,Úÿ Func à Pol à Param ` DifEq Ò5ã±-Z
ãBÄ
,D7
U¬
ÝnXDßÈùݽ GRAPH à TRACE à EVAL à RCGDB ê ZOOM à MATH Ã
DRAW ê RCPIC ¡0ÄTI-86 £þ t uk x ` y Ä¢ tMin tMax ÈÈh tStep ÅXÈ
⬠£þ x ` y nXÄü¬ Ò5XßȬ£ x à y ` t XÄ
ôlkD71+'D7Ôå
$Å*
¾Ï|Ûü Param Ò5ßX¹0ãâü Func Ò5ßÌàÄ
♦ ü RectGC ãßÈÏ|ÛÊÈ x ` y XÄVpݽZ CoordOn ãÈí x `
y XÄ
♦ ü PolarGC ãßÈÏ|ÛÊÈ x à y à r ` q X×VpݽZ CoordOn ãÈí
r ` q XÄ
Ì
lk=k
UÔ³þÈ¢ GRAPH °) (6 )) ݽ TRACE ijþÔÊȳþÛ!b ÔþÝ
nÑDX tMin ØÄ
♦ ü RectGC ãßÈÏ|³þÛÈ x à y ` t X×VpݽZ CoordOn ãÈí
t à x ` y XÄ
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 128 of 8
9 ´ÖDÒ5
♦
¿óýÃüb Param Ò5×
GÏíáÑÄ 6 ´ÅÄ
ü PolarGC ãßÈÏ|³þÛÈ x à y à r Ãq ` t X×VpݽZ CoordOn
ãÈí r Ãq ` t XÄ x ` y Äê r ` q ÅX t ukkÄ
UÏ|³þÛ…
ÝÖ
¹ tStep r£ê££ßÒ5
"ê!
ÔþߺÔþß
#ê$
VpÚ³þÛÏÎZÒ5#)XJ¼êi¼È#)i¼X$Û»ÁÌh¬êÄVpÆ
£¬ ZÔ£ÆÈíüÏßÔþDÑD!Ãü # ` $ !Z£5ÆÄ
SÌ
ùü t= ¤Øg9<ãÄ
129
*$u t
UÚ³þÛÏ'!ßÞÏ)ÝX t ØÈg9¹DÄ'g9 ÔþD+ÊÈüº
ߦ t= ¤Äg9XOÍ'!Ò5#)ÝÄ'`äg9âÝ b ¡³
þÛÄ
ü_ÈDßÖ
xt1=95t cos 30¡
yt1=95t sin 30¡N16t2
àèÈB AxesOn Ò5ãÄ
Ä 124 IX_â8
_ÌÄ)
'Á9w+
8 ZFIT êÈ GRAPH ZOOM °)Mü Param Ò5X¹0ãâü Func Ò5ÌàÄü
Param ãßÈ ZFIT ü x ` y øþå×HÒ5#)Ä
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 129 of 8
130
9 ´ÖDÒ5
` y k·¬£Ä yMin à yMax
GRAPH ZOOM °)M¾E¡ x k·¬£Ä xMin à xMax ` xScl Å
` yScl ÅÈ ZSTO ` ZRCL 8êÈâøÙ¬E¡ t k·¬£Ä tMin à tMax ` tStep ÅÄ
GRAPH MATH ÄD7å¯Åi]
MATH
DIST
Jª GRAPH MATH °)M
â 5 ´£ÄXÌàÄ
6/&
DRAW FORMT STGDB RCGDB
dyàdx dyàdt
dxàdt
ARC
dyàdx
¨² yt ÐD8¹ xt ÐD
dyàdt
¨² yt ßGb t XÐD
dxàdt
¨² xt ßGb t XÐD
4
TANLN
DIST ` ARC ukÎX±È¦$ÛG6ÞX±Ä
üÐDþnØÈ TANLN Ú¬
Ô5ÈÈuݧpê,| Ans Ä
êʾ t G1È
'³þÛþÊÈ GRAPH X°)M EVAL ÍnX t ·Ò5ÝnXU$ÛßÄß
cê#)X eval ¨²Gb x ` y DXDÈãVßÖ{xt1(t) yt1(t) xt2(t) xt2(t) ...}Ä
ôlkD7ßÒD
DRAW °)Mü Param Ò5ßX¹0ãâü Func Ò5ßÌàÄ Param Ò5ßX DRAW Û¸
$ÛÛÒ5#)X x ` y $ÛÄ
09para.SCH TI-86, Chap 9, Chinese Bob Fedorisko Revised: 98-10-15 13:58 Printed: 98-10-15 13:59 Page 130 of 8
10
J
1ÈD7
TI-86
nÚßÒ5........................................................132
g9J·Úß ...................................................139
ü DifEq ÄÚßÅÒ5ãß
SüÒ5¹K........................................................144
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 131 of 20
132
10 ´ÖÚßÒ5
¾CJ1ÈD7
8 ´` 9 ´ÔbÔþ
_×à 10 ´ÚÝ´þÚ
ß_Ä
nÚßÒ5X9xânÑDÒ5X9xÌÄ ´n|Æ£s]Z 5 ´ÖÑD
Ò5` 6 ´ÖÒ5¹KÄ ´º¡ÚßÒ5âÑDÒ5XáàØÄ
î È DifEq Ò5ãâJªÒ5ãXáàØübÖ
♦ Oünß!ݽ³ãêy«¬xÄ 133 IÅÄ
♦ VpßõD¬bÔ ÈOÚW@6ËXÔ ßÈ â±,üßêe<
Ä 140 I` 142 IÅÄ
♦ 'ݽZ FldOff ³ãâÈOBߣþßXñ5ÊÄ 136 IÅÄ
♦ ݽ`³ãBâÈO¢ GRAPH °)ݽ AXES ÈJg9$ÛHµCêy«¬x
Ä 137 IÅÄ
øJ1ÈD71+
Uã#)ÈÝ - m ÄU¬ ÚßXÒ5ÈOüBãÃg9ßê
êek·¬£!ݽ DifEq Ò5ãÄTI-86 üY,±,£¡Ò5ãXãÃß
`k·DBÄ
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 132 of 20
133
10 ´ÖÚßÒ5
6
GRAPH i]
5 ´£Ä GRAPH °)M
Q'(t)=
6 ´£Ä¹ß GRAPH
°)MÖ
DRAW Ã ZOOM Ã TRACE Ã
EVAL Ã STGDB Ã RCGDB Ã
STPIC ` RCPIC Ä
ß
êe<
WIND
INITC
AXES
GRAPH
4
FORMT DRAW
ZOOM
TRACE EXPLR
GRAPH Ä
4
Úß
k·êe<
ñ5Ê
êe<
$ÛH
êe<
EVAL
STGDB RCGDB STPIC
Úß
ã#)
RCPIC
ü¾Ï|Û#
øD7Ã+
TI-86 £¡Ò5ã±,
ؾXãBÄ
Uü DifEq Ò5ãßã#)Èí¢ GRAPH °)Ý
½ FORMT (6 / &)Ä
♦ RK Euler ` SlpFld DirFld FldOff ãBü DifEq Ò
5ãßÝÄ
♦ RectGC PolarGC Ã DrawLine DrawDot ` SeqG SimulG
ãBü DifEq Ò5ãß´Ä
♦ ÝJªXãBâ 5 ´¡XÌàÄ
·©ã
RK
ü Runge-Kutta ©·Úߨü Euler ·©ãÈBÈózáVW¿
Euler
ü Euler ©·Úß×ÔUÛnü tStep ÈXÁ·õDÈük·êe< EStep=
¤·Ó difTol= ¤
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 133 of 20
134
10 ´ÖÚßÒ5
³ã
SlpFld
Äp[³ÅÚp[³ÏtÔ
ß
ßXÒ5ÈÒ5X x H t È y HÛnX Qn
DirFld
Äå³ÅÚå³Ït` ßXÒ5ÈÒ5X x H Qx#È y H Qy#
FldOff
ÄGÁ³Å¬ ÝÝnÚßXÒ5ÈÒ5X x H t ê Q1 È y H Q1 ê Q2 È
Jè´³×OÝßnñ5ÊÄ 136 IÅ
ß6X_ZÎ Xp[`å³×ÝþÛnXB`DѬxÄUá
_Èá!¬xÈü DifEq Ò5ãßg9ÛnXµCÈ âÝ 6 *Ä
$ÛµC±,¬£ GDB `
PIC Ä
SlpFld ³ã
DirFld ³ã
Q'1=t (y'=x)
Q'1=Q2 ` Q'2=LQ1 (y"=Ly)
o
UÚ°)¢Ò5ô8ÈV
_ÈÝ :Ä
,J1È ÷í
UÚßêe<Èü DifEq Ò5ãß (6 &) ¢ GRAPH °)ݽ Q'(t)=Äi
X DifEq ßêe<°)â Func ãXßêe<°)Î ÌàÈ8Zü t ` Q ·Ó x ` y Ä
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 134 of 20
10 ´ÖÚßÒ5
135
ü8êe<ÈVpÝóXY,ÈÃg9JÔî 9
þÔ ÚßÈG¢ Q'1 Q'9 ÄßÝ;¾¬£ t `à
ê Q'9nÄ
ü DifEq ßùéüºÔþÚßX¬£È_V
Q'2=Q1 ÄáÑü DifEq ßg9DÄ
' TI-86 ukÔþÚßÊÈW¢ Q'1 Ôéüßêe<XÝßÈàáuJݽ
ÕV)ÄO¢ Q'1 Ô²Án Q'n ߬£Ä_VÈVp Q'1 ` Q'2 þnÈ©Ò
· Q'3 nXßÈuk<Ú¨²íÃÄ
TI-86 )ÀÚd£þßÄ_VÈùg9 Q'1=t ` Q'2=t2 J)ÀÚd£þßÄ
TI-86 ¾¬ woÝnXJÖÜbÛn$ÛHXßÒ5Ä
♦ DifEq ã߬xXÒ5 ã ¼ÄkÅÄ
♦ ¾ÄÞEÅÿÄßEÅ` ÂÄÅü DifEq Ò5ãß´Ä
øD7·õ
>$ß
UÚßk·êe<È¢ GRAPH °) (6 ') Ý
½ WIND Ä DifEq â Func Ò5ãk·¬£Î ÌàÈ
8ZÖ
♦ xRes ü DifEq ãß´Ä
♦ tMin à tMax à tStep ` tPlot ü DifEq ãßÝÄ
♦ difTol (RK) ` EStep (Euler) ü DifEq ãßÝÄ
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 135 of 20
136
10 ´ÖÚßÒ5
135 IÒ6Xûz Radian ãßX¬xÄ x ` y XBâ$ÛH¬£Ä
137 IÅÔÈÄ$ < xScl=1 à yMin=L10 à yMax=10 à yScl=1 ` difTol=.001 Äü RK ãÅ
ê EStep=1 Äü Euler ãÅYÎZ#)Ä
tMin=0
ÛnüÒ5#)YÔukX t
tMax ¬x 2p Ä
tMax=6.28318530718
ÛnüÒ5#)YÔâukX t
tStep ¬x pà24
tStep=.1308969389958
Ûn¢Ôþ t ßÔþ t Xr£
tPlot=0
ÛnÔ¬
difTol=.001 Äü RK ãÅ
Ûnù}ݽ·9SûãÈO ‚ 1EL12
EStep=1 Äü Euler ãÅ
Ûnü tStep ÈX Euler Á·õDÈOÔþ >0 è 25 XHD
XÄ' t $ÛHÊÑ9Å
øñ*H
ñ5ʵC±,¬
£ GDB ` PIC Ä
Uñ5Êêe<È¢ GRAPH °) (6 () ݽ
INITC Äüþêe<Èùßêe<X£þÔ
ßB t=tMin ÊXñÄ
tMin UukX Ôþ t Ä Q[1 Qn XñÄÔã+
üñ5ʬ£<nXÚßÔUg9
ÔþÄ
ùñ5Ê tMin ` Q[n g9<ãÃDêDáÄ'g9DáÊÈDôüÝ
b Ã# ê $ âÄ
♦ VpBZ SlpFld ê DirFld ãÈíáÛnñ5ÊÄTI-86 ¨²ÌháÙÿMn·
X³Ä
♦ VpBZ FldOff ãÈíOÛnñ5ÊÄ
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 136 of 20
10 ´ÖÚßÒ5
137
ø,*·
U$ÛHêe<Èü DifEq ã (6 )) ߢ GRAPH °)ݽ AXES Ä
x= Ú¬£ x H
dTime= ÛnÔþÊÈÄrDÅ
y= Ú¬£ y H
fldRes=ÄÚ|[ÅB DÄ 1 25 Å
ü x= ` y= ¤ØÈùg9¾¬£ t ȹ Q à Q'à Qn ê Q'n ÈJ n ‚ 1 è 9 XH
DÄVpÚ t Ôþ$ÛHÈJÚ Qn ê Q'n ºÔþ$ÛHÈí¾¬ ±,ü Qn ê
Q'n Xß×ᬠßêe<XJªÚß×oßXݽÕÑ9Ä dTime
¾Í X` ßÝȬ£ t ÎüÍhÔ ßXÏãÔþßÄ
$ÛHêe<`£þ³ãX¬xüß6Ä'B SlpFld ³ãÊÈ x H t È
¹ AXES: SlpFld êe<á x=t Ä
$ÛHµC±,¬£
GDB ` PIC Ä
B SlpFld ãÊÖ
J1ÈÒ
♦
♦
B DirFld ãÊÖ
B FldOff ãÊÖ
,
b TI-86 ¬ ß!¬ p[`å³ÈÃ¹Ý b V00Òȹßuݬ ·
X³Ä
VpáÛn$ÛHXßBnñ5ÊÈTI-86 ÚT)¬ ³â06Ä
àʳãÝM`xfñ5ÊÄ
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 137 of 20
138
10 ´ÖÚßÒ5
$ß fldPic
³uÒ`#)¬Òá±,
¬£ fldPic Ä
' TI-86 ¬
Ä
³ÊÈWÚ³`ÝÛÃ$ÛHêÛ!BµC±,YB¬£ fldPic
¹ß¡0áÈ fldPic Ö
♦ Ú·©ã¢ RK Û6 Euler ê¢ Euler Û6 RK
♦ g9êêeÏãñ5ʬ£XÄ¢ Q[1 Q[9 Å
♦ êe difTol à EStep à tMin à tMax à tStep ê tPlot X
♦
¬Ò5 ã
¹ß¡0È fldPic Ö
♦ êeßêe<Xß
♦ $ÛH¡Èêe dTime êêe fldRes
♦ Sü GRAPH ZOOM °)M
♦
¬ãBàá·©ã
♦ êe xMin à xMax à xScl à yMin à yMax ê yScl X
,D7
U¬ ÚßÈù¢ GRAPH °)ݽ GRAPH à TRACE à EVAL ê STGDB Èê DRAW Ã
ZOOM ê STPIC ¡0ÄTI-86 ¢ tMin tMax ·£þßÄVp t á$ÛHÈí¢ tPlot Ô
¬ £þ×úí¢ tMin Ô¬ Äü¬ Ò5X߬£ x à y à t ` Qn ÈÄ
tStep E¡³þXÚ|[`Ò5êÈáE¡³þXzÄ tStep án·X9Sûã×
Sü RK k© (Runge-Kutta 2-3) n9SûãÄVp x H t ÈB tStep<(tMax N tMin)à126
Úrt¬ ÊÈÈàártzÄ
10diffeq.SCH TI-86, Chap 10, Chinese Bob Fedorisko Revised: 98-10-13 14:12 Printed: 98-10-14 10:21 Page 138 of 20
10 ´ÖÚßÒ5
139
R@GJ1È
ü Func Ò5ãßÈ x ¾¬£È y ߬£ÄS! TI-86 ÞX Func ß` DifEq
ßÈXUÈü DifEq Ò5ãß t ¾¬£È Q'n ߬£Ä´8ÈüÚßêe
<g9ßÊÈOÚW< t ` Q'n X6ãÄ
_VÈU<Ô Úß y'=x2 ÈíUü t2 ·Ó x2 Èü Q'1 ·Ó y'È
<g9 Q'1=t2 Ä
ô SlpFld Ã+Ò
ü_ÈÔÆB¬x
k·¬£Ä
1
ã#)JB DifEq Ò5ãÄ
-m###
#"""b
2
ã#)JB SlpFld ³ãÄ
6/
####b
3
ßêeÛÅ
l
Q¸
fË
8 ' È× b (
CTL
DispG
INSc
DispT
4
ClTbl
Get
Send
4
"
Outpt
InpSt
UÙV)üßcSü PRGM IàO °)MX_ÈËÙ
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 215 of 16
getKy
A Z ×Ä
ClLCD
216
16 ´Ößcu
Input
'!Ò5ÈJSü¾Ï|Û
Input variable
V0ßcÈ ? ¤È
Vpü Input ê Prompt ¤
Øg9<ã0¬£XÈ
íukJ,|<ãÄ
Input promptString,variable
Input "string",variable
V0ßcÈ promptString ê string ÄÔî 21 þ+úÅ0¤
È,|g9¬£ variable
Input "CBLGET",variable
uü TI-86 ÞÔQSü Get( Q¸ÈÃSü Input ¢ CBL à CBR
ê TI-86ÄTI-85 PÅy ¬£ variable
Íb Input ` Prompt ÈYB
¬£V y1 ` r1 áÃ0¬£Ä
Prompt variableA
ã,variableB,variableC,...ä
¹ ? £þ¬£ 9¤g9¹¬£ X
Disp
#)
Disp valueA,valueB,...
£þ value
Disp variableA,variableB,...
±,ü£þ¬£ X
Disp "textA","textB",...
ü'!
DispG
'!Ò5
DispT
'!¤k0
:Disp A
:Goto TOP
U6ÄÅþßcÈÝ ^È
âÝ *Ä
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 217 of 16
218
16 ´Ößcu
PRGM CTL ÄÈ<Åi]
PAGE$ PAGE#
If
Then
IàO
Else
8 ' È× b )
CTL
For
INSc
End
4
While
Repea
Menu
Lbl
Goto
4
IS>
DS<
Pause
Retur
Stop
4
DelVa
GrStl
LCust
UÙV)üßcSü PRGM CTL °)MX_ÈËÙ
If à While ` Repeat Û¸Ã
¹ +Ä
For( ~Ã
+Ä
A Z ×Ä
If condition
Vp5Ê condition Äuk§p 0 ÅÈíÇßÔþßcQ¸×
Vp5Ê condition óÄuk§p2ÊÅÈßc»Á; ßÔ
5Q¸
Then
³ü If âÈVp5Ê condition óí;
Else
³ü If ` Then âÈVp5Ê condition í; ÔQ¸
For(variable,begin,end
ã,stepä)
¬£¢K begin ÔȹÃÝXrD9S step È¡áÔQ¸È
¬£ variable > end ׬x9S step 1
End
Û«ÔßcQ¸X§3× For( à While à Repeat ` Else O
¹ End §3× Then uÝÌGX Else Û¸Ê3O¹ End §3
While condition
'5Ê condition óÊÈ¡áÔQ¸×' While Û¸ÊÈ
©5Ê condition ×î n5Ê condition X<ãÔþGÏ
©Ä 3 ´Å
Repeat condition
¡áÔÛ¸È5Ê condition ó×' End ۸ʩ5Ê
condition
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 218 of 16
ÔQ¸
16 ´Ößcu
219
Menu(item#,"title1",
label1ã,item#,
"title2",label2,...ä)
'¢°) & * ݽ¹Û¸ÊÈWüßcBÚ×'
¹Û¸ÊÈ Ôþ°)Ȱ)Ôî 3 þÄÔî 15 þÛl
titles Å×'ݽÔþÛl title ÊÈßc; ÚÛl title ·<
XÛ label × item# Ôþ ‚1 è 15 XHDÈÛnÛl title X
°)!B×Ûl title Ôþ[ ÈSz 1 8 þ+úÄü°)
ÃÑýmÅ
Lbl label
ßcQ¸Ú!ÔþÛ label × label +¡ÔX 1 8 þ+ú
SX
Goto label
@Ï{
IS>(variable,value)
¬£ variable t 1 ×¹§p > value ÈíÇßÔQ¸×¹§p
value Èí; ßÔ5Q¸×¬£ variable áÑYB¬£
DS<(variable,value)
¬£ variable £ 1 ×¹§p < value ÈíÇßÔ5Q¸×¹§p
‚ value Èí; ßÔ5Q¸×¬£ variable áÑYB¬£
Pause
6ßc¹Ñ¹§pÈÙÀXÒ5ê¤k<×U»ÁßcÈ
íÝ b
Pause value
ü#)ÞD value ¹Ñ®|WûXÈVDÃå£
ê½ ×U»Á; ÈÝ b
Return
ÔÎ$ßcÄ 224 IÅJ¨²×üßcÈGSü +~Y¼×
üßcÈÑÚ06ßcJ¨²#)Ä£þ$ßc; `äâÝ
ÔdÿX Return ÈÔÎ$ßcJ¨²×üßcÅ
Stop
06ßc¤
DelVar(variable)
¢Y,ô8¬£ variable Ä8ßcáêÅ`WXY
ü label ÛXßcÚ
J¨²#)
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 219 of 16
220
16 ´Ößcu
GrStl(function#,graphStyle#)
ÛnÑDXÒ5 ãÈ
ÑDü function# <È
Ò5 ãü graphStyle#
<× function# ߬£XD+¼ÚÈVü y5 X 5 ×
graphStyle# Ôþ ‚ 1 è 7 XHDÈJ 1 = » ÄrÅÃ 2 = ¼
ÄkÅÃ 3 = ¾ ÄÞEÅÃ 4 = ¿ ÄßEÅÃ 5 = À Ä<ÍÅÃ
6 = Á Ä|Å` 7 = Â ÄÅ
LCust(item#,"title"
ã,item#,"title",...ä)
×ÎÄnÅTI-86 n °)ȹ°)üÝ 9Ê× item#
Ôþ ‚ 1 è 15 XHD× title Ôþ 1 8 þ+úSX+úÄü
°)ÃÑýmÅ
RØr
¨#)zSXQ¸ ¾|ü
ßÔ ÔØ»ÁÄ
ÃüQ¸ Þg9Ï)Û¸ê<ãȾUWÀÑü#)Þ; Äüßcêe<È£þ
XQ¸ fËÔÄUü)þQ¸ Þg9î5Û¸ê<ãÈüfËÚWÀÚhÄ
Ý b ÈÚÛÏßÔXQ¸ ÄÝ # íáÑÏßÔXQ¸
Ý $ ¨²ÆÝXQ¸ êeWÀÄ
ÄáÈÃî
È ÷í¦|i][·õ
Ý CATALOG Müßcêe
<ÝÄ
TI-86 °)`#)üßcêe<ʬêXÄÍßc´X°)MáÎü°)ÄÍ
ßc´X°)ÈV LINK °)ê MEM °)Èí
áÄ
'¢¤þ#)ÄVãêÒ5ã#)ÅݽBÊÈÝBlQ¸
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 220 of 16
ÛØÄ
16 ´Ößcu
221
î üêe<Ú±,Ôo¬£ÈVk·¬£Èo¬£äßcçü°)ÞXMÈ
V GRAPH WIND °)Ä'ݽWÀÊÈWÀlQ¸ ÞÛü!BÄ
årÈ
UüV0â»Á; ßcÈ
íÝ b Ä
1
lßcá#)ÞÄêÙ¢ PRGM NAMES °) (8 &) ݽWÈêg9äßcáX
+úÄ
2
Ý b ÄßcÔ¤
Ä
£þ§pÑÈÞõ§p¬£ Ans Ä 1 ´ÅÄTI-86 üßc¤ ÊyíÃÄßc;
XQ¸áÈÞõg9,|³ ENTRY Ä 1 ´ÅÄ
ß6X_ßcâWü TI-86 #)ÞXÔ ÄßcÖ
♦ üÒ5k·ÈîukÑDÃÑDXÔ ÐD`` ÐDüÈhØXÈïÎÔþ
<
♦ ¹Ý¡áàXÒ5 ãÑDJÐDXÒ5ȳþÛÈJV0ßc¹Ñ
³þÑD
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 221 of 16
222
16 ´Ößcu
PROGRAM:FUNCTABL
:Func:Fix 2:FnOff:PlO
ff
:y1=.6 x cos x
:ClLCD
:Eq4St(y1,STRING)
:Outpt(1,1,"y1=")
:Outpt(1,4,STRING)
:Outpt(8,1,"PRESS ENT
ER")
:Pause
:ClLCD
:y2=der1(y1,x,x)
:y3=der2(y1,x,x)
:DispT
:GrStl(1,1):GrStl(2,2
):GrStl(3,7)
:2¶xRes
:ZTrig
:Trace
ßcá
BÒ5`¯ ãÄã#)Å×GÁÑDÄ GRAPH VARS
°)Å`³uÒÄ STAT PLOT °)Å
nÑDÄÁ¹Å
Ù8#)Ä PRGM IàO °)Å
Ú y1 @6+ú¬£ STRING Ä STRNG °)Å
ü 1 `ë 1 Ä PRGM IàO °)ÅØ y1=
ü 1 `ë 4 Ä PRGM IàO °)ÅØ±, STRING X+ú
ü 8 `ë 1 Ä PRGM IàO °)ÅØ PRESS ENTER
V0ßcÄ PRGM CTL °)Å
Ù8#)Ä PRGM IàO °)Å
ü y1 XÔ ÐDn y2 Ä CALC °)Å
ü y1 X` ÐDn y3 Ä CALC °)Å
¤k<Ä PRGM IàO °)Å
B y1 à y2 ` y3 XÒ5 ãÄ PRGM CTL °)Å
Ú 2 ±,k·¬£ xRes Ä GRAPH WIND °)Å
B³k·¬£Ä GRAPH ZOOM °)Å
Ò5ȳþÛJV0Ä GRAPH °)Å
¦åÈ
Ý ^ßcÄ ERROR 06 BREAK °)Ä
♦ ݽ GOTO (&)ÈüXßcêe<Ä
♦ ݽ QUIT (*)Ȩ²#)Ä
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 222 of 16
16 ´Ößcu
223
'È
¯@[ÎùÈ
¹U¹úÝóXY,ÃübÇg9êßQXßcÈí¹Y,#)Ä- ™
&× 17 ´ÅĹUrtÃüY,È×%¢Y,ô8ÝXMêDBO_Ä 17 ´ÅÄ
÷È
'êm`ßcâÈÃüßcêe<WÈJêeÏ)Q¸ Ä
ßcêe<á $ üb<
Q¸ YÎZ#)Ä
1
ßcêe< (8 ')ÄàÊ PRGM NAMES °)Ä
2
g9UêeßcXá+Äê¢ PRGM NAMES °)ݽÈêg9äßcáX+úÄ
3
êeßcQ¸
♦
♦
♦
Ä
Ï|ÛÜÖ!BÈ âô8à mê¦9+úÄ
Ý : Ù8HþQ¸ È!ÐfË8êÈ âg9XßcQ¸Ä
ݽßcêe<°)M INSc (*) ` DELc (/ &) ¦9êô8Q¸
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 223 of 16
Ä
224
16 ´Ößcu
Èȯ ÈÈ
ü TI-86 ÈÏ)±,XßcÑÑJªßc'0$ßc×üÄüßcêe<ÈüQ¸
g9$ßcáÄ
♦ Ý 8 PRGM NAMES °)È âݽßcáÄ
♦ Süûm+¡`ãm+¡g9äßcáX+úÄ
Vp×üßcü¤ ÊßcáÈí; XßÔ5Q¸$ßc Ô5Q¸Ä'ü$ß
cXÿ Return Äêdÿ Return ÅÊÈW¨²×üßcXßÔ5Q¸Ä
×üßc
g9àgÎ
$ßc
üb Goto ` Lbl Û¸XÛ label ¾üJüXßcÝüÄüÔþßcXÛ label áÑ
ºÔþßcÿÄáÑü Goto ÇJªßcXÛ label Ä
16prog.SCH TI-86, Chap 16, Chinese Bob Fedorisko Revised: 98-10-15 15:14 Printed: 98-10-15 15:14 Page 224 of 16
16 ´Ößcu
!ôÈÈu
225
ÈÈ
1
üßcêe<XêÆ,üXßcÄ
2
ÚÛÏUËñßcXQ¸
3
Rcl ¤ (- –)Ä
4
g9UËñXßcáÄê¢ PRGM NAMES °)ݽÈêg9äßcáX+úÄ
ÞÄ
5 Ý b ÄËñßcXY¦9¹ßcXÛØÄ
ô]ÈȦ'ÞÎù$ß
¹UüßcYSü¬£Èàüßc¤ §3âáaÔUWÈ
íÃüßcSü DelVar( ¢Y,ô8þ¬£Ä
ÇXßcSü¬£ A ` B 0uD<È
ô8WÀÄ
årÏ
â¢Y,
:3¶B
:For (A,1,100,1)
:B+A¶B
:End
:Disp A
:Disp B
:DelVar(A)
:DelVar(B)
«ÔÈ
êÁÔßcÔ¡ßcÈà ´¡XÔ ßc̨ÈWX¤ óz¿È{ uk$ßÅ·õ
'¢ LINK SEND °) (- o & / / () ݽ
WIND È SEND WIND #)Ä SEND WIND #)XM<
k·¬£ÃãB` TI-86 Ò5ã ZRCL Äü ïÎ
ýÅXÝÒ5#)DBÄÇ{X#)<ÆÝ½ Func
` DifEq Ò5ãXÒ5#)DBÄ
SEND WIND Ä
Func
ݽ¥Õ Func Ò5ãXk·¬£`ãB
18link.SCH TI-86, Chap 18, Chinese Bob Fedorisko Revised: 98-10-14 15:10 Printed: 98-10-14 15:10 Page 238 of 10
18 ´ÖTI-86 îÒy
Pol
ݽ¥Õ Pol Ò5ãXk·¬£`ãB
Param
ݽ¥Õ Param Ò5ãXk·¬£`ãB
DifEq
ݽ¥Õ DifEq Ò5ãXk·¬£Ã difTol Ã$ÛHB`ãB
ZRCL
ݽ¥Õü
239
ïÎýXk·¬£`ÏããXãB
U`äݽ¬£XôÕÈíSJª)y
ݽ XMIT Ä
DBôÕÄVßÅÈ â¢Y,ÛѰ) (&)
$ßu TI-85
ݽ¬£¥Õ TI-85 X9xâݽ¬£¥Õ TI-86 X9xÌàÄáÈ LINK SND85 °)X
M¨ LINK SEND °)XåÄ
TI-86 DÃå£`½ X£îb TI-85Ĺ¥Õ TI-85 XDÃå£ê½ XôY
Z TI-85 X£ÈíY TI-85 £XôþÄ
LINK SND85 Äkãu TI-85Åi]
MATRX
LIST
VECTR
REAL
-o(
CPLX
4
CONS
18link.SCH TI-86, Chap 18, Chinese Bob Fedorisko Revised: 98-10-14 15:10 Printed: 98-10-14 15:10 Page 239 of 10
PIC
STRNG
240
18 ´ÖTI-86 îÒy
ðø{Cøø
U} PC y DBÈË×
TI-GRAPH LINK Û+Ä
U} TI-86 ê TI-85 y DBôÕÈí¢ LINK °) (o ') ݽ RECV Ä Waiting µC`Û<Äuk
<ÆÛy ôÕMÄ
Uª\y ãÈàáy Ï)MÈíÝ ^Ä' LINK TRANSMISSION ERROR µCÊÈ
¢°) (&) ݽ EXIT Ä LINK °)Ä
kã
ü¥Õ)ÞݽQDBO_Èèy
)ÆÛy
DBâÈùÔDBôÕÄ
UÔôÕÈí¢¥Õuk(1à3) and N(2à3)
:Then
:.5(.5+X)¶X
:.5(1+Y)¶Y
:End
:If N>(2à3)
:Then
:.5(1+X)¶X
:.5Y¶Y
:End
:PtOn(X,Y)
:End
:StPic TRI
RcPic TRI 9×üJ¹Ò6Ä
19apps.SCH TI-86, Chap 19, Chinese Bob Fedorisko Revised: 98-10-15 15:17 Printed: 98-10-15 15:17 Page 260 of 18
20
A u Z =k
[l
TI-86
¿ó¹Rn!<............................................................262
¤kúÝ+¡Ncfë ...............................................266
M1
M2
M3
M4
M5
F1
F2
F3
F4
F5
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 261 of 118
262
20 ´Ö A Z ÑD`Û¸×
P¥J¾¡í
V¹sÑ6ãëÎZ TI-86 ÑD`Û¸¹WÀü
´X£ÄüXIËÄ
Dp
Axes( ...............
AxesOff ............
AxesOn ............
Circl( ................
ClDrw ...............
CoordOff ..........
CoordOn ..........
DifEq................
DirFld ...............
DrawDot ...........
DrawF ..............
DrawLine ..........
DrEqu( .............
271
271
271
273
273
275
275
281
282
285
286
286
287
DrInv ................ 287
dxDer1 ............. 288
dxNDer ............. 288
FldOff............... 295
FnOff ............... 296
FnOn ................ 297
Func ................ 299
GridOff ............. 301
GridOn ............. 302
GrStl( ............... 302
Horiz ................ 304
LabelOff ........... 310
LabelOn ........... 310
Line( ................ 314
Param .............. 333
Pol ................... 336
PolarGC ........... 336
PtChg( .............. 338
PtOff( ............... 338
PtOn( ............... 338
PxChg( ............. 340
PxOff( .............. 340
PxOn( ............... 340
PxTest(............. 340
RcGDB ............. 343
RcPic ............... 343
RectGC ............ 344
SeqG ................ 351
Shade(.............. 352
SimulG ............. 354
SlpFld .............. 358
StGDB .............. 361
StPic ................ 362
TanLn(.............. 366
Text( ................ 366
Trace................ 367
Vert .................. 369
ZData ............... 371
ZDecm.............. 372
ZFit .................. 373
ZIn ................... 373
ZInt .................. 374
ZOut ................. 375
ZPrev ............... 375
ZRcl ................. 376
ZSqr ................. 376
ZStd ................. 377
ZTrig ................ 378
SetLEdit ........... 351
sortA ................ 359
sortD ................ 359
Sortx ................ 359
Sorty ................ 359
sum.................. 364
vc4li.................. 369
k
aug( ................. 270
cSum( .............. 278
Deltalst(............ 279
dimL ................ 282
¶dimL .............. 282
Fill( .................. 295
Form( ............... 298
Dg9Ö{ } ..... 316
li4vc.................. 316
prod ................. 338
Select( .............. 350
seq( ................. 351
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 262 of 118
20 ´Ö A Z ÑD`Û¸×
263
k§Tk[éJ
abs .................. 267
tÖ+ ................ 267
and .................. 268
angle................ 269
Ans .................. 269
arc( .................. 269
Ö=............. 270
Ü .................... 271
Bin ................... 272
4Bin.................. 272
ClrEnt .............. 273
ClTbl ................ 273
conj ................. 275
cos .................. 276
cosL1 ................ 276
cosh ................ 277
coshL1 .............. 277
Þ .................... 278
Dec .................. 278
4Dec ................. 279
Degree ............. 279
zg9Ö¡ .......... 279
der1( ................ 280
der2( ................ 280
8Ö / ................ 284
DMS g9Ö' ...... 285
4DMS ................ 285
dxDer1 ............. 288
dxNDer ............. 288
e^ .................... 288
Eng .................. 290
Eq4St( .............. 290
ÌÖ=............. 290
bÖ== ........... 291
Euler ................ 291
eval .................. 291
evalF( ............... 292
ÛDÖ E ........... 292
,Ö!.............. 294
Fix ................... 295
Float ................ 295
fMax( ................ 296
fMin( ................ 296
fnInt( ................ 296
fPart ................. 298
4Frac ................ 298
gcd( ................. 299
ûbÖ>............. 300
ûbêbÖ‚ ... 301
ß .................... 302
Hex .................. 302
4Hex ................. 303
imag................. 306
int .................... 308
inter( ................ 309
ÚÖL1 ............ 309
iPart ................. 309
lcm( ................. 311
ãbÖ< ............. 312
ãbêbÖ ... 312
ln .................... 316
log ................... 318
max(................. 319
min( ................. 320
mod( ................ 320
,Ö¹................ 321
nCr .................. 322
nDer( ................ 323
óËÖL ............. 323
Normal ............. 324
not ................... 325
ábÖƒ ......... 326
nPr ................... 326
Ý .................... 326
Oct ................... 327
4Oct.................. 327
or .................... 328
RÚDÖ% ......... 334
pEval(............... 334
4Pol .................. 336
PolarC .............. 336
U$ÛáDÖ ... 336
poly ................. 337
Ö^ ................ 337
10 XÖ 10^ .... 337
Radian.............. 341
ûzg9 r .......... 341
real .................. 343
4Rec ................. 343
RectC ............... 344
RK ................... 345
Ö x‡ .............. 346
rotL .................. 347
rotR ................. 347
round( .............. 348
Sci ................... 349
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 263 of 118
shftL ................ 353
shftR ................ 353
sign.................. 354
simult( .............. 354
sin ................... 355
sinL1 ................. 355
sinh.................. 356
sinhL1 ............... 356
Solver( ............. 358
GÖ 2............. 360
G Ö‡ ......... 360
St4Eq( ............... 361
,|
¬£ ¶ ........... 362
£ÖN ................ 363
tan ................... 364
tanL1 ................. 365
tanh ................. 365
tanhL1 ............... 365
xor ................... 370
264
20 ´Ö A Z ÑD`Û¸×
Þk
aug( .................. 270
cnorm ............... 273
cond ................. 274
det.................... 281
dim ................... 281
¶dim ................ 281
eigVc ................ 289
eigVl................. 289
Fill( .................. 295
ident................. 304
LU(................... 318
½ g9Ö[ ]...... 319
mRAdd( ............ 321
multR( .............. 322
norm ................ 323
rAdd( ................340
randM( ..............342
ref.....................344
rnorm ...............346
rref ...................348
rSwap( .............. 348
@BÖ T ............. 367
Input .................307
IS>( ...................310
Lbl ....................311
LCust( ...............311
Menu( ...............320
Outpt( ...............329
Pause ...............333
Prompt ............. 338
Repeat .............. 345
Return .............. 345
Send(................ 350
Stop ................. 362
Then ................. 366
While ................ 369
randInt( .............342
randM( ..............342
randNorm(.........342
Scatter ..............349
Select( ..............350
SetLEdit ............351
ShwSt ...............354
SinR ................. 357
Sortx ................ 359
Sorty ................ 359
StReg( .............. 362
TwoVar ............. 368
xyline ............... 370
È
Asm( ................ 269
AsmComp( ........ 270
AsmPrgm.......... 270
CILCD ............... 273
DelVar( ............. 280
Disp.................. 283
DispG ............... 283
DispT ............... 284
DS<( ................. 288
Else .................. 290
End .................. 290
ÌÖ= ............. 290
bÖ== ........... 291
For( .................. 297
Get(.................. 299
getKy ............... 300
Goto ................ 300
IAsk ................. 304
IAuto ................ 304
If .................... 305
InpSt ................ 307
;
Box .................. 272
ExpR ................ 293
fcstx ................. 294
fcsty ................. 294
Hist .................. 303
LgstR ............... 313
LinR ................. 315
LnR .................. 317
MBox................ 319
OneVar ............. 327
P2Reg .............. 330
P3Reg .............. 331
P4Reg .............. 332
PlOff................. 334
PlOn ................ 334
Plot1( ............... 335
Plot2( ............... 335
Plot3( ............... 335
PwrR ................ 339
rand ................. 341
randBin( ........... 341
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 264 of 118
20 ´Ö A Z ÑD`Û¸×
265
o
ÜJÖ+ ............. 274
Eq4St( ............... 290
lngth ................ 316
St4Eq( .............. 361
+úg9Ö" .....363
sub( .................. 363
4Sph .................360
SphereV ............360
unitV .................368
vc4li ..................369
å£g9Ö[ ] ...... 369
6ß
cnorm ............... 273
cross( ............... 277
4Cyl .................. 278
CylV ................. 278
dim .................. 281
¶dim ................ 281
dot( .................. 285
Fill( .................. 295
li4vc ................. 316
norm ................ 323
RectV ............... 344
rnorm ............... 346
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 265 of 118
266
20 ´Ö A Z ÑD`Û¸×
å¯o
ò]ð
VXݤkúÑÙÿü CATALOG Ä2+¡X¤kúÄ_V +È! ` >Åëü CATALOG
XÿÄáÈü A Z ×Èo¤kú BWÀXË+¡Nc¯ fëXÄ_V
t©È ,`ûbÅÄ
î ùSü CATALOG ݽÔþ¤kúÈÚWl#)Þêßcêe
ê
¨²¦z angle ê<ã expression X-úÈJ angle
ê expression ùrDÈ3ùáDÄ
ü Radian ¦zãßÖ
cos p/2 b
cos (p/2) b
cos 45¡ b
0
.707106781187
B'!X¦zãȦzù·zêûzÄüÏ)
õãßÈ¢ MATH ANGLE °)ÈùÚÿü ¡ê r Ûú
ÛnÚ¦z<zêûzÄ
ü Degree ¦zãßÖ
cos 45 b
cos (p/2)r b
.707106781187
0
cos angle
cos (expression)
cos list
¨²ÔþDÈJ£þôD list ÌhôXúÄ
cos squareMatrix
squareMatrix áÑÝ
¡áXMU
cosL1
-|
L.5
ü Radian ¦zãßÖ
cos {0,p/2,p} b
{1 0 L1}
ü Degree ¦zãßÖ
cos {0,60,90} b
{1 .5 0}
¨²Ôþ ÈW squareMatrix X½ -úĽ
-úÍhbü{Dê Cayley-Hamilton Theorem
ukkX§pÄJ2 T)XukØôX-úÄ
cosL1 number ê cosL1 (expression)
¨² number ê expression X¡-úÈJ number ê
expression ùrDÈ3ùáDÄ
cosL1 list
¨²ÔþDÈJ£þôD list ÌhXô
X¡-úÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 276 of 118
ü Radian ¦zãßÖ
cosL1 .5 b
1.0471975512
ü Degree ¦zãßÖ
cosL1 1 b
0
ü Radian ¦zãßÖ
cosL1 {0,.5} b
{1.57079632679,1.047…
20 ´Ö A Z ÑD`Û¸×
cosh
MATH HYP °)
cosh number ê cosh (expression)
¨²ÔþDÈ<£þôD list ÌhôX
Æ-úÄ
MATH HYP °)
coshL1 number ê cosL1 (expression)
¨²ÔþDÈJ£þôD list ÌhôX¡
Æ-úÄ
VECTR MATH °)
cosh {0,1.2} b
{1 1.81065556732}
coshL1 1 b
0
¨² number ê expression X¡ Æ-úÈJ
number ê expression ùrDÈ3ùáDÄ
coshL1 list
cross(
1.81065556732
¨² number ê expression X Æ-úÈJ number ê
expression ùrDÈ3ùáDÄ
cosh list
coshL1
cosh 1.2 b
277
cross(vectorA,vectorB)
¨²øþrDêáDå£Xå£ÃÈ_VÖ
cross([a,b,c],[d,e,f]) = [bfNce cdNaf aeNbd]
øþå£OÝÌàXÈDÄêÙ 2 þôÈêÙ 3 þ
ôÅÄ`ÈXå£'0ÝÈå£È Ýþô 0 Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 277 of 118
coshL1 {1,2.1,3} b
{0 1.37285914424 1.7…
cross([1,2,3],[4,5,6]) b
[L3 6 L3]
cross([1,2],[3,4]) b
[0 0 L2]
278
20 ´Ö A Z ÑD`Û¸×
cSum(
cSum(list)
¨²D list ¢
Ã`Ä
LIST OPS °)
4Cyl
vector 4Cyl
¹Å66ãÈ[rq z] Ôþ 2 ê 3 ôrå£ vector
X§pÈGSãJþBÅ6 (CylV)Ä
VECTR OPS °)
CylV
CylV
BÅ6å£$Ûã ( [rq z] )Ä
† ã#)
Þ
ÔþôÔXØrDêáDôX
number Þ
´üw¡D
¯ DÄ
BASE TYPE °)
Dec
† ã#)
cSum({1,2,3,4}) b
{1 3 6 10}
{10,20,30}¶L1 b
cSum(L1) b
{10 20 30}
{10 30 60}
[L2,0]4Cyl b
[23.14159265359 0]
[L2,0,1]4Cyl b
[23.14159265359 1]
ü CylV å£$Ûã` Radian ¦zãßÖ
[3,4,5] b [5.927295218002 5]
ü Bin D
ãBßÈÑÚrD number <
ãßÖ
10Þ b
10Þ+10 b
ü Dec D
Dec
B¯ D ãÄ´ü)¡D ãßÈ¢ BASE
TYPE °)ÑùÚÿü ÜÃÞÃß ê Ý ÛúÚÌhX
D<`¯ ï ÃA¯ ê?¯ DÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 278 of 118
ãßÖ
10+10Ü+Úß+10Ý b
1010Ü
1100Ü
35
20 ´Ö A Z ÑD`Û¸×
4Dec
BASE CONV °)
ü Hex D ãßÖ
2¹Ú b
Ans4Dec b
number 4Dec
list 4Dec
matrix 4Dec
vector 4Dec
¨²rDêáDDX¯
Degree
Degree
B¦zXz<ãÄ
† ã#)
zg9Ö¡
ËÄ
number ¡
ê
(expression) ¡
´üw¡¦zãBßÈÑÚrD number ê<ã
expression <zÄ
MATH ANGLE °)
list ¡
ÚD list X£þôüz9<Ä
Deltalst(
LIST OPS °)
Ä Deltal ü°)ÞÅ
Deltalst(list)
¨²ÔþDȹDÙÿD list ÌrDêáD
ôÂÄGD Ôþô list X Ôþô£
list X `þôÈ `þô list X `þ
ô£ list X ÝþôV8O|ÄkX§pD
¨ list åÔþôÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 279 of 118
279
1Ùß
30Þ
{Õ,Ö,×,Ø,Ù}4Dec b
{10Þ 11Þ 12Þ 13Þ 14Þ}
ü Degree ¦zãßÖ
sin 90 b
sin (p/2) b
1
.027412133592
ü Radian ¦zãßÖ
cos 90 b
cos 90¡ b
L.448073616129
0
cos {45,90,180}¡ b
{.707106781187 0 L1}
Deltalst({20,30,45,70}) b
{10 15 25}
280
20 ´Ö A Z ÑD`Û¸×
DelVar(
‡ ßcêe<
CTL °)
Ä DelVa
ü°)ÞÅ
der1(
CALC °)
DelVar(variable)
¢Y,ô8ÛnXü
ïά£ variable Ä
áÑSü DelVar( 9ô8ßc¬£êYB¬£Ä
der1(expression,variable,value)
2¶A b
2
16
(A+2)2 b
DelVar(A) b
Done
ERROR 14 UNDEFINED
(A+2)2 b
der1(x^3,x,5) b
75
3¶x b
der1(x^3,x) b
3
27
¨²<ã expression ü¬£ variable rDêáD
value ÊXÔ ÐDÄ
der1(expression,variable)
Sü¬£ variable X'!Ä
der1(expression,variable,list)
der1(x^3,x,{5,3}) b
{75 27}
¨²ÔþDȹDÙÿü list ôÛnØ
XÔ ÐDÄ
der2(
CALC °)
der2(expression,variable,value)
der2(x^3,x,5) b
30
3¶x b
der2(x^3,x) b
3
18
¨²<ã expression ü¬£ variable rDêáD
value ÊX` ÐDÄ
der2(expression,variable)
Sü¬£ variable X'!Ä
der2(expression,variable,list)
¨²ÔþDȹDÙÿü list ôÛnØ
X` ÐDÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 280 of 118
der2(x^3,x,{5,3}) b
{30 18}
20 ´Ö A Z ÑD`Û¸×
det
DifEq
† ã#)
dim
MATRX OPS °)
VECTR OPS °)
[[1,2][3,4]]¶MAT b
det squareMatrix
¨² squareMatrix X ëãÄrD½ ¨²rD
ÈáD½ ¨²áDÄ
MATRX MATH °)
det MAT b
281
[[1 2]
[3 4]]
L2
DifEq
BÚßÒ5ãÄ
dim matrix
¨²ÔþDȹDÙÿrDêáD½
ÈDÄ D`ëDÅÄ
matrix X
dim vector
[[2,7,1][L8,0,1]]¶MAT b
[[2 7 1]
[L8 0 1]]
dim MAT b
{2 3}
dim [L8,0,1] b
3
¨²rDêáDå£ vector XSzÄôþDÅÄ
¶dim
{rows,columns}¶dim matrixName
X, â
MATRX OPS °)
Vp½ á matrixName á,üÈüÛnXÈDïÎÔþ
X½ È<¼ô 0 Ä
X, â
VECTR OPS °)
Vp½ á matrixName ,üÈüÛnXÈD¡Xô½
ÈüÈDYÆ,üXô±Õá¬ÈêXôí
ô8ÄVpïÎZJªôÈí 0 Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 281 of 118
[[2,7][L8,0]]¶MAT b
[[2 7]
[L8 0]]
{3,3}¶dim MAT b
MAT b
{3 3}
[[2 7 0]
[L8 0 0]
[0 0 0]]
282
20 ´Ö A Z ÑD`Û¸×
#ofElements¶dim vectorName
Vpå£á vectorName á,üÈüÛnþD #ofElements
ïÎÔþå£È<¼ô 0 Ä
Vpå£á vectorName ,üÈüÛnþD #ofElements
¡Xôå£ÄüÈDYÆ,üXô±Õá¬È
êXôíô8ÄVpïÎZJªôÈí 0 Ä
dimL
LIST OPS °)
¶dimL
X È â LIST
OPS °)
dimL list
¨²rDêáDD list XSzÄôþDÅÄ
#ofElements¶dimL listName
VpDá listName á,üÈüÛnþD #ofElements
ïÎÔþXDÈ<¼ô 0 Ä
VpDá listName ,üÈüÛnþD #ofElements ¡
XôDÄüÈDYÆ,üXô±Õá¬ÈêX
ôíô8ÄVpïÎZJªôÈí 0 Ä
DirFld
† Ò5ã#)
Ä®| `#Å
DirFld
ü DifEq Ò5ãßÈ'Ôå³ÄUGÁå`p[
³Èíü FldOff Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 282 of 118
DelVar(VEC) b
4¶dim VEC b
VEC b
Done
4
[0 0 0 0]
[1,2,3,4]¶VEC b
2¶dim VEC b
VEC b
3¶dim VEC b
VEC b
[1 2 3 4]
2
[1 2]
3
[1 2 0]
dimL {2,7,L8,0} b
1/dimL {2,7,L8,0} b
3¶dimL NEWLIST b
NEWLIST b
{2,7,L8,1}¶L1 b
5¶dimL L1 b
L1 b
2¶dimL L1 b
L1 b
4
.25
3
{0 0 0}
{2 7 L8 1}
5
{2 7 L8 1 0}
2
{2 7}
20 ´Ö A Z ÑD`Û¸×
Disp
‡ ßcêe<
I/O °)
Disp valueA,valueB,valueC, ...
£þÄùÙÿ+ú`¬£áÄ
283
10¶x b
Disp x^3+3 xN6 b
"Hello"¶STR b
Disp
10
1024
Done
Hello
Disp STR+", Jan" b
Hello, Jan
#)Ä
Done
DispG
† GRAPH °)
‡ ßcêe<
I/O °)
ü Func Ò5ãßXßcÖ
DispG
'!Ò5Ä
ÑDáûãmÌGÄ
ü y1 ÈàáUü Y1 Ä
U¢k·¬£áë<ݽÈÝ
- w / / *Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 283 of 118
©
:y1=4cos x
:L10¶xMin:10¶xMax
:L5¶yMin:5¶yMax
:DispG
©
284
20 ´Ö A Z ÑD`Û¸×
DispT
‡ ßcêe<
I/O °)
8Ö/
F
ßcü Func Ò5ãßÖ
DispT
¤k<Ä
ÑDáûãmÌGÄ
ü y1 ÈàáUü Y1 Ä
numberA / numberB ê (expressionA) / (expressionB)
¨²ÔþDºÔD8X§pÄDùrDÈ
3ùáDÄ
number / list ê (expression) / list
©
:y1=4cos x
:DispT
©
L98/4 b
L98/(4¹3) b
L24.5
L8.16666666667
100/{10,25,2} b
{10 4 50}
{120,92,8}/4 b
{30 23 2}
¨²ÔþDÈJ£þôD number ê<ã
expression list Ìhô8X§pÄ
list / number ê list / (expression)
vector / number ê vector / (expression)
¨²ÔþDêå£ÈJ£þôD list êå£
vector Ìhô number ê expression 8X§pÄ
listA / listB
¨²ÔþDÈJ£þô listA ô listB Ìh
ô8X§pÄøþDOÝÌàXÈDÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 284 of 118
ü RectC áDãßÖ
[8,1,(5,2)]/2 b
[(4,0) (.5,0) (2.5,1…
{1,2,3}/{4,5,6} b
{.25 .4 .5}
20 ´Ö A Z ÑD`Û¸×
DMS g9: '
MATH ANGLE °)
üݦukÈ DMS g9
X§p¾ü Degree ¦z
ãß'äzÈü Radian
¦zãß'äûzÄ
4DMS
MATH ANGLE °)
dot(
VECTR MATH °)
degrees'minutes'seconds'
Ûâg9X¦z DMS ãÄ Degrees ( 999, 999)Ã
minutes (< 60) ` seconds (< 60 ÈÃÑÝãD!) O
g9rDÈáѬ£áê<ãÄ
áÑSüúË ¡ ` " Ûn degrees ` seconds Ä_VÈ
B'!X¦zãBÈ 5¡59' ·H,©
5¡ ¹ 59'Ä
angle 4DMS
¹ DMS ã angle ÄGSSü
degrees'minutes'seconds' 9g9 DMS ¦zÈJ§p¡
Ýã degrees¡minutes'seconds" 9Ä
dot(vectorA,vectorB)
54'32'30' b
54.5416666667
ü Degree ¦zãßÖ
cos 54'32'30' b
.580110760699
ü Radian ¦zãßÖ
cos 54'32'30' b
L.422502666138
ü Degree ¦zãßÈáUSü¹ßúËÖ
5¡59' b
295
ü Degree ¦zãßÖ
45.3714DMS b
54'32'30'¹2 b
Ans4DMS b
† Ò5ã#)
45¡22'15.6"
109.083333333
109¡5'0"
dot([1,2,3],[4,5,6]) b
¨²øþrDêáDå£XÃÄ
dot([a,b,c],[d,e,f]) ¨² a¹d+b¹e+c¹f Ä
DrawDot
285
DrawDot
BÒ5ãÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 285 of 118
32
286
20 ´Ö A Z ÑD`Û¸×
DrawF
GRAPH DRAW °)
DrawLine
† Ò5ã#)
DrawF expression
ü'!Ò5ÞÄ
B x Ŭ
expression Ä
ü Func Ò5ãßÖ
ZStd:DrawF 1.25 x cos x b
DrawLine
B²Ò5ãÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 286 of 118
20 ´Ö A Z ÑD`Û¸×
DrEqu(
† GRAPH °)
Ug9¬£ Q' X+ú ' Èí
Sü CHAR MISC °)
DrEqu(xAxisVariable,yAxisVariable,xList,yList,tList)
ü DifEq Ò5ãßÈÍ,|ü xAxisVariable `
yAxisVariable ÛnX Q' ¬£XÔÚßX·¯
ÄVpå³GÁXÄݽZ FldOff ÅÈñ3
O±,K9Ä
287
ü DifEq Ò5ãßÈ¢ ZStd Ò5#)ÔÖ
Q'1=Q2:Q'2=LQ1 b
0¶tMin:1¶QI1:0¶QI2 b
DrEqu(Q1,Q2,XL,YL,TL) b
Done
0
§p¬ `âÈ DrEqu( YÚÛÏÔþXñ
ØÈJÝ b 9¬ §pÄ
âî¤fÝ Y ÄÛnºÔþñÅêÙ N Ä06ÅÄ
ÍbÔ⬠X·È x à y ` t XÄ¢WÀXñ
ÔÅÑÚÿ±,ü xList à yList ` tList Ä
ÚÛÏXñØÄ
b
DrEqu(xAxisVariable,yAxisVariable)
á,|·X x à y ` t XÄ
Ýß N 06¬ Ä
DrInv
GRAPH DRAW °)
DrInv expression
îü y H¬ x XÈü x H¬
expression XÚÄ
y X9¬
â¹ XL Ã YL ` TL Ä
ü Func Ò5ãßÖ
ZStd:DrInv 1.25 x cos x b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 287 of 118
288
20 ´Ö A Z ÑD`Û¸×
DS<(
‡ ßcêe<
CTL °)
ßcÖ
:DS<(variable,value)
:command-if-variable‚value
:commands
¬£ variable £ 1 ÄVp§p < value ÈÇ
command-if-variable‚value Ä
Vp§p ‚value Èí;
command-if-variable‚value Ä
variable áÑYB¬£Ä
dxDer1
† ã#)
dxNDer
† ã#)
e^
-‚
dxDer1
Ú der1 B'!XÚO_Ä der1 ¯ BÚÈJ
uk<ãX£þÑDXÄW¨ dxNDer ÈBÈ
WX$ ¨WùȾݤoÑDü<ãÝÄ
dxNDer
Ú nDer B'!XÚO_Ä nDer ¯ DÚÈ
Juk<ãXÄáV dxDer1 BÈÍ<ãÑ
DÝûX$ áùÄ
e^power
ê
e^(expression)
©
:9¶A
:Lbl Start
:Disp A
:DS<(A,5)
:Goto Start
:Disp "A is now <5"
©
'!ÚO_ arc( ` TanLn( ÑDSüÈ3
xfãÒ5¡0 dy/dx à dr/dq à dy/dt à dx/dt Ã
ARC à TanLn ` INFLC SüÄ
'!ÚO_ arc( ` TanLn( ÑDSüÈ3
xfãÒ5¡0 dy/dx à dr/dq à dy/dt à dx/dt Ã
ARC à TanLn ` INFLC SüÄ
e^0 b
¨²¹ e iX power ê expression õÄDù
rDêáDÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 288 of 118
1
20 ´Ö A Z ÑD`Û¸×
e^list
¨²ÔþDÈJ£þôD list ÌhôÛ
D¹ e iXÄ
289
e^{1,0,.5} b
{2.71828182846 1 1.6…
e^squareMatrix
squareMatrix áÑ
Ý¡áXMUÄ
eigVc
MATRX MATH °)
squareMatrix áÑ
Ý¡áXMUÄ
eigVl
MATRX MATH °)
¨²Ôþ ÈW squareMatrix X½ ÛDĽ Û
DÍh{Dê Cayley-Hamilton Theorem TukX
§pÄJ2 T)Xuk£þôXÛDÄ
eigVc squareMatrix
¨²ÔþÙÿrDêáD squareMatrix MUå£X½
ÈJ§pX£ëÌ'bÔþMUÄrD½ XM
Uå£ÃÑáDļãMUå£áÔX×WÃÑ
î,¹Ôþ D´$ÄTI-86 XMUå£ÛMå£Ä
eigVl squareMatrix
¨²ÔþÙÿrDêáD squareMatrix MUXDÈ
rD½ XMUÃÑáDÄ
ü RectC áDãßÖ
[[L1,2,5][3,L6,9][2,L5,7]]¶MAT
b
[[L1 2 5]
[3 L6 9]
[2 L5 7]]
eigVc MAT b
[[(.800906446592,0) …
[(L.484028886343,0)…
[(L.352512270699,0)…
ü RectC áDãßÖ
[[L1,2,5][3,L6,9][2,L5,7]]¶MAT
b
[[L1 2 5]
[3 L6 9]
[2 L5 7]]
eigVl MAT b
{(L4.40941084667,0) …
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 289 of 118
290
20 ´Ö A Z ÑD`Û¸×
Else
ËÙ 305 I If XÁ©µCÄËÙ If:Then:Else:End XÁ©Ä
‡ ßcêe<
CTL °)
End
End
Û While à For à Repeat ê If-Then-Else ~X§3Ä
‡ ßcêe<
CTL °)
Eng
† ã#)
Eng
B¹ßD©ãÈJ 10 XÛD 3 XáDÄ
ü Eng D©ãßÖ
123456789 b
123.456789E6
ü Normal D©ãßÖ
123456789 b
Eq4St(
STRNG °)
Eq4St(equationVariable,stringVariable)
Ú߬£ equationVariable XY@6Ôþ+úÈ
J,|ü+ú¬£ stringVariable ÄBnÛnX
߬£ÈàáßÄ
UïÎÔþ߬£ÈíSüË (=) n¬£Ä_VÈ
g9 A=B¹C Èá B¹C¶A Ä
bÖ=
1 ã= ä
ËÙ
270 IX Assignment Á©µCÄ
Vpü<ãSüZ =Èà¹<ãü ÔØX
ÔþDᬣáÈí = îØÚ N( Ä
A=B¹C b
5¶B b
2¶C b
A b
Eq4St(A,STR) b
STR b
123456789
Done
5
2
10
Done
B¹C
= ØÚN( X_$ÈJ 4=6+1 uk
4N(6+1):
4=6+1 b
ÍbóàX¨WÈíü == Ö
4==6+1 b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 290 of 118
L3
0
20 ´Ö A Z ÑD`Û¸×
ÌÖ==
TEST °)
¡0ú == ü9¨WDÈ
à = ü9Úê<ã
¬£Ä
numberA == numberB
matrixA == matrixB
vectorA == vectorB
stringA == stringB
©5Ê argumentA == argumentB ó¬ÄDÃ
½ `ãùrDÈ3ùáDÄVpáDÈí
¨W£þôXõÄ+úÚûãmXÄ
291
2+2==2+2 b
1
2+(2==2)+2 b
5
[1,2]==[3N2,L1+3] b
1
"A"=="a" b
0
• Vpó (argumentA = argumentB)Èí¨² 1 Ä
• Vp (argumentA ƒ argumentB)Èí¨² 0 Ä
listA == listB
{1,5,9}=={1,L6,9} b
{1 0 1}
¨²Ôþ 1 `àê 0 XD9Ûâü listA X£þô
ú = listB XÌhôÄ
Euler
† Ò5ã#)
Äåß®|
`#Å
eval
MATH MISC °)
Euler
ü DifEq Ò5ãßÈSüÎb Euler ©Xk©9·
ÚßÄ Euler ©Ô áV RK ©BÈ·ó
z¨W¿Ä
eval xValue
¨²ÔþDȹDôÝÆn`ݽÑDür
D xValue ØX y Ä
#YB߬£ y1 ` y2 ÚûãmXÄ
y1=x^3+x+5 b
Done
y2=2 x b
Done
eval 5 b
{135 10}
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 291 of 118
292
20 ´Ö A Z ÑD`Û¸×
evalF(
CALC °)
evalF(expression,variable,value)
evalF(expression,variable,list)
¨²ÔþDÈJ£þô<ã expression ü¬
£ variable D list ÌhôÊXÄ
ÛDÖ E
C
evalF(x^3+x+5,x,5) b
135
¨²<ã expression ü¬£ variable rDêáD
value ÊXÄ
number E power
ê
(expressionA) E (expressionB)
¨²rDêáD number ,¹ 10 X power õX§pÈ
power ÔþHDÈ×È L999 < power < 999 ÄÏ)
expressions OukkÌhXÄ
list E power
ê
list E (expression)
evalF(x^3+x+5,x,{3,5}) b
{35 135}
12.3456789E5 b
(1.78/2.34)E2 b
1234567.89
76.0683760684
{6.34,854.6}E3 b
¨²ÔþDÈJ£þô list Ìhô,¹ 10
X power õÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:27 Page 292 of 118
{6340 854600}
20 ´Ö A Z ÑD`Û¸×
ExpR
STAT CALC °)
YB߬£V y1 à r1 `
xt1 ÚûãmXÄáUS
ü Y1 Ã R1 ` XT1 Ä
ExpR xList,yList,frequencyList,equationVariable
üÛD²&õ_Ä y=abx Å³Ü xList ` yList Ä y
O > 0 ÅrDÍÈeD frequencyList IJ&ß±
,ü߬£ equationVariable ÈWOÔþYB
߬£È_V y1 à r1 ` xt1 Ä
293
ü Func Ò5ãßÖ
{1,2,3,4,5}¶L1 b
{1 2 3 4 5}
{1,20,55,230,742}¶L2 b
{1 20 55 230 742}
ExpR L1,L2,y1 b
üb xList È yList ` frequencyList XÚÿ¾|±,
üYB¬£ xStat à yStat ` fStat IJ&ß3±,
üYB߬£ RegEq Ä
ExpR xList,yList,equationVariable
eD 1 Ä
ExpR xList,yList,frequencyList
Plot1(1,L1,L2) b
ZData b
¾Ú²&ß±,ü RegEq Ä
ExpR xList,yList
eD 1 Èàʾڲ&ß±,ü RegEq Ä
ExpR equationVariable
xList à yList ` frequencyList ÚÿSü xStat à yStat
` fStat XÄoYB¬£OÙÿÝÌàÈDXÝ
DB×úíî{óíÃIJ&ß±,ü߬£
equationVariable ` RegEq Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 293 of 118
Done
294
20 ´Ö A Z ÑD`Û¸×
ExpR
Sü xStat à yStat ` fStat XÈàʾڲ&ß±
,ü RegEq Ä
,Ö!
number !
ê (expression) !
¨²ÔþHDê2HDX ,ÈJHD×È 0
449 È2HD×È 0 449.9 ÄÍbÔþ2HDÈ
ü Gamma ÑD9 ,Ä expression OÑóukÎ
ÜÖX·Ä
MATH PROB °)
6! b
12.5! b
{6,7,8}! b
list !
¨²ÔþDÄJ£þôD list ÌhôX
,Ä
fcstx
† STAT °)
fcsty
† STAT °)
fcstx yValue
Îb'!²&ß (ReqEq)È BrD yValue ¨²X
X x Ä
fcsty xValue
Îb'!²&ß (ReqEq)È BrD xValue ¨²X
X y Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 294 of 118
720
1710542068.32
{720 5040 40320}
20 ´Ö A Z ÑD`Û¸×
Fill(
LIST OPS °)
MATRX OPS °)
Fill(number,listName)
Fill(number,matrixName)
Fill(number,vectorName)
üÔþrDêáD number Ó6ÆÝDá listName È
½ á matrixName êå£á vectorName X£þ
ôÄ
VECTR OPS °)
Fix
Fix integer ê Fix (expression)
BÎnãDãHD integer þãD!ÈJ
0 integer 11 Ä<ã expression OÑóukÎ
ÔþÜÖXHDÄ
† ã#)
FldOff
† ã#)
{3 4 5}
Done
{8 8 8}
Fill((3,4),L1) b
Done
L1 b
{(3,4) (3,4) (3,4)}
Fix 3 b
p/2 b
Float b
p/2 b
Done
1.571
Done
1.57079632679
FldOff
ü DifEq Ò5ãßÈGÁp[`å³Äü SlpFld
'Ôp[³×ü DirFld 'Ôå³Ä
† Ò5ã#)
Äåß®|
`#Å
Float
{3,4,5}¶L1 b
Fill(8,L1) b
L1 b
295
Float
BBãDãÄ
ü Radian ¦zãßÖ
Fix 11 b
sin (p/6) b
Float b
sin (p/6) b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 295 of 118
Done
.50000000000
Done
.5
296
20 ´Ö A Z ÑD`Û¸×
fMax(
CALC °)
fMax(expression,variable,lower,upper)
¨²<ã expression XUûÈ
<ãX¬£ variable
ª×ÈürD lower ` upper ÈÄ
fMax(sin x,x,Lp,p) b
1.57079632598
ÃÂîYB¬£ tol 9{ ÈJ¬x 1EL5 ÄU¹ß
êB tol ÈíÝ - ™ ) ÃÂêe<Ä
fMin(
CALC °)
fMin(expression,variable,lower,upper)
¨²<ã expression XUãÈ
<ãX¬£ variable
ª×ÈürD lower ` upper ÈÄ
fMin(sin x,x,Lp,p) b
L1.57079632691
ÃÂîYB¬£ tol 9{ ÈJ¬x 1EL5 ÄU¹ß
êB tol ÈíÝ - ™ ) ÃÂêe<Ä
fnInt(
CALC °)
fnInt(expression,variable,lower,upper)
fnInt(x2,x,0,1) b
.333333333333
¨²<ã expression Gb¬£ variable XDÑDÃ
ÚȬ£ variable ª×ÈürD lower ` upper ÈÄ
ÃÂîYB¬£ tol 9{ Ȭx 1EL5 ÄU¹ßê
B tol ÈÝ - ™ ) ÃÂêe<Ä
FnOff
† GRAPH VARS °)
FnOff function#,function#, ...
FnOff 1,3 b
ª\ݽÛnßÑDXcËÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 296 of 118
Done
20 ´Ö A Z ÑD`Û¸×
FnOff
297
FnOff b
Done
FnOn 1,3 b
Done
FnOn b
Done
ª\ݽÝßÑDXcËÄ
FnOn
FnOn function#,function#, ...
ݽÛnßÑDXcËÈ8ZÆÝ½XÄ
† GRAPH VARS °)
FnOn
ݽÝßÑDXcËÄ
For(
‡ ßcêe<
CTL °)
:For(variable,begin,end,step)
:loop
:End
:commands
ê
:For(variable,begin,end)
:loop
:End
:commands
Á·; ~ loop XQ¸ÈJÁ·õD¬£
variable { Ä Ôõ¯9~ÊÈ variable = begin Ä
~§3ØÈ¬£ variable ær9S step Ä~¡á;
È variable > end ÄVpþÛn9S step ÈJ¬x
1 Ä
ùÛnSk begin > end ÄVp ÈBxÛnÔþ
óD9S step Ä
ßcÖ
©
For(A,0,8,2)
Disp A2
End
©
0 Ã 4 Ã 16 Ã 36 ` 64 Ä
©
For(A,0,8)
Disp A2
End
©
0 Ã 1 Ã 4 Ã 9 Ã 16 Ã 25 Ã 36 Ã 49
` 64 Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 297 of 118
298
20 ´Ö A Z ÑD`Û¸×
Form(
LIST OPS °)
Form("formula",listName)
Îb̲X@ã formula Ⱦ|óäDá listName X
YÄVpüD<@ã formula ÈíùüºÔþ
DYÎÞóäÔþDÄ
'êe@ã formula êêe@ãéüXDÊÈ
listName XYî¾|ÈÄ
fPart
MATH NUM °)
fPart number ê fPart (expression)
¨²ÔþrDêáD number ê<ã expression Xã
D¼ÚÄ
fPart list
fPart matrix
fPart vector
¨²ÔþDý êå£ÈJ£þôÛnD
ÌhôXãD¼ÚÄ
4Frac
MATH MISC °)
number 4Frac
ÚÔþrDêáD number WXËÝÚDÈÚ
D¼ÚTêÔT)MÄ
{1,2,3,4}¶L1 b
{1 2 3 4}
Form("10¹L1",L2) b
Done
L2 b
{10 20 30 40}
{5,10,15,20}¶L1 b
L2 b
{5 10 15 20}
{50 100 150 200}
Form("L1/5",L2) b
L2 b
Done
{1 2 3 4}
fPart 23.45 b
.45
fPart (L17.26¹8) b
L.08
[[1,L23.45][L99.5,47.15]]¶MAT
b
L23.45]
[[1
[L99.5 47.15 ]]
fPart MAT b
1/3+2/7 b
Ans4Frac b
Vp number áÑTêÈêÙÚ¡Y 4 !DÈí¨
²ËXãDÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 298 of 118
L.45]
[[0
[L.5 .15 ]]
.619047619048
13/21
20 ´Ö A Z ÑD`Û¸×
list 4Frac
matrix 4Frac
vector 4Frac
299
{1/2+1/3,1/6N3/8}¶L1 b
{.833333333333 L.208…
Ans4Frac b
{5/6 L5/24}
¨²ÔþDý `ãÈJ£þôDÌ
hôXËÝÚDÄ
Func
† ãå#)
gcd(
MATH MISC °)
Func
BÑDÒ5ãÄ
gcd(integerA,integerB)
¨²ÔþDÈJ£þôD listA `D listB
øþÌhôXÔû@zDÄ
‡ ßcêe<
I/O °)
3
¨²øþ2óHDXÔû@zDÄ
gcd(listA,listB)
Get(
gcd(18,33) b
gcd({12,14,16},{9,7,5}) b
{3 7 1}
Get(variable)
¢ CBL ê CBR ϳêºÔÄ TI-86 ªDBÈJÚW
±,ü¬£ variable Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 299 of 118
300
20 ´Ö A Z ÑD`Û¸×
getKy
‡ ßcêe<
I/O °)
ßcÖ
getKy
¨²ÞõÝßX·ÕÄVpuÝÝÏ)È getKy ¨
² 0 ÄËÙ 16 ´X TI-86 ÕÒÄ
PROGRAM:CODES
:Lbl TOP
:getKy¶KEY
:While KEY==0
: getKy¶KEY
:End
:Disp KEY
:Goto TOP
6ßcÝ ^È âÝ *Ä
Goto
‡ ßcêe<
CTL °)
ûbÖ>
TEST °)
ßcÖ
Goto label
Úßc{ Ç@ÄÚÅÛnXÛ label ØÈÛ
Æ,üX Lbl Û¸ÛnÄ
ê (expressionA) > (expressionB)
©
:0¶TEMP:1¶J
:Lbl TOP
:TEMP+J¶TEMP
:If J<10
:Then
: J+1¶J
: Goto TOP
:End
:Disp TEMP
©
2>0 b
1
©5Êó¬ÄDOrDÄ
88>123 b
0
• Vpó (numberA > numberB)Ȩ² 1 Ä
L5>L5 b
0
• Vp (numberA numberB)Ȩ² 0 Ä
(20¹5/2)>(18¹2) b
1
numberA > numberB
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 300 of 118
20 ´Ö A Z ÑD`Û¸×
number>list
301
1>{1,L6,10} b
{0 1 0}
{1,5,9}>{1,L6,10} b
{0 1 0}
¨²ÔþÙÿ 1 `àê 0 XDÈJ£þô<
number ú > D list ÌhXôÄ
listA>listB
¨²ÔþÙÿ 1 `àê 0 XDÈJ£þô<D
listA X£þôú > D listB ÌhXôÄ
ûbêbÖ‚
TEST °)
ê (expressionA) ‚ (expressionB)
2‚0 b
1
©5Êó¬ÄDOrDÄ
88‚123 b
0
• Vpó (numberA ‚ numberB)Ȩ² 1 Ä
L5‚L5 b
1
• Vp (numberA < numberB)Ȩ² 0 Ä
(20¹5/2)‚(18¹2) b
1
numberA ‚ numberB
number ‚ list
1‚{1,L6,10} b
{1 1 0}
{1,5,9}‚{1,L6,10} b
{1 1 0}
¨²ÔþÙÿ 1 `àê 0 XDÈJ£þô<
number ú ‚ D list ÌhôÄ
listA ‚ listB
¨²ÔþÙÿ 1 `àê 0 XDÈJ£þô<D
listA X£þôú ‚ D listB ÌhôÄ
GridOff
† Ò5ã#)
GridOff
GÁ%ãÈá%Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 301 of 118
302
20 ´Ö A Z ÑD`Û¸×
GridOn
GridOn
'Ô%ãÈÝ `ë%È `ëÍhb$Û
HÞXÛÄ
† Ò5ã#)
GrStl(
GrStl(function#,graphStyle#)
B function# Ò5
1 7 ÈXHDÖ
CATALOG
ãÄÍ graphStyle# ÛnÔþ¢
1 = »ÄrÅ
4 = ¿ÄßEÅ
2 = ¼ÄkÅ
5 = ÀÄÃXÅ
3 = ¾ÄÞEÅ 6 = ÁÄ|Å
ªbÒ5ãÈÔoÒ5
ß
Hex
† ã#)
Done
Done
7 = ÂÄÅ
ãÃÑ´Ä
integer ß
ÚÔþHD integer <A¯ È´BZ)¡D
ãÄ
BASE TYPE °)
ü Func Ò5ãßÖ
y1=x sin x b
GrStl(1,4) b
ZStd b
Hex
BA¯ D ãħpÝ ß âÔÄ´ü)
¡D ãßÈ¢ BASE TYPE °)ÑùÚÿü ÜÃÞÃ
ßê ÝÛúÚÌhXDÛn`¯ ï ÃA
¯ ê?¯ DÄ
ü Dec D ãßÖ
10ß b
10ß+10 b
ü Hex D ãßÖ
Ú+10Ü+10Ý+10Þ b
Ug9A¯ D Õ ÚÈíSü BASE A-F °)ÈáU
Sü 1 99+¡Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 302 of 118
16
26
23ß
20 ´Ö A Z ÑD`Û¸×
4Hex
BASE CONV °)
number 4Hex
list 4Hex
matrix 4Hex
vector 4Hex
¨²rDêáDDXËA¯DÄ
Hist
Hist xList,frequencyList
ü xList XrDDB` frequencyList XeDÈü'
!Ò5Þ¬ÎÈÒÄ
† STAT DRAW °)
Hist xList
eD 1 Ä
303
ü Bin D ãßÖ
1010¹1110 b
Ans4Hex b
10001100Ü
8×ß
{100,101,110}4Hex b
{4ß 5ß 6ß}
¢Ôþ ZStd Ò5#)ÔÖ
{1,2,3,4,6,7}¶XL b
{1 2 3 4 6 7}
{1,6,4,2,3,5}¶FL b
{1 6 4 2 3 5}
0¶xMin:0¶yMin b
0
Hist XL,FL b
Hist
SüYB¬£ xStat ` fStat XDBÄo¬£OÝ
ÌàÈDXÝDB×úíî{óíÃÄ
{1,1,2,2,2,3,3,3,3,3,3,4,4,5,5,5,
7,7}¶XL b
{1 1 2 2 2 3 3 3 3 3 …
ClDrw:Hist XL b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 303 of 118
304
20 ´Ö A Z ÑD`Û¸×
Horiz
Horiz yValue
ü'!Ò5Þü yValue ج Ô5GÄ
† GRAPH DRAW °)
IAsk
IAsk
B¤k<ü g9¾¬£Ä
CATALOG
IAuto
CATALOG
ident
MATRX OPS °)
üÔþ ZStd Ò5#)Ö
Horiz 4.5 b
IAuto
B¤k(
‡ ßcêe<
CTL °)
:IS>(variable,value)
:command-if-variablevalue
:commands
¬£ variable r 1 ÄVp§p > value ÈÇ
command-if-variablevalue Ä
Vp§p value Èí;
command-if-variablevalue Ä
[[1.25,L23.45][L99.5,47.15]]¶MAT
b
[[1.25 L23.45]
[L99.5 47.15 ]]
iPart MAT b
ßcÖ
©
:0¶A
:Lbl Start
:Disp A
:IS>(A,5)
:Goto Start
:Disp "A is now >5"
©
variable áÑYB¬£Ä
LabelOff
† Ò5ã#)
LabelOn
† Ò5ã#)
LabelOff
GÁ$ÛHÛÄ
LabelOn
'Ô$ÛHÛÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 310 of 118
L23]
[[1
[L99 47 ]]
20 ´Ö A Z ÑD`Û¸×
Lbl
‡ ßcêe<
CTL °)
Lbl label
ïÎÔþáY 8 þ+úXÛ label ÄßcùSü
Goto Û¸@Ï{ ÄÚÅÛnXÛØÄ
InpSt Úg9,|+úÈ
ÃB±Ú+ú,|
password ¬£Ä
lcm(
MATH MISC °)
LCust(
‡ ßcêe<
CTL °)
lcm(integerA,integerB)
¨²øþ2óHDXÔã@áDÄ
LCust(item#,"title" [,item#,"title", ...])
tQÄnÅ TIN86 Xn °)È'ü Ý 9 â
Ȱ)ÔîÝ 15 MÈÝ£hMÈEݯ Ä
Íb£Í item#/title Ö
• item# — Ôþ 1 15 XHDÈÛMü°)X!
BÄMD+OÝNcÛnÈÃÇD+Ä
311
ßcÈn7BX·¸Æ±,ü¬£
password Ö
©
:Lbl Start
:InpSt "Enter password:",PSW
:If PSWƒpassword
:Goto Start
:Disp "Welcome"
©
lcm(5,2) b
lcm(6,9) b
lcm(18,33) b
10
18
198
ßcÖ
©
:LCust(1,"t",2,"Q'1",3,"Q'2",4,"R
K",5,"Euler",6,"QI1",7,"QI2",8,"t
Min")
©
; âÈ'ü Ý 9 Ö
• "title" — ÔþÇî 8 þ+úX+úÄáéËÅÈ
üMÝÊÈWÚl'!ÛØÄù¬£
áÃ<ãÃÑDáÃßcáêÏ)[ Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 311 of 118
312
20 ´Ö A Z ÑD`Û¸×
ãbÖ<
TEST °)
ê (expressionA) < (expressionB)
2<0 b
0
©5Êó¬ÄDOrDÄ
88<123 b
1
• Vpó (numberA < numberB)Ȩ² 1 Ä
L5 numberB)Ȩ² 0 Ä
number list
(20¹5/2)(18¹3) b
1
1{1,L6,10} b
{1 0 1}
{1,5,9}{1,L6,10} b
{1 0 1}
¨²ÔþÙÿ 1 `àê 0 DÈ
J£þô< number
ú D list ÌhXôÄ
listA listB
¨²ÔþÙÿ 1 `àê 0 DÈJ£þô<D
listA £þôú D listB ÌhôÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 312 of 118
20 ´Ö A Z ÑD`Û¸×
LgstR
STAT CALC °)
YB߬£V y1 à r1 `
xt1 ÚûãmXÄáUS
ü Y1 Ã R1 ` XT1 Ä
LgstR ¨² tolMet ÈW
<§púµ TI-86 X
Y¼ÃÂÄ
• Vp tolMet=1 Èí§p
üY¼ÃÂ×ÈYÄ
• Vp tolmet=0 ÈíÃÂY
ÎZY¼ÃÂÈuWü
î ßÃÑÝü
XÄ
LgstR [iterations,]xList,yList,frequencyList,equationVariable
üe²&õ_ (y=a/(1+becx)+d) ³Üü xList ` yList
rDÍÈeD frequencyList IJ&ß±,üß
¬£ equationVariable ÈOYB߬£ÈV y1 Ã
r1 ` xt1 ÄßÏD¹DX6ã±,üYB¬£
PRegC Ä
313
ü Func Ò5ãßÖ
{1,2,3,4,5,6}¶L1 b
{1 2 3 4 5 6}
{1,1.3,2.5,3.5,4.5,4.8}¶L2 b
{1 1.3 2.5 3.5 4.5 4…
LgstR L1,L2,y1 b
Á·õD iterations ÃÝXÄVpÑ9Ȭx
64 Ä iterations ^ûȧp^BÈÔUÈîXu
kÊÈÄÁ·õDWãȧpzíá¬ÈukÊÈ
WÁÄ
xList à yList ` frequencyList XÚÿ¾|±,üY
B¬£ xStat à yStat ` fStat IJ&ß3±,üY
B߬£ RegEq Ä
Plot1(1,L1,L2) b
ZData b
LgstR [iterations,]xList,yList,equationVariable
eD 1 Ä
LgstR [iterations,]xList,yList,frequencyList
¾Ú²&ß±,ü RegEq Ä
LgstR [iterations,]xList,yList
eD 1 ÈàÊÚ²&ß±,ü RegEq Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 313 of 118
Done
314
20 ´Ö A Z ÑD`Û¸×
LgstR [iterations,]equationVariable
xList È yList ` frequencyList ÚÿSü xStat à yStat
` fStat ÄoYB¬£OÙÿÌàÈDXÝDB×
úíî{óíÃIJ&ß±,ü߬£
equationVariable ` RegEq Ä
LgstR [iterations]
Sü xStat à yStat ` fStat ÈàÊÚ²&ß¾±,ü
RegEq Ä
Line(
† GRAPH DRAW °)
Line(x1,y1,x2,y2)
¢ (x1,y1) (x2,y2) ¬ Ô5ÈÄ
ü Func Ò5ãß`Ôþ ZStd Ò5#)ÞÖ
Line(L2,L7,9,8) b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 314 of 118
20 ´Ö A Z ÑD`Û¸×
LinR
STAT CALC °)
YB߬£V y1 à r1 `
xt1 ÚûãmXÄáUS
ü Y1 Ã R1 ` XT1 Ä
LinR xList,yList,frequencyList,equationVariable
üû²&õ_ (y=a+bx) ³Üü xList ` yList Ä y
O > 0 ÅrDÍÈeD frequencyList IJ&ß
±,ü߬£ equationVariable ÈOÔþYB
߬£ÈV y1 à r1 ` xt1 Ä
315
ü Func Ò5ãßÖ
{1,2,3,4,5,6}¶L1 b
{1 2 3 4 5 6}
{4.5,4.6,6,7.5,8.5,8.7}¶L2 b
{4.5 4.6 6 7.5 8.5 8.7}
LinR L1,L2,y1 b
xList È yList ` frequencyList XÚÿ¾|±,üY
B¬£ xStat à yStat ` fStat IJ&ß3±,üY
B߬£ RegEq Ä
LinR xList,yList,equationVariable
eD 1 Ä
LinR xList,yList,frequencyList
Plot1(1,L1,L2) b
ZData b
¾Ú²&ß±,ü RegEq Ä
LinR xList,yList
eD 1 Ⱦڲ&ß±,ü RegEq Ä
LinR equationVariable
xList à yList ` frequencyList ÚÿSü xStat à yStat
` fStat ÄoYB¬£OÙÿÌàÈDXÝDB×
úíî{óíÃIJ&ß±,ü߬£
equationVariable ` RegEq Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 315 of 118
Done
316
20 ´Ö A Z ÑD`Û¸×
LinR
Sü xStat à yStat ` fStat Ⱦڲ&ß±,ü
RegEq Ä
Dg9Ö{ }
LIST °)
{element1,element2, ...}
nÔþDÈJ£þôùrDêáDꬣÄ
{1,2,3}¶L1 b
{1 2 3}
ü RectC áDãßÖ
{3,(2,4),8¹2}¶L2 b
{(3,0) (2,4) (16,0)}
li4vc
LIST OPS °)
li4vc list
li4vc {2,7,L8,0} b
[2 7 L8 0]
¨²Ôþå£ÈrDêáDD list @6kXÄ
VECTR OPS °)
ln
B
ln number ê ln (expression)
¨²ÔþrDêáD number ê<ã expression X¾
ÍDÄ
ln list
¨²ÔþDÈJ£þôD list ÌhôX
¾ ÍDÄ
lngth
STRNG °)
lngth string
¨²+ú string XSzÄ+úþDÅÄ+úDÙÀN
áÙÀéËÄ
ln 2 b
ln (36.4/3) b
.69314718056
2.49595648597
ü RectC áDãßÖ
(1.09861228867,3.141…
ln L3 b
ln {2,3} b
{.69314718056 1.0986…
lngth "The answer is:" b
14
"The answer is:"¶STR b
The answer is:
lngth STR b
14
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 316 of 118
20 ´Ö A Z ÑD`Û¸×
LnR
STAT CALC °)
YB߬£V y1 à r1 `
xt1 ÚûãmXÄáUS
ü Y1 Ã R1 ` XT1 Ä
LnR xList,yList,frequencyList,equationVariable
üÍD²&õ_ (y=a+b ln x) ³Üü xList ` yList Ä x
O > 0 ÅXrDÍÈeD frequencyList IJ&
ß±,ü equationVariable ÈOÔþYBß
¬£È_VÈ y1 à r1 ` xt1 Ä
317
ü Func Ò5ãßÖ
{1,2,3,4,5,6}¶L1 b
{1 2 3 4 5 6}
{.6,1.5,3.8,4.2,4.3,5.9}¶L2 b
{.6 1.5 3.8 4.2 4.3 5.9}
LnR L1,L2,y1 b
xList à yList ` frequencyList XÚÿ¾|±,üY
B¬£ xStat à yStat ` fStat IJ&ß3±,üY
B߬£ RegEq Ä
LnR xList,yList,equationVariable
eD 1 Ä
LnR xList,yList,frequencyList
Plot1(1,L1,L2) b
ZData b
¾Ú²&ß±,ü RegEq Ä
LnR xList,yList
eD 1 Ⱦڲ&ß±,ü RegEq Ä
LnR equationVariable
xList à yList ` frequencyList ÚÿSü xStat à yStat
` fStat ÄoYB¬£OÙÿÌàÈDXÝDB×
úíî{óíÃIJ&ß±,ü equationVariable `
RegEq Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 317 of 118
Done
318
20 ´Ö A Z ÑD`Û¸×
LnR
Sü xStat à yStat ` fStat Ⱦڲ&ß±,ü
RegEq Ä
log
<
log number ê log (expression)
¨²ÔþrDêáD number ê<ã expression X
ÍDÈJÖ
10
logarithm
= number
log list
¨²ÔþDÈJ£þôD list ÌhôX
ÍDÄ
LU(
MATRX MATH °)
LU(matrix,lMatrixName, uMatrixName, pMatrixName)
ukÔþrDêáD½ matrix X Crout LU Äßݦ
ü ÞݦÅÚ·Äßݦ½ ±,ü lMatrixName È
Þݦ½ ±,ü uMatrixName ÈB6½ Ä£Ä
ukʯ X x6ű,ü pMatrixName Ä
lMatrixName ¹ uMatrixName = pMatrixName ¹
matrix
log 2 b
log (36.4/3) b
.301029995664
1.08398012893
ü RectC áDãßÖ
log (3,4) b
(.698970004336,.4027…
ü RectC áDãßÖ
log {L3,2} b
{(.47712125472,1.364…
[[6,12,18][5,14,31][3,8,18]]
¶MAT b
[[6 12 18]
[5 14 31]
[3 8 18]]
LU(MAT,L,U,P) b
Done
L b
[[6 0 0]
[5 4 0]
[3 2 1]]
U b
[[1 2 3]
[0 1 4]
[0 0 1]]
P b
[[1 0 0]
[0 1 0]
[0 0 1]]
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 318 of 118
20 ´Ö A Z ÑD`Û¸×
½ g9Ö[ ]
-„`-…
max(
MATH NUM °)
[ [row1] [row2] ... ]
nÔþ½ ÈÝ g9ÄJ£þôrDêáDê
¬£Ä
g9£ [row] XãÖ[element,element, ... ]Ä
max(numberA,numberB)
319
[[1,2,3][4,5,6]]¶MAT b
[[1 2 3]
[4 5 6]]
max(2.3,1.4) b
2.3
¨²øþrDêáDÈWûXDÄ
max(list)
max({1,9,p/2,e^2}) b
9
¨²D list XÔûôÄ
max(listA,listB)
max({1,10},{2,9}) b
{2 10}
¨²ÔþDÈJ£þôD listA `D listB
ÌhøþôWûXÔþÄ
MBox
† STAT DRAW °)
MBox xList,frequencyList
ü xList XrD` frequencyList XeDÈü'!X
Ò5Þ¬
¯ ÒÄ
MBox xList
eD 1 Ä
¢Ôþ ZStd Ò5#)ÔÖ
{1,2,3,4,5,9}¶XL b
{1 2 3 4 5 9}
{1,1,1,4,1,1}¶FL b
{1 1 1 4 1 1}
0¶xMin:0¶yMin b
0
MBox XL,FL b
MBox
SüYB¬£ xStat ` fStat XDBÄo¬£OÙ
ÿÌàÈDXÝDBÈúíî{óíÃÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 319 of 118
320
20 ´Ö A Z ÑD`Û¸×
Menu(
‡ ßcêe<
CTL °)
Menu(item#,"title1",label1[, ... ,item#,"title15",label15])
; ßcÊóäÔþÇîÝ 15 þMX°)İ)Ý;£
hMÈEݯ ÄÍb£þMÖ
• item# — Ôþ 1 15 ÈXHDÈ<Mü°)
X!BÄ
• "title" — ü°)ÞXMX[ ÄÔ Sü 1
5 þ+úÈî-X+úü°)ÞßáÄ
• label — ü ݽ¹MâÈßc; ÊÇ@¹ÝX
ÛÄ
min(
MATH NUM °)
min(numberA,numberB)
¨²øþrDêáDÈWãXÔþÄ
min(list)
ßc
©
:Lbl A
:Input "Radius:",RADIUS
:Disp "Area is:",p¹RADIUS2
:Menu(1,"Again",A,5,"Stop",B)
:Lbl B
:Disp "The End"
; âX_Ö
min(3,L5) b
min(L5.2, L5.3) b
min(5,2+2) b
min({1,3,L5}) b
L5
L5.3
4
L5
¨²D list XÔãôÄ
min(listA,listB)
min({1,2,3},{3,2,1}) b
{1 2 1}
¨²ÔþDÈJ£þôD listA `D listB
ÌhøþôWãXÔþÄ
mod(
MATH NUM °)
mod(numberA,numberB)
¨² numberA Í numberB õDÄDOrDÄ
mod(7,0) b
mod(7,3) b
mod(L7,3) b
mod(7,L3) b
mod(L7,L3) b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 320 of 118
7
1
2
L2
L1
20 ´Ö A Z ÑD`Û¸×
mRAdd(
MATRX OPS °)
mRAdd(number,matrix,rowA,rowB)
¨²½ ¡0 , ât X§pÈJÖ
a. rDêáD½
number Ä
b. §pt
Multiplication: ¹
M
matrix X
rowA ,¹rDêáD
rowB ÄJ±,ü
321
[[5,3,1][2,0,4][3,L1,2]]¶MAT
b
[[5 3 1]
[2 0 4]
[3 L1 2]]
mRAdd(5,MAT,2,3) b
rowB ÅÄ
numberA ¹ numberB
[[5 3 1 ]
[2 0 4 ]
[13 L1 22]]
2¹5 b
10
¨²øþrDêáDX,ÃÄ
number ¹ list ê list ¹ number
number ¹ matrix ê matrix ¹ number
number ¹ vector ê vector ¹ number
¨²ÔþDý êå£ÈJ£þôD number
âD list ý matrix êå£ vector ÌhôX
,ÃÄ
listA ¹ listB
4¹{10,9,8} b
{40 36 32}
ü RectC áDãßÖ
[8,1,(5,2)]¹3 b
[(24,0) (3,0) (15,6)]
{1,2,3}¹{4,5,6} b
{4 10 18}
¨²ÔþDÈJ£þôD listA X£þô
âD listB ÌhôX,ÃÄøþDOÝÌàX
ÈDÄ
matrix ¹ vector
¨²Ôþå£ÈJ½ matrix ,¹å£ vector Ľ
matrix XëDObå£ vector ôþDÄ
[[1,2,3][4,5,6]]¶MAT b
[[1 2 3]
[4 5 6]]
MAT¹[7,8,9] b
[50 122]
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 321 of 118
322
20 ´Ö A Z ÑD`Û¸×
matrixA ¹ matrixB
[[2,2][3,4]]¶MATA b
¨²Ôþ½ ÈJ½ matrixA ,¹½ matrixB Ä
½ matrixA XëDOb½ matrixB X DÄ
[[1,2,3][4,5,6]]¶MATB b
[[1 2 3]
[4 5 6]]
MATA¹MATB b
multR(
MATRX OPS °)
multR(number,matrix,row)
¨²½ ¡0
,X§pÈJÖ
a. rDêáD½
D number Ä
b. §p±,üàÔ
nCr
MATH PROB °)
matrix XÛn
row ,¹rDêá
[[2 2]
[3 4]]
[[10 14 18]
[19 26 33]]
[[5,3,1][2,0,4][3,L1,2]]¶MAT
b
[[5 3 1]
[2 0 4]
[3 L1 2]]
multR(5,MAT,2) b
row Ä
items nCr number
[[5 3 1 ]
[10 0 20]
[3 L1 2 ]]
5 nCr 2 b
¨²£õ¢ items(n) ªÎ number (r) XÜDÄD
OÑ2óHDÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 322 of 118
10
20 ´Ö A Z ÑD`Û¸×
nDer(
CALC °)
U¹ßêB d XÈí
Ý - ™ ) ÃÂ
#)Ä
nDer(expression,variable,value)
¨²<ã expression ü¬£ variable XrDêá
D value ÊX¥DÐDÄ¥DÐDîßÄ
XFXp[Ö
323
Íb d=.001 Ö
nDer(x^3,x,5) b
75.000001
Íb d=1EL4 Ö
nDer(x^3,x,5) b
75
5¶x b
nDer(x^3,x) b
5
75
(valueNd,f(valueNd)) ` (value+d,f(value+d))
9S d ^ãÈ¥^BÄ
nDer(expression,variable)
Sü¬£ variable X'!Ä
ªóÖL
a
L number
L list
L matrix
L vector
ê L (expression)
L2+5 b
3
L(2+5) b
L7
L{0,L5,5} b
{0 5 L5}
¨²rDêáDDXóDÄ
norm
MATRX MATH °)
VECTR MATH °)
[[1,L2][L3,4]]¶MAT b
norm matrix
¨²rDêáD½
ãVßÖ
matrix X Frobenius ×DÈuk@
norm MAT b
G(real2+imaginary2)
J`ÍÝôÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 323 of 118
[[1 L2]
[L3 4 ]]
5.47722557505
324
20 ´Ö A Z ÑD`Û¸×
norm [3,4,5] b
norm vector
7.07106781187
¨²rDêáDå£ vector XSzÈJÖ
norm [a,b,c] ¨²
norm number
norm list
a2+b2+c2Ä
ê norm (expression)
¨²rDêáD number ê<ã expression X±ÍÈ
êÙD list £þôX±ÍÄ
Normal
† ã#)
Normal
BBîD©ãÄ
norm L25 b
25
ü Radian ¦zãßÖ
norm {L25,cos L(p/3)} b
{25 .5}
ü Eng D©ãßÖ
123456789 b
123.456789E6
ü Sci D©ãßÖ
123456789 b
1.23456789E8
ü Normal D©ãßÖ
123456789 b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-15 15:27 Printed: 98-10-15 15:38 Page 324 of 118
123456789
20 ´Ö A Z ÑD`Û¸×
not
BASE BOOL °)
not integer
¨²ÔþrHD integer X¡ÕÄüuk 0 Ȩ² 1 ×Vp
D = 0 Ȩ² 0 ÄDOrDÄ
sign number
sign list
¨²ÔþDÈJô L1 à 1 ê 0 ÈÚÿ<D list
ÌhôXúËÄ
SimulG
† Ò5ã#)
simult(
†-u
sign L3.2 b
sign (6+2N8) b
L1
0
sign {L3.2,16.8,6+2N8} b
{L1 1 0}
SimulG
Bàʬ ãÈàʬ <¼Ý½XÑDÄ
simult(squareMatrix,vector)
¨²Ôþå£ÈÙÿ(ûßX·È¹ßX
6ãVßÖ
a1,1x1 + a1,2x2 + a1,3x3 + ... = b1
a2,1x1 + a2,2x2 + a2,3x3 + ... = b2
a3,1x1 + a3,2x2 + a3,3x3 + ... = b3
½ squareMatrix X ÙÿßXÏD a Èå£Ùÿ
£bÄ
ßëß x ` y Ö
3x N 4y = 7
x + 6y = 6
[[3,L4][1,6]]¶MAT b
[7,6]¶VEC b
simult(MAT,VEC) b
· x=3 ` y=.5 Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:34 Page 354 of 118
[[3 L4]
[1 6 ]]
[7 6]
[3 .5]
20 ´Ö A Z ÑD`Û¸×
sin angle ê sin (expression)
sin
=
¨² angle ê expression X7úÈDùrDê
áDÄ
ü Radian ¦zãßÖ
sin p/2 b
sin (p/2) b
sin 45¡ b
0
1
.707106781187
¦z B'!¦zã·zêûzÄüÏ)¦z
ãßÈ¢ MATH ANGLE °)ùü<ú ¡ ê r Ú¦z
Úÿ<zêûzÄ
ü Degree ¦zãßÖ
sin 45 b
sin (p/2)r b
.707106781187
1
sin list
¨²ÔþDÈJ£þôD list ÌhôX7
úÄ
sin squareMatrix
áÑÝ¡áXMUÄ
sinL1
-{
355
ü Radian ¦zãßÖ
sin {0,p/2,p} b
{0 1 0}
ü Degree ¦zãßÖ
sin {0,30,90} b
{0 .5 1}
¨²Ôþ ȹ½ squareMatrix X½ 7úÄ
½ 7úÍhbü{Dê Cayley-Hamilton Theorem
TXuk§pÄJ2 T)uk½ ØôX7ú
Ä
sinL1 number
ê sinL1 (expression)
¨² number ê expression X¡7úÈDùr
DêáDÄ
sinL1 list
¨²ÔþDÈJ£þôD list ÌhôX¡
7úÄ
ü Radian ¦zãßÖ
.523598775598
sinL1 .5 b
sinL1 {0,.5} b
{0 .523598775598}
ü Degree ¦zãßÖ
sinL1 1 b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:34 Page 355 of 118
90
356
20 ´Ö A Z ÑD`Û¸×
sinh
MATH HYP °)
sinh number
ê sinh (expression)
sinh list
¨²ÔþDÈJ£þôD list ÌhôX
Æ7úÄ
sinhL1
MATH HYP °)
sinh 1.2 b
1.50946135541
¨² number ê expression X Æ7úÈDù
rDêáDÄ
sinhL1 number ê sinhL1(expression)
sinh {0,1.2} b
{0 1.50946135541}
sinhL1 1 b
.88137358702
¨² number ê expression X¡ Æ7úÈDù
rDêáDÄ
sinhL1 list
¨²ÔþDÈJ£þôD list ÌhôX¡
Æ7úÄ
sinhL1 {1,2.1,3} b
{.88137358702 1.4874…
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:34 Page 356 of 118
20 ´Ö A Z ÑD`Û¸×
SinR
STAT CALC °)
YB߬£È_VÈ
y1 È r1 ` xt1 Ú
ûãmXÄáÑü Y1 È
R1 ` XT1 Ä
VpÛnZÔþÈhÈ
TI-86 ·XózÃÑ
ît¿Èúíüá¹
k·Êk·Ä
SinR [iterations,] xList,yList [,period],equationVariable
ü7ú²&õ_ (y=a sin(bx+c)+d) ³Ü xList ` yList
XrDÍÈSüÃÝXu period IJ&ß±,ü
equationVariable ÈOÔþYB߬£È_VÈ
y1 Ã r1 ` xt1 ÄßXÏD¹DX6ã±,üY
B¬£ PRegC Ä
357
seq(x,x,1,361,30)¶L1 b
{1 31 61 91 121 151 …
{5.5,8,11,13.5,16.5,19,19.5,17,
14.5,12.5,8.5,6.5,5.5}¶L2 b
{5.5 8 11 13.5 16.5…
SinR L1,L2,y1 b
iterations ÃÝX×WÛn TI-86 ©Ò·XÔûõD
Ä¢ 1 16 ÅÄVpÕ9WÈíSü¬x 8 ÄÔ È
8^ûÈz^¬È; ÊÈ^Sסz Ä
VpÕ9ÃÝX period Èü xList XDÂDëÄ
VpÛnZ period Èí x XÈXÂùáÌÄ
xList ` yList XÚÿ¾|±,üYB¬£ xStat `
yStat IJ&ß3±,üYB߬£ RegEq Ä
Plot1(1,L1,L2) b
ZData b
´)¡¦zãBÈ SinR XgÎûzÄ
SinR [iterations,] xList,yList [,period]
¾Ú²&ß±,ü RegEq Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 357 of 118
Done
358
20 ´Ö A Z ÑD`Û¸×
SinR [iterations,] equationVariable
xListName ` yListName ÚÿSü xStat ` yStat Ä
oYB£
OÙÿÌàÈDXÝDB×úíî{óíÃIJ&
ß±,ü equationVariable ` RegEq Ä
SinR [iterations]
Sü xStat ` yStat Ⱦڲ&ß±,ü RegEq Ä
SlpFld
† Ò5ã#)
Äåß®|
`#Å
Solver(
†-t
SlpFld
ü DifEq Ò5ãßÈ'Ôp[³Äü FldOff GÁå
`p[³Ä
Solver(equation,variable,guess,{lower,upper})
ͬ£ variable ·ß equation ÈÆ£Îñu
guess `· $ lower ` upper Äß equation Ã
¹<ãÈJnWb 0 Ä
¹ y=5 È x3+y2=125 x X·Äu·X¥
4 Ö
5¶y b
5
Done
Solver(x^3+y2=125,x,4) b
x b
4.64158883361
Solver(equation,variable,guess)
ÚÿSü L1E99 ` 1E99 0 upper ` lower XÄ
Solver(equation,variable,{guessLower,guessUpper})
Sü guessLower ` guessUpper ÈXFÔðöÄ
Solver( 3Úðöþ×ÈêX·Ä
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 358 of 118
20 ´Ö A Z ÑD`Û¸×
sortA
SortA list
¨²ÔþDÈJD list XrDêáDôÝ
cfëÄ
LIST OPS °)
sortD
SortD list
¨²ÔþDÈJD list XrDêáDôÝ!
cfëÄ
LIST OPS °)
Sortx
LIST OPS °)
Sortx xListName,yListName,frequencyListName
Sortx xListName,yListName
Ý x ôXcÈfc xListName à yListName `
frequencyListName XrDêáDDBÍ x ` y ȹ
WÀXeDÄÃÝÅÄÈDXY¹¡ôo¬êÄ
{5,8,L4,0,L6}¶L1 b
SortA L1 b
{5,8,L4,0,L6}¶L1 b
SortD L1 b
359
{5 8 L4 0 L6}
{L6 L4 0 5 8}
{5 8 L4 0 L6}
{8 5 0 L4 L6}
{3,1,2}¶XL b
{0,8,L4}¶YL b
Sortx XL,YL b
XL b
YL b
{3 1 2}
{0 8 L4}
Done
{1 2 3}
{8 L4 0}
{3,1,2}¶XL b
{0,8,L4}¶YL b
Sorty XL,YL b
YL b
XL b
{3 1 2}
{0 8 L4}
Done
{L4 0 8}
{2 3 1}
Sortx
xList ` yList ÚÿSüYB¬£ xStat ` yStat Äo
YB¬£OÙÿÌàÈDXÝDB×úíî{óí
ÃÄ
Sorty
LIST OPS °)
Sorty xListName,yListName,frequencyListName
Sorty xListName,yListName
Ý y ôXcÈfc xListName È yListName `
frequencyListName XrDêáDDBÍ x ` y ȹ
WÀXeDÄÃÝÅÄÈDXY¹¡ôo¬êÄ
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 359 of 118
360
20 ´Ö A Z ÑD`Û¸×
Sorty
xList ` yList ÚÿSüYB¬£ xStat ` yStat Äo
YB¬£OÙÿÌàÈDXÝDB×úíî{óí
ÃÄ
4Sph
VECTR OPS °)
SphereV
†-m
GÖ 2
I
vector 4Sph
¹×6$Û6ã [r q 0 ] ê [r q f ] 2 ê 3
ôå£ vector ÈGSãJþB×6$Û
(SphereV)Ä
ü SphereV å£$ÛãßÖ
[1,2] b
[2.2360679775±1.1071…
number 2 ê (expression)2
list2
squareMatrix2
252 b
(16+9)2 b
B×6$ÛXå£$Ûã [r q f ]Ä
squareMatrix â¾X,ÃáT)uk£þ
ôXGÄ
-ˆ
[0,0,L1]4Sph b
[1±0±3.14159265359]
SphereV
¨²rDêáDDâ¾X,ÃÄUóDXGÈ
íüÀËÚÀK9Ä
G Ö‡
ü RectV å£$ÛãßÖ
[0,L1]4Sph b
[1±L1.57079632679±1.…
‡number
ê ‡(expression)
¨² number ê expression XG ÈDùrDÈ
3ùáDÄ
L22 b
(L2)2 b
{L2,4,25}
2
L4
4
b
[[2,3][4,5]]2 b
‡25 b
‡(25+11) b
20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 360 of 118
625
625
{4 16 625}
[[16 21]
[28 37]]
5
6
20 ´Ö A Z ÑD`Û¸×
‡list
¨²ÔþDÈJôD list ÌhôXG Ä
St4Eq(
STRNG °)
Ú stringVariable @6ÔþDÃ<ãêßÈJÚ
W±,ü¬£ equationVariable Ä
Vpü8Øü Input ·Ó InpSt È
íuk'! x ØXg9<ãX
ÈJ±,§pÄá<ãÅÄ
† GRAPH °)
ü RectC áDãßÖ
‡{L2,25} b
{(0,1.41421356237) (…
" 5"¶x:6 x b St4Eq(stringVariable,equationVariable) U@6+úJ±-ÌàX¬£áÈùB߬£ equationVariable b+ú¬£ stringVariable Ä StGDB ERROR 10 DATA TYPE "5"¶x:St4Eq(x,x):6 x b 30 ßcÖ © :InpSt "Enter y1(x):",STR :St4Eq(STR,y1) :Input "Enter x:",x :Disp "Result is:",y1(x) © áÑÈyÚ+ú±,ü 9ßX¬£Ä StGDB graphDataBaseName ïÎÒ5DBg (GDB) ¬£ÈÙÿ'!XÖ • Ò5ãÃÒ5ãB`×Ȭ£Ä • üßêe<XÑDÈáuúݽZWÀȹ WÀXÒ5 ãÄ ü RcGDB ±,DBgJ¡ÎÒ5Ä 361 343 IÅÄ 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 361 of 118 362 20 ´Ö A Z ÑD`Û¸× Stop ‡ ßcêe< CTL °) ±,¬£Ö¶ X ßcÖ Stop §3ßcX; J¨²#)Ä Sü N==999 È áSü N=999 Ä number ¶ variable string ¶ variable list ¶ variable vector ¶ variable matrix ¶ variable ê (expression) ¶ variable † GRAPH °) StReg( STAT CALC °) 10¶A:4¹A b "Hello"¶STR b ÚÛnD±,¬£ variable Ä StPic © :Input N :If N==999 :Stop © 40 Hello {1,2,3}¶L1 b {1 2 3} [1,2,3]¶VEC b [1 2 3] [[1,2,3][4,5,6]]¶MAT b [[1 2 3] [4 5 6]] StPic pictureName Ú'!Ò5#)XÒ6±, pictureName Ä {1,2,3,4,5}¶L1 b StReg(variable) ÚÔ¥ukX²&ß±,¬£ variable Ä î Ú²&ß±,Ï㬣ÄYB߬£8êÅ 9±-²&ßÄ Ý - – EQ b ×üßÄ âÝ b uk'! x ØXÄ {1 2 3 4 5} {1,20,55,230,742}¶L2 b {1 20 55 230 742} ExpR L1,L2:StReg(EQ) b Done 8¶x b 8 Rcl EQ b .41138948780597¹4.7879605684671^x b 113620.765451 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 362 of 118 20 ´Ö A Z ÑD`Û¸× +úg9Ö" "string" STRNG °) nÔþ+úÄ'¹ÊÈü#)ÞºÍ$Ä ‡ ßcêe< I O °) +ú·[ +úÈàáD+Ä_VÈáÑü5 "4" ê "A¹8" X+ú¯ ukÄUÌf@6+ú ¬£â߬£ÈíÚÿü Eq4St( ` St4Eq(ÄV 290 I` 361 IÄÅÄ sub( STRNG °) £©ÖN T sub(string,begin,length) ¨²ÔþX+úÈW+ú string X$È¢+ ú begin ØÔÈSzÛnX length Ä numberA N numberB ¨² numberA £ numberB XÂÄDùrDê áDÄ list N number ¨²ÔþDÈJôD list Ìhô£D number XÂÄDùrDêáDÄ 363 "Hello"¶STR b Hello Disp STR+", Jan" b Hello, Jan Done "The answer is:"¶STR b The answer is: sub(STR,5,6) b answer 6N2 b 10NL4.5 b {10,9,8}N4 b 4 14.5 {6 5 4} ü RectC áDãßÖ {8,1,(5,2)}N3 b {(5,0) (L2,0) (2,2)} 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 363 of 118 364 20 ´Ö A Z ÑD`Û¸× listA N listB matrixA N matrixB vectorA N vectorB ¨²ÔþDý êå£ÈJô ÔþDÌ hô£ `þDÌhôXÂÄøþrDêá DDXÈDOÌàÄ sum MATH MISC °) {5,7,9}N{4,5,6} b {1 2 3} [[5,7,9][11,13,15]]N[[4,5,6][7,8,9 ]] b [[1 2 3] [4 5 6]] [5,7,9]N[1,2,3] b [4 5 6] sum {1,2,4,8} b 15 sum {2,7,L8,0} b 1 ¨² angle ê expression X7ÛÈDùrDÈ 3ùáDÄ ü Radian ¦zãßÖ tan p 4 b tan (p 4) b tan 45¡ b 0 1 1 B'!¦zãÚ¦z·zêûzÄüÏ)¦z ãßÈ¢ MATH ANGLE °)ùü<ú ¡ ê r Úÿ Ú¦z<zêûzÄ ü Degree ¦zãßÖ tan 45 b tan (p 4)r b 1 1 sum list ¨²D list ÝrDêáDôX`Ä LIST OPS °) tan ? tan angle ê tan (expression) tan list ¨²ÔþDÈJôD list ÌhôX7ÛÄ ü Degree ¦zãßÖ tan {0,45,60} b {0 1 1.73205080757} 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 364 of 118 20 ´Ö A Z ÑD`Û¸× tanL1 -} tanL1 number ê tanL1 (expression) ¨² number ê expression X¡7ÛÈDùr D3ùáDÄ tanL1 list ¨²ÔþDÈJôD list ÌhôX¡7 ÛÄ tanh MATH HYP °) tanh number ê tanh (expression) ¨²ÔþDÈJôD list ÌhôX Æ7Û ÑDÄ MATH HYP °) ü Radian ¦zãßÖ tanL1 .5 b .463647609001 ü Degree ¦zãßÖ tanL1 1 b 45 ü Radian ¦zãßÖ tanL1 {0,.2,.5} b {0 .19739555985 .463… tanh 1.2 b .833654607012 ¨² number ê expression X Æ7ÛÈDù rDÈ3ùáDÄ tanh list tanhL1 365 tanhL1 number ê tanhL1(expression) tanh {0,1.2} b {0 .833654607012} tanhL1 0 b 0 ¨² number ê expression X¡ Æ7ÛÈDù rDÈ3ùáDÄ tanhL1 list ¨²ÔþDÈJôD list ÌhôX¡ Æ7 ÛÄ ü RectC áDãßÖ tanhL1 {0,2.1} b {(0,0) (.51804596584… 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 365 of 118 366 20 ´Ö A Z ÑD`Û¸× TanLn( GRAPH DRAW °) Text( † GRAPH DRAW °) Then ‡ ßcêe< CTL °) TanLn(expression,xValue) ü'!Ò5Þ¬ <ã expression È âü xValue Ø ¬ ÛÄ Text(row,column,string) ¢'!Ò5X5ô (row,column) ØÔm[ string È J 0 row 57 è 0 column 123 Ä Ò5i¼X[ ÃÑX°)B#ÄÝ : ÃÏ D°)Ä ü Func Ò5ã` Radian ¦zãßÖ ZTrig:TanLn(cos x,p 4) b ü Func Ò5ã` ZStd Ò5#)XßcÖ © :y1=x sin x :Text(0,70,"y1=x sin x") © ; âÖ ËÙ If XÁ©µCÈ¢ 305 IÔÄËÙ If:Then:End ` If:Then:Else:End XÁ©Ä 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 366 of 118 367 20 ´Ö A Z ÑD`Û¸× Trace † GRAPH °) @BÖ T MATRX MATH °) Trace '!Ò5Jü ³þÑDÄüßcÝ b 6³þÈJ»Á; ßcÄ [[1,2][3,4]]¶MATA b matrixT ¨²Ôþ@BrD½ ê@BáD½ ÈJô row È column ½ matrix Xô column È row Xx6Ä_VÖ ã c dä a b T ¨² ã b dä [[1 2] [3 4]] MATAT b a c ÍbáD½ Ȫ£þôXáEAÄ [[1 3] [2 4]] [[1,2,3][4,5,6][7,8,9]]¶MATB [[1 [4 [7 MATBT b b 2 3] 5 6] 8 9]] [[1 4 7] [2 5 8] [3 6 9]] ü RectC áDãßÖ [[(1,2),(1,1)][(3,2),(4,3)]] ¶MATC b [[(1,2) (1,1)] [(3,2) (4,3)]] MATCT b 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 367 of 118 [[(1,L2) (3,L2)] [(1,L1) (4,L3)]] 368 20 ´Ö A Z ÑD`Û¸× TwoVar STAT CALC °) Ä TwoVa ü°)ÞÅ TwoVar xList,yList,frequencyList Í xList ` yList XrDÍ; `³uÚdÈSü frequencyList XeDÄ xList à yList ` frequencyList XÚÿ¾|±,üYB ¬£ xStat à yStat ` fStat Ä {0,1,2,3,4,5,6}¶L1 b {0 1 2 3 4 5 6} {0,1,2,3,4,5,6}¶L2 b {0 1 2 3 4 5 6} TwoVar L1,L2 b TwoVar xList,yList eD 1 Ä TwoVar xList à yList ` frequencyList ÚÿSü xStat à yStat ` fStat ÄoYB¬£OÙÿÌàÈDXÝDB× úíî{óíÃÄ unitV VECTR MATH °) unitV vector ¨²rDêáDå£ vector X)!å£ÈJÖ unitV [a,b,c] ¨² [ åß®|ùßÈîX§pÄ ü RectV ãå$Û£åßÖ unitV [1,2,1] b [.408248290464 .8164… a b c ] norm norm norm ` norm (a2+b2+c2)Ä 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 368 of 118 20 ´Ö A Z ÑD`Û¸× vc4li LIST OPS °) vc4li [2,7,L8,0] b vc4li vector ÚÔþrDêáDå£ vector @6DÄ VECTR OPS °) å£g9Ö[ ] -„`-… nÔþå£ÈJ£þôrDêáDê¬£Ä {2 7 L8 0} (vc4li [2,7,L8,0])2 b {4 49 64 0} {2 7 L8 0} [4,5,6]¶VEC b [element1,element2, ... ] 369 [4 5 6] ü PolarC áDãßÖ [5,(2±p 4)]¶VEC b [(5±0) (2±.785398163… Vert † GRAPH DRAW °) While ‡ ßcêe< CTL °) Vert xValue ü'!Ò5X xValue ØÔ5VÈÄ ßcÖ :While condition :commands-while-true :End :command ¾U5Ê condition óÈ; ü ZStd Ò5#)ÞÖ Vert L4.5 b commands-while-true Ä © :1¶J :0¶TEMP :While J20 : TEMP+1 J¶TEMP : J+1¶J :End :Disp "Reciprocal sums to 20",TEMP © 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 369 of 118 370 20 ´Ö A Z ÑD`Û¸× xor BASE BOOL °) integerA xor integerB ÚøþrDÝ!¨WÄøþrDüY¼@6`¯ DÄÌhXø!¨WÊÈVpJÔ! 1 Èí§p 1 ×Vpø! 0 ê 1 Êȧp 0 Ĩ² !¨W§p`Ä _VÖ 78 xor 23 = 89 78 = 1001110Ü 23 = 0010111Ü 1011001Ü = 89 ü Dec D ãßÖ 78 xor 23 b 89 ü Bin D ãßÖ 1001110 xor 10111 b Ans4Dec b 1011001Ü 89Þ Ã¹g9rD9·ÓHDÈü¨W!WÀ¾|þ Ä xyline † STAT DRAW °) xyline xList,yList ü xList ` yList XrDÍü'!Ò5Þ¬ ÈÒÄ xyline SüYB¬£ xStat ` yStat XDBÄo¬£O ÙÿÌàÈDXÝDB×úíî{óíÃÄ {L9,L6,L4,L1,2,5,7,10}¶XL b {L9 L6 L4 L1 2 5 7 1… {L7,L6,L2,1,3,6,7,9}¶YL b {L7 L6 L2 1 3 6 7 9} ZStd:xyline XL,YL b 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 370 of 118 20 ´Ö A Z ÑD`Û¸× ZData † GRAPH ZOOM °) ZData Îb'!nX³uÒ×Hk·¬£ÈSݳuDB Ñù¬Î9È âÈÒ5#)Ä 371 ü Func Ò5ãßÖ {1,2,3,4}¶XL b {2,3,4,5}¶YL b Plot1(1,XL,YL) b ZStd b ZData b 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 371 of 118 {1 2 3 4} {2 3 4 5} Done 372 20 ´Ö A Z ÑD`Û¸× ZDecm † GRAPH ZOOM °) ZDecm Bk·¬£È_V @x=@y=.1 È â¹#)Xs ÈÒ5#)Ä xMin=L6.3 xMax=6.3 xScl=1 ü Func Ò5ãßÖ y1=x sin x b ZStd b Done yMin=L3.1 yMax=3.1 yScl=1 ZDecm XÔþìÃ¹Ý .1 X9S³þÒ5Ä Vp¬ Ò5Þ¼È x X¢ 0 ÔÈJè Ý .1587301587 rtÄ ZDecm b Vp¬ ôÒ5È x XÝ .1 rtÄ 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 372 of 118 20 ´Ö A Z ÑD`Û¸× ZFit ZFit ¡uk yMin ` yMax ¹ÙÿÝÑDü'!X xMin ` xMax ÈXÔû y `Ôã y Ä âÈÒ5# )Ä † GRAPH ZOOM °) ü Func Ò5ãßÖ y1=x2N20 b ZStd b 373 Done JáE¡ xMin ` xMax Ä ZFit b ZIn † GRAPH ZOOM °) ZIn Ú'!Û!B<ÈX¼ÚÒ5ûÄ ý´$YB¬£ xFact ` yFact X9BÈWÀ X¬x 4 Ä ü Func Ò5ãßÖ y1=x sin x b ZStd b ZIn b 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 373 of 118 Done 374 20 ´Ö A Z ÑD`Û¸× ZInt † GRAPH ZOOM °) ZInt Bk·¬£XÈ £þ5ôüÝå (@x=@y=1) ÞHDÈB xScl=yScl=10 È âÈÒ5#)Ä ü Func Ò5ãßÖ y1=der1(x2N20,x) b ZStd b Done '!XÛ!BäÒ5XÄ ZInt XÔþìùHD9S³þÒ5Ä Vp³þÞXÒ5È x X¢ 0 ÔÈJè r£ .1587301587 Ä ZInt b Vp³þ¹Ò5È x XÝ 1 rtÄ 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 374 of 118 20 ´Ö A Z ÑD`Û¸× ZOut † GRAPH ZOOM °) ZOut Ú'!Û!B<ÈX¼ÚÒ5ýã¹ÈîXÒ5Ä ý´$YB¬£ xFact ` yFact X9BÈWÀ X¬x 4 Ä ü Func Ò5ãßÖ y1=x sin x b ZStd b ZOut b ZPrev † GRAPH ZOOM °) ZPrev Süü; ÞÔ5 ZOOM Û¸!Ò5Xk·¬£ ¡¬ Ò5Ä 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 375 of 118 375 Done 376 20 ´Ö A Z ÑD`Û¸× ZRcl ZRcl Úk·¬£XB¹!ü nXýk·¬£ ±,XÈ âÈÒ5#)Ä † GRAPH ZOOM °) UBü nXýk·¬£ÈÃüßÄ©ÔÖ • Ý 6 ( & (ZSTO) ±,'! Ò5Xk·¬£Ä –ê– • Úhü±,ýk·¬£È¬£á¹ z ÔÈâ 6 îXk·¬£áÄ_VÈÚ xMin X±, zxMin ÈÚ yMin X±, zyMin ÈÄ ZSqr † GRAPH ZOOM °) ZSqr Bk·¬£9{ó 765ôÈJ @x=@y È âÈÒ5#)Ä ü Func Ò5ãßÖ y1=‡(82Nx2):y2=Ly1 b ZStd b '!Ò5XÄá$ÛHXxÅäÒ5X Ä üJªO_XýÈ76ÃÑßK95½6ÈÚß K95ÚÄü ZSqr ùkÈBX6Ä ZSqr b 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 376 of 118 Done 20 ´Ö A Z ÑD`Û¸× ZStd † GRAPH ZOOM °) ZStd Úk·¬£BÛ¬xÈ âÈÒ5#)Ä Func Ò5ãßÖ xMin=L10 xMax=10 xScl=1 ü Func Ò5ãßÖ y1=x sin x b ZStd b yMin=L10 yMax=10 yScl=1 Pol Ò5ãßÖ qMin=0 xMin=L10 yMin=L10 qMax=6.28318530718 (2p) xMax=10 yMax=10 qStep=.130899693899… (p 24) xScl=1 yScl=1 Param Ò5ãßÖ tMin=0 xMin=L10 yMin=L10 tMax=6.28318530718 (2p) xMax=10 yMax=10 tStep=.130899693899… (p 24) xScl=1 yScl=1 DifEq Ò5ãßÖ tMin=0 xMin=L10 yMin=L10 tMax=6.28318530718 (2p) xMax=10 yMax=10 tStep=.130899693899… (p 24) xScl=1 yScl=1 tPlot=0 difTol=.001 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 377 of 118 377 Done 378 20 ´Ö A Z ÑD`Û¸× ZTrig † GRAPH ZOOM °) ü Func Ò5ãßÖ ZTrig Bk·¬£XBÈoÖÜü Radian ¦zã (@x=p/24) ߬ ݦÑDÈ âÈÒ5#)Ä xMin=L8.24668071567 xMax=8.24668071567 xScl=1.5707963267949 (p 2) y1=sin x b ZStd b yMin=L4 yMax=4 yScl=1 ZTrig b 20atoz.SCH TI-86, Chap 20, Chinese Bob Fedorisko Revised: 98-10-14 15:27 Printed: 98-10-14 15:36 Page 378 of 118 Done A : TI-86 TI-86 °)Ò ...................................................................380 e·( ........................................................................392 íÃ6 ........................................................................393 Equation Operating System (EOSé).................................397 TOL ÄÃÂêe<Å.....................................................398 ukz ........................................................................399 ÝG TI {Ãáu`±pµC..................................400 M1 M2 M3 M4 M5 F1 F2 F3 F4 F5 99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 379 of 22 380 ) TI-86 i]D V£ÄÎü TI-86 ¬ÞX TI-86 °)È¢J¼ÔÄVp¤þ°)ÙÿJª° )XMÈJª°)Èyü°)ßÄüßcêe<Ȥo°)XêáÝ ¬Ä°) ÒÕü ïÎáİ)È_V°) LIST NAMES ` CONS USER Ä -o LINK ÄÔ{Åi] Òy°)üßcêe< ´Ä SEND RECV SND85 -o& LINK SEND ÄÔ{Åi] BCKUP PRGM MATRX GDB ALL 4 4 CONS MATH DRAW FORMT STGDB RCGDB 4 EVAL LIST VECTR REAL CPLX EQU PIC WIND STRNG -o&& SEND BCKUP ÄøQÅi] XMIT LINK SEND ÄÔ{Å¡ XMIT SELCT ALL+ ·õi] LINK SND85 ÄÔ{u TI-85 Åi] MATRX üßcêe<È DrEqu GRAPH °)XMÄ LIST VECTR REAL GRAPH ÄD7Åi] y(x)=
WIND - o & kã¢o ALLN CPLX 4 CONS -o( PIC STRNG 6 ô Func D71+ ZOOM TRACE GRAPH 4 99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 380 of 22 STPIC RCPIC ) GRAPH ÄD7Åi] r(q)=
WIND E(t)=
WIND 1È y(x)=
x 1È r(q)=
q 1È E(t)=
t 1È Q'(t)=
t WIND INITC ÷íi] WIND y WIND r WIND xt WIND Q 6 & ô Func D71+ INITC INSf ALL+ ALLN STYLE 6 & ô Pol D71+ ALL+ ALLN STYLE 6 & ô Param D71+ ZOOM TRACE GRAPH yt DELf SELCT 4 ÷íi] EVAL STPIC RCPIC EVAL STPIC RCPIC 6 ô DifEq D71+ ZOOM TRACE GRAPH INSf DELf SELCT 4 ÷íi] MATH DRAW FORMT STGDB RCGDB 4 AXES GRAPH 4 FORMT DRAW ZOOM TRACE EXPLR 4 ZOOM TRACE GRAPH INSf DELf SELCT 4 ÷íi] MATH DRAW FORMT STGDB RCGDB 4 6 ô Param D71+ ZOOM TRACE GRAPH 4 GRAPH ÄD7Åi] Q'(t)=
6 ô Pol D71+ ZOOM TRACE GRAPH 4 GRAPH ÄD7Åi] 381 INSf ALL+ ALLN STYLE 6 & ô DifEq D71+ AXES GRAPH DELf SELCT 4 ALL+ ALLN STYLE 99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 381 of 22 EVAL STGDB RCGDB STPIC RCPIC 382 ) GRAPH VARS ÄD7$ßÅi] y(x)=
y WIND x ZOOM TRACE GRAPH xt yt t 4 GRAPH WIND Ä y(x)=
xMin WIND xMax data-cf-modified-a3ad6beaa914b026e9dcb36d-="">$ßÅi]
ZOOM TRACE GRAPH
xScl
yMin yMax 4
GRAPH ZOOM ÄD7Á9Å i]
Uü DifEq ãß GRAPH
ZOOM °)ÈíÝ 6
/ (Ä
y(x)=
BOX
WIND
ZIN
ZOOM TRACE GRAPH
ZOUT ZSTD ZPREV 4
r
q
Q1
֒
Q'1
6 ' È
yScl
tMin
tMax
tStep
t
4
FnOn
4
fldRes
4
qMax
4
EStep
MATH DRAW FORMT STGDB RCGDB
ROOT dyàdx ‰f(X)
FMIN FMAX 4
GRAPH MATH ÄD7å¯Åi]
FnOff
Axes
Q[
dTime
qStep
tPlot
difTol
xRes
֒
qMin
6(
ZFIT
ZSQR ZTRIG ZDECM ZDATA 4
4
GRAPH MATH ÄD7å¯Åi]
ü DifEq Ò5ãß´ GRAPH
MATH °)Ä
6 & È
ZRCL ZFACT ZOOMX ZOOMY ZINT
ZSTO
6 / & ô Func D71+
INFLC YICPT ISECT
DIST
ARC
4 TANLN
6 / & ô Pol D71+
MATH DRAW FORMT STGDB RCGDB
DIST dyàdx dràdq ARC TANLN
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 382 of 22
)
GRAPH MATH ÄD7å¯Åi]
383
6 / & ô Param D71+
MATH DRAW FORMT STGDB RCGDB
DIST dyàdx dyàdt dxàdt ARC 4 TANLN
GRAPH DRAW ÄD7ÒÅi]
DrInv ü Func Ò5ãß
ÝÄ
DrEqu ü DifEq Ò5ã
ßÝÄ
MATH DRAW FORMT STGDB RCGDB
Shade LINE VERT HORIZ CIRCL 4
6/'
DrawF
PEN
PTON PTOFF PTCHG 4 CLDRW PxOn
4
SOLVER i] - t 1È b
GRAPH WIND
TABLE i]
ZOMM TRACE SOLVE
7
x
q
SIMULT ENTRY* i]
PREV
NEXT
BOX
ZINT
ZOUT ZFACT ZSTD
7'
CLRq
ô Param D71+
y
TBLST SELCT
r
TBLST SELCT
ô Pol D71+
TBLST SELCT
DrInv
TABLE
å¯-·õi] 7 &
ô Func D71+
TBLST SELCT
TanLn
SOLVER ZOOM i] - t 1È b (
TABLE SETUP i]
TABLE TBLST
TEXT
PxOff PxChg PxTest
t
xt
yt
ô DifEq D71+
- u Äsk ‚ 2 & 30 Å b
SOLVE
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 383 of 22
t
Q
SIMULT RESULT i]
COEFS STOa
STOb
*
STOx
384
)
PRGM Ä
ÈÅi]
8
NAMES EDIT
È
8 ' È× b
֒i]
PAGE$ PAGE#
IàO
CTL
INSc
PRGM IàO ÄRàRòÅi]
PAGE$ PAGE#
Input Promp
IàO
Disp
CTL
DispG
PRGM CTL Ä<Åi]
PAGE$ PAGE#
If
Then
IàO
Else
CTL
For
DELc UNDEL
:
8 ' È× b (
4
ClTbl
Get
Send
getKy ClLCD
CLRq
INSc
End
4
While
Repea
Menu
Lbl
Goto
InpSt
4
IS>
DS<
Pause
4
DelVa
GrStl
LCust
Retur
Stop
STAT
WIND
*
9
CATLG-VARS Äù:
ALL
Outpt
COEFS STOa
4
CATLG
"
POLY RESULT i]
SOLVE
CUSTOM i]
4
8 ' È× b )
- v Äsk ‚ 2 & 30 Å b
POLY ENTRY i]
Sü CUSTOM °)ïÎü
¾ÅX°)Ä 2 ´ÅÄ
INSc
DispT
4
REAL
$ßÅi]
CPLX
CATLG-VARS Äù:
LIST
$Ꮽ
4
-w
4 VECTR MATRX STRNG
i]
EQU
CONS
- w & Þ¡
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 384 of 22
4
PRGM
GDB
kã¢o
PIC
)
PAGE$ PAGE# CUSTM BLANK
CALC i]
evalF
nDer
-†
der1
der2
MATH
4
fMin
-‰
MATRX ÄÞkÅi]
NAMES EDIT
fnInt
OPS
Þk
CPLX
MATH
norm
OPS
eigVl
CPLX
eigVc
MATRX OPS ÄÞkå¯Åi]
NAMES EDIT
dim
Fill
MATH
ident
OPS
ref
CPLX
rref
4
MATH
imag
OPS
abs
VECTR Ä6ßÅi]
NAMES EDIT
MATH
4
aug
MATH
norm
OPS
dot
DELc
4REAL
LU
cond
rSwap
multR mRAdd 4
rAdd
randM
-‰*
CPLX
angle
CPLX
VECTR MATH Ä6ßk§å¯Åi]
NAMES EDIT
cross unitV
- ‰ ' Þk× b
INSc
-‰(
rnorm cnorm
-Š
OPS
DELr
-‰)
MATRX CPLX ÄÞkkÅi]
NAMES EDIT
conj
real
arc
֒i]
INSr
MATRX MATH ÄÞkk§å¯Åi]
NAMES EDIT
T
det
fMax
6ß
֒i]
INSi
DELi
- Š ' 6ß× b
4REAL
-Š(
CPLX
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 385 of 22
385
386
)
VECTR OPS Ä6ßå¯Åi]
-Š)
NAMES EDIT
dim
Fill
4
MATH
4Pol
OPS
4Cyl
CPLX
4Sph
MATH
imag
CPLX ÄkÅi]
conj
real
imag
OPS
abs
PROB ANGLE
-‹
abs
angle
PROB ANGLE
iPart
fPart
MISC
PROB ANGLE
nPr
nCr
HYP
int
HYP
rand
MISC
abs
¡
PROB ANGLE HYP
r
4DMS
4Pol
4
INTER
4
sign
min
max
mod
-Œ'
MISC
randln
MATH ANGLE ÄoÞÅi]
NUM
4Rec
-Œ&
MATH PROB ÄHÅi]
NUM
!
4
-Œ
HYP
MATH NUM ÄkÅi]
NUM
round
vc4li
CPLX
angle
MATH Äk§å¯Åi]
NUM
li4vc
-Š*
VECTR CPLX Ä6ßkÅi]
NAMES EDIT
conj
real
4Rec
4
randN randBi
-Œ(
MISC
'
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 386 of 22
387
)
-Œ)
MATH HYP ÄwN#Åi]
NUM
sinh
PROB ANGLE HYP
cosh
tanh
sinhL1
MISC
coshL1
PROB ANGLE
prod
seq
CONS ÄßÅi]
BLTIN
EDIT
HYP
lcm
MISC
gcd
EDIT
k
USER
Cc
CONV ħ¯Åi]
LNGTH AREA
VOL
CONV LNGTH Ä
LNGTH AREA
mm
cm
4Frac
%
pEval
x‡
eval
Me
Mp
Mn
-‘
VOL
m
ec
VOL
mi2
-‘&
4
Rc
Gc
g
4
m0
H0
h
c
u
Ang
fermi
rod
fath
-’
TIME
TEMP
ÞÅi]
TIME
in
TIME
km2
4
MASS FORCE PRESS ENRGY POWER 4 SPEED
-’&
TEMP
ft
CONV AREA*ÄÂéÅi]
LNGTH AREA
ft2
m2
4
USER
CONS BLTIN ÄßÅi]
BLTIN
Na
tanhL1
-Œ*
MATH MISC ÄÚÇÅ i]
NUM
sum
4
4
yd
km
mile
nmile
cm2
yd2
ha
lt-yr
-’'
TEMP
acre
4
in2
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 387 of 22
4
mil
388
)
-’(
CONV VOL ÄéÅi]
LNGTH AREA
liter
gal
VOL
qt
TIME
pt
TEMP
oz
VOL
hr
TIME
day
TEMP
yr
VOL
¡K
CONV MASS Ä
TIME
¡R
in3
ft3
m3
ms
µs
ns
cup
4
week
-’*
CONV TEMP ĨÞÅi]
LNGTH AREA
¡C
¡F
cm3
-’)
CONV TIME Ä.Åi]
LNGTH AREA
sec
mn
4
TEMP
ßÅi]
-’/&
MASS FORCE PRESS ENRGY POWER
gm
kg
lb
amu
slug
4
CONV FORCE ÄÆÅi]
ton
mton
-’/'
MASS FORCE PRESS ENRGY POWER
N
dyne
tonf
kgf
lbf
CONV PRESS ĹÅi]
-’/(
MASS FORCE PRESS ENRGY POWER
atm
bar
Nàm2 lbàin2 mmHg 4
CONV ENRGY ÄßÅi]
mmH2
inHg
inH20
-’/)
MASS FORCE PRESS ENRGY POWER
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 388 of 22
4
tsp
tbsp
ml
galUK
ozUK
)
J
cal
Btu
ft-lb
kw-hr
CONV POWER ÄÖHÅi]
4
eV
erg
STRNG Ä
"
sub
oÅi]
lngth
Eq4St
{
k
{
}
NAMES EDIT
֒i]
}
"
}
NAMES EDIT
sortA sortD
min
k BASE i]
Õ-Ú
TYPE
màs
-’//&
miàhr kmàhr
knot
-“
St4Eq
LIST NAMES i]
OPS
{
fStat
-”(
}
NAMES EDIT
xStat yStat
OPS
-”)
NAMES
LIST OPS Äå¯Åi]
{
dimL
CONV SPEED i]
SPEED
ftàs
-”
LIST ÄkÅi]
I-atm
-’/*
MASS FORCE PRESS ENRGY POWER
hp
W
ftlbàs calàs Btuàm
389
OPS
4REAL
-”*
OPS
max
-—
CONV BOOL
4
BIT
4
sum
prod
seq
li4vc
vc4li
BASE Õ-Ú Ä
Õ
Ö
TYPE
×
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 389 of 22
4
Fill
4
Sorty
aug
cSum
Deltal
Select SetLE
Form
Åi]
CONV BOOL
Ø
Ù
BIT
Ú
-—&
Sortx
390
)
BASE TYPE i]
Õ-Ú
Ü
TYPE
ß
-—'
CONV BOOL
Ý
Þ
TYPE
or
-—)
CONV BOOL
xor
not
TEST ÄùÅi]
==
<
>
MEM Ä@Åi]
RAM
DELET RESET
REAL
CPLX
MEM RESET i]
RAM
ALL
DELET RESET
MEM DFLTS
STAT Ä;Åi]
Ý - š ' âÈD
êe<`D°)Ä
CALC
EDIT
TYPE
4Hex
CONV BOOL
4Oct
4Dec
Õ-Ú
rotR
TYPE
rotL
-—(
BIT
-—*
BASE BIT i]
BIT
CONV BOOL
shftR shftL
BIT
-˜
‚
4
ƒ
-™
TOL
ClrEnt
MEM DELET ÄÎùÅi]
ALL
Õ-Ú
4Bin
BIT
BASE BOOL ÄZÅi]
Õ-Ú
and
BASE CONV ħ¯Åi]
LIST
-™'
VECTR 4 MATRX STRNG
-™(
TOL
EQU
CONS PRGM
4
GDB
PIC
MEM RESET Are You Sure? i]
ClrEnt
YES
NO
-š
PLOT DRAW VARS
STAT CALC įÅi]
4
FCST
-š&
CALC EDIT PLOT DRAW VARS
OneVa TwoVa LinR
LnR
ExpR
4
PwrR
SinR
LgstR P2Reg P3Reg
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 390 of 22
4
P4Reg StReg
391
)
STAT PLOT i]
-š(
PLOT1 PLOT2 PLOT3
;D*i]
PlOn
CALC
HIST
PlOn
CHAR Ä
PlOff
BOX
-š)
EDIT PLOT DRAW VARS
SCAT xyLINE BOX MBOX
EDIT
sx
PlOn
HIST
PlOff
4 DRREG CLDRW DrawF STPIC RCPIC
STAT VARS Ä;+$ßÅi]
CALC
v
- š (Ä&' Þ (Å#
PLOT1 PLOT2 PLOT3
SCAT xyLINE MBOX
- š ( Ä &' Þ (Å#Ä&' Þ (Å# # #
PLOT1 PLOT2 PLOT3
›
+
¦
STAT DRAW i]
Plot Type i]
PlOff
PLOT DRAW VARS
Sx
w
sy
oÅi]
-š*
4
Sy
Gx
Gx2
Gy
Gy2
4
Gxy
RegEq
corr
a
b
4
n
minX
maxX
minY
maxY
4
Med
PRegC
Qrtl1
Qrtl3
tolMe
@
$
~
|
4
¿
Ñ
ñ
Ç
ç
-Ÿ
MISC GREEK INTL
ÑÃñÃÇ ` ç ù0¬£á
X Ôþ+¡Ä
%Ã' ` ! ùÑDÄ
CHAR MISC ÄÚÇÅi]
MISC GREEK INTL
?
#
&
%
-Ÿ&
'
4
!
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 391 of 22
392
)
çr
Ý CHAR GREEK °)M
ÝX¬£á+úÈÙÀ Ô
þ+¡Äp (- ~) 0+ú
´X×p TI-86 XÔ
þ £Ä
oi]
-Ÿ'
MISC GREEK INTL
a
b
g
CHAR INTL Ä*
@
d
4
H
q
l
m
r
4
G
s
ι
f
J
òoSÅi]
-Ÿ(
MISC GREEK INTL
´
`
Vpü#)ÞßáÏ)ðSÈíÃÑÔU×VͨzÄ
♦
♦
2
¨
J
'
1
^
1 ´ÅÄ
S#)¬kÈÝßJ - âaÝ# $Ä
S#)¬ÈÝßJ - âaÝ# #Ä
Vpíð)ÈËÝ; 1 ´£ÄX9xØÚÄUÊÃÙ)
393 IÅÝGíÃXº¡Ä
íÃ6ÔVÄ
3
Vp¬Û ( Ä )ÈUü¤Øg9ZÔûDÂX+úÈUY,ƵÄVpY,ƵÈ
Ý - ™ ' ݽDBO_È â¢Y,ô8ÔoMÄ 17 ´ÅÄ
4 VpÛ<ÄÅüÇÞ¦ÈÒ5êßcV0×TI-86 7Yg9ÄÝ b »ÁêÝ
^ Ä
5
Vpuk<"
CÄ
á¹0ÈËB± 4XÈJÆ]7BÄËÙ
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 392 of 22
1 ´ÝG 4Xµ
)
393
GÙ=p
' TI-86 ¥íÃÊÈWÚíÃ\C ERROR # type `íð)Ä 1 ´£ÄZV) 7
íÃÄ V£ÄéKíÃXÃÑs´`_ÄU¹RÑDêÛ¸X7BDȹDX$
ÈËÙ 20 ´Ö A Z ÑD`Û¸×Ä
¬ Ò5Êáî{óíà 1
íà 5 ÄTI-86 üÒ
5SüþnXÄ
♦
♦
♦
♦
g9D+YÎuk<×ÈÄ
<ãXuk§pYÎuk<×ÈÄ
03 SINGULAR
MAT
♦
♦
♦
üÖ½ Ä ëã = 0 Å0 L1 Ã Simult ê LU XDÄ
üb²&XDÇåÝÔþáÜÖÄ
0 exp à cos ê sin DX½ Ý¡áXMUÄ
04 DOMAIN
♦
♦
ÑDêÛ¸XD^ Ä
ü Lx ¯ e²&ê²&ÈêÙü Ly ¯ ÛD²&Ä
05 INCREMENT
seq Xr£ 0 ÈêÙúËíÃ×~r£ 0 Ä
06 BREAK
Ý ^ Zßcà DRAW Û¸ê<ãukÄ
07 SYNTAX
g9ZÔþD×¹í!BXÑDÃDÃÚÀËêëË×ËÙ A Z
×XÁ©£ÄÄ
01 OVERFLOW
02 DIV BY ZERO
8ÊÄ
üVȯ û²&Ä
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 393 of 22
394
)
08 NUMBER BASE
09 MODE
10 DATA TYPE
♦
♦
ü¤¡D Êg9Z´X!È_V 7ÜÄ
; Zü Bin à Oct ê Hex D ßáX¤kÄ
©Ò±,2'!Ò5ãXk·¬£×êÙSüZü2'!Ò5ãßÝ
XÛ¸×_VÈü Pol à Param ê DifEq Ò5ãßSü DrInv Ä
♦
♦
♦
♦
♦
g9XDBꬣâDBO_áúÄ
g9XDâÑDêÛ¸DXDBO_áúÈ_VÚßcá0 sortA X
DÄ
üêe<Èg9ZáXDBO_×˹ßÌhX´VÄ
©ÒÚDB±,Ôþ±xXDBO_È_V £ÃßcÃÒ6êÒ5
DBgÄ
©ÒÚáÜÖXDB±,$ SüXYB¬£È_VDá
xStat È yStat ` fStat Ä
11 ARGUMENT
; XÑDêÛ¸åÝDÄ
12 DIM MISMATCH
üøþêîþDý Ãå£0DÈØDXÈDáÌÈ_V
{1,2}+{1,2,3}Ä
13 DIMENSION
♦
♦
♦
g9DXÈDíÃÄ
g9X½ êå£XÈD < 1 ê > 255 ê2HDÄ
2 ÚÄ
14 UNDEFINED
éüX¬£þnÄ
15 MEMORY
Y,áÈ´©; ÛnXQ¸×; Q¸!O¢Y,ô8ÔoM
Ä 17 ´ÅÄ
16 RESERVED
2©SüYB¬£Ä
17 INVALID
éüX¬£êSüXÑD´Ä
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 394 of 22
)
18 ILLEGAL NEST
©ÒÚ´XÑD0 seq( ê CALC ÑDXD×_VÈ der1(der1(x^3,x),x))Ä
19 BOUND
nXÞ$ãbÛnXß$ÈênXß$ûbÛnXÞ$Ä
20 GRAPH
WINDOW
♦
♦
21 ZOOM
ZOOM ¡0éKíÃשÒüÈnZ ZBOX Ä
22 LABEL
üêßÈ Goto Û¸XÛþü Lbl Û¸nÄ
23 STAT
♦
♦
♦
íà 26 29 ¥óü·ß
Äü SOLVER ¹ÑD
Ò5êÍb leftNrt ¬£XÒ
5ÄVpßÝ·È ¬ $
`àêñuÄ
395
nÒ5#)ÊÈÔþêîþk·¬£áÜÖ×_VnX xMax < xMin Ä
k·¬£þûêþãÈ´©7B¬ ×_VÚÒ5ýãYÎZuk ê
8th
e¤k and
9th
e¤k or ` xor
È _V 2^5 ê 5x‡32
æ;Ç
TI-86 xÃH,©È´8üÝßáÝ M 9<,©Ä_VÈTI-86 Ú 2p Ã
4sin(46)Ã 5(1+2) ` (2¹5)7 ·H,©Ä
ÌjS
j`äÚÀËXukÄ_VÈü<ã 4(1+2) È EOS
ukÚÀËX 1+2 È âü 3 ,¹ 4 Ä
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 397 of 22
398
)
ùÕ9<ãÔâXÇÀË ( ) )ÄݺÀËü<ãÔâ¾|ÎÇÀËÄÔíü
±,ê@6Û¸!XºÀË37BÄ
Dáý áêßÑDáâXºÀËJá·H,©ÄºÀËâXDÛnXD
ôý ôêßÑD·X¬£Ä
TOL ÄÙ
÷íÅ
-™)
ü TI-86 ÈÔoÑDXukz¬£ tol ` d 9{
o¬£ÃÑîE¡ TI-86 ukê¬ XózÄ
Ä
¬£ tol nüukÑD fnInt( à fMin( à fMax( ` arc( ȹ GRAPH MATH ¤k Gf(x)Ã
FMIN Ã FMAX ` ARC Ä 6 ´ÅXÃÂÄ tol OÔþ ‚ 1EL12 7D
±,ü d XDOÔþ7rDÄd n9SXûãÈTI-86 ü89Suk dxNDer
ãßÑD arc ×uk nDer ×uk¤k dyàdx à dràdq à dyàdt à dxàdt à INFLC à TANLN Ã
ARC ` dxNDer ãßXÝÑDÄ 6 ´ÅÄ
ü#)êßcü X ÚD±, tol ê d Äù¢ CATALOG ݽ tol ` d Ä
à ùÈyg9 tol È¢ CHAR GREEK °)ݽ d Ä
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 398 of 22
)
399
¯±Þ
ZÔûXzÈTI-86 üY¼±-X!Dîb!Dı,üY,Xü 14 !D
+`Ý!ÛD9<Ä
♦ ÃÚSzî 12 !XD±,ûîDk·¬£×ÃÚSzî 14 !XD±,
¬£ xScl à yScl à tStep ` qStep Ä
♦ 'ÔþDÊÈXD BãBÄ 1 ´Å¯ ¯áh9ÈÔîÝ 12 !D
+`Ý!ÛDÄ
♦
4 ´£ÄZA¯ Ã?¯ ``¯ DXukÄ
99appx.SCH TI-86, Appendix, Chinese Bob Fedorisko Revised: 98-10-21 14:34 Printed: 98-10-21 14:35 Page 399 of 22
400
)
TI r×[ãGgæ
TI [r×gæ
ÝG TI {`áuXºµCÈËî e-mail â TI (Ïê TI ukÄûbÅÈ 55, 300
[ ] È 319, 369
^ÄÛDÅÈ 48
{ } È 316
10^Ä 10 X n õÅÈ 48, 337
ÜÄ`¯ ÅÈ 271
ßÄA¯ ÅÈ 302
ÞÄãDÅÈ 278
Ý È 326
4BinÄ@6`¯ ÅÈ 68, 272
4Cyl Ä@6Å6$ÛÅÈ
174, 278
4Dec Ä@6¯ ÅÈ 279
4DMS Ä@6äz/Ú/¦ÅÈ 51,
285
4Frac Ä@6ÚDÅÈ 52, 298
4Hex Ä@6A¯ ÅÈ 68,
303
4Oct Ä@6?¯ ÅÈ 327
4PolÄ@6U$ÛÅÈ 71, 174,
336
4REAL Ä@6rDÅÈ 156,
170, 179
4Rec Ä@6Ȧ$ÛÅÈ 71,
174, 343
4Sph Ä@6×$ÛÅÈ 174,
360
[ENTRY] È 19
10 X (10^)È 20, 34, 337
absıÍÅ
È 49, 71, 175, 185,
267
ALLN È 77
ALL È 43, 232
ALL+È 77
Ans ÄÞõ§pÅÈ 29, 30, 41,
269
APD È Automatic Power
Down
arc(È 54, 269
ARC È 96, 98
Asm ÄêÁÔßcÅÈ 269
AsmComp Äê¥êÁÔß
cÅÈ 226, 270
AsmPrgm ÄêÁÔßcÅÈ
226, 270
aug(È 160, 184, 270
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 1 of 14
Automatic Power Down È 17
Axes( È 271
BASE BIT °)È 69
BASE BOOL Ä×èŰ)È 68
BASE CONV Ä6kŰ)È 68
BASE TYPE °)È 67
BASEÕ-ÚÄA¯ Ű)È 67
BASE °)È 66
BCKUP ÄY,ÛÑÅÈ 237
Bin Ä`¯ ÅÈ 35, 272
BOX Ä GRAPH ZOOM °)ÅÈ
14, 92, 93
BOX Ä ZOOM °)ÅÈ 208
BREAK °)È 26
CALC ÄÃÚŰ)È 54
CATALOG È 25, 38
¿ó¹Rn!<È 262
CATLG Ä CATALOG ÅÈ 43
CATLG-VARS Ä CATALOG ¬
£Å°)È 43
CHAR GREEK °)È 46
CHAR INTL ÄÑŰ)È 46
CHAR MISC ÄJªÅ°)È 46
CHAR Ä+úŰ)È 45
402
öé
Circl(È 273
CIRCL ÄÚÅÈ 105, 106
CLDRWÄÙ8Ò6Å
È 103, 105,
273
ClLCDÄÙ8 LCD ÅÈ 216, 273
ClrEnt ÄÙ8g9ÅÈ 232, 273
ClTblÄÙ8¤k<ÅÈ 114, 216,
273
cnorm Äë×DÅÈ 183, 273
cond Ä5ÊêËÅÈ 183, 274
conjÄEAáDÅ
È 71, 175, 185,
275
CONS BLTINÄYB £Å
°)È
58
CONS EDIT °)È 60
CONS Ä £ÅÈ 43
CONS Ä £Å°)È 58
CONV AREA °)È 63
CONV ENRGY ÄѣŰ)È
64
CONV FORCE °)È 64
CONV LNGTH ÄSzŰ)È
63
CONV MASS °)È 64
CONV POWER °)È 64
CONV PRESSÄ_Ű)È 64
CONV SPEED °)È 64
CONV TEMP ÄýzŰ)È 8,
63
CONV TIME °)È 63
CONV VOL Ä'ÃŰ)È 63
CONV Ä6kŰ)È 62
corr ÄÌGÏDÅÈ 193
cos L1 Ä¡-úÅÈ 48, 276
cos Ä-úÅÈ 48, 186, 276
cosh L1Ä¡ Æ-úÅÈ 51, 277
cosh Ä Æ-úÅÈ 51, 277
CPLX ÄáD¬£ÅÈ 43, 71
cross(È 173, 277
cSum(Ät`ÅÈ 160, 278
CUSTOM °)È 44
ËñMÈ 44
Ù8MÈ 45
CylVÄÅ6å£$ÛÅÈ 36, 278
Dec į ÅÈ 35, 65
Dec į uD©ÅÈ 278
DELc Äô8ëÅÈ 179
DELET È 60
DELf Äô8ÑDÅÈ 77
DELi Äô8ôÅÈ 170
DELr Äô8 ÅÈ 179
Deltalst(Äô8DÅÈ 160, 279
DelVar(Äô8¬£ÅÈ 219, 280
der1(ÄÔ ÐDÅÈ 54, 280
der2(Ä` ÐDÅÈ 54, 280
det Ä ëãÅÈ 183, 281
DFLTS ĬxÅÈ 232
DifEqÄÚßãÅÈ 35, 74,
239, 281
difTol ÄÃÂÅÈ 136
dim ÄÈDÅÈ 173, 184, 281
dimLÄDXÈDÅÈ 159, 282
DirFld Äå³ÅÈ 134, 282
Disp ÄÅÈ 216, 283
DispG ÄÒ5ÅÈ 283
DispT Ĥk<ÅÈ 284
DIST ıÅÈ 96, 98
dot(È 173, 285
dr/dq È 122
DRAW È 75, 88
DrawDot È 84, 285
DrawFĬ ÑDÅÈ 103, 107,
286
DrawLine È 84, 286
DrEqu(Ĭ ßÅÈ 145, 287
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 402 of 14
DrInvĬ ¡ÑDÅ
È 103, 107,
287
DS<(Ä£ 1 `ÇÅÈ 219, 288
DUPLICATE NAME °)È 241
dx/dt, 130
dxDer1 ÄBÚÅÈ 36, 75,
288
dxNDer ÄDÚÅÈ 36, 75,
288
dy/dt È 130
dy/dx È 96, 99, 130
E ÄÛDÅÈ 48, 292
e^Ĺ e iXÅÈ 288
eigVc ÄMUå£ÅÈ 183, 289
eigVl ÄMUÅÈ 183, 289
Else È 218, 306
e-mail Ä TI ü ÕÅÈ
392
End È 218, 290, 297, 306
EngĹßD©Å
È 34, 20, 290
ENTRY ,|³È 28, 29
EOS Ä Equation Operating
System
Eq4St(ÄÚß@6+úÅÈ
227, 290
eqnÄßŬ£È 54, 203, 205
öé
EQU Ä߬£ÅÈ 43
EStep È 136
Euler ©È 133, 291
eval È 52, 76, 88, 101, 122,
130, 150, 291
evalF(È 54, 292
e x Ĺ D e iXÅÈ 48
EXIT Ī\DBôÕÅÈ 241
EXPLR Ä#ÅÈ 148
ExpR ÄÛD²&ÅÈ 190, 293
exp ¬£È 54, 203
fcstx ÄX x ÅÈ 294
fcsty ÄX y ÅÈ 294
Fill(È 160, 173, 295
Fill È 184
Fix È 295
FldOff Äp[`å³GÁÅÈ
134, 295
fldPic ijŬ£È 138
fMax(ÄÑDÔûÅÈ 54, 296
FMAX ÄÑDÔûÅÈ 96, 97
fMin(ÄÑDÔãÅÈ 54, 296
FMIN ÄÑDÔãÅÈ 96, 97
fnInt(ÄÑDÃÚÅÈ 54, 296
FnOff ÄÑDGÁÅÈ 296
FnOn ÄÑD'ÔÅÈ 297
For(È 218, 297
Form(È 161, 298
FORMT ÄÒ5ãÅÈ 76
fPart ÄÚD¼ÚÅÈ 49, 176,
186, 298
fStat ÄeDDÅÈ 189
FuncÄÑDãÅÈ 35, 74, 239,
299
gcd(ÄÔû@Ú¡ÅÈ 52, 299
GDB ÄÒ5DBgÅÈ 43
GDB ¬£È 102
Get(È 299
getKy ĪÕÅÈ 216, 300
ÕÒ, 217
GOTO È 26, 27, 300
GRAPH DRAW °)È 75, 103,
122, 145
GRAPH LINK È 235
GRAPH MATH °)È 75, 95,
122, 130
GRAPH MATH k$
JªBXE¡È 96
Sü ‰f(x)Ã DIST ê ARC È
98
Sü dy/dx ê TANLN È 99
Sü ISECT È 100
Sü ROOT Ã FMIN Ã FMAX
ê INFLC È 97
Sü YICPT È 100
GRAPH ZOOM °)È 75, 91,
147
GRAPH Ä·<°)ÅÈ 206
GRAPH °)È 27, 31, 75, 88,
117, 126, 133
GrStl(ÄÒ5 ãÅÈ 220, 302
Hex ÄA¯ ÅÈ 35, 302
Hist ÄÈÒÅÈ 303
HORIZ ÄGÅÈ 105, 106
Horiz È 304
IAsk È 304
IAuto È 304
ident Ä)! ÅÈ 184, 304
If, 218, 305, 306
imag Ä.DÅÈ 71, 175, 185,
306
INFL C ĤÅÈ 96, 97
INIT C Äñ5ÊÅÈ 136
InpSt È 217, 307
Input Ä PRGM I/O °)Å
È 216,
307
INSc Ħ9ëÅÈ 179
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 403 of 14
403
INSf Ħ9ÑDÅÈ 77
INSi Ħ9ôÅÈ 170
INSr Ħ9 ÅÈ 179
int ÄHDÅÈ 49, 176, 186, 308
inter(Ħ9ÅÈ 309
Internet
e-mail Ä TI ü ÕÅ
È
392
ßQßcÈ 235
IPart ÄHD¼ÚÅÈ 6, 49, 176,
186, 309
IS>(Är 1 `ÇÅÈ 219, 310
ISECT ÄxÅÈ 96, 100
Lbl ÄÛÅÈ 219, 224, 311
lcm(ÄÔã@áDÅÈ 52, 311
LCust(
ÄtQ¾n°)Å
È 220,
311
leftNrt È 202
LgstR Äe²&ÅÈ 190, 193,
313
li4vc ÄD@6å£ÅÈ 160,
174, 316
Line(È 314
LINE È 104, 105
LINK SEND85 °)È 239
LINK SEND °)È 236
404
öé
LINK °)È 236
LinR Äû²&ÅÈ 190, 315
LIST NAMES °)È 153, 189
LIST OPS °)È 159
LIST °)È 152
ln ľ ÍDÅÈ 48, 316
lngth Ä+úSzÅÈ 227, 316
LnR ÄÍD²&ÅÈ 190, 317
log È 48, 318
LU(Äßݦ-ÞݦÅÈ 183, 318
Macintosh
ÒyÈ 235
MATH ANGLE °)È 51
MATH HYPÄ ÆÅ°)È 51
MATH MISC ÄJªÅ°)È 52
MATH NUM ÄD+Ű)È 31,
49
MATH PROB ÄV[Ű)È 50
MATH ÄÒ5°)ÅÈ 88
MATH È 75
MATH °)È 31, 49
MATRX CPLX ÄáDŰ)È
185
MATRX MATH °)È 183
MATRX NAMES °)È 178
MATRX OPSĤkŰ)È 184
MATRX Ľ Ű)È 178
MATRX Ľ áÅÈ 43
max(È 49, 160, 319
maxX È 193
maxY È 193
MBox È 319
Med Ä!ÅÈ 193
MEM DELETÄô8Ű)È 231
MEM FREE ÄÃüY,ÅÈ 230
MEM RESET °)È 232
MEM ÄY,Ű)È 29, 230
MEM ÄÙ8Y,ÅÈ 232
Menu(È 219, 320
min(È 49, 160, 320
minX È 193
minY È 193
mod(È 49, 320
mRAdd(È 321
mRAdd È 184
multR(Ä, ÅÈ 184, 322
n iju§p¬£ÅÈ 193
nCr ÄÜDÅÈ 50, 322
nDer(ÄDÐDÅÈ 54, 323
nPr ÄfëDÅÈ 50, 326
Oct Ä?¯ ÅÈ 35, 327
OneVa ÄÔÅÈ 189, 191 È
327
Outpt(È 217, 329
OVERW ÄZmÅÈ 241
P2Reg Ä`õ²&ÅÈ 190, 330
P3Reg ÄÝõ²&ÅÈ 190, 331
P4Reg įõ²&ÅÈ 190, 332
Par, 74
Param ÄDãÅÈ 35, 239,
333
PC
ÒyÈ 235
PEN È 105
pEval(È 52, 334
pi È 59
PIC ÄÒ6áÅÈ 43
PIC £
±,Ò5È 102
g9È 76
PlOffijuÒGÁÅÈ 195, 334
PlOnijuÒ'ÔÅÈ 195, 334
Plot1(È 335
PLOT1 È 195
Plot2(È 335
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 404 of 14
PLOT2 È 195
Plot3(È 335
PLOT3 È 195
PolÄU$ÛãÅ
È 35, 74, 239,
336
PolarCÄU$ÛáDãÅÈ 35,
336
PolarGCÄU$ÛÒ5$ÛÏÅÈ
84, 336
poly È 337
PRegC È 193
PRGM CTL °)È 218
PRGM I/O Äg9/gÎŰ)È
215
PRGM ÄßcáÅÈ 43
PRGM °)È 214
prod Ä,ÃÅÈ 52, 160, 338
Prompt Ä PRGM I/O °)ÅÈ
216, 338
PtChg(È 338
PTCHG È 105
PtOff(È 338
PTOFF È 105, 108
PtOn(È 338
PTON È 105, 108
PwrR IJ&ÅÈ 190, 339
öé
PxChg(È 103, 340
PxOff(È 103, 340
PxOn(È 103, 340
PxTest(È 103, 340
Q'n ߬£È 135
Qrtl1 È 193
Qrtl3 È 193
r
Äûzg9ÅÈ 341
rAdd(È 340
rAdd È 184
Radian ĦzãÅÈ 35
rand Bin(Äc`MãÅÈ 50,
341
rand Int(ÄcHDÅÈ 50, 342
rand ÄcDÅÈ 50, 341
randM(Äc½ ÅÈ 184, 342
randNorm(Äc7ÕÅÈ 50,
342
RCGDB Ä×üÒ5DBgÅÈ
76, 88, 343
RcPic Ä×üÒ6ÅÈ 76, 102,
343
RCPIC °)È 76
REAL È 43, 175, 185, 343
RectC ÄȦ$ÛáDÅÈ 35,
344
RectGC ÄȦÒ5$ÛÏÅÈ
84, 344
RectV ÄȦå£$ÛãÅÈ
36, 344
RECV Ä LINK SND85 °)ÅÈ
240
RECV Ä LINK °)ÅÈ 236
ref Ä ÅÈ 184, 344
RENAM Ä¡QáÅÈ 241
Repeat Ä PRGM CTL °)ÅÈ
218, 345
Return Ä PRGM CTL °)ÅÈ
219, 345
RK (Runge-Kutta) ©È 133, 345
rnorm Ä ×DÅÈ 183, 346
ROOT È 96, 97
x‡È 346
RotL Ä~ºÏÅÈ 69, 347
RotR Ä~ÇÏÅÈ 69, 347
round(È 49, 176, 348
rref ÄTêX ½ ÅÈ 184,
348
rSwap(Ä B6ÅÈ 184, 348
Scatter ijuÒXO_ÅÈ 349
SciÄ¥:D©ÅÈ 20, 34, 349
SELCT È 112
Select(È 161, 350
SELECT È 77
SEND WIND #)È 238
Send(È 216, 350
SEND Ä LINK °)ÅÈ 236
seq(ÄcëÅÈ 52, 160, 351
SeqG ÄcëÒ5ÅÈ 84, 351
SetLE È 159
SetLEdit È 161, 351
Shade(È 103, 104, 352
ShftL ĺÏÅÈ 69, 353
ShftR ÄÇÏÅÈ 69, 353
ShwSt Ä+úÅÈ 354
sign È 49, 354
SimulG Äàʬ ÅÈ 84, 354
SIMULT ENTRY °)È 208
SIMULT RESULT °)È 209
simult(È 210, 354
SIMULT õc#)È 208
sin L1 Ä¡7úÅÈ 48, 355
sin Ä7úÅÈ 48, 186, 355
sinh L1 Ä¡ Æ7úÅÈ 51, 356
sinh Ä Æ7úÅÈ 51, 356
SinR Ä7ú²&ÅÈ 190, 193,
357
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 405 of 14
405
SKIP È 241
SlpFld Äp[³ÅÈ 134, 358
SND85 Ä LINK °)ÅÈ 236
SOLVE È 205
Solver(È 358
sortA È 159, 359
sortD È 159, 359
Sortx È 160, 359
Sorty È 160, 359
SphereV Ä×å£$ÛãÅÈ
36, 360
St4Eq(Ä+ú@6ßÅÈ
227, 361
STAT PLOT °)È 195
STAT PLOT Õ#)È 194
STAT VARSiju¬£Å°)È
192
STAT iju§p¬£ÅÈ 43
STATCALC ÄukŰ)È 189
STAT °)È 188
STGDB ı,Ò5DBgÅÈ
76, 88, 361
STOa È 210
STOb È 210
Stop È 219, 362
406
öé
STOx È 210
STPICı,Ò6Å
È 76, 88, 362
STPIC °)È 76
StReg ı,²&ßÅÈ 190,
362
STRNG Ä+úŰ)È 227
STRNG Ä+ú¬£ÅÈ 43
STYLE È 77
sub(Ä+úX$Å
È 227, 363
Sx iju§p¬£ÅÈ 193
T Ä@BÅÈ 367
TABLE °)È 110
tan L1 Ä¡7ÛÅÈ 48, 365
tan Ä7ÛÅÈ 48, 364
tanh L1 Ä¡ Æ7ÛÅÈ 51, 365
tanh Ä Æ7ÛÅÈ 51, 365
TanLn(È 103, 107, 366
TANLN Ä7ÛÅÈ 96, 99
TBLST Ĥk<Bêe<ÅÈ
112, 113
TEST °)È 55
Text(È 366
TEXT È 105
Then È 218, 305, 306
TI-GRAPH LINK È 235
tMax È 127, 136
tMin È 127, 136
TOL ÄÃÂêe<ÅÈ 398
tPlot È 136
TRACE ÄÛÅÈ 75
TRACE Ä·<°)ÅÈ 207
Trace ÄÒ5°)ÅÈ 367
TRACE È 88
tStep È 127, 136, 138
TwoVa Ä`ÅÈ 189, 368
unitV Ä)!å£ÅÈ 173, 368
VARS CPLXÄáD¬£Å#)È
71
VARS EQU °)È 203
vc4li ÄÚå£@6DÅÈ
160, 174, 369
VECTR CPLXÄáDÅ
°)È 175
VECTR MATH °)È 173
VECTR NAMES °)È 169
VECTR OPSĤkŰ)È 173
VECTR Äå£áÅÈ 43
VECTR °)È 169
VERTÄVÈÅÈ 104, 106, 369
While È 218, 369
WINDÄk·¬£ÅÈ 43, 35, 75,
238
WIND Ä·<°)ÅÈ 206
XMIT ÄôÕÅÈ 237, 240
xRes ÄÚ|[ÅÈ 81
xScl ÄzÅÈ 81
xStat Ä x ¬£DÅÈ 189
xyline È 370
x ¬£È 77
y(x)=È 75
YICPT Ä y xÅÈ 96, 100
yScl ÄzÅÈ 81
yStat Ä y ¬£DÅÈ 189
y ¬£È 77
ZDATA Ä GRAPH ZOOM °
)ÅÈ 92
ZData È 371
ZDECM Ä GRAPH ZOOM °
)ÅÈ 92
ZDecm È 372
ZFACT Ä ZOOM FACTOR ÅÈ
92, 208
ZFIT Ä GRAPH ZOOM °)ÅÈ
92
ZFit È 129, 373
ZIn ÄûÅÈ 373
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 406 of 14
ZIN ÄûÅÈ 92, 208
ZINT Ä GRAPH ZOOM °)ÅÈ
92
ZInt È 374
ZOOM È 14, 75, 88
DÒ5È 129
n È 93
U$ÛÒ5È 121
ZOOMX Ä GRAPH ZOOM °
)ÅÈ 92
ZOOMY Ä GRAPH ZOOM °
)ÅÈ 92
ZOOM ¡0È 147
ZOUT ÄýãÅÈ 92, 208, 375
ZPREV Äý!Ôþk·ÅÈ
92, 375
ZRCL Ä GRAPH ZOOM °)Å
È
92, 95
ü ïÎXý¬£È 239
ZRcl Ä¡×üýÅÈ 376
ZSQR Ä GRAPH ZOOM °)Å
È
92
ZSqr È 376
ZSTD Ä GRAPH ZOOM °)Å
È
92
ZSTDÄÛ¬xÅÈ 208, 377
öé
ZSTO Ä GRAPH ZOOM °)Å
È
92, 95
ZTRIG Ä GRAPH ZOOM °)Å
È
92
ZTrig È 378
A
] 4È 16
B
?¯ DÈ 35, 66
?¯ HDÈ 326
RÚ¨ (%)È 334
±,È 18
±,¬£ (¶)È 362
±,ß§pÈ 210
±,ßÏDÈ 210
±,úËÈ 22
±,DBÈ 39
±,Ò5È 102
Ûü 4È 16
êß
êeßcÈ 223
ïÎßcÈ 214
×üßcÈ 224
á ßcÈ 225
êÁÔÈ 225
9¼È 214
ô8ßcÈ 223
Sü¬£È 225
g9Q¸ È 220
ßQêßcÈ 225
ÆnÈ 214
¤ ßcÈ 221
ßcÈ 222
êeßÈ 205
êe<°)È 33
¬£È 21
x ¬£È 77
y ¬£È 77
ïÎÈ 39
ûm`ãmáÄÈ 39
á È 41
BDBO_ÚOÈ 42
Ú§p±,È 3, 30
ÚDB±,È 39
áÄÈ 44
ô8È 45
È 41
¤k<X¬£ßÈ 114
ü<ãÈ 4
ü¤k<#)È 111
¡×üÈ 42
Û'ÔÈ 84, 310
ÛGÁÈ 84, 310
<ãÄÁÅ
ukÈ 29, 30
SüáDÈ 71
Sü½ È 181
Süå£È 172
g9DÈ 153
<ãÈ 18, 20, 24, 25, 26, 30,
48
êeÈ 4
g9È 24
9ÕÄ`¯ DÅÈ 66
áb (ƒ)È 326
×èk$È 68, 268, 325, 328,
370
C
°)
È 32
ô8È 6, 33
Þ¼È 32
ÔÎÈ 6
ß¼È 33
È 31
ݽMÈ 32
üêe<È 33
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 407 of 14
407
°)X°)MÈ 31
°)ÒÈ 380
DÈ 25
Dß
ô8È 127
Ò5È 126
ݽ`ª\Ý½È 127
DÒ5È 74
k·¬£È 127
nÈ 125
ßêe<È 126
ãÈ 35, 126
³þÈ 128
¬ÒÈ 130
¬xÒ5 ãÈ 126
ýÈ 129
Ò5ãÈ 128
Ò5¹KÈ 128
È 128
¾Ï|ÛÈ 128
¦9ÛÈ 22, 23
ª\È 23
£È 59
nÈ 58
áÄÈ 61
YBÈ 58
408
öé
ü ¾nÈ 58, 60
£Y,MUÈ 17, 34
, (¹)È 321
,©g9
öÈ 29
ßcêe<È 214
°)`#)È 215, 220
ßcÈ 56
¡nü ïÎX £È 60
8©Ä/ÅÈ 284
8©úËÈ 3
ôÕDBÈ 234, 240
¡á´ÄÛÞÈ 242
k·¬£È 239
íÃ6È 242
Y,áÈ 242
ݽ¬£È 238
k·êe<È 75
U$ÛÈ 118
k·¬£È 82
@x ` @y È 83
¬È 12, 82
Ò5#)È 81
ÚßÈ 135
íÃÈ 17, 27
7È 27
9¾Ì²@ãÈ 165
È 27
íð)È 31
íÃO_È 27
íÃ6È 393
íÃ\CÈ 27
D
ûm+¡ÛÈ 22
ûm+¡È 21
ûm+¡+úÈ 22
ûb (>)È 300
ûbb (‚)È 301
'!g9È 19
Ù8È 23
'!MÈ 38
ÐD
ukÈ 7
bÄ=ÅÈ 290
'Ô`GÁÈ 108
¬ È 108
4È 2, 16-18
4¦È 16
±Ä TI ü ÕÅÈ 392
£á\CÈ 16, 18
×ü¬£È 18, 42
z ¡È 51
zàÚà¦ãÈ 51
zXáDãÈ 70
z£)!
@6È 61
zg9 (¡)È 279
ÃÃ ÚÈ 234, 235
ͨz
×HÈ 2, 18
îMãX
±,¬£È 212
îMã ¹R<È 211
îMãÏD
±,¬£È 212
îMãÈ 52
E
`¯D È 35, 66
`¯ HDÈ 271
F
¡ÑD
¬ÒÈ 107
×DÈ 173, 183, 323
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 408 of 14
ß
êeÈ 205
ukÈ 122, 130
·È 206
g9È 203
ßêe<È 74, 75, 76, 80
DÈ 126
U$ÛÈ 118
g9ÑDÈ 77
Ò5 ãÈ 77
ßêe<°)È 76
߬£È 40, 43, 78
ß¡0Ï³È 397
ß,|
¾|²&È 191
ß§p
±,¬£È 210
ß·<È 40, 202
0Ò¹KÈ 207
ßg9êe<È 203
ßÏD
±,¬£È 210
ãBÈ 19, 20, 70
¬È 34
D È 65
È 34
öé
2Ä×èÅÈ 66, 69, 325
ÚhúÈ 70
ÚDÈ 3, 19
BDÈ 35, 295
óD
g9È 19
óDúË (L)È 20
áDÈ 29, 70
ÚhúÈ 70
g9È 20
hüü<ãÈ 71
ü§pÈ 70
0§pÈ 5
0DôÈ 156
áD¬£È 43
áD°)È 71
áDXU¦<È 72
áDXr¼È 71
áDX.¼È 71
áDãÈ 35
áD½ È 180
áDÈ 48
á!Y,È 232
È 270
G
¹R<È 211
³þÛÈ 75, 90, 144, 205
¿óýÈ 91
GÏÈ 90
06³þJ»Á¤ ßcÈ
91
Ï|È 90, 121, 129
üDÒ5È 128
üU$ÛÒ5È 120
³þÑDÈ 11
È TI-86 BÈ 39
È6 4È 16
@ã
È 166
²yÈ 163
²yDáÈ 162
uÈ 204
üxfã·êe<È 205
GÁ TI-86È 2, 17
GÏÑDÈ 55, 56
ÛÈ 17, 22
¦9È 22
ûm+¡È 22
åÈ 23
¬È 23
³þÈ 90
µÈ 22
g9È 22
!BÈ 19, 20, 21, 25
ãm+¡È 22
Ý½È 38
Ï|È 23
¾Ï|È 128, 144, 205
®|È 19
Ñ+¡È 46
H
ÑDÈ 25, 38
³þÈ 11
¬ÒÈ 107
¬ È 11
ukÈ 101
¬È 48
ª\Ý½È 13
ô8È 77
g9È 25
âDÔKSüÈ 5, 161
üßêe<g9È 76,
77, 78
ÑDXÁ©È 25
ÑDÒ5È 73, 74
ãÈ 35
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 409 of 14
409
½ XÈ 181
ÜJÄ+ÅÈ 274
`È 52, 160, 364
ûzáDãÈ 70
ûz¦zãÈ 75, 341
ûzg9 (r)È 341
"ãýz
@6ãýzÈ 8
6k
4Bin È 272
4Dec È 279
4DMS È 51, 285
4Frac È 52, 298
4Hex È 303
4Oct È 327
4Pol È 336
4REAL È 156
4Rec È 343
4Sph È 360
Eq4St È 227
li4vc È 160
St4Eq(È 227, 361
vc4li È 160
6kz£)!È 61
6k¹óz<XDÈ 65
410
öé
²&õ_È 191
êÁÔßcÈ 225
¬Ò
DÒ5È 130
È 108
ÑDÈÛÈ¡ÑDÈ 107
U$ÛÒ5È 122
f¬ ÈÈÆÈ 107
ÚßÒ5È 145
È 105
ÚÈ 106
ÈÈ 105, 106
¬ ÑDÈ 9, 11
¬ ³uDBÈ 194
êÄ×èÅÈ 69, 328
J
U$Ûß
³þÈ 120
U$ÛáD ()È 336
U$ÛáD<6ãÈ 20, 70
U$ÛáDãÈ 35, 336
U$ÛÒ5È 74, 84
k·êe<È 118
nÈ 117
ßêe<È 118
ãÈ 35
³þÈ 120
³þÛÈ 120, 121
¬ È 122
¬xÒ5 ãÈ 118
ýÈ 121
Ò5ãÈ 119
Ò5¹KÈ 119
È 119
¾Ï|ÛÈ 119
uk
È 26
ukÐDÈ 7
ukßÈ 122, 130
D©È 34
¹ßD©È 34
¥:D©È 34
BîD©È 34
¬ÒÈ 86
¬Ò¹KÈ 102
ü GRAPH MATH È 95
üÒ5ýÈ 94
t (+)È 267
£© (N)È 363
¹ RAM #)È 230
È 48
ûm+¡È 21
`sÑÈ 21
UsÑÈ 19, 21, 22
ÕÒÈ 217
Ú"ãýz@6ãýzÈ 8
xfã·êe<È 204
Þß$È 204
¦zÈ 71, 175, 185, 269
Äüz<ÅÈ 51
¦zãÈ 35, 75, 279
¦zÈ 35
, (!)È 50, 294
y ôÕXDBÈ 241
§p
±,¬£È 41
È 19
¬ È 148
§pÈ 20, 24
§p©ãÈ 133
BÚ
½ È 29
ïÎÈ 178, 180
¢Y,ô8È 180
ÀË []È 180, 319
áÄÈ 43
Sü X êeÈ 182
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 410 of 14
SüD:ÑDÈ 185
ôÈ È$½ È 181
ÆnÈ 178
ü<ãSüÈ 181
½ êe<°)È 179
½ g9 []È 319
K
Ô TI-86 È 2, 17
Ëñ¬£È 41
¿ó¹Rn!<Ä A Z ×Å
È
262
¿óýÈ 91
üDÒ5È 129
üU$ÛÒ5È 120
L
²yÛ¸È 235
²Ág9È 26
ÒyÝMÈ 234
ÒyÛ¸È 235
(ß·<È 208
M
µÛÈ 22
Û<È 26, 85
öé
Q¸ È 220
õÈ 49
N
Y¦/ê|êe<È 53
Y,È 16, 17, 22, 28, 29, 223
á!È 3, 232
ÃüXÈ 230
ô8MÈ 231
Y,ÛÑ
ñêÈ 237
Zª:È 237
YB¬£È 39, 45, 138
YB £È 58
ÚÈ 309
P
G ( 2)È 360
G (‡)È 7, 360
GÏÈ 90
Q
KÈ 50
Û
¬ È 107
Ù8 CUSTOM °)MÈ 45
Ù8 ENTRY ,|³È 29
·< ZOOM °)È 208
·<°)È 206
·<Ò5È 207
ÚßÈ 139
þ¹¬£È 206
Æ
¬ÒÈ 107
ÆXSzÈ 54
Æ£
Ò5È 86
üDÒ5È 129
üU$ÛÒ5È 120
S
Þ¼°)È 32
ݽÔþ°)MÈ 33
Þõ§pÈ 28, 29
±,¬£È 3
Þõg9È 26, 28
Þõg9È 8
öÈ 28
¡SüÈ 28
¡; È 19
Þß$ ={L1E99 È 1E99}È 204
Þß$È 204
ÞÔþ<ãX§pÈ 26
BÒ5ãÈ 83
BÒ5 ãÈ 80
Õ9Ë
ü½ X È 179
ü È 19
¯D È 35
¯ È 20
¯ ãÈ 34, 35, 65
n (012345678901)È 35
BÈ 35
¯ DÈ 278
A¯D È 35, 66
A¯ +ú°)È 67
rDÈ 29
rD¬£È 43
rDXHD¼Ú
È 6
\µCÈ 400
g9
±,È 29
; È 19
g9 CBLGET È 216
g9ÛÈ 18, 22, 23
DBO_ݽ#)È 42
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 411 of 14
411
D:ÑDÈ 48
â½ ÔKSüÈ 185
âDÔKSüÈ 161
DÐDÈ 54
DÚÈ 36
D È 65
Û«úÈ 65
×ÈÈ 66
ãÈ 35
O_ÈÛ«È 67
D O_úËÈ 67
D+
g9È 19
DÈ 29, 43, 52
±,È 154
¨WÈ 163
êeôÈ 166
¦9È 157
@ãÈ 166
ïÎÈ 157
¢Y,ô8È 154
¢Dêe<ô8È 158
ÀË{}È 316
²y@ãÈ 162, 166
ô8ôÈ 158
SüÈ 152
412
öé
DôÈ 154
̲X@ãÈ 165
âÑDÔKSüÈ 5
ü<ãg9È 153
0DÈ 161
Dêe<È 31, 67, 156, 188
²y@ãÈ 163, 164
ô8DÈ 158
Dêe<°)È 156
DáÈ 43
Dg9{}È 316
Dô
áDÈ 156
ô8È 158
DôÄÁÅ
±,¬£ 155
êeÈ 158
È 155, 158
Dô`È 52
ÆÑDÈ 51
k$
g9È 25
cDÈ 50
ýk·¬£
±,`×üÈ 95
T
MUúËÈ 39
¤È 22
Evalx=È 76
Name=È 22, 39, 76
Rcl È 42
Sto È 212
³uÚdÈ 188
§pÈ 192
³uDB
¬ È 194, 195
g9È 189
³uÒ
'Ô`GÁÈ 195
¬ÔàGÕÈ 81
BÈ 195
Ò5È 75
nÈ 74
Æ£È 86
06È 85
È 85
Â È 85
EÈ 104
V0È 85
È 26
Ò5k·XûãÈ 75
Ò5ãÈ 35
DÈ 126
ÑDÈ
U$ÛÈ 35, 117
BÈ 74
ÚßÈ 144
Ò5ã
DÒ5È 128
U$ÛÒ5È 119
#)È 76
BÈ 83
ÚßÈ 133, 137
Ò5¹K
üDÒ5È 128
üß·<È 207
üU$ÛÒ5È 119
üÚßÒ5È 144
Ò5BzÈ 89
Ò5#)È 75
Bk·¬£È 81
Ò5DBgÄ GDB ÅÈ 102
×üÈ 76
Ò5ý
n#)È 92
n nÈ 93
ûÈ 92, 93
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 412 of 14
¬ÒÈ 94
Bý´$È 93
ýãÈ 92, 93
Ò5 ãÈ 79
GrStl(È 302
¬È 10
BÈ 79
Ò6
±,È 102
×üÈ 102
Ù8È 103
Ôΰ)È 6, 33
W
%È 84
%'ÔÈ 84, 302
%GÁÈ 84, 301
Úß
DrEqu( È 287
EXPLR È 148
Q'n ߬£È 135
êe<È 134
¬Ô ÚßÈ 142
ñ5Êêe<È 136
k·¬£È 135
nÒ5È 132
öé
ãÈ 144
³þÈ 144
¬ §pÈ 148
·È 139
BÒ5ãÈ 132
BÒ5ãÈ 133
B$ÛHÈ 137
Sü EVAL È 150
Ò5È 132, 137, 139, 141,
142
Úßêe<È 134
ÚßÒ5È 74
ãÈ 35
¬ÒÈ 145
È 138
ÚãÈ 36
ÃÚÑDÈ 54
þukX<ã
±,È 9, 40
þ¹¬£
·È 206
X
ß¼°)È 32
È 17
°)È 31
ͨz
×HÈ 17, 18
§pXD©È 20
ÌÄ==ÅÈ 291
̲@ãÖ
·íÃÈ 165
; È 164
̲@ãD
¨WÈ 163
êeôÈ 166
ïÎÈ 162
ÒijuÒÅÈ 272
å£È 29
êeÈD`ôÈ 172
ïÎÈ 170
¢Y,ô8È 170
ÀË[]È 369
áDÈ 171, 180
È 171
6ãÈ 168
ÆnXÈ 168
âD:ÑDÔKSüÈ 176
¤kÈ 173
ü<ãSüÈ 172
å£êe<È 168
å£êe<°)È 170
å£g9 []È 369
å£$ÛãÈ 36
MXfëÈ 50
5ôÚ|[
ÍbÑDÒ5È 81
ãDÈ 35
ãm+¡ÛÈ 22
ãb (<)È 312
ãbb ()È 312
ݽÛÈ 38
Y
¹ x ¬£ÑDÈ 101
ÖêÄ×èÅÈ 69, 370
E
Ú|[È 104
ÒÈ 104
EÒÈ 80
ü ïÎX £È 43, 58, 60
ü ïÎXý¬£È 239
ü ÕÈ 392
âÄ×èÅÈ 69, 268
Á©íÃÈ 27
³ãÈ 134
ô
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 413 of 14
413
½ È 181
Ú
¬ È 106
ÚÀËÈ 20, 25, 56, 61, 397
¤k
`È 2
¤k<È 110
n!È 111
Ù8È 114
BÈ 113
Bêe<È 113
È 110
¤k<°)È 112
¤k<Bêe<È 113
¤kõcÈ 56
¤kõcíÈ 20, 62
¤ ßcÈ 221
H,©È 397
Z
V0Ä PRGM CTL °)ÅÈ 219
V0È 26, 333
V0Û<È 26
HD¼ÚÈ 49
7ÕÈ 34, 324
7ú
414
öé
ukÈ 3
Ȧå£$ÛÏÈ 36
Ȧ$ÛXáD6ãÈ 20
Ȧ$ÛáDÈ 70
Ȧ$ÛáDãÈ 35
Ȧ$ÛÒ5È 84
È
¬ÒÈ 107
È 24, 25, 29
Û¸È 25
g9È 25
; È 19
Û¸XÁ©È 25
Û¸cë
È 18
ÛD (∑)È 292
ÄßcÅÈ 222
ßcÈ 222
ukÈ 26
Ò5È 26, 27
#)È 17, 18, 23, 24, 26, 27
g9`§pÈ 18
@ÇÄ PRGM CTL °)Å
È 219,
224
@B ( T)È 367
$ßcÈ 224
$½
È 181
+úÈ 19
`È 22
ûãmÈ 22
FÈ 21
±FÈ 21, 22
ô8È 23
g9È 21
+¡È 22
+úÈ 29
±,È 226, 227
ïÎÈ 226
ÜJÈ 226
ÆnÈ 226
+úg9È 363
+¡ÕÈ 22, 44
ª\È 22
BÈ 22
¾|²&ßX,|È 191
¾ ÍDÈ 48
¾Ï|ÛÈ 84, 144
DÒ5È 128
U$ÛÒ5È 119
Ôû+úDÈ 22
0Ò¹KÈ 101
$ÛGÁÈ 84, 275
$ÛÔÈ 84, 275
$ÛHÈ 137
³ãÈ 137
$ÛHêe<È 137
$ÛHGÁÈ 84, 271
$ÛHÔÈ 84, 271
99index.SCH TI-86, Index, Chinese Bob Fedorisko Revised: 98-10-14 17:57 Printed: 98-10-14 17:57 Page 414 of 14
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : Yes Encryption : Standard V1.2 (40-bit) User Access : Print, Copy, Fill forms, Extract, Assemble, Print high-res Create Date : 1998:10:14 10:57:08 Producer : Acrobat Distiller 3.01 for Windows Creator : PSCRIPT.DRV Version 4.0 Title : Microsoft Word - $$front.SCH Modify Date : 2002:10:02 09:27:32-05:00 Page Count : 427 Page Mode : UseNoneEXIF Metadata provided by EXIF.tools