Intel(R) 64 And IA 32 Architectures Software Developer's Manual, Volume 2A 253666 Intel64 Archtectures Developers Manual Insruction Set Reference, A M
253666-Intel64%20and%20IA-32%20Archtectures%20Software%20Developers%20Manual-Volume%202A-Insruction%20Set%20Reference%2C%20A-M
User Manual: Pdf
Open the PDF directly: View PDF .
Page Count: 848
Download | |
Open PDF In Browser | View PDF |
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2A: Instruction Set Reference, A-M NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual consists of five volumes: Basic Architecture, Order Number 253665; Instruction Set Reference A-M, Order Number 253666; Instruction Set Reference N-Z, Order Number 253667; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part 2, Order Number 253669. Refer to all five volumes when evaluating your design needs. Order Number: 253666-037US January 2011 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The Intel® 64 architecture processors may contain design defects or errors known as errata. Current characterized errata are available on request. Intel® Hyper-Threading Technology requires a computer system with an Intel® processor supporting HyperThreading Technology and an Intel® HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information, see http://www.intel.com/technology/hyperthread/index.htm; including details on which processors support Intel HT Technology. Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization Technology-enabled BIOS and VMM applications are currently in development. 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information. Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality. Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com Copyright © 1997-2011 Intel Corporation ii Vol. 2A CONTENTS PAGE CHAPTER 1 ABOUT THIS MANUAL 1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET REFERENCE . . . . . . . . . . . . . . . . . . 1.3 NOTATIONAL CONVENTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Bit and Byte Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Reserved Bits and Software Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Instruction Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.4 Hexadecimal and Binary Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.5 Segmented Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.6 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.7 A New Syntax for CPUID, CR, and MSR Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 RELATED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1-3 1-4 1-4 1-5 1-6 1-6 1-6 1-7 1-7 1-8 CHAPTER 2 INSTRUCTION FORMAT 2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE 2-1 2.1.1 Instruction Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1.2 Opcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 2.1.3 ModR/M and SIB Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 2.1.4 Displacement and Immediate Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 2.2 IA-32E MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 2.2.1 REX Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 2.2.1.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 2.2.1.2 More on REX Prefix Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 2.2.1.3 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 2.2.1.4 Direct Memory-Offset MOVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 2.2.1.5 Immediates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 2.2.1.6 RIP-Relative Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 2.2.1.7 Default 64-Bit Operand Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 2.2.2 Additional Encodings for Control and Debug Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 2.3.1 Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 2.3.2 VEX and the LOCK prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2.3.3 VEX and the 66H, F2H, and F3H prefixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2.3.4 VEX and the REX prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2.3.5 The VEX Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2.3.5.1 VEX Byte 0, bits[7:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.3.5.2 VEX Byte 1, bit [7] - ‘R’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 Vol. 2A iii CONTENTS PAGE 2.3.5.6 2.3.6 2.3.6.1 2.3.6.2 2.3.6.3 2.3.7 2.3.8 2.3.9 2.3.10 2.3.11 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or dest Register Specifier2-21 Instruction Operand Encoding and VEX.vvvv, ModR/M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 3-byte VEX byte 1, bits[4:0] - “m-mmmm” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”. . . . . . . . . . . . . . . . . . 2-24 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp” . . . . . . . . . . . 2-24 The Opcode Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 The MODRM, SIB, and Displacement Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 The Third Source Operand (Immediate Byte). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 AVX Instructions and the Upper 128-bits of YMM registers . . . . . . . . . . . . . . . . . . . . . . 2-25 AVX Instruction Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 INSTRUCTION EXCEPTION SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 Exceptions Type 1 (Aligned memory reference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 Exceptions . . . . . . . . . . . . . . . . . . . Type 2 (>=16 Byte Memory Reference, Unaligned)2-31 Exceptions Type 3 (<16 Byte memory argument). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions) . 233 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions) . . . . . . . . . . . . . . . . . . . . 2-34 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues). . . . 2-35 Exceptions Type 7 (No FP exceptions, no memory arg). . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36 Exceptions Type 8 (AVX and no memory argument) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 Exception Type 9 (Intel AVX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38 CHAPTER 3 INSTRUCTION SET REFERENCE, A-M 3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1.1 Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX prefix) . 3-2 3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix) 3-4 3.1.1.3 Instruction Column in the Opcode Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 3.1.1.4 Operand Encoding Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . 3-9 3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . 3-10 3.1.1.6 CPUID Support Column in the Instruction Summary Table. . . . . . . . . . . . . . . . . . . . . . 3-11 3.1.1.7 Description Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 3.1.1.8 Description Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 3.1.1.9 Operation Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 3.1.1.11 Flags Affected Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 3.1.1.12 FPU Flags Affected Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 3.1.1.13 Protected Mode Exceptions Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 3.1.1.14 Real-Address Mode Exceptions Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 3.1.1.15 Virtual-8086 Mode Exceptions Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 3.1.1.16 Floating-Point Exceptions Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 3.1.1.17 SIMD Floating-Point Exceptions Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 3.1.1.18 Compatibility Mode Exceptions Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 3.1.1.19 64-Bit Mode Exceptions Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 iv Vol. 2A CONTENTS PAGE 3.2 INSTRUCTIONS (A-M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 AAA—ASCII Adjust After Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-23 AAD—ASCII Adjust AX Before Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-25 AAM—ASCII Adjust AX After Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-27 AAS—ASCII Adjust AL After Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-29 ADC—Add with Carry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-31 ADD—Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-35 ADDPD—Add Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . .3-38 ADDPS—Add Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . .3-40 ADDSD—Add Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . .3-42 ADDSS—Add Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . .3-44 ADDSUBPD—Packed Double-FP Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-46 ADDSUBPS—Packed Single-FP Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-49 AESDEC—Perform One Round of an AES Decryption Flow. . . . . . . . . . . . . . . . . . . . . . . . .3-52 AESDECLAST—Perform Last Round of an AES Decryption Flow . . . . . . . . . . . . . . . . . . .3-54 AESENC—Perform One Round of an AES Encryption Flow. . . . . . . . . . . . . . . . . . . . . . . . .3-56 AESENCLAST—Perform Last Round of an AES Encryption Flow . . . . . . . . . . . . . . . . . . .3-58 AESIMC—Perform the AES InvMixColumn Transformation. . . . . . . . . . . . . . . . . . . . . . . . .3-60 AESKEYGENASSIST—AES Round Key Generation Assist. . . . . . . . . . . . . . . . . . . . . . . . . . .3-62 AND—Logical AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-64 ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values . . .3-67 ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values . . . .3-69 ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values . 3-71 ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values 373 ARPL—Adjust RPL Field of Segment Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-75 BLENDPD — Blend Packed Double Precision Floating-Point Values. . . . . . . . . . . . . . . . .3-78 BLENDPS — Blend Packed Single Precision Floating-Point Values. . . . . . . . . . . . . . . . . .3-80 BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values. . . . . . .3-83 BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values . . . . . . . .3-86 BOUND—Check Array Index Against Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-89 VBROADCAST—Load with Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-92 BSF—Bit Scan Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-96 BSR—Bit Scan Reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-99 BSWAP—Byte Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-102 BT—Bit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-104 BTC—Bit Test and Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-107 BTR—Bit Test and Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-110 BTS—Bit Test and Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-113 CALL—Call Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-116 CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-135 CLC—Clear Carry Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-137 CLD—Clear Direction Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-138 CLFLUSH—Flush Cache Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-139 CLI — Clear Interrupt Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-141 Vol. 2A v CONTENTS PAGE CLTS—Clear Task-Switched Flag in CR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-144 CMC—Complement Carry Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-146 CMOVcc—Conditional Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-147 CMP—Compare Two Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-154 CMPPD—Compare Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . 3-157 CMPPS—Compare Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . 3-167 CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands . . . . . . . . . . . . . . . 3-174 CMPSD—Compare Scalar Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . 3-180 CMPSS—Compare Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 3-186 CMPXCHG—Compare and Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-192 CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes. . . . . . . . . . . . . . . . . . . . . 3-195 COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-198 COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-200 CPUID—CPU Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-202 CRC32 — Accumulate CRC32 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-238 CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values. . 3242 CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values . . . 3245 CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers. . 3247 CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers. . . 3250 CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-253 CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values. . . 3256 CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values . . . . 3259 CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers . . . 3262 CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-264 CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers . . . . 3267 CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer . . . . . . . . . . . . . . . . 3-270 CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-272 CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value . . . . . . . . . 3-274 CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value. . . . . . . . . . . 3-276 CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-278 CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer. . . . . . . . . . . 3-280 CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-282 vi Vol. 2A CONTENTS PAGE CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-285 CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-288 CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-291 CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-294 CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer 3-296 CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword3-298 DAA—Decimal Adjust AL after Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-300 DAS—Decimal Adjust AL after Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-302 DEC—Decrement by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-304 DIV—Unsigned Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-307 DIVPD—Divide Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . 3-311 DIVPS—Divide Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . 3-313 DIVSD—Divide Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . 3-315 DIVSS—Divide Scalar Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . 3-317 DPPD — Dot Product of Packed Double Precision Floating-Point Values. . . . . . . . . . 3-319 DPPS — Dot Product of Packed Single Precision Floating-Point Values . . . . . . . . . . . 3-322 EMMS—Empty MMX Technology State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-325 ENTER—Make Stack Frame for Procedure Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 3-327 VEXTRACTF128 — Extract Packed Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . 3-331 EXTRACTPS — Extract Packed Single Precision Floating-Point Value . . . . . . . . . . . . 3-333 F2XM1—Compute 2x–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-335 FABS—Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-337 FADD/FADDP/FIADD—Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-339 FBLD—Load Binary Coded Decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-343 FBSTP—Store BCD Integer and Pop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-345 FCHS—Change Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-348 FCLEX/FNCLEX—Clear Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-350 FCMOVcc—Floating-Point Conditional Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-352 FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS . 3358 FCOS—Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-361 FDECSTP—Decrement Stack-Top Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-363 FDIV/FDIVP/FIDIV—Divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-365 FDIVR/FDIVRP/FIDIVR—Reverse Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-369 FFREE—Free Floating-Point Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-373 FICOM/FICOMP—Compare Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-374 FILD—Load Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-377 FINCSTP—Increment Stack-Top Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-379 FINIT/FNINIT—Initialize Floating-Point Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-381 FIST/FISTP—Store Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-383 FISTTP—Store Integer with Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-387 FLD—Load Floating Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-390 Vol. 2A vii CONTENTS PAGE FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant. . . . . . . . . . . . 3-393 FLDCW—Load x87 FPU Control Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-395 FLDENV—Load x87 FPU Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-397 FMUL/FMULP/FIMUL—Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-400 FNOP—No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-404 FPATAN—Partial Arctangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-405 FPREM—Partial Remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-408 FPREM1—Partial Remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-411 FPTAN—Partial Tangent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-414 FRNDINT—Round to Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-417 FRSTOR—Restore x87 FPU State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-419 FSAVE/FNSAVE—Store x87 FPU State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-422 FSCALE—Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-426 FSIN—Sine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-428 FSINCOS—Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-430 FSQRT—Square Root. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-433 FST/FSTP—Store Floating Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-435 FSTCW/FNSTCW—Store x87 FPU Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-438 FSTENV/FNSTENV—Store x87 FPU Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-441 FSTSW/FNSTSW—Store x87 FPU Status Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-444 FSUB/FSUBP/FISUB—Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-447 FSUBR/FSUBRP/FISUBR—Reverse Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-451 FTST—TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-455 FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values . . . . . . . . . 3-457 FXAM—Examine ModR/M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-460 FXCH—Exchange Register Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-462 FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State . . . . . . . . . . . . . . . . . . . . 3-464 FXSAVE—Save x87 FPU, MMX Technology, and SSE State . . . . . . . . . . . . . . . . . . . . . . 3-468 FXTRACT—Extract Exponent and Significand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-478 FYL2X—Compute y * log2x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-480 FYL2XP1—Compute y * log2(x +1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-482 HADDPD—Packed Double-FP Horizontal Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-484 HADDPS—Packed Single-FP Horizontal Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-487 HLT—Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-491 HSUBPD—Packed Double-FP Horizontal Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-493 HSUBPS—Packed Single-FP Horizontal Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-496 IDIV—Signed Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-500 IMUL—Signed Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-504 IN—Input from Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-509 INC—Increment by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-511 INS/INSB/INSW/INSD—Input from Port to String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-514 VINSERTF128 — Insert Packed Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-519 INSERTPS — Insert Packed Single Precision Floating-Point Value . . . . . . . . . . . . . . . . 3-521 INT n/INTO/INT 3—Call to Interrupt Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-525 INVD—Invalidate Internal Caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-541 INVLPG—Invalidate TLB Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-543 IRET/IRETD—Interrupt Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-545 viii Vol. 2A CONTENTS PAGE Jcc—Jump if Condition Is Met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JMP—Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LAHF—Load Status Flags into AH Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LAR—Load Access Rights Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LDDQU—Load Unaligned Integer 128 Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LDMXCSR—Load MXCSR Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LDS/LES/LFS/LGS/LSS—Load Far Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LEA—Load Effective Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LEAVE—High Level Procedure Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LFENCE—Load Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LGDT/LIDT—Load Global/Interrupt Descriptor Table Register. . . . . . . . . . . . . . . . . . . . LLDT—Load Local Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMSW—Load Machine Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LOCK—Assert LOCK# Signal Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LODS/LODSB/LODSW/LODSD/LODSQ—Load String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LOOP/LOOPcc—Loop According to ECX Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LSL—Load Segment Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LTR—Load Task Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MASKMOVDQU—Store Selected Bytes of Double Quadword . . . . . . . . . . . . . . . . . . . . VMASKMOV—Conditional SIMD Packed Loads and Stores . . . . . . . . . . . . . . . . . . . . . . . MASKMOVQ—Store Selected Bytes of Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAXPD—Return Maximum Packed Double-Precision Floating-Point Values. . . . . . . MAXPS—Return Maximum Packed Single-Precision Floating-Point Values. . . . . . . . MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value . . . . . . . . . MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value . . . . . . . . . MFENCE—Memory Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MINPD—Return Minimum Packed Double-Precision Floating-Point Values . . . . . . . . MINPS—Return Minimum Packed Single-Precision Floating-Point Values . . . . . . . . . MINSD—Return Minimum Scalar Double-Precision Floating-Point Value . . . . . . . . . . MINSS—Return Minimum Scalar Single-Precision Floating-Point Value . . . . . . . . . . . MONITOR—Set Up Monitor Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV—Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV—Move to/from Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV—Move to/from Debug Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values. . . . . . . . . MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values. . . . . . . . . . MOVBE—Move Data After Swapping Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOVD/MOVQ—Move Doubleword/Move Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOVDDUP—Move One Double-FP and Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOVDQA—Move Aligned Double Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOVDQU—Move Unaligned Double Quadword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOVDQ2Q—Move Quadword from XMM to MMX Technology Register. . . . . . . . . . . MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low . . . MOVHPD—Move High Packed Double-Precision Floating-Point Value . . . . . . . . . . . . MOVHPS—Move High Packed Single-Precision Floating-Point Values . . . . . . . . . . . . MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High . . . . MOVLPD—Move Low Packed Double-Precision Floating-Point Value . . . . . . . . . . . . . 3-556 3-564 3-575 3-577 3-581 3-583 3-585 3-591 3-594 3-596 3-598 3-601 3-604 3-606 3-608 3-612 3-615 3-619 3-622 3-624 3-628 3-631 3-634 3-637 3-639 3-641 3-643 3-646 3-649 3-651 3-653 3-656 3-663 3-667 3-669 3-672 3-675 3-678 3-681 3-684 3-687 3-690 3-692 3-694 3-696 3-698 3-700 Vol. 2A ix CONTENTS PAGE MOVLPS—Move Low Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . . 3-702 MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask . . . . . . . . . 3-704 MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask . . . . . . . . . . 3-706 MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint . . . . . . . . . . . . . . 3-709 MOVNTDQ—Store Double Quadword Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . 3-712 MOVNTI—Store Doubleword Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . . 3-714 MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-716 MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-718 MOVNTQ—Store of Quadword Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . 3-720 MOVQ—Move Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-723 MOVQ2DQ—Move Quadword from MMX Technology to XMM Register . . . . . . . . . . . 3-726 MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String . . . . . . . 3-728 MOVSD—Move Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . 3-733 MOVSHDUP—Move Packed Single-FP High and Duplicate . . . . . . . . . . . . . . . . . . . . . . . . 3-736 MOVSLDUP—Move Packed Single-FP Low and Duplicate. . . . . . . . . . . . . . . . . . . . . . . . . 3-739 MOVSS—Move Scalar Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . 3-742 MOVSX/MOVSXD—Move with Sign-Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-745 MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values. . . . . . . 3-748 MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values . . . . . . . . 3-751 MOVZX—Move with Zero-Extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-754 MPSADBW — Compute Multiple Packed Sums of Absolute Difference . . . . . . . . . . . . 3-756 MUL—Unsigned Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-761 MULPD—Multiply Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . 3-764 MULPS—Multiply Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 3-766 MULSD—Multiply Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 3-768 MULSS—Multiply Scalar Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . 3-770 MWAIT—Monitor Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-772 CHAPTER 4 INSTRUCTION SET REFERENCE, N-Z 4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM 4-1 4.1.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.1.2 Source Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4.1.3 Aggregation Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 4.1.4 Polarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4.1.5 Output Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 4.1.6 Valid/Invalid Override of Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 4.1.7 Summary of Im8 Control byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 4.1.8 Diagram Comparison and Aggregation Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 4.2 INSTRUCTIONS (N-Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 NEG—Two's Complement Negation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 NOP—No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 NOT—One's Complement Negation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 OR—Logical Inclusive OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 x Vol. 2A CONTENTS PAGE ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values . . . . . . . . . . . . . .4-18 ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values . . . . . . . . . . . . . . .4-20 OUT—Output to Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22 OUTS/OUTSB/OUTSW/OUTSD—Output String to Port . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-25 PABSB/PABSW/PABSD — Packed Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-31 PACKSSWB/PACKSSDW—Pack with Signed Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-35 PACKUSDW — Pack with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-39 PACKUSWB—Pack with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-41 PADDB/PADDW/PADDD—Add Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-44 PADDQ—Add Packed Quadword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-48 PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation. . . . . . . . . . .4-50 PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation . . .4-53 PALIGNR — Packed Align Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-56 PAND—Logical AND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-58 PANDN—Logical AND NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-60 PAUSE—Spin Loop Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-62 PAVGB/PAVGW—Average Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-64 PBLENDVB — Variable Blend Packed Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-67 PBLENDW — Blend Packed Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-71 PCLMULQDQ - Carry-Less Multiplication Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-73 PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal . . . . . . . . . . . . . . . .4-77 PCMPEQQ — Compare Packed Qword Data for Equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-81 PCMPESTRI — Packed Compare Explicit Length Strings, Return Index. . . . . . . . . . . . . .4-83 PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask . . . . . . . . . . . . .4-85 PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than. 487 PCMPGTQ — Compare Packed Data for Greater Than . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-91 PCMPISTRI — Packed Compare Implicit Length Strings, Return Index . . . . . . . . . . . . . .4-93 PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask. . . . . . . . . . . . . .4-95 VPERMILPD — Permute Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . .4-97 VPERMILPS — Permute Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . 4-101 VPERM2F128 — Permute Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-105 PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword . . . . . . . . . . . . . . . . . . . . . . 4-108 PEXTRW—Extract Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-111 PHADDW/PHADDD — Packed Horizontal Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-114 PHADDSW — Packed Horizontal Add and Saturate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-117 PHMINPOSUW — Packed Horizontal Word Minimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-119 PHSUBW/PHSUBD — Packed Horizontal Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-121 PHSUBSW — Packed Horizontal Subtract and Saturate . . . . . . . . . . . . . . . . . . . . . . . . . 4-124 PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword . . . . . . . . . . . . . . . . . . . . . . . . . . 4-126 PINSRW—Insert Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-129 PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes . . . . . . . . . . . 4-132 PMADDWD—Multiply and Add Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-134 PMAXSB — Maximum of Packed Signed Byte Integers . . . . . . . . . . . . . . . . . . . . . . . . . . 4-137 PMAXSD — Maximum of Packed Signed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . 4-140 PMAXSW—Maximum of Packed Signed Word Integers . . . . . . . . . . . . . . . . . . . . . . . . . . 4-142 PMAXUB—Maximum of Packed Unsigned Byte Integers . . . . . . . . . . . . . . . . . . . . . . . . 4-145 Vol. 2A xi CONTENTS PAGE PMAXUD — Maximum of Packed Unsigned Dword Integers . . . . . . . . . . . . . . . . . . . . . . 4-148 PMAXUW — Maximum of Packed Word Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-150 PMINSB — Minimum of Packed Signed Byte Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-152 PMINSD — Minimum of Packed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-155 PMINSW—Minimum of Packed Signed Word Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-157 PMINUB—Minimum of Packed Unsigned Byte Integers . . . . . . . . . . . . . . . . . . . . . . . . . . 4-160 PMINUD — Minimum of Packed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-163 PMINUW — Minimum of Packed Word Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-165 PMOVMSKB—Move Byte Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167 PMOVSX — Packed Move with Sign Extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-169 PMOVZX — Packed Move with Zero Extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-173 PMULDQ — Multiply Packed Signed Dword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-177 PMULHRSW — Packed Multiply High with Round and Scale . . . . . . . . . . . . . . . . . . . . . . 4-179 PMULHUW—Multiply Packed Unsigned Integers and Store High Result . . . . . . . . . . . 4-182 PMULHW—Multiply Packed Signed Integers and Store High Result . . . . . . . . . . . . . . . 4-185 PMULLD — Multiply Packed Signed Dword Integers and Store Low Result . . . . . . . . 4-188 PMULLW—Multiply Packed Signed Integers and Store Low Result. . . . . . . . . . . . . . . . 4-190 PMULUDQ—Multiply Packed Unsigned Doubleword Integers . . . . . . . . . . . . . . . . . . . . . 4-193 POP—Pop a Value from the Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-195 POPA/POPAD—Pop All General-Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-202 POPCNT — Return the Count of Number of Bits Set to 1 . . . . . . . . . . . . . . . . . . . . . . . . 4-205 POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register . . . . . . . . . . . . . . . . . . . . . . . . . 4-207 POR—Bitwise Logical OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-211 PREFETCHh—Prefetch Data Into Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-213 PSADBW—Compute Sum of Absolute Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-216 PSHUFB — Packed Shuffle Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-219 PSHUFD—Shuffle Packed Doublewords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-222 PSHUFHW—Shuffle Packed High Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-224 PSHUFLW—Shuffle Packed Low Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-226 PSHUFW—Shuffle Packed Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-228 PSIGNB/PSIGNW/PSIGND — Packed SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-231 PSLLDQ—Shift Double Quadword Left Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-236 PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-238 PSRAW/PSRAD—Shift Packed Data Right Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-245 PSRLDQ—Shift Double Quadword Right Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-250 PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical. . . . . . . . . . . . . . . . . . . . . . . . . 4-252 PSUBB/PSUBW/PSUBD—Subtract Packed Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-258 PSUBQ—Subtract Packed Quadword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-262 PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation . . . . . 4-264 PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation . 4267 PTEST- Logical Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-270 PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data . . . . 4-274 PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-280 PUSH—Push Word, Doubleword or Quadword Onto the Stack. . . . . . . . . . . . . . . . . . . . 4-285 PUSHA/PUSHAD—Push All General-Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 4-290 xii Vol. 2A CONTENTS PAGE PUSHF/PUSHFD—Push EFLAGS Register onto the Stack . . . . . . . . . . . . . . . . . . . . . . . . 4-293 PXOR—Logical Exclusive OR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-296 RCL/RCR/ROL/ROR-—Rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-298 RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values . . 4-306 RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values . . . . 4-309 RDMSR—Read from Model Specific Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-311 RDPMC—Read Performance-Monitoring Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-313 RDTSC—Read Time-Stamp Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-319 RDTSCP—Read Time-Stamp Counter and Processor ID. . . . . . . . . . . . . . . . . . . . . . . . . . 4-321 REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix . . . . . . . . . . . . . . . 4-323 RET—Return from Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-328 ROUNDPD — Round Packed Double Precision Floating-Point Values . . . . . . . . . . . . . 4-340 ROUNDPS — Round Packed Single Precision Floating-Point Values . . . . . . . . . . . . . . 4-343 ROUNDSD — Round Scalar Double Precision Floating-Point Values . . . . . . . . . . . . . . 4-346 ROUNDSS — Round Scalar Single Precision Floating-Point Values. . . . . . . . . . . . . . . . 4-348 RSM—Resume from System Management Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-350 RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision FloatingPoint Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-352 RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-355 SAHF—Store AH into Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-357 SAL/SAR/SHL/SHR—Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-359 SBB—Integer Subtraction with Borrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-367 SCAS/SCASB/SCASW/SCASD—Scan String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-371 SETcc—Set Byte on Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-376 SFENCE—Store Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-381 SGDT—Store Global Descriptor Table Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-382 SHLD—Double Precision Shift Left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-385 SHRD—Double Precision Shift Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-389 SHUFPD—Shuffle Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . 4-393 SHUFPS—Shuffle Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . 4-396 SIDT—Store Interrupt Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-400 SLDT—Store Local Descriptor Table Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-403 SMSW—Store Machine Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-405 SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values . 4408 SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values . . 4410 SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value. 4-413 SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value. . 4-415 VSTMXCSR—Store MXCSR Register State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-417 STC—Set Carry Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-418 STD—Set Direction Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-419 STI—Set Interrupt Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-420 STMXCSR—Store MXCSR Register State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-423 STOS/STOSB/STOSW/STOSD/STOSQ—Store String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-425 STR—Store Task Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-430 Vol. 2A xiii CONTENTS PAGE SUB—Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-432 SUBPD—Subtract Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . 4-435 SUBPS—Subtract Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 4-437 SUBSD—Subtract Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 4-440 SUBSS—Subtract Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . 4-442 SWAPGS—Swap GS Base Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-444 SYSCALL—Fast System Call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-446 SYSENTER—Fast System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-448 SYSEXIT—Fast Return from Fast System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-453 SYSRET—Return From Fast System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-457 TEST—Logical Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-459 VTESTPD/VTESTPS—Packed Bit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-462 UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-463 UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-465 UD2—Undefined Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-467 UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values 4-468 UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values 4-471 UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values 4-474 UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values 4-477 VERR/VERW—Verify a Segment for Reading or Writing . . . . . . . . . . . . . . . . . . . . . . . . . 4-480 WAIT/FWAIT—Wait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-483 WBINVD—Write Back and Invalidate Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-485 WRMSR—Write to Model Specific Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-487 XADD—Exchange and Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-489 XCHG—Exchange Register/Memory with Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-492 XGETBV—Get Value of Extended Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-495 XLAT/XLATB—Table Look-up Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-497 XOR—Logical Exclusive OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-500 XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values. . . . . . . . . 4-503 XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values. . . . . . . . . . 4-505 XRSTOR—Restore Processor Extended States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-507 XSAVE—Save Processor Extended States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-513 XSAVEOPT—Save Processor Extended States Optimized. . . . . . . . . . . . . . . . . . . . . . . . 4-517 XSETBV—Set Extended Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-521 VZEROALL—Zero All YMM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-523 VZEROUPPER—Zero Upper Bits of YMM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-525 CHAPTER 5 VMX INSTRUCTION REFERENCE 5.1 OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.2 CONVENTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 xiv Vol. 2A CONTENTS PAGE 5.3 5.4 VMX INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 INVEPT— Invalidate Translations Derived from EPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 INVVPID— Invalidate Translations Based on VPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 VMCALL—Call to VM Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-11 VMCLEAR—Clear Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-13 VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine . . . . . . . . . . . . . . . . . . . . . . .5-16 VMPTRLD—Load Pointer to Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . . .5-19 VMPTRST—Store Pointer to Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . .5-22 VMREAD—Read Field from Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . . . .5-24 VMRESUME—Resume Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-26 VMWRITE—Write Field to Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . . . . .5-27 VMXOFF—Leave VMX Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-29 VMXON—Enter VMX Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-31 VM INSTRUCTION ERROR NUMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34 CHAPTER 6 SAFER MODE EXTENSIONS REFERENCE 6.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.2 SMX FUNCTIONALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.2.1 Detecting and Enabling SMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.2.2 SMX Instruction Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 6.2.2.1 GETSEC[CAPABILITIES] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 6.2.2.2 GETSEC[ENTERACCS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 6.2.2.3 GETSEC[EXITAC]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 6.2.2.4 GETSEC[SENTER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 6.2.2.5 GETSEC[SEXIT] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 6.2.2.6 GETSEC[PARAMETERS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 6.2.2.7 GETSEC[SMCTRL]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 6.2.2.8 GETSEC[WAKEUP] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6.2.3 Measured Environment and SMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6.3 GETSEC LEAF FUNCTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 GETSEC[CAPABILITIES] - Report the SMX Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9 GETSEC[ENTERACCS] - Execute Authenticated Chipset Code . . . . . . . . . . . . . . . . . . . . . .6-12 GETSEC[EXITAC]—Exit Authenticated Code Execution Mode . . . . . . . . . . . . . . . . . . . . . .6-23 GETSEC[SENTER]—Enter a Measured Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-27 GETSEC[SEXIT]—Exit Measured Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-39 GETSEC[PARAMETERS]—Report the SMX Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-43 GETSEC[SMCTRL]—SMX Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-49 GETSEC[WAKEUP]—Wake up sleeping processors in measured environment . . . . . . .6-52 APPENDIX A OPCODE MAP A.1 USING OPCODE TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 A.2 KEY TO ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 A.2.1 Codes for Addressing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 A.2.2 Codes for Operand Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3 A.2.3 Register Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4 Vol. 2A xv CONTENTS PAGE A.2.4 A.2.4.1 A.2.4.2 A.2.4.3 A.2.4.4 A.2.5 A.3 A.4 A.4.1 A.4.2 A.5 A.5.1 A.5.2 A.5.2.1 A.5.2.2 A.5.2.3 A.5.2.4 A.5.2.5 A.5.2.6 A.5.2.7 A.5.2.8 Opcode Look-up Examples for One, Two, and Three-Byte OpcodesA-5 One-Byte Opcode Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 Two-Byte Opcode Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6 Three-Byte Opcode Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 VEX Prefix Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 Superscripts Utilized in Opcode Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 ONE, TWO, AND THREE-BYTE OPCODE MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES . . . . . . . . . . . . . . . . . . . A-21 Opcode Look-up Examples Using Opcode Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21 Opcode Extension Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-22 ESCAPE OPCODE INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-24 Opcode Look-up Examples for Escape Instruction Opcodes . . . . . . . . . . . . . . . . . . . . . . . A-24 Escape Opcode Instruction Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-24 Escape Opcodes with D8 as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-25 Escape Opcodes with D9 as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-26 Escape Opcodes with DA as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-27 Escape Opcodes with DB as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-28 Escape Opcodes with DC as First Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-29 Escape Opcodes with DD as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-30 Escape Opcodes with DE as First Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-31 Escape Opcodes with DF As First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-32 APPENDIX B INSTRUCTION FORMATS AND ENCODINGS B.1 MACHINE INSTRUCTION FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 B.1.1 Legacy Prefixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 B.1.2 REX Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 B.1.3 Opcode Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 B.1.4 Special Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 B.1.4.1 Reg Field (reg) for Non-64-Bit Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3 B.1.4.2 Reg Field (reg) for 64-Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4 B.1.4.3 Encoding of Operand Size (w) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5 B.1.4.4 Sign-Extend (s) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5 B.1.4.5 Segment Register (sreg) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6 B.1.4.6 Special-Purpose Register (eee) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6 B.1.4.7 Condition Test (tttn) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7 B.1.4.8 Direction (d) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8 B.1.5 Other Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9 B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-64-BIT MODES B9 B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode . . . . . . . . . . . . . B-24 B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . B-53 B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS . . . . . . B-54 B.5 MMX INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55 B.5.1 Granularity Field (gg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55 B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg) . . . . . . . . . B-55 xvi Vol. 2A CONTENTS PAGE B.5.3 B.6 B.7 B.8 B.9 B.9.1 B.10 B.11 B.12 B.13 B.14 B.15 B.16 B.17 B.18 MMX Instruction Formats and Encodings Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-55 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS. . . . . . . . . . . B-59 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-59 SSE INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-60 SSE2 INSTRUCTION FORMATS AND ENCODINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-69 Granularity Field (gg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-69 SSE3 FORMATS AND ENCODINGS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-86 SSSE3 FORMATS AND ENCODING TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-88 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . B-92 SPECIAL ENCODINGS FOR 64-BIT MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-93 SSE4.1 FORMATS AND ENCODING TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-97 SSE4.2 FORMATS AND ENCODING TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-106 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . B-107 VMX INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-114 SMX INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-116 APPENDIX C INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS C.1 SIMPLE INTRINSICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2 C.2 COMPOSITE INTRINSICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-17 FIGURES Figure 1-1. Figure 1-2. Figure 2-1. Figure 2-2. Figure 2-3. Figure 2-4. Figure 2-5. Figure 2-6. Figure 2-7. Figure 2-8. Figure 2-9. Figure 3-1. Figure 3-2. Figure 3-3. Figure 3-4. Figure 3-5. Figure 3-6. Figure 3-7. Figure 3-8. Figure 3-9. Figure 3-10. Figure 3-11. Figure 3-12. Figure 3-13. Bit and Byte Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Syntax for CPUID, CR, and MSR Data Presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Intel 64 and IA-32 Architectures Instruction Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Table Interpretation of ModR/M Byte (C8H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Prefix Ordering in 64-bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 Memory Addressing Without an SIB Byte; REX.X Not Used . . . . . . . . . . . . . . . . . . . . .2-11 Register-Register Addressing (No Memory Operand); REX.X Not Used . . . . . . . . . .2-11 Memory Addressing With a SIB Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12 Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used . . . . . . . . . . . . .2-12 Instruction Encoding Format with VEX Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-17 VEX bitfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-19 Bit Offset for BIT[RAX, 21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-14 Memory Bit Indexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-15 ADDSUBPD—Packed Double-FP Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-47 ADDSUBPS—Packed Single-FP Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-50 VBROADCASTSS Operation (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . .3-93 VBROADCASTSS Operation (128-bit version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-93 VBROADCASTSD Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-94 VBROADCASTF128 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-94 Version Information Returned by CPUID in EAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-213 Feature Information Returned in the ECX Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3-216 Feature Information Returned in the EDX Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3-219 Determination of Support for the Processor Brand String. . . . . . . . . . . . . . . . . . . . 3-229 Algorithm for Extracting Maximum Processor Frequency . . . . . . . . . . . . . . . . . . . . 3-232 Vol. 2A xvii CONTENTS PAGE Figure 3-14. Figure 3-15. Figure 3-16. Figure 3-17. Figure 3-18. Figure 3-19. Figure 3-20. Figure 3-21. Figure 3-22. Figure 3-23. Figure 3-24. Figure 3-25. Figure 3-26. Figure 3-27. Figure 3-28. Figure 3-29. Figure 4-1. Figure 4-2. Figure 4-3. Figure 4-4. Figure 4-5. Figure 4-6. Figure 4-7. Figure 4-8. Figure 4-9. Figure 4-10. Figure 4-11. Figure 4-12. Figure 4-13. Figure 4-14. Figure 4-15. Figure 4-16. Figure 4-17. Figure 4-18. Figure 4-19. Figure 4-20. Figure 4-21. Figure 4-22. Figure 4-23. Figure 4-24. Figure 4-25. Figure 5-1. Figure 5-2. Figure A-1. Figure B-1. xviii Vol. 2A CVTDQ2PD (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-243 VCVTPD2DQ (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-248 VCVTPD2PS (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-254 CVTPS2PD (VEX.256 encoded version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-265 VCVTTPD2DQ (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-283 HADDPD—Packed Double-FP Horizontal Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-485 VHADDPD operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-485 HADDPS—Packed Single-FP Horizontal Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-488 VHADDPS operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-488 HSUBPD—Packed Double-FP Horizontal Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-494 VHSUBPD operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-494 HSUBPS—Packed Single-FP Horizontal Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-497 VHSUBPS operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-497 MOVDDUP—Move One Double-FP and Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-682 MOVSHDUP—Move Packed Single-FP High and Duplicate . . . . . . . . . . . . . . . . . . . . . 3-737 MOVSLDUP—Move Packed Single-FP Low and Duplicate . . . . . . . . . . . . . . . . . . . . . 3-740 Operation of PCMPSTRx and PCMPESTRx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 Operation of the PACKSSDW Instruction Using 64-bit Operands . . . . . . . . . . . . . . . 4-36 VPERMILPD operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-98 VPERMILPD Shuffle Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-98 VPERMILPS Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-102 VPERMILPS Shuffle Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-102 VPERM2F128 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-105 PMADDWD Execution Model Using 64-bit Operands . . . . . . . . . . . . . . . . . . . . . . . . . . 4-135 PMULHUW and PMULHW Instruction Operation Using 64-bit Operands. . . . . . . . 4-183 PMULLU Instruction Operation Using 64-bit Operands . . . . . . . . . . . . . . . . . . . . . . . 4-191 PSADBW Instruction Operation Using 64-bit Operands . . . . . . . . . . . . . . . . . . . . . . . 4-217 PSHUB with 64-Bit Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-221 PSHUFD Instruction Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-222 PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand . . . . . . . 4-240 PSRAW and PSRAD Instruction Operation Using a 64-bit Operand . . . . . . . . . . . . 4-246 PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand. . . . . . . 4-254 PUNPCKHBW Instruction Operation Using 64-bit Operands . . . . . . . . . . . . . . . . . . . 4-275 PUNPCKLBW Instruction Operation Using 64-bit Operands . . . . . . . . . . . . . . . . . . . 4-281 Bit Control Fields of Immediate Byte for ROUNDxx Instruction . . . . . . . . . . . . . . . 4-341 SHUFPD Shuffle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-394 SHUFPS Shuffle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-397 UNPCKHPD Instruction High Unpack and Interleave Operation . . . . . . . . . . . . . . . . 4-469 UNPCKHPS Instruction High Unpack and Interleave Operation . . . . . . . . . . . . . . . . 4-472 UNPCKLPD Instruction Low Unpack and Interleave Operation . . . . . . . . . . . . . . . . 4-475 UNPCKLPS Instruction Low Unpack and Interleave Operation. . . . . . . . . . . . . . . . . 4-478 INVEPT Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 INVVPID Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 ModR/M Byte nnn Field (Bits 5, 4, and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21 General Machine Instruction Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 CONTENTS PAGE TABLES Table 2-1. Table 2-2. Table 2-3. Table 2-4. Table 2-5. Table 2-6. Table 2-7. Table 2-8. Table 2-9. Table 2-10. Table 2-11. Table 2-12. Table 2-13. Table 2-14. Table 2-15. Table 2-16. Table 2-17. Table 2-18. Table 2-19. Table 2-20. Table 2-21. Table 2-22. Table 2-23. Table 2-24. Table 2-25. Table 3-1. Table 3-2. Table 3-3. Table 3-4. Table 3-5. Table 3-6. Table 3-7. Table 3-8. Table 3-9. Table 3-10. Table 3-11. Table 3-12. Table 3-13. Table 3-14. Table 3-15. Table 3-16. Table 3-17. Table 3-18. Table 3-19. Table 3-20. 16-Bit Addressing Forms with the ModR/M Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 32-Bit Addressing Forms with the ModR/M Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 32-Bit Addressing Forms with the SIB Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 REX Prefix Fields [BITS: 0100WRXB] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-11 Special Cases of REX Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13 Direct Memory Offset Form of MOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-14 RIP-Relative Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-15 VEX.vvvv to register name mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-22 Instructions with a VEX.vvvv destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-23 VEX.m-mmmm interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-24 VEX.L interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-24 VEX.pp interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-25 Exception class description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-26 Instructions in each Exception Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-27 #UD Exception and VEX.W=1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-28 #UD Exception and VEX.L Field Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-29 Type 1 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-30 Type 2 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-31 Type 3 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-32 Type 4 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-33 Type 5 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-34 Type 6 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-35 Type 7 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-36 Type 8 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-37 Type 9 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38 Register Codes Associated With +rb, +rw, +rd, +ro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Range of Bit Positions Specified by Bit Offset Operands . . . . . . . . . . . . . . . . . . . . . . .3-15 Intel 64 and IA-32 General Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-19 x87 FPU Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-20 SIMD Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-21 Decision Table for CLI Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-141 Comparison Predicate for CMPPD and CMPPS Instructions . . . . . . . . . . . . . . . . . . . 3-158 Pseudo-Op and CMPPD Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-159 Comparison Predicate for VCMPPD and VCMPPS Instructions . . . . . . . . . . . . . . . . 3-160 Pseudo-Op and VCMPPD Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-162 Pseudo-Ops and CMPPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-168 Pseudo-Op and VCMPPS Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-169 Pseudo-Ops and CMPSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-181 Pseudo-Op and VCMPSD Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-182 Pseudo-Ops and CMPSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-187 Pseudo-Op and VCMPSS Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-188 Information Returned by CPUID Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-203 Highest CPUID Source Operand for Intel 64 and IA-32 Processors . . . . . . . . . . . . 3-212 Processor Type Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-214 Feature Information Returned in the ECX Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3-216 Vol. 2A xix CONTENTS PAGE Table 3-21. Table 3-22. Table 3-23. Table 3-24. Table 3-25. Table 3-26. Table 3-27. Table 3-28. Table 3-29. Table 3-30. Table 3-31. Table 3-32. Table 3-33. Table 3-34. Table 3-35. Table 3-36. Table 3-37. Table 3-38. Table 3-39. Table 3-40. Table 3-41. Table 3-42. Table 3-43. Table 3-44. Table 3-45. Table 3-46. Table 3-47. Table 3-48. Table 3-49. Table 3-50. Table 3-51. Table 3-52. Table 3-53. Table 3-54. Table 3-55. Table 3-56. Table 3-57. Table 3-58. Table 3-59. Table 3-60. Table 3-61. Table 3-62. Table 3-63. Table 3-64. xx Vol. 2A More on Feature Information Returned in the EDX Register . . . . . . . . . . . . . . . . . . 3-220 Encoding of CPUID Leaf 2 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-223 Processor Brand String Returned with Pentium 4 Processor. . . . . . . . . . . . . . . . . . 3-231 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings3-233 DIV Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-308 Results Obtained from F2XM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-335 Results Obtained from FABS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-337 FADD/FADDP/FIADD Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-340 FBSTP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-345 FCHS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-348 FCOM/FCOMP/FCOMPP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-354 FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-358 FCOS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-361 FDIV/FDIVP/FIDIV Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-366 FDIVR/FDIVRP/FIDIVR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-370 FICOM/FICOMP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-374 FIST/FISTP Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-383 FISTTP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-387 FMUL/FMULP/FIMUL Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-401 FPATAN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-406 FPREM Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-408 FPREM1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-411 FPTAN Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-414 FSCALE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-426 FSIN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-428 FSINCOS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-430 FSQRT Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-433 FSUB/FSUBP/FISUB Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-448 FSUBR/FSUBRP/FISUBR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-452 FTST Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-455 FUCOM/FUCOMP/FUCOMPP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-457 FXAM Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-460 Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region3-468 Field Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-470 Recreating FSAVE Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-472 Layout of the 64-bit-mode FXSAVE64 Map (requires REX.W = 1)3-473 Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) . . . . . . . . . . . . . . . . . . . . . . . . 3-474 FYL2X Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-480 FYL2XP1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-482 IDIV Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-501 Decision Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-526 Segment and Gate Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-578 Non-64-bit Mode LEA Operation with Address and Operand Size Attributes . . . 3-591 64-bit Mode LEA Operation with Address and Operand Size Attributes. . . . . . . . 3-592 CONTENTS PAGE Table 3-65. Table 3-66. Table 3-67. Table 3-68. Table 4-1. Table 4-2. Table 4-3. Table 4-4. Table 4-5. Table 4-6. Table 4-7. Table 4-8. Table 4-9. Table 4-10. Table 4-11. Table 4-12. Table 4-13. Table 4-14. Table 4-15. Table 4-16. Table 4-17. Table 4-18. Table 4-19. Table 4-20. Table 4-21. Table 5-1. Table 6-1. Table 6-2. Table 6-3. Table 6-4. Table 6-5. Table 6-6. Table 6-7. Table 6-8. Table 6-9. Table 6-10. Table 6-11. Table 6-12. Table A-1. Table A-2. Table A-3. Table A-4. Table A-5. Table A-6. Table A-7. Table A-8. Segment and Gate Descriptor Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-616 MUL Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-762 MWAIT Extension Register (ECX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-773 MWAIT Hints Register (EAX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-774 Source Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Aggregation Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Aggregation Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Ouput Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Output Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Comparison Result for Each Element Pair BoolRes[i.j] . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Summary of Imm8 Control Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 Recommended Multi-Byte Sequence of NOP Instruction . . . . . . . . . . . . . . . . . . . . . . .4-12 PCLMULQDQ Quadword Selection of Immediate Byte . . . . . . . . . . . . . . . . . . . . . . . . . .4-73 Pseudo-Op and PCLMULQDQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-74 Valid General and Special Purpose Performance Counter Index Range for RDPMC . 4314 Repeat Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-326 Rounding Modes and Encoding of Rounding Control (RC) Field . . . . . . . . . . . . . . . . 4-341 Decision Table for STI Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-421 SWAPGS Operation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-444 MSRs Used By the SYSENTER and SYSEXIT Instructions . . . . . . . . . . . . . . . . . . . . . 4-448 General Layout of XSAVE/XRSTOR Save Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-508 XSAVE.HEADER Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-508 Processor Supplied Init Values XRSTOR May Use . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-509 Reserved Bit Checking and XRSTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-509 VM-Instruction Error Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-34 Layout of IA32_FEATURE_CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 GETSEC Leaf Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Getsec Capability Result Encoding (EBX = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9 Register State Initialization after GETSEC[ENTERACCS]. . . . . . . . . . . . . . . . . . . . . . . .6-15 IA32_MISC_ENALBES MSR Initialization by ENTERACCS and SENTER . . . . . . . . . . .6-17 Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP] . . . . .6-31 SMX Reporting Parameters Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-43 TXT Feature Extensions Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-44 External Memory Types Using Parameter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-46 Default Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-46 Supported Actions for GETSEC[SMCTRL(0)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-50 RLP MVMM JOIN Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-52 Superscripts Utilized in Opcode Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 One-byte Opcode Map: (00H — F7H) * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-11 Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *. . . . . . . . . . . . . . . . . . . . . . .A-13 Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *. . . . . . . . . . .A-17 Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) * . . . . . . . . . . .A-19 Opcode Extensions for One- and Two-byte Opcodes by Group Number * . . . . . . .A-22 D8 Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . .A-25 D8 Opcode Map When ModR/M Byte is Outside 00H to BFH * . . . . . . . . . . . . . . . . . .A-25 Vol. 2A xxi CONTENTS PAGE Table A-9. Table A-10. Table A-11. Table A-12. Table A-13. Table A-14. Table A-15. Table A-16. Table A-17. Table A-18. Table A-19. Table A-20. Table A-21. Table A-22. Table B-1. Table B-2. Table B-4. Table B-3. Table B-5. Table B-6. Table B-7. Table B-8. Table B-9. Table B-11. Table B-10. Table B-12. Table B-13. Table B-14. Table B-15. Table B-16. Table B-17. Table B-18. Table B-19. Table B-20. Table B-21. Table B-22. Table B-23. Table B-24. Table B-25. Table B-26. Table B-27. Table B-28. Table B-29. Table B-30. xxii Vol. 2A D9 Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-26 D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-26 DA Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-27 DA Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-27 DB Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-28 DB Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-28 DC Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-29 DC Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-29 DD Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-30 DD Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-30 DE Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-31 DE Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-31 DF Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-32 DF Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-32 Special Fields Within Instruction Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3 Encoding of reg Field When w Field is Not Present in Instruction. . . . . . . . . . . . . . . . B-3 Encoding of reg Field When w Field is Not Present in Instruction. . . . . . . . . . . . . . . . B-4 Encoding of reg Field When w Field is Present in Instruction. . . . . . . . . . . . . . . . . . . . B-4 Encoding of reg Field When w Field is Present in Instruction. . . . . . . . . . . . . . . . . . . . B-5 Encoding of Operand Size (w) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5 Encoding of Sign-Extend (s) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6 Encoding of the Segment Register (sreg) Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6 Encoding of Special-Purpose Register (eee) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7 Encoding of Operation Direction (d) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8 Encoding of Conditional Test (tttn) Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8 Notes on Instruction Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9 General Purpose Instruction Formats and Encodings for Non-64-Bit ModesB-9 Special Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-24 General Purpose Instruction Formats and Encodings for 64-Bit ModeB-24 Pentium Processor Family Instruction Formats and Encodings, Non-64-Bit ModesB-53 Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode . . . . B-54 Encoding of Granularity of Data Field (gg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55 MMX Instruction Formats and Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55 Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions . . . . . B-59 Formats and Encodings of P6 Family Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-59 Formats and Encodings of SSE Floating-Point Instructions. . . . . . . . . . . . . . . . . . . . . B-61 Formats and Encodings of SSE Integer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . B-67 Format and Encoding of SSE Cacheability & Memory Ordering Instructions . . . . . B-68 Encoding of Granularity of Data Field (gg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-69 Formats and Encodings of SSE2 Floating-Point Instructions . . . . . . . . . . . . . . . . . . . B-70 Formats and Encodings of SSE2 Integer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . B-78 Format and Encoding of SSE2 Cacheability Instructions . . . . . . . . . . . . . . . . . . . . . . . B-85 Formats and Encodings of SSE3 Floating-Point Instructions . . . . . . . . . . . . . . . . . . . B-86 Formats and Encodings for SSE3 Event Management Instructions . . . . . . . . . . . . . B-87 CONTENTS PAGE Table B-31. Table B-32. Table B-33. Table B-34. Table B-35. Table B-36. Table B-37. Table B-38. Table B-39. Table B-40. Table C-1. Table C-2. Formats and Encodings for SSE3 Integer and Move Instructions. . . . . . . . . . . . . . . .B-87 Formats and Encodings for SSSE3 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-88 Formats and Encodings of AESNI and PCLMULQDQ Instructions . . . . . . . . . . . . . . . .B-92 Special Case Instructions Promoted Using REX.W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-94 Encodings of SSE4.1 instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-98 Encodings of SSE4.2 instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-106 General Floating-Point Instruction Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-107 Floating-Point Instruction Formats and Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . B-108 Encodings for VMX Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-114 Encodings for SMX Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-116 Simple Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3 Composite Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-17 Vol. 2A xxiii CONTENTS PAGE xxiv Vol. 2A CHAPTER 1 ABOUT THIS MANUAL The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B: Instruction Set Reference (order numbers 253666 and 253667) are part of a set that describes the architecture and programming environment of all Intel 64 and IA-32 architecture processors. Other volumes in this set are: • The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (Order Number 253665). • The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B: System Programming Guide (order numbers 253668 and 253669). The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, describe the instruction set of the processor and the opcode structure. These volumes apply to application programmers and to programmers who write operating systems or executives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B, describe the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operatingsystem and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, addresses the programming environment for classes of software that host operating systems. 1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which include: • • • • • • • • • • • Pentium® processors P6 family processors Pentium® 4 processors Pentium® M processors Intel® Xeon® processors Pentium® D processors Pentium® processor Extreme Editions 64-bit Intel® Xeon® processors Intel® Core™ Duo processor Intel® Core™ Solo processor Dual-Core Intel® Xeon® processor LV Vol. 2A 1-1 ABOUT THIS MANUAL • • • • • • • • • • • • • • • • • Intel® Core™2 Duo processor Intel® Core™2 Quad processor Q6000 series Intel® Xeon® processor 3000, 3200 series Intel® Xeon® processor 5000 series Intel® Xeon® processor 5100, 5300 series Intel® Core™2 Extreme processor X7000 and X6800 series Intel® Core™2 Extreme QX6000 series Intel® Xeon® processor 7100 series Intel® Pentium® Dual-Core processor Intel® Xeon® processor 7200, 7300 series Intel® Xeon® processor 5200, 5400, 7400 series Intel® CoreTM2 Extreme processor QX9000 and X9000 series Intel® CoreTM2 Quad processor Q9000 series Intel® CoreTM2 Duo processor E8000, T9000 series Intel® AtomTM processor family Intel® CoreTM i7 processor Intel® CoreTM i5 processor P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture. The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved Pentium® M processor microarchitecture. The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchitecture. The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel® CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitecture. The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and supports Intel 64 architecture. The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel® microarchitecture code name Nehalem and support Intel 64 architecture. 1-2 Vol. 2A ABOUT THIS MANUAL Processors based on Intel® microarchitecture code name Westmere support Intel 64 architecture. P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM processor Z5xx series support IA-32 architecture. The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture. IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture. 1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET REFERENCE A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, content follows: Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel® manuals and documentation of interest to programmers and hardware designers. Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all IA-32 instructions and gives the allowable encodings of prefixes, the operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement and immediate bytes. Chapter 3 — Instruction Set Reference, A-M. Describes Intel 64 and IA-32 instructions in detail, including an algorithmic description of operations, the effect on flags, the effect of operand- and address-size attributes, and the exceptions that may be generated. The instructions are arranged in alphabetical order. Generalpurpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instructions are included. Chapter 4 — Instruction Set Reference, N-Z. Continues the description of Intel 64 and IA-32 instructions started in Chapter 3. It provides the balance of the alphabetized list of instructions and starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B. Vol. 2A 1-3 ABOUT THIS MANUAL Chapter 5 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended for a system executive to support virtualization of processor hardware and a system software layer acting as a host to multiple guest software environments. Chapter 6— Safer Mode Extensions Reference. Describes the safer mode extensions (SMX). SMX is intended for a system executive to support launching a measured environment in a platform where the identity of the software controlling the platform hardware can be measured for the purpose of making trust decisions. Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set. Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form of each IA-32 instruction. Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel® C/C++ compiler intrinsics and their assembly code equivalents for each of the IA-32 MMX and SSE/SSE2/SSE3 instructions. 1.3 NOTATIONAL CONVENTIONS This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for hexadecimal and binary numbers. A review of this notation makes the manual easier to read. 1.3.1 Bit and Byte Order In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to two raised to the power of the bit position. IA-32 processors are “little endian” machines; this means the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions. 1-4 Vol. 2A ABOUT THIS MANUAL Highest Address 31 24 23 Byte 3 Data Structure 8 7 16 15 Byte 2 Byte 1 0 Byte 0 Bit offset 28 24 20 16 12 8 4 0 Lowest Address Byte Offset Figure 1-1. Bit and Byte Order 1.3.2 Reserved Bits and Software Compatibility In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as reserved, it is essential for compatibility with future processors that software treat these bits as having a future, though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredictable. Software should follow these guidelines in dealing with reserved bits: • Do not depend on the states of any reserved bits when testing the values of registers which contain such bits. Mask out the reserved bits before testing. • Do not depend on the states of any reserved bits when storing to memory or to a register. • • Do not depend on the ability to retain information written into any reserved bits. When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or reload them with values previously read from the same register. NOTE Avoid any software dependence upon the state of reserved bits in IA-32 registers. Depending upon the values of reserved register bits will make software dependent upon the unspecified manner in which the processor handles these bits. Programs that depend upon reserved values risk incompatibility with future processors. Vol. 2A 1-5 ABOUT THIS MANUAL 1.3.3 Instruction Operands When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset, an instruction has the following format: label: mnemonic argument1, argument2, argument3 where: • • A label is an identifier which is followed by a colon. • The operands argument1, argument2, and argument3 are optional. There may be from zero to three operands, depending on the opcode. When present, they take the form of either literals or identifiers for data items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items declared in another part of the program (which may not be shown in the example). A mnemonic is a reserved name for a class of instruction opcodes which have the same function. When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left operand is the destination. For example: LOADREG: MOV EAX, SUBTOTAL In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order. 1.3.4 Hexadecimal and Binary Numbers Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might arise. 1.3.5 Segmented Addressing The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes in memory. The range of memory that can be addressed is called an address space. The processor also supports segmented addressing. This is a form of addressing where a program may have many independent address spaces, called segments. 1-6 Vol. 2A ABOUT THIS MANUAL For example, a program can keep its code (instructions) and stack in separate segments. Code addresses would always refer to the code space, and stack addresses would always refer to the stack space. The following notation is used to specify a byte address within a segment: Segment-register:Byte-address For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS register: DS:FF79H The following segment address identifies an instruction address in the code segment. The CS register points to the code segment and the EIP register contains the address of the instruction. CS:EIP 1.3.6 Exceptions An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other conditions. Some types of exceptions may provide error codes. An error code reports additional information about the error. An example of the notation used to show an exception and error code is shown below: #PF(fault code) This example refers to a page-fault exception under conditions where an error code naming a type of fault is reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate code. In this case, the error code is zero, as shown below for a general-protection exception: #GP(0) 1.3.7 A New Syntax for CPUID, CR, and MSR Values Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information. See Figure 1-2. Vol. 2A 1-7 ABOUT THIS MANUAL &38,',QSXWDQG2XWSXW &38,'+(&;66(>ELW@ 6RPHLQSXWVUHTXLUHYDOXHVLQ($;DQG(&; 7KLVLVUHSUHVHQWHGDV&38,' ($; Q(&; Q ,IRQO\RQHYDOXHLVSUHVHQW($;LVLPSOLHG 2XWSXWUHJLVWHUDQGIHDWXUHIODJRUILHOG QDPHZLWKELWSRVLWLRQ V 9DOXH RUUDQJH RIRXWSXW &RQWURO5HJLVWHU9DOXHV &526);65>ELW@ ([DPSOH&5QDPH )HDWXUHIODJRUILHOGQDPH ZLWKELWSRVLWLRQ V 9DOXH RUUDQJH RIRXWSXW 0RGHO6SHFLILF5HJLVWHU9DOXHV ,$B0,6&B(1$%/(6(1$%/()23&2'(>ELW@ ([DPSOH065QDPH )HDWXUHIODJRUILHOGQDPHZLWKELWSRVLWLRQ V 9DOXH RUUDQJH RIRXWSXW 20 Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation 1.4 RELATED LITERATURE Literature related to Intel 64 and IA-32 processors is listed on-line at: http://developer.intel.com/products/processor/manuals/index.htm Some of the documents listed at this web site can be viewed on-line; others can be ordered. The literature available is listed by Intel processor and then by the following 1-8 Vol. 2A ABOUT THIS MANUAL literature types: applications notes, data sheets, manuals, papers, and specification updates. See also: • • • The data sheet for a particular Intel 64 or IA-32 processor • Intel® Fortran Compiler documentation and online help http://www.intel.com/cd/software/products/asmo-na/eng/index.htm • Intel® VTune™ Performance Analyzer documentation and online help http://www.intel.com/cd/software/products/asmo-na/eng/index.htm • Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes) http://developer.intel.com/products/processor/manuals/index.htm • Intel® 64 and IA-32 Architectures Optimization Reference Manual http://developer.intel.com/products/processor/manuals/index.htm • Intel® Processor Identification with the CPUID Instruction, AP-485 http://www.intel.com/support/processors/sb/cs-009861.htm • Intel 64 Architecture x2APIC Specification: The specification update for a particular Intel 64 or IA-32 processor Intel® C++ Compiler documentation and online help http://www.intel.com/cd/software/products/asmo-na/eng/index.htm http://developer.intel.com/products/processor/manuals/index.htm • Intel 64 Architecture Processor Topology Enumeration: http://softwarecommunity.intel.com/articles/eng/3887.htm • Intel® Trusted Execution Technology Measured Launched Environment Programming Guide, http://www.intel.com/technology/security/index.htm • Intel® SSE4 Programming Reference, http://developer.intel.com/products/processor/manuals/index.htm • Developing Multi-threaded Applications: A Platform Consistent Approach • Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP http://www3.intel.com/cd/ids/developer/asmona/eng/dc/threading/knowledgebase/19083.htm http://cachewww.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf More relevant links are: • Software network link: http://softwarecommunity.intel.com/isn/home/ • Developer centers: http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm • Processor support general link: http://www.intel.com/support/processors/ Vol. 2A 1-9 ABOUT THIS MANUAL • Software products and packages: http://www.intel.com/cd/software/products/asmo-na/eng/index.htm • Intel 64 and IA-32 processor manuals (printed or PDF downloads): http://developer.intel.com/products/processor/manuals/index.htm • Intel® Multi-Core Technology: http://developer.intel.com/multi-core/index.htm • Intel® Hyper-Threading Technology (Intel® HT Technology): http://developer.intel.com/technology/hyperthread/ 1-10 Vol. 2A CHAPTER 2 INSTRUCTION FORMAT This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-32e mode and its submodes are described in Section 2.2. 2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base) byte, a displacement (if required), and an immediate data field (if required). Instruction Prefixes Up to four prefixes of 1 byte each (optional) Opcode ModR/M SIB 1-, 2-, or 3-byte 1 byte opcode (if required) 7 6 5 Mod Reg/ Opcode 3 2 0 R/M Displacement 1 byte (if required) 7 Address displacement of 1, 2, or 4 bytes or none 3 2 6 5 Scale Index Immediate Immediate data of 1, 2, or 4 bytes or none 0 Base Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format 2.1.1 Instruction Prefixes Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 may be placed in any order relative to each other. • Group 1 — Lock and repeat prefixes: Vol. 2A 2-1 INSTRUCTION FORMAT • • • • LOCK prefix is encoded using F0H REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and input/output instructions. (F2H is also used as a mandatory prefix for some instructions) REP or REPE/REPZ is encoded using F3H. Repeat prefix applies only to string and input/output instructions.(F3H is also used as a mandatory prefix for some instructions) Group 2 — Segment override prefixes: • • 2EH—CS segment override (use with any branch instruction is reserved) 36H—SS segment override prefix (use with any branch instruction is reserved) • 3EH—DS segment override prefix (use with any branch instruction is reserved) • 26H—ES segment override prefix (use with any branch instruction is reserved) • 64H—FS segment override prefix (use with any branch instruction is reserved) • 65H—GS segment override prefix (use with any branch instruction is reserved) — Branch hints: • • • 3EH—Branch taken (used only with Jcc instructions) Group 3 • • 2EH—Branch not taken (used only with Jcc instructions) Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some instructions). Group 4 • 67H—Address-size override prefix The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-M,” for a description of this prefix. Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable behavior. Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality. A mandatory prefix generally should be placed after other optional prefixes (exception to this is discussed in Section 2.2.1, “REX Prefixes”) 2-2 Vol. 2A INSTRUCTION FORMAT Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable behavior. The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can be the default; use of the prefix selects the non-default size. Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes may use 66H as a mandatory prefix to express distinct functionality. A mandatory prefix generally should be placed after other optional prefixes (exception to this is discussed in Section 2.2.1, “REX Prefixes”) Other use of the 66H prefix is reserved; such use may cause unpredictable behavior. The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior. 2.1.2 Opcodes A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of operation, size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an opcode vary depending on the class of operation. Two-byte opcode formats for general-purpose and SIMD instructions consist of: • • An escape opcode byte 0FH as the primary opcode and a second opcode byte, or A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous bullet) For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte is a mandatory prefix (it is not considered as a repeat prefix). Three-byte opcode formats for general-purpose and SIMD instructions consist of: • An escape opcode byte 0FH as the primary opcode, plus two additional opcode bytes, or • A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as previous bullet) For example, PHADDW for XMM registers consists of the following sequence: 66 0F 38 01. The first byte is the mandatory prefix. Valid opcode expressions are defined in Appendix A and Appendix B. Vol. 2A 2-3 INSTRUCTION FORMAT 2.1.3 ModR/M and SIB Bytes Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte contains three fields of information: • The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes. • The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose of the reg/opcode field is specified in the primary opcode. • The r/m field can specify a register as an operand or it can be combined with the mod field to encode an addressing mode. Sometimes, certain combinations of the mod field and the r/m field is used to express opcode information for some instructions. Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields: • • • The scale field specifies the scale factor. The index field specifies the register number of the index register. The base field specifies the register number of the base register. See Section 2.1.5 for the encodings of the ModR/M and SIB bytes. 2.1.4 Displacement and Immediate Bytes Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4 bytes. If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An immediate operand can be 1, 2 or 4 bytes. 2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B. In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide ways of specifying a memory 2-4 Vol. 2A INSTRUCTION FORMAT location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX technology and XMM registers. The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM register XMM0. The register used is determined by the opcode byte and the operandsize attribute. Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the 3-bit Reg/Opcode field when the field is used to give the location of a second operand. The second operand must be a general-purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute. If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode extension. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six are represented in decimal form. The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure below demonstrates interpretation of one table value. Mod 11 RM 000 /digit (Opcode); REG = 001 C8H 11001000 Figure 2-2. Table Interpretation of ModR/M Byte (C8H) Vol. 2A 2-5 INSTRUCTION FORMAT Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte AL AX EAX MM0 XMM0 0 000 r8(/r) r16(/r) r32(/r) mm(/r) xmm(/r) (In decimal) /digit (Opcode) (In binary) REG = Effective Address CL CX ECX MM1 XMM1 1 001 DL DX EDX MM2 XMM2 2 010 BL BX EBX MM3 XMM3 3 011 AH SP ESP MM4 XMM4 4 100 CH BP1 EBP MM5 XMM5 5 101 DH SI ESI MM6 XMM6 6 110 BH DI EDI MM7 XMM7 7 111 Mod R/M [BX+SI] [BX+DI] [BP+SI] [BP+DI] [SI] [DI] disp162 [BX] 00 000 001 010 011 100 101 110 111 00 01 02 03 04 05 06 07 Value of ModR/M Byte (in Hexadecimal) 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F [BX+SI]+disp83 [BX+DI]+disp8 [BP+SI]+disp8 [BP+DI]+disp8 [SI]+disp8 [DI]+disp8 [BP]+disp8 [BX]+disp8 01 000 001 010 011 100 101 110 111 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F [BX+SI]+disp16 [BX+DI]+disp16 [BP+SI]+disp16 [BP+DI]+disp16 [SI]+disp16 [DI]+disp16 [BP]+disp16 [BX]+disp16 10 000 001 010 011 100 101 110 111 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF EAX/AX/AL/MM0/XMM0 11 ECX/CX/CL/MM1/XMM1 EDX/DX/DL/MM2/XMM2 EBX/BX/BL/MM3/XMM3 ESP/SP/AHMM4/XMM4 EBP/BP/CH/MM5/XMM5 ESI/SI/DH/MM6/XMM6 EDI/DI/BH/MM7/XMM7 000 001 010 011 100 101 110 111 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 EQ E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF NOTES: 1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses. 2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index. 3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the index. 2-6 Vol. 2A INSTRUCTION FORMAT Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte AL AX EAX MM0 XMM0 0 000 r8(/r) r16(/r) r32(/r) mm(/r) xmm(/r) (In decimal) /digit (Opcode) (In binary) REG = Effective Address Mod R/M CL CX ECX MM1 XMM1 1 001 DL DX EDX MM2 XMM2 2 010 BL BX EBX MM3 XMM3 3 011 AH SP ESP MM4 XMM4 4 100 CH BP EBP MM5 XMM5 5 101 DH SI ESI MM6 XMM6 6 110 BH DI EDI MM7 XMM7 7 111 Value of ModR/M Byte (in Hexadecimal) [EAX] [ECX] [EDX] [EBX] [--][--]1 disp322 [ESI] [EDI] 00 000 001 010 011 100 101 110 111 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F [EAX]+disp83 [ECX]+disp8 [EDX]+disp8 [EBX]+disp8 [--][--]+disp8 [EBP]+disp8 [ESI]+disp8 [EDI]+disp8 01 000 001 010 011 100 101 110 111 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F [EAX]+disp32 [ECX]+disp32 [EDX]+disp32 [EBX]+disp32 [--][--]+disp32 [EBP]+disp32 [ESI]+disp32 [EDI]+disp32 10 000 001 010 011 100 101 110 111 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF EAX/AX/AL/MM0/XMM0 11 ECX/CX/CL/MM/XMM1 EDX/DX/DL/MM2/XMM2 EBX/BX/BL/MM3/XMM3 ESP/SP/AH/MM4/XMM4 EBP/BP/CH/MM5/XMM5 ESI/SI/DH/MM6/XMM6 EDI/DI/BH/MM7/XMM7 000 001 010 011 100 101 110 111 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF NOTES: 1. The [--][--] nomenclature means a SIB follows the ModR/M byte. 2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is added to the index. 3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is sign-extended and added to the index. Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field. Table rows in the body Vol. 2A 2-7 INSTRUCTION FORMAT of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the scaling factor (determined by SIB byte bits 6 and 7). Table 2-3. 32-Bit Addressing Forms with the SIB Byte r32 (In decimal) Base = (In binary) Base = Scaled Index EAX 0 000 SS ECX 1 001 Index EDX 2 010 EBX 3 011 ESP 4 100 [*] 5 101 ESI 6 110 EDI 7 111 Value of SIB Byte (in Hexadecimal) [EAX] [ECX] [EDX] [EBX] none [EBP] [ESI] [EDI] 00 000 001 010 011 100 101 110 111 00 08 10 18 20 28 30 38 01 09 11 19 21 29 31 39 02 0A 12 1A 22 2A 32 3A 03 0B 13 1B 23 2B 33 3B 04 0C 14 1C 24 2C 34 3C 05 0D 15 1D 25 2D 35 3D 06 0E 16 1E 26 2E 36 3E 07 0F 17 1F 27 2F 37 3F [EAX*2] [ECX*2] [EDX*2] [EBX*2] none [EBP*2] [ESI*2] [EDI*2] 01 000 001 010 011 100 101 110 111 40 48 50 58 60 68 70 78 41 49 51 59 61 69 71 79 42 4A 52 5A 62 6A 72 7A 43 4B 53 5B 63 6B 73 7B 44 4C 54 5C 64 6C 74 7C 45 4D 55 5D 65 6D 75 7D 46 4E 56 5E 66 6E 76 7E 47 4F 57 5F 67 6F 77 7F [EAX*4] [ECX*4] [EDX*4] [EBX*4] none [EBP*4] [ESI*4] [EDI*4] 10 000 001 010 011 100 101 110 111 80 88 90 98 A0 A8 B0 B8 81 89 91 89 A1 A9 B1 B9 82 8A 92 9A A2 AA B2 BA 83 8B 93 9B A3 AB B3 BB 84 8C 94 9C A4 AC B4 BC 85 8D 95 9D A5 AD B5 BD 86 8E 96 9E A6 AE B6 BE 87 8F 97 9F A7 AF B7 BF [EAX*8] [ECX*8] [EDX*8] [EBX*8] none [EBP*8] [ESI*8] [EDI*8] 11 000 001 010 011 100 101 110 111 C0 C8 D0 D8 E0 E8 F0 F8 C1 C9 D1 D9 E1 E9 F1 F9 C2 CA D2 DA E2 EA F2 FA C3 CB D3 DB E3 EB F3 FB C4 CC D4 DC E4 EC F4 FC C5 CD D5 DD E5 ED F5 FD C6 CE D6 DE E6 EE F6 FE C7 CF D7 DF E7 EF F7 FF NOTES: 1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the following address modes: MOD bits Effective Address 00 [scaled index] + disp32 01 [scaled index] + disp8 + [EBP] 10 [scaled index] + disp32 + [EBP] 2-8 Vol. 2A INSTRUCTION FORMAT 2.2 IA-32E MODE IA-32e mode has two sub-modes. These are: • Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software unmodified. • 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space. 2.2.1 REX Prefixes REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following: • • • Specify GPRs and SSE registers. Specify 64-bit operand size. Specify extended control registers. Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if an instruction references one of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is ignored. Only one REX prefix is allowed per instruction. If used, the REX prefix byte must immediately precede the opcode byte or the escape opcode byte (0FH). When a REX prefix is used in conjunction with an instruction containing a mandatory prefix, the mandatory prefix must come before the REX so the REX prefix can be immediately preceding the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix should have REX placed between F3 and 0F E6. Other placements are ignored. The instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See Figure 2-3. Legacy Prefixes REX Prefix Grp 1, Grp 2, Grp 3, Grp 4 (optional) (optional) Opcode ModR/M 1-, 2-, or 3-byte opcode 1 byte (if required) SIB 1 byte (if required) Displacement Address displacement of 1, 2, or 4 bytes Immediate Immediate data of 1, 2, or 4 bytes or none Figure 2-3. Prefix Ordering in 64-bit Mode Vol. 2A 2-9 INSTRUCTION FORMAT 2.2.1.1 Encoding Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending on the format: • • ModR/M: the reg and r/m fields of the ModR/M byte • Instructions without ModR/M: the reg field of the opcode ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base) byte In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the addition of REX prefixes. 2.2.1.2 More on REX Prefix Fields REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions. The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode. INC/DEC functionality is still available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1). See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some additional information follows: • Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations. • For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored. • • If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits. • • REX.X bit modifies the SIB index field. REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is ignored when ModR/M specifies other registers or defines an extended opcode. REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field used for accessing GPRs. 2-10 Vol. 2A INSTRUCTION FORMAT Table 2-4. REX Prefix Fields [BITS: 0100WRXB] Field Name Bit Position Definition - 7:4 0100 W 3 0 = Operand size determined by CS.D 1 = 64 Bit Operand Size R 2 Extension of the ModR/M reg field X 1 Extension of the SIB index field B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field 0RG50%\WH 5(;35(),; 2SFRGH PRG :5% UHJ UUU UP EEE 5UUU %EEE 20;ILJ Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used 0RG50%\WH 5(;35(),; :5% 2SFRGH PRG UHJ UUU 5UUU UP EEE %EEE 20;ILJ Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used Vol. 2A 2-11 INSTRUCTION FORMAT 0RG50%\WH 5(;35(),; 2SFRGH :5;% PRG UHJ UUU 6,%%\WH UP LQGH[ [[[ VFDOH VV 5UUU ;[[[ EDVH EEE %EEE 20;ILJ Figure 2-6. Memory Addressing With a SIB Byte 5(;35(),; :% 2SFRGH UHJ EEE %EEE 20;ILJ Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional addressing capability for byteregisters that makes the least-significant byte of GPRs available for byte operations. Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encodings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each case behaves. 2-12 Vol. 2A INSTRUCTION FORMAT Table 2-5. Special Cases of REX Encodings ModR/M or SIB Sub-field Encodings ModR/M Byte mod != 11 Compatibility Mode Operation Compatibility Mode Implications Additional Implications SIB byte present. SIB byte required for ESP-based addressing. r/m = b*100(ESP) ModR/M Byte mod = 0 r/m = b*101(EBP) REX prefix adds a fourth bit (b) which is not decoded (don't care). SIB byte also required for R12-based addressing. Base register not used. EBP without a displacement must be done using REX prefix adds a fourth bit (b) which is not decoded (don't care). mod = 01 with displacement of 0. Using RBP or R13 without displacement must be done using mod = 01 with a displacement of 0. SIB Byte index = 0100(ESP) Index register not used. ESP cannot be used REX prefix adds a fourth as an index bit (b) which is decoded. register. There are no additional implications. The expanded index field allows distinguishing RSP from R12, therefore R12 can be used as an index. SIB Byte base = 0101(EBP) Base register is unused if mod = 0. Base register depends on mod encoding. REX prefix adds a fourth bit (b) which is not decoded. This requires explicit displacement to be used with EBP/RBP or R13. NOTES: * Don’t care about value of REX.B 2.2.1.3 Displacement Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits. 2.2.1.4 Direct Memory-Offset MOVs In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the Vol. 2A 2-13 INSTRUCTION FORMAT size of the memory offset follows the address-size default (64 bits in 64-bit mode). See Table 2-6. Table 2-6. Direct Memory Offset Form of MOV Opcode Instruction A0 MOV AL, moffset A1 MOV EAX, moffset A2 MOV moffset, AL A3 MOV moffset, EAX 2.2.1.5 Immediates In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to their use. Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data (depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to a 64-bit operand size. For example: 48 B8 8877665544332211 MOV RAX,1122334455667788H 2.2.1.6 RIP-Relative Addressing A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An effective address is formed by adding displacement to the 64-bit RIP of the next instruction. In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative addressing. Without RIP-relative addressing, all ModR/M instruction modes address memory relative to zero. RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative addressing is encoded using a redundant form. In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than displacement-only. See Table 2-7. 2-14 Vol. 2A INSTRUCTION FORMAT Table 2-7. RIP-Relative Addressing ModR/M and SIB Sub-field Encodings Compatibility Mode Operation 64-bit Mode Operation Additional Implications in 64-bit mode ModR/M Byte mod = 00 Disp32 RIP + Disp32 Must use SIB form with normal (zero-based) displacement addressing SIB Byte base = 101 (none) if mod = 00, Disp32 Same as legacy None r/m = 101 (none) index = 100 (none) scale = 0, 1, 2, 4 The ModR/M encoding for RIP-relative addressing does not depend on using prefix. Specifically, the r/m bit field encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode R13 + 0 using a 1-byte displacement of zero. RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the computed effective address to 32 bits. 2.2.1.7 Default 64-Bit Operand Size In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this operand size). These are: • • Near branches All instructions, except far branches, that implicitly reference the RSP 2.2.2 Additional Encodings for Control and Debug Registers In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. CR8 becomes the Task Priority Register (TPR). In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access unimplemented registers results in an invalid-opcode exception (#UD). Vol. 2A 2-15 INSTRUCTION FORMAT 2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX) Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field, operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact representation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme also allows more headroom for future growth of Intel 64 architecture. 2.3.1 Instruction Format Instruction encoding using VEX prefix provides several advantages: • Instruction syntax support for three operands and up-to four operands when necessary. For example, the third source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte. • Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers) • • Encoding support for instruction syntax of non-destructive source operands. • Elimination of the need to use REX prefix to encode the extended half of generalpurpose register sets (R8-R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15). • Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a subset of SIMD instructions need them. • Extensibility for future instruction extensions without significant instruction length increase. Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field representation within the VEX prefix. Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax. VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, F2H, F3H in legacy SSE instructions. VEX prefix provides substantially richer capability than the REX prefix. 2-16 Vol. 2A INSTRUCTION FORMAT # Bytes [Prefixes] 2,3 [VEX] 1 OPCODE 1 0,1 ModR/M [SIB] 0,1,2,4 [DISP] 0,1 [IMM] Figure 2-8. Instruction Encoding Format with VEX Prefix 2.3.2 VEX and the LOCK prefix Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD. 2.3.3 VEX and the 66H, F2H, and F3H prefixes Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD. 2.3.4 VEX and the REX prefix Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD. 2.3.5 The VEX Prefix The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX instructions; while the threebyte VEX provides a compact replacement of REX and 3-byte opcode instructions (including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields providing specific capability, they are shown in Figure 2-9. The bit fields of the VEX prefix can be summarized by its functional purposes: • Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B. • Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to distinguish encoded values of other VEX bit fields. Vol. 2A 2-17 INSTRUCTION FORMAT • REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B. — Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’s complement encoding. This is represented as VEX.R. — Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B. — Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can provide completely different functionality for other instructions. Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix encoding format. • Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions (operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128 of the destination register. VEXencoded instruction may have 128 bit vector length or 256 bits length. • Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two and three-byte opcode. The one or two leading bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape (0FH) and two-byte escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. The VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant byte sequence, 0FH, 0FH 3AH, 0FH 38H. These VEX-encoded instruction may have 128 bit vector length or 256 bits length. The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any other prefixes. If VEX prefix is present a REX prefix is not supported. The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are reclaimed for future use. VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by one byte. This may be helpful in some situations for code alignment. The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain new instruction functionality can only be encoded with the VEX prefix. 2-18 Vol. 2A INSTRUCTION FORMAT The VEX prefix will #UD on any instruction containing MMX register sources or destinations. Byte 0 (Bit Position) 7 3-byte VEX 0 7 6 5 4 11000100 7 2-byte VEX Byte 2 Byte 1 0 11000101 0 RXB m-mmmm 7 3 R 6 vvvv 1 7 W 6 3 vvvv 1 2 1 0 L pp 2 1 0 L pp R: REX.R in 1’s complement (inverted) form 1: Same as REX.R=0 (must be 1 in 32-bit mode) 0: Same as REX.R=1 (64-bit mode only) X: REX.X in 1’s complement (inverted) form 1: Same as REX.X=0 (must be 1 in 32-bit mode) 0: Same as REX.X=1 (64-bit mode only) B: REX.B in 1’s complement (inverted) form 1: Same as REX.B=0 (Ignored in 32-bit mode). 0: Same as REX.B=1 (64-bit mode only) W: opcode specific (use like REX.W, or used for opcode extension, or ignored, depending on the opcode byte) m-mmmm: 00000: Reserved for future use (will #UD) 00001: implied 0F leading opcode byte 00010: implied 0F 38 leading opcode bytes 00011: implied 0F 3A leading opcode bytes 00100-11111: Reserved for future use (will #UD) vvvv: a register specifier (in 1’s complement form) or 1111 if unused. L: Vector Length 0: scalar or 128-bit vector 1: 256-bit vector pp: opcode extension providing equivalent functionality of a SIMD prefix 00: None 01: 66 10: F3 11: F2 Figure 2-9. VEX bitfields Vol. 2A 2-19 INSTRUCTION FORMAT The following subsections describe the various fields in two or three-byte VEX prefix: 2.3.5.1 VEX Byte 0, bits[7:0] VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h first byte, while the 2-byte VEX uses the C5h first byte. 2.3.5.2 VEX Byte 1, bit [7] - ‘R’ VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit must be set to ‘1’ otherwise the instruction is LES or LDS. This bit is present in both 2- and 3-byte VEX prefixes. The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architectures Software developer’s manual, Volume 2A. This bit is stored in bit inverted format. 2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’ Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS. This bit is available only in the 3-byte VEX prefix. This bit is stored in bit inverted format. 2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’ Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension of the ModR/M r/m field, or the SIB base field. In 32bit modes, this bit is ignored. This bit is available only in the 3-byte VEX prefix. This bit is stored in bit inverted format. 2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’ Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending on the specific opcode. • For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has same meaning in the corresponding AVX equivalent form. In 32-bit modes, VEX.W is silently ignored. 2-20 Vol. 2A INSTRUCTION FORMAT • • For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have operands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode. For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and setting to other than zero will cause instruction to #UD. 2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]‘vvvv’ the Source or dest Register Specifier In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to place only inverted, 64bit valid fields (extended register selectors) in these upper bits. The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source register specifier stored in inverted (1’s complement) form. VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b otherwise instruction will #UD. In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or YMM registers. In 32-bit and 16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte VEX version will ignore this bit). Vol. 2A 2-21 INSTRUCTION FORMAT Table 2-8. VEX.vvvv to register name mapping VEX.vvvv Dest Register Valid in Legacy/Compatibility 32-bit modes? 1111B XMM0/YMM0 Valid 1110B XMM1/YMM1 Valid 1101B XMM2/YMM2 Valid 1100B XMM3/YMM3 Valid 1011B XMM4/YMM4 Valid 1010B XMM5/YMM5 Valid 1001B XMM6/YMM6 Valid 1000B XMM7/YMM7 Valid 0111B XMM8/YMM8 Invalid 0110B XMM9/YMM9 Invalid 0101B XMM10/YMM10 Invalid 0100B XMM11/YMM11 Invalid 0011B XMM12/YMM12 Invalid 0010B XMM13/YMM13 Invalid 0001B XMM14/YMM14 Invalid 0000B XMM15/YMM15 Invalid The VEX.vvvv field is encoded in bit inverted format for accessing a register operand. 2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded instructions have syntax with less than three operands, e.g. VEX-encoded pack shift instructions support one source operand and one destination operand). The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with respect to encoding destination and source operands vary with different type of instruction syntax. The role of VEX.vvvv can be summarized to three situations: • VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for instructions with 2 or more source operands. • VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts. The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “Opcode” column in Table 2-9 is described in detail in section 3.1.1. 2-22 Vol. 2A INSTRUCTION FORMAT • VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b. Table 2-9. Instructions with a VEX.vvvv destination Opcode Instruction mnemonic VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8 VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8 VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8 VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8 VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8 VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8 VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8 VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8 VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8 VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8 The role of ModR/M.r/m field can be summarized to two situations: • • ModR/M.r/m encodes the instruction operand that references a memory address. For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the destination register operand or a source register operand. The role of ModR/M.reg field can be summarized to two situations: • ModR/M.reg encodes either the destination register operand or a source register operand. • For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction operand. For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four operands. The role of bits 7:4 of the immediate byte serves the following situation: • Imm8[7:4] encodes the third source register operand. 2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm” Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A). Several bits are reserved for future use and will #UD unless 0. Vol. 2A 2-23 INSTRUCTION FORMAT Table 2-10. VEX.m-mmmm interpretation VEX.m-mmmm Implied Leading Opcode Bytes 00000B Reserved 00001B 0F 00010B 0F 38 00011B 0F 3A 00100-11111B Reserved (2-byte VEX) 0F VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 0Fh opcode byte. 2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L” The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-byte VEX. If “VEX.L = 1”, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector operations. The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits 255:128 of all YMM registers accessible in the current operating mode. See the following table. Table 2-11. VEX.L interpretation 2.3.6.3 VEX.L Vector Length 0 128-bit (or 32/64-bit scalar) 1 256-bit 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]“pp” Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix behaves as if it was encoded prior to VEX, but after all other encoded prefixes. See the following table. 2-24 Vol. 2A INSTRUCTION FORMAT Table 2-12. VEX.pp interpretation 2.3.7 pp Implies this prefix after other prefixes but before VEX 00B None 01B 66 10B F3 11B F2 The Opcode Byte One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color. Any instruction that uses illegal opcode will #UD. 2.3.8 The MODRM, SIB, and Displacement Bytes The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above). 2.3.9 The Third Source Operand (Immediate Byte) VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and PBLENDVB use imm8[7:4] to encode one of the source registers. 2.3.10 AVX Instructions and the Upper 128-bits of YMM registers If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits (above bit 128) of the equivalent YMM register . Legacy SSE instructions without VEX preserve the upper bits. 2.3.11 AVX Instruction Length The AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11 bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains 15 bytes. 2.4 INSTRUCTION EXCEPTION SPECIFICATION To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-encoded instruction, Table 2-13 summarizes the Vol. 2A 2-25 INSTRUCTION FORMAT exception behavior into separate classes, with detailed exception conditions defined in sub-sections 2.4.1 through 2.4.9. For example, ADDPS contains the entry: “See Exceptions Type 2” In this entry, “Type2” can be looked up in Table 2-13. The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction summary table. Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the feature flag. NOTE Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the exception classes defined in this section. Table 2-13. Exception class description Exception Class Instruction set Mem arg Floating-Point Exceptions (#XM) Type 1 AVX, Legacy SSE 16/32 byte explicitly aligned none Type 2 AVX, Legacy SSE 16/32 byte not explicitly aligned yes Type 3 AVX, Legacy SSE < 16 byte yes Type 4 AVX, Legacy SSE 16/32 byte not explicitly aligned no Type 5 AVX, Legacy SSE < 16 byte no Type 6 AVX (no Legacy SSE) Varies (At present, none do) Type 7 AVX, Legacy SSE none none Type 8 AVX none none Type 9 AVX 4 byte none See Table 2-14 for lists of instructions in each exception class. 2-26 Vol. 2A INSTRUCTION FORMAT Table 2-14. Instructions in each Exception Class Exception Class Instruction Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS Type 2 (V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ, (V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, (V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, (V)SUBPS Type 3 (V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, (V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS, (V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD, (V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS Type 4 (V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD, (V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU, (V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*, (V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW, (V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB, (V)PBLENDW, (V)PCMP(E/I)STRI/M, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB, (V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB, (V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, (V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD, (V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB, (V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PUNPCKHBW, (V)PUNPCKHWD, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, (V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD, (V)XORPS Type 5 (V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS, (V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX Vol. 2A 2-27 INSTRUCTION FORMAT Exception Class Instruction Type 6 VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**, VMASKMOVPD** Type 7 (V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ Type 8 VZEROALL, VZEROUPPER Type 9 VLDMXCSR*, VSTMXCSR (*) - Additional exception restrictions are present - see the Instruction description for details (**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s, i.e. no alignment checks are performed. Table 2-14 classifies exception behaviors for AVX instructions. Within each class of exception conditions that are listed in Table 2-17 through Table 2-23, certain subsets of AVX instructions may be subject to #UD exception depending on the encoded value of the VEX.L field. Table 2-16 provides supplemental information of AVX instructions that may be subject to #UD exception if encoded with incorrect values in the VEX.W or VEX.L field. Table 2-15. #UD Exception and VEX.W=1 Encoding Exception Class #UD If VEX.W = 1 in all modes #UD If VEX.W = 1 in non-64-bit modes Type 1 Type 2 Type 3 Type 4 VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS Type 5 Type 6 Type 7 Type 8 Type 9 2-28 Vol. 2A VPEXTRQ, VPINSRQ, VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS, VMASKMOVPD INSTRUCTION FORMAT Table 2-16. #UD Exception and VEX.L Field Encoding Exception Class #UD If VEX.L = 0 Type 1 #UD If VEX.L = 1 VMOVNTDQA VDPPD Type 2 Type 3 Type 4 VMASKMOVDQU, VMPSADBW, VPABSB/W/D, VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D, VPADDQ, VPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND, VPANDN, VPAVGB/W, VPBLENDVB, VPBLENDW, VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q, VPHADDW/D, VPHADDSW, VPHMINPOSUW, VPHSUBD/W, VPHSUBSW, VPMADDWD, VPMADDUBSW, VPMAXSB/W/D, VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D, VPMULHUW, VPMULHRSW, VPMULHW/LW, VPMULLD, VPMULUDQ, VPMULDQ, VPOR, VPSADBW, VPSHUFB/D, VPSHUFHW/LW, VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D, VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W, VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ, VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR Type 5 VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD, VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD, VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ, VPMOVSX/ZX Type 6 Type 7 VEXTRACTF128, VPERM2F128, VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ, VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD, VPSRLW, VPSRLD, VPSRLQ Type 8 Type 9 VLDMXCSR, VSTMXCSR Vol. 2A 2-29 INSTRUCTION FORMAT 2.4.1 Exceptions Type 1 (Aligned memory reference) Invalid Opcode, #UD Device Not Available, #NM X 64-bit X Protected and Compatibility Virtual 80x86 Exception Real Table 2-17. Type 1 Class Exception Conditions VEX prefix. X X VEX prefix: If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. Legacy SSE instruction: If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. X X X X X X X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X X X If any corresponding CPUID feature flag is ‘0’. X X X X If CR0.TS[bit 3]=1. X Stack, SS(0) General Protection, #GP(0) X X For an illegal address in the SS segment. X If a memory address referencing the SS segment is in a non-canonical form. X X VEX.256: Memory operand is not 32-byte aligned. VEX.128: Memory operand is not 16-byte aligned. X X Legacy SSE: Memory operand is not 16-byte aligned. For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. X X X Page Fault #PF(fault-code) 2-30 Vol. 2A Cause of Exception If any part of the operand lies outside the effective address space from 0 to FFFFH. X X If the memory address is in a non-canonical form. X X For a page fault. INSTRUCTION FORMAT 2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned) Virtual 8086 X X VEX prefix. X X Invalid Opcode, #UD Device Not Available, #NM 64-bit Real Exception Protected and Compatibility Table 2-18. Type 2 Class Exception Conditions X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. X X VEX prefix: If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. Legacy SSE instruction: If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. X X X X X X X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X X X If any corresponding CPUID feature flag is ‘0’. X X X X If CR0.TS[bit 3]=1. X Stack, SS(0) X X X For an illegal address in the SS segment. X If a memory address referencing the SS segment is in a non-canonical form. X Legacy SSE: Memory operand is not 16-byte aligned. For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. X General Protection, #GP(0) X X Page Fault #PF(fault-code) SIMD Floatingpoint Exception, #XM Cause of Exception X If the memory address is in a non-canonical form. If any part of the operand lies outside the effective address space from 0 to FFFFH. X X X X For a page fault. X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. Vol. 2A 2-31 INSTRUCTION FORMAT 2.4.3 Exceptions Type 3 (<16 Byte memory argument) Invalid Opcode, #UD Device Not Available, #NM X X X 64-bit X Protected and Compatibility Virtual 80x86 Exception Real Table 2-19. Type 3 Class Exception Conditions Cause of Exception VEX prefix. X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. X X VEX prefix: If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. X X X X Legacy SSE instruction: If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. X X X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X X X If any corresponding CPUID feature flag is ‘0’. X X X X If CR0.TS[bit 3]=1. X If a memory address referencing the SS segment is in a non-canonical form. X Stack, SS(0) For an illegal address in the SS segment. For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. X General Protection, #GP(0) X X If the memory address is in a non-canonical form. If any part of the operand lies outside the effective address space from 0 to FFFFH. X Page Fault #PF(fault-code) X X X For a page fault. Alignment Check #AC(0) X X X If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. SIMD Floating-point Exception, #XM 2-32 Vol. 2A X INSTRUCTION FORMAT 2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions) Invalid Opcode, #UD Device Not Available, #NM X 64-bit X Protected and Compatibility Virtual 80x86 Exception Real Table 2-20. Type 4 Class Exception Conditions VEX prefix. X X VEX prefix: If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. X X X X Legacy SSE instruction: If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. X X X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X X X If any corresponding CPUID feature flag is ‘0’. X X X X If CR0.TS[bit 3]=1. X Stack, SS(0) X X X For an illegal address in the SS segment. X If a memory address referencing the SS segment is in a non-canonical form. X Legacy SSE: Memory operand is not 16-byte aligned. For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. X General Protection, #GP(0) X X Page Fault #PF(fault-code) Cause of Exception If any part of the operand lies outside the effective address space from 0 to FFFFH. X X If the memory address is in a non-canonical form. X X For a page fault. Vol. 2A 2-33 INSTRUCTION FORMAT 2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions) Invalid Opcode, #UD Device Not Available, #NM X 64-bit X Protected and Compatibility Virtual 80x86 Exception Real Table 2-21. Type 5 Class Exception Conditions Cause of Exception VEX prefix. X X VEX prefix: If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. Legacy SSE instruction: If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. X X X X X X X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X X X If any corresponding CPUID feature flag is ‘0’. X X X X If CR0.TS[bit 3]=1. X Stack, SS(0) For an illegal address in the SS segment. X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. X General Protection, #GP(0) X X If a memory address referencing the SS segment is in a non-canonical form. If the memory address is in a non-canonical form. If any part of the operand lies outside the effective address space from 0 to FFFFH. X Page Fault #PF(fault-code) X X X For a page fault. Alignment Check #AC(0) X X X If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. 2-34 Vol. 2A INSTRUCTION FORMAT 2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues) Note: At present, the AVX instructions in this category do not generate floating-point exceptions. Invalid Opcode, #UD Device Not Available, #NM X 64-bit X Protected and Compatibility Virtual 80x86 Exception Real Table 2-22. Type 6 Class Exception Conditions VEX prefix. X X If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X If any corresponding CPUID feature flag is ‘0’. X X If CR0.TS[bit 3]=1. X Stack, SS(0) General Protection, #GP(0) Page Fault #PF(fault-code) Alignment Check #AC(0) Cause of Exception For an illegal address in the SS segment. X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. X X X If a memory address referencing the SS segment is in a non-canonical form. X If the memory address is in a non-canonical form. X For a page fault. X For 4 or 8 byte memory references if alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Vol. 2A 2-35 INSTRUCTION FORMAT 2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg) Invalid Opcode, #UD X 2-36 Vol. 2A Cause of Exception VEX prefix. X X VEX prefix: If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. Legacy SSE instruction: If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. X X X X X X X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X If any corresponding CPUID feature flag is ‘0’. X X If CR0.TS[bit 3]=1. X Device Not Available, #NM 64-bit X Protected and Compatibility Virtual 80x86 Exception Real Table 2-23. Type 7 Class Exception Conditions X INSTRUCTION FORMAT 2.4.8 Exceptions Type 8 (AVX and no memory argument) X X X X Cause of Exception Always in Real or Virtual 80x86 mode. X Device Not Available, #NM 64-bit Virtual 80x86 Invalid Opcode, #UD Protected and Compatibility Exception Real Table 2-24. Type 8 Class Exception Conditions X If XCR0[2:1] != ‘11b’. If CR4.OSXSAVE[bit 18]=0. If CPUID.01H.ECX.AVX[bit 28]=0. If VEX.vvvv != 1111B. X X If proceeded by a LOCK prefix (F0H). X X If CR0.TS[bit 3]=1. Vol. 2A 2-37 INSTRUCTION FORMAT 2.4.9 Exception Type 9 (Intel AVX) X 64-bit X Protected and Compatibility Virtual 80x86 Exception Real Table 2-25. Type 9 Class Exception Conditions Always in Real or Virtual 80x86 mode. X X X If preceded by a LOCK prefix (F0H). X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix. X X If CR0.TS[bit 3]=1. X If a memory address referencing the SS segment is in a non-canonical form. X Stack, SS(0) General Protection, #GP(0) If CR4.OSXSAVE[bit 18]=0. If CR0.EM[bit 2] = 1. If CPUID.01H.ECX.AVX[bit 28]=0. If VEX.L = 1. X Invalid Opcode, #UD Device Not Available, #NM Cause of Exception For an illegal address in the SS segment. For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. X X If the memory address is in a non-canonical form. Page Fault #PF(fault-code) X X For a page fault. Alignment Check #AC(0) X X If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. 2-38 Vol. 2A CHAPTER 3 INSTRUCTION SET REFERENCE, A-M This chapter describes the instruction set for the Intel 64 and IA-32 architectures (A-M) in IA-32e, protected, Virtual-8086, and real modes of operation. The set includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ, AVX, and system instructions. See also Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B. For each instruction, each operand combination is described. A description of the instruction and its operand, an operational description, a description of the effect of the instructions on flags in the EFLAGS register, and a summary of exceptions that can be generated are also provided. 3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES This section describes the format of information contained in the instruction reference pages in this chapter. It explains notational conventions and abbreviations used in these sections. 3.1.1 Instruction Format The following is an example of the format used for each instruction description in this chapter. The heading below introduces the example. The table below provides an example summary table. CMC—Complement Carry Flag [this is an example] Opcode Instruction Op/En 64/32-bit CPUID Description Mode Feature Flag F5 CMC V/V A NA Complement carry flag. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Vol. 2A 3-1 INSTRUCTION SET REFERENCE, A-M 3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX prefix) The “Opcode” column in the table above shows the object code produced for each form of the instruction. When possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of entries other than hexadecimal bytes are as follows: • REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column. • /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode. • /r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand. • cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value following the opcode. This value is used to specify a code offset and possibly a new value for the code segment register. • ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that follows the opcode, ModR/M bytes or scaleindexing bytes. The opcode determines if the operand is a signed value. All words, doublewords and quadwords are given with the low-order byte first. • +rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the hexadecimal byte given at the left of the plus sign to form a single opcode byte. See Table 3-1 for the codes. The +ro columns in the table are applicable only in 64-bit mode. • +i — A number used in floating-point instructions when one of the operands is ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign to form a single opcode byte. 3-2 Vol. 2A INSTRUCTION SET REFERENCE, A-M Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro REX.B Reg Field quadword register (64-Bit Mode only) Register Reg Field REX.B Register dword register Reg Field REX.B word register Register Reg Field REX.B Register byte register AL None 0 AX None 0 EAX None 0 RAX None 0 CL None 1 CX None 1 ECX None 1 RCX None 1 DL None 2 DX None 2 EDX None 2 RDX None 2 BL None 3 BX None 3 EBX None 3 RBX None 3 AH Not encod able (N.E.) 4 SP None 4 ESP None 4 N/A N/A N/A CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A SPL Yes 4 SP None 4 ESP None 4 RSP None 4 BPL Yes 5 BP None 5 EBP None 5 RBP None 5 SIL Yes 6 SI None 6 ESI None 6 RSI None 6 DIL Yes 7 DI None 7 EDI None 7 RDI None 7 Yes 0 Registers R8 - R15 (see below): Available in 64-Bit Mode Only R8L Yes 0 R8W Yes R9L Yes 1 R9W Yes R10L Yes 2 R10W Yes R11L Yes 3 R11W Yes R12L Yes 4 R12W R13L Yes 5 R14L Yes 6 R15L Yes 7 0 R8D Yes 0 R8 1 R9D Yes 1 R9 Yes 1 2 R10D Yes 2 R10 Yes 2 3 R11D Yes 3 R11 Yes 3 Yes 4 R12D Yes 4 R12 Yes 4 R13W Yes 5 R13D Yes 5 R13 Yes 5 R14W Yes 6 R14D Yes 6 R14 Yes 6 R15W Yes 7 R15D Yes 7 R15 Yes 7 Vol. 2A 3-3 INSTRUCTION SET REFERENCE, A-M 3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix) In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in following form (including the modR/M byte if applicable, the immediate byte if applicable): VEX.[NDS].[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] [/ib,/is4] • VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-byte form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX only applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W, VEX.X, VEX.B. Refer to Section 2.3 for more detail on the VEX prefix. The encoding of various sub-fields of the VEX prefix is described using the following notations: — NDS, NDD, DDS: specifies that VEX.vvvv field is valid for the encoding of a register operand: • VEX.NDS: VEX.vvvv encodes the first source register in an instruction syntax where the content of source registers will be preserved. • VEX.NDD: VEX.vvvv encodes the destination register that cannot be encoded by ModR/M:reg field. • VEX.DDS: VEX.vvvv encodes the second source register in a threeoperand instruction syntax where the content of first source register will be overwritten by the result. • If none of NDS, NDD, and DDS is present, VEX.vvvv must be 1111b (i.e. VEX.vvvv does not encode an operand). The VEX.vvvv field can be encoded using either the 2-byte or 3-byte form of the VEX prefix. — 128,256: VEX.L field can be 0 (denoted by VEX.128 or VEX.LZ) or 1 (denoted by VEX.256). The VEX.L field can be encoded using either the 2byte or 3-byte form of the VEX prefix. The presence of the notation VEX.256 or VEX.128 in the opcode column should be interpreted as follows: • If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a) if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b) an #UD occurs if there is no VEX.128 version defined. • If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same opcode byte: Two situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with VEX.L= 1 by causing an #UD exception; (b) For VEX- 3-4 Vol. 2A INSTRUCTION SET REFERENCE, A-M encoded, 128-bit packed floating-point instructions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with VEX.L= 1 by causing an #UD exception (e.g. VMOVLPS). • If VEX.LIG is present in the opcode column: The VEX.L value is ignored. This generally applies to VEX-encoded scalar SIMD floating-point instructions. Scalar SIMD floating-point instruction can be distinguished from the mnemonic of the instruction. Generally, the last two letters of the instruction mnemonic would be either “SS“, “SD“, or “SI“ for SIMD floating-point conversion instructions. • If VEX.LZ is present in the opcode column: The VEX.L must be encoded to be 0B, an #UD occurs if VEX.L is not zero. — 66,F2,F3: The presence or absence of these values map to the VEX.pp field encodings. If absent, this corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a nonzero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using either the 2-byte or 3-byte form of the VEX prefix. — 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH and 0F38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if the corresponding escape byte sequence on the ensuing opcode byte for nonVEX encoded instructions. Thus a valid encoding of VEX.mmmmm may be consider as an implies escape byte sequence of either 0FH, 0F3AH or 0F38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix. — 0F,0F3A,0F38 and 2-byte/3-byte VEX. The presence of 0F3A and 0F38 in the opcode column implies that opcode can only be encoded by the threebyte form of VEX. The presence of 0F in the opcode column does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not require any subfield of VEX not present in the two-byte form of the VEX prefix. — W0: VEX.W=0. — W1: VEX.W=1. — The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an extended opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode must be encoded using the 3-byte form of the VEX prefix. The presence of W0 in the opcode column does not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode Vol. 2A 3-5 INSTRUCTION SET REFERENCE, A-M does not require other VEX subfields not present in the two-byte form of the VEX prefix. Please see Section 2.3 on the subfield definitions within VEX. — WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is ignored in the C4H form of VEX prefix. — If WIG is present, the instruction may be encoded using either the two-byte form or the three-byte form of VEX. When encoding the instruction using the three-byte form of VEX, the value of VEX.W is ignored. • • opcode: Instruction opcode. • In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column. The encoding scheme of VEX.R, VEX.X, VEX.B fields must follow the rules defined in Section 2.3. /is4: An 8-bit immediate byte is present containing a source register specifier in imm[7:4] and instruction-specific payload in imm[3:0]. 3.1.1.3 Instruction Column in the Opcode Summary Table The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program. The following is a list of the symbols used to represent operands in the instruction statements: • rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the end of the instruction. • rel16, rel32, rel64 — A relative address within the same code segment as the instruction assembled. The rel16 symbol applies to instructions with an operandsize attribute of 16 bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits; the rel64 symbol applies to instructions with an operand-size attribute of 64 bits. • ptr16:16, ptr16:32 and ptr16:64 — A far pointer, typically to a code segment different from that of the instruction. The notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-bit selector or value destined for the code segment register. The value to the right corresponds to the offset within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits; the ptr16:64 symbol is used when the operand-size attribute is 64 bits. • r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when using REX.R and 64-bit mode. • r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers (R8-R15) available when using REX.R and 64-bit mode. • r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode. 3-6 Vol. 2A INSTRUCTION SET REFERENCE, A-M • r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15. These are available when using REX.R and 64-bit mode. • imm8 — An immediate byte value. The imm8 symbol is a signed number between –128 and +127 inclusive. For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the immediate value. • imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a number between –32,768 and +32,767 inclusive. • imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32 bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive. • imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits. The value allows the use of a number between +9,223,372,036,854,775,807 and –9,223,372,036,854,775,808 inclusive. • r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode. • r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the address provided by the effective address computation. Word registers R8W R15W are available using REX.R in 64-bit mode. • r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-size attribute is 32 bits. The doubleword generalpurpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of memory are found at the address provided by the effective address computation. Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode. • r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the address provided by the effective address computation. • • m — A 16-, 32- or 64-bit operand in memory. • m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions. m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers. Vol. 2A 3-7 INSTRUCTION SET REFERENCE, A-M • m32 — A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions. • • • m64 — A memory quadword operand in memory. • m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR registers. • moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs indicates its size, which is determined by the address-size attribute of the instruction. • Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 4, and GS = 5. • m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively) floating-point operand in memory. These symbols designate floating-point values that are used as operands for x87 FPU floating-point instructions. • m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory. These symbols designate integers that are used as operands for x87 FPU integer instructions. • • • • ST or ST(0) — The top element of the FPU register stack. • mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7. The contents of memory are found at the address provided by the effective address computation. m128 — A memory double quadword operand in memory. m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The number to the left of the colon corresponds to the pointer's segment selector. The number to the right corresponds to its offset. ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7). mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7. mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers are: MM0 through MM7. The contents of memory are found at the address provided by the effective address computation. 3-8 Vol. 2A INSTRUCTION SET REFERENCE, A-M • xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. • xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at the address provided by the effective address computation. • xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at the address provided by the effective address computation. • xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at the address provided by the effective address computation. •— indicates implied use of the XMM0 register. When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second source operand using an XMM register. Some instructions use the XMM0 register as the third source operand, indicated by . The use of the third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding. • ymm — a YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are available in 64-bit mode. • m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions. • • • ymm/m256 — a YMM register or 256-bit memory operand. • SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the VEX prefix and having two or more source operands. • SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the VEX prefix and having three source operands. • SRC — The source in a AVX single-source instruction or the source in a Legacy SSE instruction. • DST — the destination in a AVX instruction. In Legacy SSE instructions can be either the destination, first source, or both. This field is encoded by reg_field. — indicates use of the YMM0 register as an implicit argument. SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the VEX prefix and having two or more source operands. 3.1.1.4 Operand Encoding Column in the Instruction Summary Table The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction operand encoding information is provided for each Vol. 2A 3-9 INSTRUCTION SET REFERENCE, A-M assembly instruction syntax using a letter to cross reference to a row entry in the operand encoding definition table that follows the instruction summary table. The operand encoding table in each instruction reference page lists each instruction operand (according to each instruction syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or additional operand encoding placement. • • 3.1.1.5 NOTES The letters in the Op/En column of an instruction apply ONLY to the encoding definition table immediately following the instruction summary table. In the encoding definition table, the letter ‘r’ within a pair of parenthesis denotes the content of the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the content of the operand will be updated by the processor. 64/32-bit Mode Column in the Instruction Summary Table The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated specific instruction extensions. The 64-bit mode support is to the left of the ‘slash’ and has the following notation: • • • V — Supported. • N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode. • • N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode. I — Not supported. N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence of valid instructions in other modes). N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not supported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior. The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the following notation: • V — Supported. • I — Not supported. • N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable; the opcode sequence is not applicable as an individual instruction in compatibility mode or IA-32 mode. The opcode may represent a valid sequence of legacy IA-32 instructions. 3-10 Vol. 2A INSTRUCTION SET REFERENCE, A-M 3.1.1.6 CPUID Support Column in the Instruction Summary Table The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in CPUID.1.ECX, CPUID.1.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AESNI/PCLMULQDQ/AVX support) that indicate processor support for the instruction. If the corresponding flag is ‘0’, the instruction will #UD. 3.1.1.7 Description Column in the Instruction Summary Table The “Description” column briefly explains forms of the instruction. 3.1.1.8 Description Section Each instruction is then described by number of information sections. The “Description” section describes the purpose of the instructions and required operands in more detail. Summary of terms that may be used in the description section: • Legacy SSE: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, AESNI, PCLMULQDQ and any future instruction sets referencing XMM registers and encoded without a VEX prefix. • VEX.vvvv. The VEX bitfield specifying a source or destination register (in 1’s complement form). • • rm_field: shorthand for the ModR/M r/m field and any REX.B reg_field: shorthand for the ModR/M reg field and any REX.R 3.1.1.9 Operation Section The “Operation” section contains an algorithm description (frequently written in pseudo-code) for the instruction. Algorithms are composed of the following elements: • • Comments are enclosed within the symbol pairs “(*” and “*)”. • A register name implies the contents of the register. A register name enclosed in brackets implies the contents of the location whose address is contained in that register. For example, ES:[DI] indicates the contents of the location whose ES segment relative address is in register DI. [SI] indicates the contents of the address contained in register SI relative to the SI register’s default segment (DS) or the overridden segment. • Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates that the offset is read from the SI register if the address-size attribute is 16, from the ESI register if the address-size attribute is 32. Parentheses Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI for an if statement; DO and OD for a do statement; or CASE... OF for a case statement. Vol. 2A 3-11 INSTRUCTION SET REFERENCE, A-M around the “R” in a general-purpose register name, (R)SI, in the presence of a 64-bit register definition such as (R)SI, indicates that the offset is read from the 64-bit RSI register if the address-size attribute is 64. • Brackets are used for memory operands where they mean that the contents of the memory location is a segment-relative offset. For example, [SRC] indicates that the content of the source operand is a segment-relative offset. • • A ← B indicates that the value of B is assigned to A. • The expression “« COUNT” and “» COUNT” indicates that the destination operand should be shifted left or right by the number of bits indicated by the count operand. The symbols =, ≠, >, <, ≥, and ≤ are relational operators used to compare two values: meaning equal, not equal, greater or equal, less or equal, respectively. A relational expression such as A ← B is TRUE if the value of A is equal to B; otherwise it is FALSE. The following identifiers are used in the algorithmic descriptions: • OperandSize and AddressSize — The OperandSize identifier represents the operand-size attribute of the instruction, which is 16, 32 or 64-bits. The AddressSize identifier represents the address-size attribute, which is 16, 32 or 64-bits. For example, the following pseudo-code indicates that the operand-size attribute depends on the form of the MOV instruction used. IF Instruction ← MOVW THEN OperandSize = 16; ELSE IF Instruction ← MOVD THEN OperandSize = 32; ELSE IF Instruction ← MOVQ THEN OperandSize = 64; FI; FI; FI; See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for guidelines on how these attributes are determined. • StackAddrSize — Represents the stack address-size attribute associated with the instruction, which has a value of 16, 32 or 64-bits. See “Address-Size Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. • • • SRC — Represents the source operand. DEST — Represents the destination operand. VLMAX — The maximum vector register width pertaining to the instruction. This is not the vector-length encoding in the instruction's prefix but is instead 3-12 Vol. 2A INSTRUCTION SET REFERENCE, A-M determined by the current value of XCR0. For existing processors, VLMAX is 256 whenever XCR0.YMM[bit 2] is 1. Future processors may defined new bits in XCR0 whose setting may imply other values for VLMAX. VLMAX Definition XCR0 Component VLMAX XCR0.YMM 256 The following functions are used in the algorithmic descriptions: • ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the instruction. For example, if the operand-size attribute is 32, zero extending a byte value of –10 converts the byte from F6H to a doubleword value of 000000F6H. If the value passed to the ZeroExtend function and the operandsize attribute are the same size, ZeroExtend returns the value unaltered. • SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the instruction. For example, if the operand-size attribute is 32, sign extending a byte containing the value –10 converts the byte from F6H to a doubleword value of FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute are the same size, SignExtend returns the value unaltered. • SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-bit value. If the signed 16-bit value is less than –128, it is represented by the saturated value -128 (80H); if it is greater than 127, it is represented by the saturated value 127 (7FH). • SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed 16-bit value. If the signed 32-bit value is less than –32768, it is represented by the saturated value –32768 (8000H); if it is greater than 32767, it is represented by the saturated value 32767 (7FFFH). • SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented by the saturated value zero (00H); if it is greater than 255, it is represented by the saturated value 255 (FFH). • SaturateToSignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less than –128, it is represented by the saturated value –128 (80H); if it is greater than 127, it is represented by the saturated value 127 (7FH). • SaturateToSignedWord — Represents the result of an operation as a signed 16-bit value. If the result is less than –32768, it is represented by the saturated value –32768 (8000H); if it is greater than 32767, it is represented by the saturated value 32767 (7FFFH). • SaturateToUnsignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less than zero it is represented by the saturated value Vol. 2A 3-13 INSTRUCTION SET REFERENCE, A-M zero (00H); if it is greater than 255, it is represented by the saturated value 255 (FFH). • SaturateToUnsignedWord — Represents the result of an operation as a signed 16-bit value. If the result is less than zero it is represented by the saturated value zero (00H); if it is greater than 65535, it is represented by the saturated value 65535 (FFFFH). • LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the least significant word of the doubleword result in the destination operand. • HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the most significant word of the doubleword result in the destination operand. • Push(value) — Pushes a value onto the stack. The number of bytes pushed is determined by the operand-size attribute of the instruction. See the “Operation” subsection of the “PUSH—Push Word, Doubleword or Quadword Onto the Stack” section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B. • Pop() removes the value from the top of the stack and returns it. The statement EAX ← Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return either a word, a doubleword or a quadword depending on the operand-size attribute. See the “Operation” subsection in the “POP—Pop a Value from the Stack” section of Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B. • PopRegisterStack — Marks the FPU ST(0) register as empty and increments the FPU register stack pointer (TOP) by 1. • • Switch-Tasks — Performs a task switch. Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit string is a sequence of bits in memory or a register. Bits are numbered from loworder to high-order within registers and within memory bytes. If the BitBase is a register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated. 63 31 21 0 Bit Offset ← 21 Figure 3-1. Bit Offset for BIT[RAX, 21] 3-14 Vol. 2A INSTRUCTION SET REFERENCE, A-M If BitBase is a memory address, the BitOffset can range has different ranges depending on the operand size (see Table 3-2). Table 3-2. Range of Bit Positions Specified by Bit Offset Operands Operand Size Immediate BitOffset Register BitOffset 16 0 to 15 − 215 to 215 − 1 32 0 to 31 − 231 to 231 − 1 64 0 to 63 − 263 to 263 − 1 The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards negative infinity and MOD returns a positive number (see Figure 3-2). 7 5 0 7 BitBase + 0 7 BitBase 0 BitBase − BitOffset ← +13 7 0 7 BitBase 0 7 BitBase − 5 0 BitBase − BitOffset ← − Figure 3-2. Memory Bit Indexing 3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions that allow using the syntax of C function calls and C variables instead of hardware registers. Using these intrinsics frees programmers from having to manage registers and assembly programming. Further, the compiler optimizes the instruction scheduling so that executable run faster. The following sections discuss the intrinsics API and the MMX technology and SIMD floating-point intrinsics. Each intrinsic equivalent is listed with the instruction description. There may be additional intrinsics that do not have an instruction equiv- Vol. 2A 3-15 INSTRUCTION SET REFERENCE, A-M alent. It is strongly recommended that the reader reference the compiler documentation for the complete list of supported intrinsics. See Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for more information on using intrinsics. Intrinsics API The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrinsics is that you can use the syntax of C function calls and C variables instead of hardware registers. This frees you from managing registers and programming assembly. Further, the compiler optimizes the instruction scheduling so that your executable runs faster. For each computational and data manipulation instruction in the new instruction set, there is a corresponding C intrinsic that implements it directly. The intrinsics allow you to specify the underlying implementation (instruction selection) of an algorithm yet leave instruction scheduling and register allocation to the compiler. MMX™ Technology Intrinsics The MMX technology intrinsics are based on a __m64 data type that represents the specific contents of an MMX technology register. You can specify values in bytes, short integers, 32-bit values, or a 64-bit object. The __m64 data type, however, is not a basic ANSI C data type, and therefore you must observe the following usage restrictions: • Use __m64 data only on the left-hand side of an assignment, as a return value, or as a parameter. You cannot use it with other arithmetic expressions (“+”, “>>”, and so on). • Use __m64 objects in aggregates, such as unions to access the byte elements and structures; the address of an __m64 object may be taken. • Use __m64 data only with the MMX technology intrinsics described in this manual and Intel® C/C++ compiler documentation. • See: — http://www.intel.com/support/performancetools/ — Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for more information on using intrinsics. — SSE/SSE2/SSE3 Intrinsics — SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium III, Pentium 4, and Intel Xeon processors. There are three data types supported by these intrinsics: __m128, __m128d, and __m128i. 3-16 Vol. 2A INSTRUCTION SET REFERENCE, A-M • The __m128 data type is used to represent the contents of an XMM register used by an SSE intrinsic. This is either four packed single-precision floating-point values or a scalar single-precision floating-point value. • The __m128d data type holds two packed double-precision floating-point values or a scalar double-precision floating-point value. • The __m128i data type can hold sixteen byte, eight word, or four doubleword, or two quadword integer values. The compiler aligns __m128, __m128d, and __m128i local and global data to 16-byte boundaries on the stack. To align integer, float, or double arrays, use the declspec statement as described in Intel C/C++ compiler documentation. See http://www.intel.com/support/performancetools/. The __m128, __m128d, and __m128i data types are not basic ANSI C data types and therefore some restrictions are placed on its usage: • Use __m128, __m128d, and __m128i only on the left-hand side of an assignment, as a return value, or as a parameter. Do not use it in other arithmetic expressions such as “+” and “>>.” • Do not initialize __m128, __m128d, and __m128i with literals; there is no way to express 128-bit constants. • Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for example, to access the float elements) and structures. The address of these objects may be taken. • Use __m128, __m128d, and __m128i data only with the intrinsics described in this user’s guide. See Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for more information on using intrinsics. The compiler aligns __m128, __m128d, and __m128i local data to 16-byte boundaries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To align float arrays, you can use the alignment declspec described in the following section.) Because the new instruction set treats the SIMD floating-point registers in the same way whether you are using packed or scalar data, there is no __m32 data type to represent scalar data as you might expect. For scalar operations, you should use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the processor implement these operations with 32-bit memory references. The suffixes ps and ss are used to denote “packed single” and “scalar single” precision operations. The packed floats are represented in right-to-left order, with the lowest word (right-most) being used for scalar operations: [z, y, x, w]. To explain how memory storage reflects this, consider the following example. The operation: float a[4] ← { 1.0, 2.0, 3.0, 4.0 }; __m128 t ← _mm_load_ps(a); Produces the same result as follows: Vol. 2A 3-17 INSTRUCTION SET REFERENCE, A-M __m128 t ← _mm_set_ps(4.0, 3.0, 2.0, 1.0); In other words: t ← [ 4.0, 3.0, 2.0, 1.0 ] Where the “scalar” element is 1.0. Some intrinsics are “composites” because they require more than one instruction to implement them. You should be familiar with the hardware features provided by the SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics. Keep the following important issues in mind: • Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported by the instruction set. While these intrinsics are convenient programming aids, be mindful of their implementation cost. • • Data loaded or stored as __m128 objects must generally be 16-byte-aligned. • The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined. Therefore, floating-point operations using NaN arguments may not match the expected behavior of the corresponding assembly instructions. Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to the nature of the instruction. For a more detailed description of each intrinsic and additional information related to its usage, refer to Intel C/C++ compiler documentation. See: — http://www.intel.com/support/performancetools/ — Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for more information on using intrinsics. 3.1.1.11 Flags Affected Section The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic and logical instructions usually assign values to the status flags in a uniform manner (see Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional assignments are described in the “Operation” section. The values of flags listed as undefined may be changed by the instruction in an indeterminate manner. Flags that are not listed are unchanged by the instruction. 3.1.1.12 FPU Flags Affected Section The floating-point instructions have an “FPU Flags Affected” section that describes how each instruction can affect the four condition code flags of the FPU status word. 3-18 Vol. 2A INSTRUCTION SET REFERENCE, A-M 3.1.1.13 Protected Mode Exceptions Section The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in protected mode and the reasons for the exceptions. Each exception is given a mnemonic that consists of a pound sign (#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a general protection exception with an error code of 0. Table 3-3 associates each twoletter mnemonic with the corresponding interrupt vector number and exception name. See Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the exceptions. Application programmers should consult the documentation provided with their operating systems to determine the actions taken when exceptions occur. Table 3-3. Intel 64 and IA-32 General Exceptions Vector No. Name Source Protected Mode1 Real Address Mode Virtual 8086 Mode 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes 1 #DB—Debug Any code or data reference. Yes Yes Yes 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes 4 #OF—Overflow INTO instruction. Yes Yes Yes 5 #BR—BOUND Range Exceeded BOUND instruction. Yes Yes Yes 6 #UD—Invalid Opcode (Undefined Opcode) UD2 instruction or reserved opcode. Yes Yes Yes 7 #NM—Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction. Yes Yes Yes 8 #DF—Double Fault Any instruction that can generate an exception, an NMI, or an INTR. Yes Yes Yes 10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes 11 #NP—Segment Not Present Loading segment registers or accessing system segments. Yes Reserved Yes 12 #SS—Stack Segment Fault Stack operations and SS register loads. Yes Yes Yes 13 #GP—General Protection2 Any memory reference and other protection checks. Yes Yes Yes Vol. 2A 3-19 INSTRUCTION SET REFERENCE, A-M Table 3-3. Intel 64 and IA-32 General Exceptions (Contd.) Vector No. Name Source 14 #PF—Page Fault Any memory reference. 16 Protected Mode1 Real Address Mode Virtual 8086 Mode Yes Reserved Yes #MF—Floating-Point Floating-point or WAIT/FWAIT Error (Math Fault) instruction. Yes Yes Yes 17 #AC—Alignment Check Any data reference in memory. Yes Reserved Yes 18 #MC—Machine Check Model dependent machine check errors. Yes Yes Yes 19 #XM—SIMD Floating-Point Numeric Error SSE/SSE2/SSE3 floating-point instructions. Yes Yes Yes NOTES: 1. Apply to protected mode, compatibility mode, and 64-bit mode. 2. In the real-address mode, vector 13 is the segment overrun exception. 3.1.1.14 Real-Address Mode Exceptions Section The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in real-address mode (see Table 3-3). 3.1.1.15 Virtual-8086 Mode Exceptions Section The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in virtual-8086 mode (see Table 3-3). 3.1.1.16 Floating-Point Exceptions Section The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU floating-point instruction is executed. All of these exception conditions result in a floating-point error exception (#MF, vector number 16) being generated. Table 3-4 associates a one- or two-letter mnemonic with the corresponding exception name. See “Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a detailed description of these exceptions. Table 3-4. x87 FPU Floating-Point Exceptions Mnemonic 3-20 Vol. 2A Name Source INSTRUCTION SET REFERENCE, A-M Table 3-4. x87 FPU Floating-Point Exceptions Floating-point invalid operation: #IS #IA - Stack overflow or underflow - x87 FPU stack overflow or underflow - Invalid arithmetic operation - Invalid FPU arithmetic operation #Z Floating-point divide-by-zero Divide-by-zero #D Floating-point denormal operand Source operand that is a denormal number #O Floating-point numeric overflow Overflow in result #U Floating-point numeric underflow Underflow in result #P Floating-point inexact result (precision) Inexact result (precision) 3.1.1.17 SIMD Floating-Point Exceptions Section The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception conditions result in a SIMD floating-point error exception (#XM, vector number 19) being generated. Table 3-5 associates a one-letter mnemonic with the corresponding exception name. For a detailed description of these exceptions, refer to ”SSE and SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. Table 3-5. SIMD Floating-Point Exceptions Mnemonic Name Source #I Floating-point invalid operation Invalid arithmetic operation or source operand #Z Floating-point divide-by-zero Divide-by-zero #D Floating-point denormal operand Source operand that is a denormal number #O Floating-point numeric overflow Overflow in result #U Floating-point numeric underflow Underflow in result #P Floating-point inexact result 3.1.1.18 Inexact result (precision) Compatibility Mode Exceptions Section This section lists exceptions that occur within compatibility mode. 3.1.1.19 64-Bit Mode Exceptions Section This section lists exceptions that occur within 64-bit mode. Vol. 2A 3-21 INSTRUCTION SET REFERENCE, A-M 3.2 INSTRUCTIONS (A-M) The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions (A-M). See also: Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B. 3-22 Vol. 2A INSTRUCTION SET REFERENCE, A-M AAA—ASCII Adjust After Addition Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 37 AAA A Invalid Valid ASCII adjust AL after addition. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register is the implied source and destination operand for this instruction. The AAA instruction is only useful when it follows an ADD instruction that adds (binary addition) two unpacked BCD values and stores a byte result in the AL register. The AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result. If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, bits 4 through 7 of the AL register are set to 0. This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode. Operation IF 64-Bit Mode THEN #UD; ELSE IF ((AL AND 0FH) > 9) or (AF = 1) THEN AL ← AL + 6; AH ← AH + 1; AF ← 1; CF ← 1; AL ← AL AND 0FH; ELSE AF ← 0; CF ← 0; AL ← AL AND 0FH; FI; AAA—ASCII Adjust After Addition Vol. 2A 3-23 INSTRUCTION SET REFERENCE, A-M FI; Flags Affected The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are set to 0. The OF, SF, ZF, and PF flags are undefined. Protected Mode Exceptions #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as protected mode. Virtual-8086 Mode Exceptions Same exceptions as protected mode. Compatibility Mode Exceptions Same exceptions as protected mode. 64-Bit Mode Exceptions #UD 3-24 Vol. 2A If in 64-bit mode. AAA—ASCII Adjust After Addition INSTRUCTION SET REFERENCE, A-M AAD—ASCII Adjust AX Before Division Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode D5 0A AAD A Invalid Valid ASCII adjust AX before division. D5 ib (No mnemonic) A Invalid Valid Adjust AX before division to number base imm8. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-significant digit in the AH register) so that a division operation performed on the result will yield a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV instruction that divides (binary division) the adjusted value in the AX register by an unpacked BCD value. The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the AH register to 00H. The value in the AX register is then equal to the binary equivalent of the original unpacked two-digit (base 10) number in registers AH and AL. The generalized version of this instruction allows adjustment of two unpacked digits of any number base (see the “Operation” section below), by setting the imm8 byte to the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean adjust ASCII (base 10) values. To adjust values in another number base, the instruction must be hand coded in machine code (D5 imm8). This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode. Operation IF 64-Bit Mode THEN #UD; ELSE tempAL ← AL; tempAH ← AH; AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic.*) AAD—ASCII Adjust AX Before Division Vol. 2A 3-25 INSTRUCTION SET REFERENCE, A-M FI; AH ← 0; The immediate value (imm8) is taken from the second byte of the instruction. Flags Affected The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the OF, AF, and CF flags are undefined. Protected Mode Exceptions #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as protected mode. Virtual-8086 Mode Exceptions Same exceptions as protected mode. Compatibility Mode Exceptions Same exceptions as protected mode. 64-Bit Mode Exceptions #UD 3-26 Vol. 2A If in 64-bit mode. AAD—ASCII Adjust AX Before Division INSTRUCTION SET REFERENCE, A-M AAM—ASCII Adjust AX After Multiply Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode D4 0A AAM A Invalid Valid ASCII adjust AX after multiply. D4 ib (No mnemonic) A Invalid Valid Adjust AX after multiply to number base imm8. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked (base 10) BCD values. The AX register is the implied source and destination operand for this instruction. The AAM instruction is only useful when it follows an MUL instruction that multiplies (binary multiplication) two unpacked BCD values and stores a word result in the AX register. The AAM instruction then adjusts the contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD result. The generalized version of this instruction allows adjustment of the contents of the AX to create two unpacked digits of any number base (see the “Operation” section below). Here, the imm8 byte is set to the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is interpreted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to values in another number base, the instruction must be hand coded in machine code (D4 imm8). This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode. Operation IF 64-Bit Mode THEN #UD; ELSE tempAL ← AL; AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *) AL ← tempAL MOD imm8; FI; The immediate value (imm8) is taken from the second byte of the instruction. AAM—ASCII Adjust AX After Multiply Vol. 2A 3-27 INSTRUCTION SET REFERENCE, A-M Flags Affected The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The OF, AF, and CF flags are undefined. Protected Mode Exceptions #DE If an immediate value of 0 is used. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as protected mode. Virtual-8086 Mode Exceptions Same exceptions as protected mode. Compatibility Mode Exceptions Same exceptions as protected mode. 64-Bit Mode Exceptions #UD 3-28 Vol. 2A If in 64-bit mode. AAM—ASCII Adjust AX After Multiply INSTRUCTION SET REFERENCE, A-M AAS—ASCII Adjust AL After Subtraction Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 3F AAS A Invalid Valid ASCII adjust AL after subtraction. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD result. The AL register is the implied source and destination operand for this instruction. The AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtraction) one unpacked BCD value from another and stores a byte result in the AL register. The AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result. If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL register is left with its top four bits set to 0. This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode. Operation IF 64-bit mode THEN #UD; ELSE IF ((AL AND 0FH) > 9) or (AF = 1) THEN AL ← AL – 6; AH ← AH – 1; AF ← 1; CF ← 1; AL ← AL AND 0FH; ELSE CF ← 0; AF ← 0; AL ← AL AND 0FH; AAS—ASCII Adjust AL After Subtraction Vol. 2A 3-29 INSTRUCTION SET REFERENCE, A-M FI; FI; Flags Affected The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The OF, SF, ZF, and PF flags are undefined. Protected Mode Exceptions #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as protected mode. Virtual-8086 Mode Exceptions Same exceptions as protected mode. Compatibility Mode Exceptions Same exceptions as protected mode. 64-Bit Mode Exceptions #UD 3-30 Vol. 2A If in 64-bit mode. AAS—ASCII Adjust AL After Subtraction INSTRUCTION SET REFERENCE, A-M ADC—Add with Carry Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 14 ib ADC AL, imm8 C Valid Valid Add with carry imm8 to AL. 15 iw ADC AX, imm16 C Valid Valid Add with carry imm16 to AX. 15 id ADC EAX, imm32 C Valid Valid Add with carry imm32 to EAX. REX.W + 15 id ADC RAX, imm32 C Valid N.E. Add with carry imm32 sign extended to 64-bits to RAX. 80 /2 ib ADC r/m8, imm8 B Valid Valid Add with carry imm8 to r/m8. REX + 80 /2 ib ADC r/m8*, imm8 B Valid N.E. Add with carry imm8 to r/m8. 81 /2 iw ADC r/m16, imm16 B Valid Valid Add with carry imm16 to r/m16. 81 /2 id ADC r/m32, imm32 B Valid Valid Add with CF imm32 to r/m32. REX.W + 81 /2 id ADC r/m64, imm32 B Valid N.E. Add with CF imm32 sign extended to 64-bits to r/m64. 83 /2 ib ADC r/m16, imm8 B Valid Valid Add with CF sign-extended imm8 to r/m16. 83 /2 ib ADC r/m32, imm8 B Valid Valid Add with CF sign-extended imm8 into r/m32. REX.W + 83 /2 ib ADC r/m64, imm8 B Valid N.E. Add with CF sign-extended imm8 into r/m64. 10 /r ADC r/m8, r8 A Valid Valid Add with carry byte register to r/m8. REX + 10 /r ADC r/m8*, r8* A Valid N.E. Add with carry byte register to r/m64. 11 /r ADC r/m16, r16 A Valid Valid Add with carry r16 to r/m16. 11 /r ADC r/m32, r32 A Valid Valid Add with CF r32 to r/m32. REX.W + 11 /r ADC r/m64, r64 A Valid N.E. Add with CF r64 to r/m64. 12 /r ADC r8, r/m8 A Valid Valid Add with carry r/m8 to byte register. REX + 12 /r ADC r8*, r/m8* A Valid N.E. Add with carry r/m64 to byte register. ADC—Add with Carry Vol. 2A 3-31 INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 13 /r ADC r16, r/m16 A Valid Valid Add with carry r/m16 to r16. 13 /r ADC r32, r/m32 A Valid Valid Add with CF r/m32 to r32. REX.W + 13 /r ADC r64, r/m64 A Valid N.E. Add with CF r/m64 to r64. NOTES: *In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r, w) ModRM:reg (r) NA NA B ModRM:r/m (r, w) imm8 NA NA C AL/AX/EAX/RAX imm8 NA NA Description Adds the destination operand (first operand), the source operand (second operand), and the carry (CF) flag and stores the result in the destination operand. The destination operand can be a register or a memory location; the source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one instruction.) The state of the CF flag represents a carry from a previous addition. When an immediate value is used as an operand, it is signextended to the length of the destination operand format. The ADC instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result. The ADC instruction is usually executed as part of a multibyte or multiword addition in which an ADD instruction is followed by an ADC instruction. This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← DEST + SRC + CF; 3-32 Vol. 2A ADC—Add with Carry INSTRUCTION SET REFERENCE, A-M Flags Affected The OF, SF, ZF, AF, CF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) If the destination is located in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. Compatibility Mode Exceptions Same exceptions as in protected mode. ADC—Add with Carry Vol. 2A 3-33 INSTRUCTION SET REFERENCE, A-M 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. 3-34 Vol. 2A ADC—Add with Carry INSTRUCTION SET REFERENCE, A-M ADD—Add Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 04 ib ADD AL, imm8 C Valid Valid Add imm8 to AL. 05 iw ADD AX, imm16 C Valid Valid Add imm16 to AX. 05 id ADD EAX, imm32 C Valid Valid Add imm32 to EAX. REX.W + 05 id ADD RAX, imm32 C Valid N.E. Add imm32 sign-extended to 64-bits to RAX. 80 /0 ib ADD r/m8, imm8 B Valid Valid Add imm8 to r/m8. * REX + 80 /0 ib ADD r/m8 , imm8 B Valid N.E. Add sign-extended imm8 to r/m64. 81 /0 iw ADD r/m16, imm16 B Valid Valid Add imm16 to r/m16. 81 /0 id ADD r/m32, imm32 B Valid Valid Add imm32 to r/m32. REX.W + 81 /0 id ADD r/m64, imm32 B Valid N.E. Add imm32 sign-extended to 64-bits to r/m64. 83 /0 ib ADD r/m16, imm8 B Valid Valid Add sign-extended imm8 to r/m16. 83 /0 ib ADD r/m32, imm8 B Valid Valid Add sign-extended imm8 to r/m32. REX.W + 83 /0 ib ADD r/m64, imm8 B Valid N.E. Add sign-extended imm8 to r/m64. 00 /r ADD r/m8, r8 A Valid Valid Add r8 to r/m8. REX + 00 /r ADD r/m8*, r8* A Valid N.E. Add r8 to r/m8. 01 /r ADD r/m16, r16 A Valid Valid Add r16 to r/m16. 01 /r ADD r/m32, r32 A Valid Valid Add r32 to r/m32. REX.W + 01 /r ADD r/m64, r64 A Valid N.E. Add r64 to r/m64. 02 /r ADD r8, r/m8 A Valid Valid Add r/m8 to r8. REX + 02 /r ADD r8*, r/m8* A Valid N.E. Add r/m8 to r8. 03 /r ADD r16, r/m16 A Valid Valid Add r/m16 to r16. 03 /r ADD r32, r/m32 A Valid Valid Add r/m32 to r32. REX.W + 03 /r ADD r64, r/m64 A Valid N.E. Add r/m64 to r64. NOTES: *In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. ADD—Add Vol. 2A 3-35 INSTRUCTION SET REFERENCE, A-M Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:r/m (r, w) imm8 NA NA C AL/AX/EAX/RAX imm8 NA NA Description Adds the destination operand (first operand) and the source operand (second operand) and then stores the result in the destination operand. The destination operand can be a register or a memory location; the source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one instruction.) When an immediate value is used as an operand, it is signextended to the length of the destination operand format. The ADD instruction performs integer addition. It evaluates the result for both signed and unsigned integer operands and sets the OF and CF flags to indicate a carry (overflow) in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result. This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← DEST + SRC; Flags Affected The OF, SF, ZF, AF, CF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) If the destination is located in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. 3-36 Vol. 2A ADD—Add INSTRUCTION SET REFERENCE, A-M #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. ADD—Add Vol. 2A 3-37 INSTRUCTION SET REFERENCE, A-M ADDPD—Add Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 58 /r A V/V SSE2 Add packed double-precision floating-point values from xmm2/m128 to xmm1. B V/V AVX Add packed double-precision floating-point values from xmm3/mem to xmm2 and stores result in xmm1. B V/V AVX Add packed double-precision floating-point values from ymm3/mem to ymm2 and stores result in ymm1. ADDPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 58 /r VADDPD xmm1,xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 58 /r VADDPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs a SIMD add of the two packed double-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the packed double-precision floating-point results in the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of SIMD double-precision floatingpoint operation. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. 3-38 Vol. 2A ADDPD—Add Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M Operation ADDPD (128-bit Legacy SSE version) DEST[63:0] ← DEST[63:0] + SRC[63:0]; DEST[127:64] ← DEST[127:64] + SRC[127:64]; DEST[VLMAX-1:128] (Unmodified) VADDPD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] + SRC2[63:0] DEST[127:64] SRC1[127:64] + SRC2[127:64] DEST[VLMAX-1:128] 0 VADDPD (VEX.256 encoded version) DEST[63:0] SRC1[63:0] + SRC2[63:0] DEST[127:64] SRC1[127:64] + SRC2[127:64] DEST[191:128] SRC1[191:128] + SRC2[191:128] DEST[255:192] SRC1[255:192] + SRC2[255:192] .Intel C/C++ Compiler Intrinsic Equivalent ADDPD __m128d _mm_add_pd (__m128d a, __m128d b) VADDPD __m256d _mm256_add_pd (__m256d a, __m256d b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. ADDPD—Add Packed Double-Precision Floating-Point Values Vol. 2A 3-39 INSTRUCTION SET REFERENCE, A-M ADDPS—Add Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 58 /r A V/V SSE Add packed single-precision floating-point values from xmm2/m128 to xmm1 and stores result in xmm1. B V/V AVX Add packed single-precision floating-point values from xmm3/mem to xmm2 and stores result in xmm1. B V/V AVX Add packed single-precision floating-point values from ymm3/mem to ymm2 and stores result in ymm1. ADDPS xmm1, xmm2/m128 VEX.NDS.128.0F.WIG 58 /r VADDPS xmm1,xmm2, xmm3/m128 VEX.NDS.256.0F.WIG 58 /r VADDPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA Description Performs a SIMD add of the four packed single-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the packed single-precision floating-point results in the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of SIMD single-precision floatingpoint operation. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. 3-40 Vol. 2A ADDPS—Add Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M Operation ADDPS (128-bit Legacy SSE version) DEST[31:0] ← DEST[31:0] + SRC[31:0]; DEST[63:32] ← DEST[63:32] + SRC[63:32]; DEST[95:64] ← DEST[95:64] + SRC[95:64]; DEST[127:96] ← DEST[127:96] + SRC[127:96]; DEST[VLMAX-1:128] (Unmodified) VADDPS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] + SRC2[31:0] DEST[63:32] SRC1[63:32] + SRC2[63:32] DEST[95:64] SRC1[95:64] + SRC2[95:64] DEST[127:96] SRC1[127:96] + SRC2[127:96] DEST[VLMAX-1:128] 0 VADDPS (VEX.256 encoded version) DEST[31:0] SRC1[31:0] + SRC2[31:0] DEST[63:32] SRC1[63:32] + SRC2[63:32] DEST[95:64] SRC1[95:64] + SRC2[95:64] DEST[127:96] SRC1[127:96] + SRC2[127:96] DEST[159:128] SRC1[159:128] + SRC2[159:128] DEST[191:160] SRC1[191:160] + SRC2[191:160] DEST[223:192] SRC1[223:192] + SRC2[223:192] DEST[255:224] SRC1[255:224] + SRC2[255:224] Intel C/C++ Compiler Intrinsic Equivalent ADDPS __m128 _mm_add_ps(__m128 a, __m128 b) VADDPS __m256 _mm256_add_ps (__m256 a, __m256 b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. ADDPS—Add Packed Single-Precision Floating-Point Values Vol. 2A 3-41 INSTRUCTION SET REFERENCE, A-M ADDSD—Add Scalar Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 58 /r A V/V SSE2 Add the low doubleprecision floating-point value from xmm2/m64 to xmm1. B V/V AVX Add the low doubleprecision floating-point value from xmm3/mem to xmm2 and store the result in xmm1. ADDSD xmm1, xmm2/m64 VEX.NDS.LIG.F2.0F.WIG 58 /r VADDSD xmm1, xmm2, xmm3/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA Description Adds the low double-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the double-precision floating-point result in the destination operand. The source operand can be an XMM register or a 64-bit memory location. The destination operand is an XMM register. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar doubleprecision floating-point operation. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation ADDSD (128-bit Legacy SSE version) DEST[63:0] DEST[63:0] + SRC[63:0] DEST[VLMAX-1:64] (Unmodified) 3-42 Vol. 2A ADDSD—Add Scalar Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M VADDSD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] + SRC2[63:0] DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent ADDSD __m128d _mm_add_sd (m128d a, m128d b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 3. ADDSD—Add Scalar Double-Precision Floating-Point Values Vol. 2A 3-43 INSTRUCTION SET REFERENCE, A-M ADDSS—Add Scalar Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 58 /r A V/V SSE Add the low single-precision floating-point value from xmm2/m32 to xmm1. B V/V AVX Add the low single-precision floating-point value from xmm3/mem to xmm2 and store the result in xmm1. ADDSS xmm1, xmm2/m32 VEX.NDS.LIG.F3.0F.WIG 58 /r VADDSS xmm1,xmm2, xmm3/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Adds the low single-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar singleprecision floating-point operation. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation ADDSS DEST, SRC (128-bit Legacy SSE version) DEST[31:0] DEST[31:0] + SRC[31:0]; DEST[VLMAX-1:32] (Unmodified) VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version) 3-44 Vol. 2A ADDSS—Add Scalar Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DEST[31:0] SRC1[31:0] + SRC2[31:0] DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent ADDSS __m128 _mm_add_ss(__m128 a, __m128 b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 3. ADDSS—Add Scalar Single-Precision Floating-Point Values Vol. 2A 3-45 INSTRUCTION SET REFERENCE, A-M ADDSUBPD—Packed Double-FP Add/Subtract Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F D0 /r A V/V SSE3 Add/subtract doubleprecision floating-point values from xmm2/m128 to xmm1. B V/V AVX Add/subtract packed double-precision floatingpoint values from xmm3/mem to xmm2 and stores result in xmm1. B V/V AVX Add / subtract packed double-precision floatingpoint values from ymm3/mem to ymm2 and stores result in ymm1. ADDSUBPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG D0 /r VADDSUBPD xmm1, xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG D0 /r VADDSUBPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Adds odd-numbered double-precision floating-point values of the first source operand (second operand) with the corresponding double-precision floating-point values from the second source operand (third operand); stores the result in the oddnumbered values of the destination operand (first operand). Subtracts the evennumbered double-precision floating-point values from the second source operand from the corresponding double-precision floating values in the first source operand; stores the result into the even-numbered values of the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. See Figure 3-3. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. 3-46 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. $''68%3'[PP[PPP >@ >@ [PP>@[PPP>@ [PP>@[PPP>@ >@ >@ [PPP 5(68/7 [PP Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract Operation ADDSUBPD (128-bit Legacy SSE version) DEST[63:0] DEST[63:0] - SRC[63:0] DEST[127:64] DEST[127:64] + SRC[127:64] DEST[VLMAX-1:128] (Unmodified) VADDSUBPD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] - SRC2[63:0] DEST[127:64] SRC1[127:64] + SRC2[127:64] DEST[VLMAX-1:128] 0 VADDSUBPD (VEX.256 encoded version) DEST[63:0] SRC1[63:0] - SRC2[63:0] DEST[127:64] SRC1[127:64] + SRC2[127:64] DEST[191:128] SRC1[191:128] - SRC2[191:128] DEST[255:192] SRC1[255:192] + SRC2[255:192] ADDSUBPD—Packed Double-FP Add/Subtract Vol. 2A 3-47 INSTRUCTION SET REFERENCE, A-M Intel C/C++ Compiler Intrinsic Equivalent ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b) VADDSUBPD __m256d _mm256_addsub_pd (__m256d a, __m256d b) Exceptions When the source operand is a memory operand, it must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. 3-48 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract INSTRUCTION SET REFERENCE, A-M ADDSUBPS—Packed Single-FP Add/Subtract Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F D0 /r A V/V SSE3 Add/subtract singleprecision floating-point values from xmm2/m128 to xmm1. B V/V AVX Add/subtract singleprecision floating-point values from xmm3/mem to xmm2 and stores result in xmm1. B V/V AVX Add / subtract singleprecision floating-point values from ymm3/mem to ymm2 and stores result in ymm1. ADDSUBPS xmm1, xmm2/m128 VEX.NDS.128.F2.0F.WIG D0 /r VADDSUBPS xmm1, xmm2, xmm3/m128 VEX.NDS.256.F2.0F.WIG D0 /r VADDSUBPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Adds odd-numbered single-precision floating-point values of the first source operand (second operand) with the corresponding single-precision floating-point values from the second source operand (third operand); stores the result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single-precision floating-point values from the second source operand from the corresponding single-precision floating values in the first source operand; stores the result into the even-numbered values of the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. See Figure 3-4. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. ADDSUBPS—Packed Single-FP Add/Subtract Vol. 2A 3-49 INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. $''68%36[PP[PPP >@ >@ >@ >@ [PP>@ [PPP>@ [PP>@[PP P>@ [PP>@ [PPP>@ [PP>@ [PPP>@ >@ >@ >@ >@ [PP P 5(68/7 [PP 20 Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract Operation ADDSUBPS (128-bit Legacy SSE version) DEST[31:0] DEST[31:0] - SRC[31:0] DEST[63:32] DEST[63:32] + SRC[63:32] DEST[95:64] DEST[95:64] - SRC[95:64] DEST[127:96] DEST[127:96] + SRC[127:96] DEST[VLMAX-1:128] (Unmodified) VADDSUBPS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] - SRC2[31:0] DEST[63:32] SRC1[63:32] + SRC2[63:32] DEST[95:64] SRC1[95:64] - SRC2[95:64] DEST[127:96] SRC1[127:96] + SRC2[127:96] DEST[VLMAX-1:128] 0 VADDSUBPS (VEX.256 encoded version) DEST[31:0] SRC1[31:0] - SRC2[31:0] DEST[63:32] SRC1[63:32] + SRC2[63:32] DEST[95:64] SRC1[95:64] - SRC2[95:64] 3-50 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract INSTRUCTION SET REFERENCE, A-M DEST[127:96] SRC1[127:96] + SRC2[127:96] DEST[159:128] SRC1[159:128] - SRC2[159:128] DEST[191:160] SRC1[191:160] + SRC2[191:160] DEST[223:192] SRC1[223:192] - SRC2[223:192] DEST[255:224] SRC1[255:224] + SRC2[255:224]. Intel C/C++ Compiler Intrinsic Equivalent ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b) VADDSUBPS __m256 _mm256_addsub_ps (__m256 a, __m256 b) Exceptions When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. ADDSUBPS—Packed Single-FP Add/Subtract Vol. 2A 3-51 INSTRUCTION SET REFERENCE, A-M AESDEC—Perform One Round of an AES Decryption Flow Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 DE /r AESDEC xmm1, xmm2/m128 A V/V AES Perform one round of an AES decryption flow, using the Equivalent Inverse Cipher, operating on a 128bit data (state) from xmm1 with a 128-bit round key from xmm2/m128. VEX.NDS.128.66.0F38.WIG DE /r VAESDEC xmm1, xmm2, xmm3/m128 B V/V Both AES and AVX flags Perform one round of an AES decryption flow, using the Equivalent Inverse Cipher, operating on a 128bit data (state) from xmm2 with a 128-bit round key from xmm3/m128; store the result in xmm1. Instruction Operand Encoding Op/En Operand 1 Operand2 Operand3 Operand4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, with the round key from the second source operand, operating on a 128-bit data (state) from the first source operand, and store the result in the destination operand. Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDECCLAST instruction. 128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. 3-52 Vol. 2A AESDEC—Perform One Round of an AES Decryption Flow INSTRUCTION SET REFERENCE, A-M Operation AESDEC STATE ← SRC1; RoundKey ← SRC2; STATE ← InvShiftRows( STATE ); STATE ← InvSubBytes( STATE ); STATE ← InvMixColumns( STATE ); DEST[127:0] ← STATE XOR RoundKey; DEST[VLMAX-1:128] (Unmodified) VAESDEC STATE ← SRC1; RoundKey ← SRC2; STATE ← InvShiftRows( STATE ); STATE ← InvSubBytes( STATE ); STATE ← InvMixColumns( STATE ); DEST[127:0] ← STATE XOR RoundKey; DEST[VLMAX-1:128] ← 0 Intel C/C++ Compiler Intrinsic Equivalent (V)AESDEC __m128i _mm_aesdec (__m128i, __m128i) SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. AESDEC—Perform One Round of an AES Decryption Flow Vol. 2A 3-53 INSTRUCTION SET REFERENCE, A-M AESDECLAST—Perform Last Round of an AES Decryption Flow Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 DF /r AESDECLAST xmm1, xmm2/m128 A V/V AES Perform the last round of an AES decryption flow, using the Equivalent Inverse Cipher, operating on a 128bit data (state) from xmm1 with a 128-bit round key from xmm2/m128. VEX.NDS.128.66.0F38.WIG DF /r VAESDECLAST xmm1, xmm2, xmm3/m128 B V/V Both AES and AVX flags Perform the last round of an AES decryption flow, using the Equivalent Inverse Cipher, operating on a 128bit data (state) from xmm2 with a 128-bit round key from xmm3/m128; store the result in xmm1. Opcode Instruction Instruction Operand Encoding Op/En Operand 1 Operand2 Operand3 Operand4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction performs the last round of the AES decryption flow using the Equivalent Inverse Cipher, with the round key from the second source operand, operating on a 128-bit data (state) from the first source operand, and store the result in the destination operand. 128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation AESDECLAST 3-54 Vol. 2A AESDECLAST—Perform Last Round of an AES Decryption Flow INSTRUCTION SET REFERENCE, A-M STATE ← SRC1; RoundKey ← SRC2; STATE ← InvShiftRows( STATE ); STATE ← InvSubBytes( STATE ); DEST[127:0] ← STATE XOR RoundKey; DEST[VLMAX-1:128] (Unmodified) VAESDECLAST STATE ← SRC1; RoundKey ← SRC2; STATE ← InvShiftRows( STATE ); STATE ← InvSubBytes( STATE ); DEST[127:0] ← STATE XOR RoundKey; DEST[VLMAX-1:128] ← 0 Intel C/C++ Compiler Intrinsic Equivalent (V)AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i) SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. AESDECLAST—Perform Last Round of an AES Decryption Flow Vol. 2A 3-55 INSTRUCTION SET REFERENCE, A-M AESENC—Perform One Round of an AES Encryption Flow Opcode Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 DC /r AESENC xmm1, xmm2/m128 A V/V AES Perform one round of an AES encryption flow, operating on a 128-bit data (state) from xmm1 with a 128-bit round key from xmm2/m128. VEX.NDS.128.66.0F38.WIG DC /r VAESENC xmm1, xmm2, xmm3/m128 B V/V Both AES and AVX flags Perform one round of an AES encryption flow, operating on a 128-bit data (state) from xmm2 with a 128-bit round key from the xmm3/m128; store the result in xmm1. Instruction Operand Encoding Op/En Operand 1 Operand2 Operand3 Operand4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction performs a single round of an AES encryption flow using a round key from the second source operand, operating on 128-bit data (state) from the first source operand, and store the result in the destination operand. Use the AESENC instruction for all but the last encryption rounds. For the last encryption round, use the AESENCCLAST instruction. 128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation AESENC 3-56 Vol. 2A AESENC—Perform One Round of an AES Encryption Flow INSTRUCTION SET REFERENCE, A-M STATE ← SRC1; RoundKey ← SRC2; STATE ← ShiftRows( STATE ); STATE ← SubBytes( STATE ); STATE ← MixColumns( STATE ); DEST[127:0] ← STATE XOR RoundKey; DEST[VLMAX-1:128] (Unmodified) VAESENC STATE SRC1; RoundKey SRC2; STATE ShiftRows( STATE ); STATE SubBytes( STATE ); STATE MixColumns( STATE ); DEST[127:0] STATE XOR RoundKey; DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent (V)AESENC __m128i _mm_aesenc (__m128i, __m128i) SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. AESENC—Perform One Round of an AES Encryption Flow Vol. 2A 3-57 INSTRUCTION SET REFERENCE, A-M AESENCLAST—Perform Last Round of an AES Encryption Flow Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 DD /r AESENCLAST xmm1, xmm2/m128 A V/V AES Perform the last round of an AES encryption flow, operating on a 128-bit data (state) from xmm1 with a 128-bit round key from xmm2/m128. VEX.NDS.128.66.0F38.WIG DD /r VAESENCLAST xmm1, xmm2, xmm3/m128 B V/V Both AES and AVX flags Perform the last round of an AES encryption flow, operating on a 128-bit data (state) from xmm2 with a 128 bit round key from xmm3/m128; store the result in xmm1. Instruction Operand Encoding Op/En Operand 1 Operand2 Operand3 Operand4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction performs the last round of an AES encryption flow using a round key from the second source operand, operating on 128-bit data (state) from the first source operand, and store the result in the destination operand. 128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation AESENCLAST STATE ← SRC1; RoundKey ← SRC2; 3-58 Vol. 2A AESENCLAST—Perform Last Round of an AES Encryption Flow INSTRUCTION SET REFERENCE, A-M STATE ← ShiftRows( STATE ); STATE ← SubBytes( STATE ); DEST[127:0] ← STATE XOR RoundKey; DEST[VLMAX-1:128] (Unmodified) VAESENCLAST STATE SRC1; RoundKey SRC2; STATE ShiftRows( STATE ); STATE SubBytes( STATE ); DEST[127:0] STATE XOR RoundKey; DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent (V)AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i) SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. AESENCLAST—Perform Last Round of an AES Encryption Flow Vol. 2A 3-59 INSTRUCTION SET REFERENCE, A-M AESIMC—Perform the AES InvMixColumn Transformation Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 DB /r AESIMC xmm1, xmm2/m128 A V/V AES Perform the InvMixColumn transformation on a 128-bit round key from xmm2/m128 and store the result in xmm1. VEX.128.66.0F38.WIG DB /r VAESIMC xmm1, xmm2/m128 A V/V Both AES and AVX flags Perform the InvMixColumn transformation on a 128-bit round key from xmm2/m128 and store the result in xmm1. Instruction Operand Encoding Op/En Operand 1 Operand2 Operand3 Operand4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Perform the InvMixColumns transformation on the source operand and store the result in the destination operand. The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory location. Note: the AESIMC instruction should be applied to the expanded AES round keys (except for the first and last round key) in order to prepare them for decryption using the “Equivalent Inverse Cipher” (defined in FIPS 197). 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation AESIMC DEST[127:0] ← InvMixColumns( SRC ); DEST[VLMAX-1:128] (Unmodified) VAESIMC DEST[127:0] InvMixColumns( SRC ); DEST[VLMAX-1:128] 0; 3-60 Vol. 2A AESIMC—Perform the AES InvMixColumn Transformation INSTRUCTION SET REFERENCE, A-M Intel C/C++ Compiler Intrinsic Equivalent (V)AESIMC __m128i _mm_aesimc (__m128i) SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. AESIMC—Perform the AES InvMixColumn Transformation Vol. 2A 3-61 INSTRUCTION SET REFERENCE, A-M AESKEYGENASSIST—AES Round Key Generation Assist Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A DF /r ib AESKEYGENASSIST xmm1, xmm2/m128, imm8 A V/V AES Assist in AES round key generation using an 8 bits Round Constant (RCON) specified in the immediate byte, operating on 128 bits of data specified in xmm2/m128 and stores the result in xmm1. VEX.128.66.0F3A.WIG DF /r ib VAESKEYGENASSIST xmm1, xmm2/m128, imm8 A V/V Both AES and AVX flags Assist in AES round key generation using 8 bits Round Constant (RCON) specified in the immediate byte, operating on 128 bits of data specified in xmm2/m128 and stores the result in xmm1. Instruction Operand Encoding Op/En Operand 1 Operand2 Operand3 Operand4 A ModRM:reg (w) ModRM:r/m (r) imm8 NA Description Assist in expanding the AES cipher key, by computing steps towards generating a round key for encryption, using 128-bit data specified in the source operand and an 8-bit round constant specified as an immediate, store the result in the destination operand. The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory location. 128-bit Legacy SSE version:Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation AESKEYGENASSIST X3[31:0] ← SRC [127: 96]; X2[31:0] ← SRC [95: 64]; 3-62 Vol. 2A AESKEYGENASSIST—AES Round Key Generation Assist INSTRUCTION SET REFERENCE, A-M X1[31:0] ← SRC [63: 32]; X0[31:0] ← SRC [31: 0]; RCON[31:0] ← ZeroExtend(Imm8[7:0]); DEST[31:0] ← SubWord(X1); DEST[63:32 ] ← RotWord( SubWord(X1) ) XOR RCON; DEST[95:64] ← SubWord(X3); DEST[127:96] ← RotWord( SubWord(X3) ) XOR RCON; DEST[VLMAX-1:128] (Unmodified) VAESKEYGENASSIST X3[31:0] SRC [127: 96]; X2[31:0] SRC [95: 64]; X1[31:0] SRC [63: 32]; X0[31:0] SRC [31: 0]; RCON[31:0] ZeroExtend(Imm8[7:0]); DEST[31:0] SubWord(X1); DEST[63:32 ] RotWord( SubWord(X1) ) XOR RCON; DEST[95:64] SubWord(X3); DEST[127:96] RotWord( SubWord(X3) ) XOR RCON; DEST[VLMAX-1:128] 0; Intel C/C++ Compiler Intrinsic Equivalent (V)AESKEYGENASSIST __m128i _mm_aesimc (__m128i, const int) SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. AESKEYGENASSIST—AES Round Key Generation Assist Vol. 2A 3-63 INSTRUCTION SET REFERENCE, A-M AND—Logical AND Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 24 ib AND AL, imm8 C Valid Valid AL AND imm8. 25 iw AND AX, imm16 C Valid Valid AX AND imm16. 25 id AND EAX, imm32 C Valid Valid EAX AND imm32. REX.W + 25 id AND RAX, imm32 C Valid N.E. RAX AND imm32 signextended to 64-bits. 80 /4 ib AND r/m8, imm8 B Valid Valid r/m8 AND imm8. * REX + 80 /4 ib AND r/m8 , imm8 B Valid N.E. r/m8 AND imm8. 81 /4 iw AND r/m16, imm16 B Valid Valid r/m16 AND imm16. 81 /4 id AND r/m32, imm32 B Valid Valid r/m32 AND imm32. REX.W + 81 /4 id AND r/m64, imm32 B Valid N.E. r/m64 AND imm32 sign extended to 64-bits. 83 /4 ib AND r/m16, imm8 B Valid Valid r/m16 AND imm8 (signextended). 83 /4 ib AND r/m32, imm8 B Valid Valid r/m32 AND imm8 (signextended). REX.W + 83 /4 ib AND r/m64, imm8 B Valid N.E. r/m64 AND imm8 (signextended). 20 /r AND r/m8, r8 A Valid Valid r/m8 AND r8. A Valid N.E. r/m64 AND r8 (signextended). * * REX + 20 /r AND r/m8 , r8 21 /r AND r/m16, r16 A Valid Valid r/m16 AND r16. 21 /r AND r/m32, r32 A Valid Valid r/m32 AND r32. REX.W + 21 /r AND r/m64, r64 A Valid N.E. r/m64 AND r32. 22 /r AND r8, r/m8 A Valid Valid r8 AND r/m8. REX + 22 /r AND r8*, r/m8* A Valid N.E. r/m64 AND r8 (signextended). 23 /r AND r16, r/m16 A Valid Valid r16 AND r/m16. 23 /r AND r32, r/m32 A Valid Valid r32 AND r/m32. REX.W + 23 /r AND r64, r/m64 A Valid N.E. r64 AND r/m64. NOTES: *In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 3-64 Vol. 2A AND—Logical AND INSTRUCTION SET REFERENCE, A-M Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:r/m (r, w) imm8 NA NA C AL/AX/EAX/RAX imm8 NA NA Description Performs a bitwise AND operation on the destination (first) and source (second) operands and stores the result in the destination operand location. The source operand can be an immediate, a register, or a memory location; the destination operand can be a register or a memory location. (However, two memory operands cannot be used in one instruction.) Each bit of the result is set to 1 if both corresponding bits of the first and second operands are 1; otherwise, it is set to 0. This instruction can be used with a LOCK prefix to allow the it to be executed atomically. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← DEST AND SRC; Flags Affected The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is undefined. Protected Mode Exceptions #GP(0) If the destination operand points to a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. AND—Logical AND Vol. 2A 3-65 INSTRUCTION SET REFERENCE, A-M #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. 3-66 Vol. 2A AND—Logical AND INSTRUCTION SET REFERENCE, A-M ANDPD—Bitwise Logical AND of Packed Double-Precision FloatingPoint Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 54 /r A V/V SSE2 Return the bitwise logical AND of packed doubleprecision floating-point values in xmm1 and xmm2/m128. B V/V AVX Return the bitwise logical AND of packed doubleprecision floating-point values in xmm2 and xmm3/mem. B V/V AVX Return the bitwise logical AND of packed doubleprecision floating-point values in ymm2 and ymm3/mem. ANDPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 54 /r VANDPD xmm1, xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 54 /r VANDPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs a bitwise logical AND of the two packed double-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the result in the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values Vol. 2A 3-67 INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation ANDPD (128-bit Legacy SSE version) DEST[63:0] DEST[63:0] BITWISE AND SRC[63:0] DEST[127:64] DEST[127:64] BITWISE AND SRC[127:64] DEST[VLMAX-1:128] (Unmodified) VANDPD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] BITWISE AND SRC2[63:0] DEST[127:64] SRC1[127:64] BITWISE AND SRC2[127:64] DEST[VLMAX-1:128] 0 VANDPD (VEX.256 encoded version) DEST[63:0] SRC1[63:0] BITWISE AND SRC2[63:0] DEST[127:64] SRC1[127:64] BITWISE AND SRC2[127:64] DEST[191:128] SRC1[191:128] BITWISE AND SRC2[191:128] DEST[255:192] SRC1[255:192] BITWISE AND SRC2[255:192] Intel C/C++ Compiler Intrinsic Equivalent ANDPD __m128d _mm_and_pd(__m128d a, __m128d b) VANDPD __m256d _mm256_and_pd (__m256d a, __m256d b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 4. 3-68 Vol. 2A ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 54 /r A V/V SSE Bitwise logical AND of xmm2/m128 and xmm1. B V/V AVX Return the bitwise logical AND of packed singleprecision floating-point values in xmm2 and xmm3/mem. B V/V AVX Return the bitwise logical AND of packed singleprecision floating-point values in ymm2 and ymm3/mem. ANDPS xmm1, xmm2/m128 VEX.NDS.128.0F.WIG 54 /r VANDPS xmm1,xmm2, xmm3/m128 VEX.NDS.256.0F.WIG 54 /r VANDPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs a bitwise logical AND of the four or eight packed single-precision floatingpoint values from the first source operand and the second source operand, and stores the result in the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values Vol. 2A 3-69 INSTRUCTION SET REFERENCE, A-M Operation ANDPS (128-bit Legacy SSE version) DEST[31:0] DEST[31:0] BITWISE AND SRC[31:0] DEST[63:32] DEST[63:32] BITWISE AND SRC[63:32] DEST[95:64] DEST[95:64] BITWISE AND SRC[95:64] DEST[127:96] DEST[127:96] BITWISE AND SRC[127:96] DEST[VLMAX-1:128] (Unmodified) VANDPS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] BITWISE AND SRC2[31:0] DEST[63:32] SRC1[63:32] BITWISE AND SRC2[63:32] DEST[95:64] SRC1[95:64] BITWISE AND SRC2[95:64] DEST[127:96] SRC1[127:96] BITWISE AND SRC2[127:96] DEST[VLMAX-1:128] 0 VANDPS (VEX.256 encoded version) DEST[31:0] SRC1[31:0] BITWISE AND SRC2[31:0] DEST[63:32] SRC1[63:32] BITWISE AND SRC2[63:32] DEST[95:64] SRC1[95:64] BITWISE AND SRC2[95:64] DEST[127:96] SRC1[127:96] BITWISE AND SRC2[127:96] DEST[159:128] SRC1[159:128] BITWISE AND SRC2[159:128] DEST[191:160] SRC1[191:160] BITWISE AND SRC2[191:160] DEST[223:192] SRC1[223:192] BITWISE AND SRC2[223:192] DEST[255:224] SRC1[255:224] BITWISE AND SRC2[255:224]. Intel C/C++ Compiler Intrinsic Equivalent ANDPS __m128 _mm_and_ps(__m128 a, __m128 b) VANDPS __m256 _mm256_and_ps (__m256 a, __m256 b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 4. 3-70 Vol. 2A ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 55 /r A V/V SSE2 Bitwise logical AND NOT of xmm2/m128 and xmm1. B V/V AVX Return the bitwise logical AND NOT of packed doubleprecision floating-point values in xmm2 and xmm3/mem. B V/V AVX Return the bitwise logical AND NOT of packed doubleprecision floating-point values in ymm2 and ymm3/mem. ANDNPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 55 /r VANDNPD xmm1, xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 55/r VANDNPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs a bitwise logical AND NOT of the two or four packed double-precision floating-point values from the first source operand and the second source operand, and stores the result in the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values Vol. 2A 3-71 INSTRUCTION SET REFERENCE, A-M Operation ANDNPD (128-bit Legacy SSE version) DEST[63:0] (NOT(DEST[63:0])) BITWISE AND SRC[63:0] DEST[127:64] (NOT(DEST[127:64])) BITWISE AND SRC[127:64] DEST[VLMAX-1:128] (Unmodified) VANDNPD (VEX.128 encoded version) DEST[63:0] (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0] DEST[127:64] (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64] DEST[VLMAX-1:128] 0 VANDNPD (VEX.256 encoded version) DEST[63:0] (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0] DEST[127:64] (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64] DEST[191:128] (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128] DEST[255:192] (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192] Intel C/C++ Compiler Intrinsic Equivalent ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b) VANDNPD __m256d _mm256_andnot_pd (__m256d a, __m256d b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 4. 3-72 Vol. 2A ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 55 /r A V/V SSE Bitwise logical AND NOT of xmm2/m128 and xmm1. B V/V AVX Return the bitwise logical AND NOT of packed singleprecision floating-point values in xmm2 and xmm3/mem. B V/V AVX Return the bitwise logical AND NOT of packed singleprecision floating-point values in ymm2 and ymm3/mem. ANDNPS xmm1, xmm2/m128 VEX.NDS.128.0F.WIG 55 /r VANDNPS xmm1, xmm2, xmm3/m128 VEX.NDS.256.0F.WIG 55 /r VANDNPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Inverts the bits of the four packed single-precision floating-point values in the destination operand (first operand), performs a bitwise logical AND of the four packed single-precision floating-point values in the source operand (second operand) and the temporary inverted result, and stores the result in the destination operand. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values Vol. 2A 3-73 INSTRUCTION SET REFERENCE, A-M Operation ANDNPS (128-bit Legacy SSE version) DEST[31:0] (NOT(DEST[31:0])) BITWISE AND SRC[31:0] DEST[63:32] (NOT(DEST[63:32])) BITWISE AND SRC[63:32] DEST[95:64] (NOT(DEST[95:64])) BITWISE AND SRC[95:64] DEST[127:96] (NOT(DEST[127:96])) BITWISE AND SRC[127:96] DEST[VLMAX-1:128] (Unmodified) VANDNPS (VEX.128 encoded version) DEST[31:0] (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0] DEST[63:32] (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32] DEST[95:64] (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64] DEST[127:96] (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96] DEST[VLMAX-1:128] 0 VANDNPS (VEX.256 encoded version) DEST[31:0] (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0] DEST[63:32] (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32] DEST[95:64] (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64] DEST[127:96] (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96] DEST[159:128] (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128] DEST[191:160] (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160] DEST[223:192] (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192] DEST[255:224] (NOT(SRC1[255:224])) BITWISE AND SRC2[255:224]. Intel C/C++ Compiler Intrinsic Equivalent ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b) VANDNPS __m256 _mm256_andnot_ps (__m256 a, __m256 b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 4. 3-74 Vol. 2A ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M ARPL—Adjust RPL Field of Segment Selector Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 63 /r ARPL r/m16, r16 A N. E. Valid Adjust RPL of r/m16 to not less than RPL of r16. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA Description Compares the RPL fields of two segment selectors. The first operand (the destination operand) contains one segment selector and the second operand (source operand) contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the destination operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared and no change is made to the destination operand. (The destination operand can be a word register or a memory location; the source operand must be a word register.) The ARPL instruction is provided for use by operating-system procedures (however, it can also be used by applications). It is generally used to adjust the RPL of a segment selector that has been passed to the operating system by an application program to match the privilege level of the application program. Here the segment selector passed to the operating system is placed in the destination operand and segment selector for the application program’s code segment is placed in the source operand. (The RPL field in the source operand represents the privilege level of the application program.) Execution of the ARPL instruction then ensures that the RPL of the segment selector received by the operating system is no lower (does not have a higher privilege) than the privilege level of the application program (the segment selector for the application program’s code segment can be read from the stack following a procedure call). This instruction executes as described in compatibility mode and legacy mode. It is not encodable in 64-bit mode. See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the use of this instruction. ARPL—Adjust RPL Field of Segment Selector Vol. 2A 3-75 INSTRUCTION SET REFERENCE, A-M Operation IF 64-BIT MODE THEN See MOVSXD; ELSE IF DEST[RPL) < SRC[RPL) THEN ZF ← 1; DEST[RPL) ← SRC[RPL); ELSE ZF ← 0; FI; FI; Flags Affected The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source operand; otherwise, it is set to 0. Protected Mode Exceptions #GP(0) If the destination is located in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD The ARPL instruction is not recognized in real-address mode. If the LOCK prefix is used. Virtual-8086 Mode Exceptions #UD The ARPL instruction is not recognized in virtual-8086 mode. If the LOCK prefix is used. 3-76 Vol. 2A ARPL—Adjust RPL Field of Segment Selector INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Not applicable. ARPL—Adjust RPL Field of Segment Selector Vol. 2A 3-77 INSTRUCTION SET REFERENCE, A-M BLENDPD — Blend Packed Double Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A 0D /r ib A V/V SSE4_1 Select packed DP-FP values from xmm1 and xmm2/m128 from mask specified in imm8 and store the values into xmm1. B V/V AVX Select packed doubleprecision floating-point Values from xmm2 and xmm3/m128 from mask in imm8 and store the values in xmm1. B V/V AVX Select packed doubleprecision floating-point Values from ymm2 and ymm3/m256 from mask in imm8 and store the values in ymm1. BLENDPD xmm1, xmm2/m128, imm8 VEX.NDS.128.66.0F3A.WIG 0D /r ib VBLENDPD xmm1, xmm2, xmm3/m128, imm8 VEX.NDS.256.66.0F3A.WIG 0D /r ib VBLENDPD ymm1, ymm2, ymm3/m256, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[3:0] Description Double-precision floating-point values from the second source operand (third operand) are conditionally merged with values from the first source operand (second operand) and written to the destination operand (first operand). The immediate bits [3:0] determine whether the corresponding double-precision floating-point value in the destination is copied from the second source or first source. If a bit in the mask, corresponding to a word, is “1", then the double-precision floating-point value in the second source operand is copied, else the value in the first source operand is copied. 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination 3-78 Vol. 2A BLENDPD — Blend Packed Double Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation BLENDPD (128-bit Legacy SSE version) IF (IMM8[0] = 0)THEN DEST[63:0] DEST[63:0] ELSE DEST [63:0] SRC[63:0] FI IF (IMM8[1] = 0) THEN DEST[127:64] DEST[127:64] ELSE DEST [127:64] SRC[127:64] FI DEST[VLMAX-1:128] (Unmodified) VBLENDPD (VEX.128 encoded version) IF (IMM8[0] = 0)THEN DEST[63:0] SRC1[63:0] ELSE DEST [63:0] SRC2[63:0] FI IF (IMM8[1] = 0) THEN DEST[127:64] SRC1[127:64] ELSE DEST [127:64] SRC2[127:64] FI DEST[VLMAX-1:128] 0 VBLENDPD (VEX.256 encoded version) IF (IMM8[0] = 0)THEN DEST[63:0] SRC1[63:0] ELSE DEST [63:0] SRC2[63:0] FI IF (IMM8[1] = 0) THEN DEST[127:64] SRC1[127:64] ELSE DEST [127:64] SRC2[127:64] FI IF (IMM8[2] = 0) THEN DEST[191:128] SRC1[191:128] ELSE DEST [191:128] SRC2[191:128] FI IF (IMM8[3] = 0) THEN DEST[255:192] SRC1[255:192] ELSE DEST [255:192] SRC2[255:192] FI Intel C/C++ Compiler Intrinsic Equivalent BLENDPD __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask); VBLENDPD __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask); SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. BLENDPD — Blend Packed Double Precision Floating-Point Values Vol. 2A 3-79 INSTRUCTION SET REFERENCE, A-M BLENDPS — Blend Packed Single Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A 0C /r ib A V/V SSE4_1 Select packed single precision floating-point values from xmm1 and xmm2/m128 from mask specified in imm8 and store the values into xmm1. B V/V AVX Select packed singleprecision floating-point values from xmm2 and xmm3/m128 from mask in imm8 and store the values in xmm1. B V/V AVX Select packed singleprecision floating-point values from ymm2 and ymm3/m256 from mask in imm8 and store the values in ymm1. BLENDPS xmm1, xmm2/m128, imm8 VEX.NDS.128.66.0F3A.WIG 0C /r ib VBLENDPS xmm1, xmm2, xmm3/m128, imm8 VEX.NDS.256.66.0F3A.WIG 0C /r ib VBLENDPS ymm1, ymm2, ymm3/m256, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 Description Packed single-precision floating-point values from the second source operand (third operand) are conditionally merged with values from the first source operand (second operand) and written to the destination operand (first operand). The immediate bits [7:0] determine whether the corresponding single precision floating-point value in the destination is copied from the second source or first source. If a bit in the mask, corresponding to a word, is “1", then the single-precision floating-point value in the second source operand is copied, else the value in the first source operand is copied. 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: The first source operand an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination 3-80 Vol. 2A BLENDPS — Blend Packed Single Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation BLENDPS (128-bit Legacy SSE version) IF (IMM8[0] = 0) THEN DEST[31:0] DEST[31:0] ELSE DEST [31:0] SRC[31:0] FI IF (IMM8[1] = 0) THEN DEST[63:32] DEST[63:32] ELSE DEST [63:32] SRC[63:32] FI IF (IMM8[2] = 0) THEN DEST[95:64] DEST[95:64] ELSE DEST [95:64] SRC[95:64] FI IF (IMM8[3] = 0) THEN DEST[127:96] DEST[127:96] ELSE DEST [127:96] SRC[127:96] FI DEST[VLMAX-1:128] (Unmodified) VBLENDPS (VEX.128 encoded version) IF (IMM8[0] = 0) THEN DEST[31:0] SRC1[31:0] ELSE DEST [31:0] SRC2[31:0] FI IF (IMM8[1] = 0) THEN DEST[63:32] SRC1[63:32] ELSE DEST [63:32] SRC2[63:32] FI IF (IMM8[2] = 0) THEN DEST[95:64] SRC1[95:64] ELSE DEST [95:64] SRC2[95:64] FI IF (IMM8[3] = 0) THEN DEST[127:96] SRC1[127:96] ELSE DEST [127:96] SRC2[127:96] FI DEST[VLMAX-1:128] 0 VBLENDPS (VEX.256 encoded version) IF (IMM8[0] = 0) THEN DEST[31:0] SRC1[31:0] ELSE DEST [31:0] SRC2[31:0] FI IF (IMM8[1] = 0) THEN DEST[63:32] SRC1[63:32] ELSE DEST [63:32] SRC2[63:32] FI IF (IMM8[2] = 0) THEN DEST[95:64] SRC1[95:64] ELSE DEST [95:64] SRC2[95:64] FI IF (IMM8[3] = 0) THEN DEST[127:96] SRC1[127:96] ELSE DEST [127:96] SRC2[127:96] FI IF (IMM8[4] = 0) THEN DEST[159:128] SRC1[159:128] ELSE DEST [159:128] SRC2[159:128] FI IF (IMM8[5] = 0) THEN DEST[191:160] SRC1[191:160] ELSE DEST [191:160] SRC2[191:160] FI BLENDPS — Blend Packed Single Precision Floating-Point Values Vol. 2A 3-81 INSTRUCTION SET REFERENCE, A-M IF (IMM8[6] = 0) THEN DEST[223:192] SRC1[223:192] ELSE DEST [223:192] SRC2[223:192] FI IF (IMM8[7] = 0) THEN DEST[255:224] SRC1[255:224] ELSE DEST [255:224] SRC2[255:224] FI. Intel C/C++ Compiler Intrinsic Equivalent BLENDPS __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask); VBLENDPS __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask); SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4. 3-82 Vol. 2A BLENDPS — Blend Packed Single Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 15 /r A V/V SSE4_1 Select packed DP FP values from xmm1 and xmm2 from mask specified in XMM0 and store the values in xmm1. VEX.NDS.128.66.0F3A.W0 4B /r /is4 B V/V AVX Conditionally copy doubleprecision floating-point values from xmm2 or xmm3/m128 to xmm1, based on mask bits in the mask operand, xmm4. V/V AVX Conditionally copy doubleprecision floating-point values from ymm2 or ymm3/m256 to ymm1, based on mask bits in the mask operand, ymm4. BLENDVPD xmm1, xmm2/m128 , VBLENDVPD xmm1, xmm2, xmm3/m128, xmm4 VEX.NDS.256.66.0F3A.W0 4B /r /is4 B VBLENDVPD ymm1, ymm2, ymm3/m256, ymm4 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4] Description Conditionally copy each quadword data element of double-precision floating-point value from the second source operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits are the most significant bit in each quadword element of the mask register. Each quadword element of the destination operand is copied from: • the corresponding quadword element in the second source operand, If a mask bit is “1"; or • the corresponding quadword element in the first source operand, If a mask bit is “0" The register assignment of the implicit mask operand for BLENDVPD is defined to be the architectural register XMM0. BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol. 2A 3-83 INSTRUCTION SET REFERENCE, A-M 128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined to be the architectural register XMM0. An attempt to execute BLENDVPD with a VEX prefix will cause #UD. VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruction will #UD. VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD. VBLENDVPD permits the mask to be any XMM or YMM register. In contrast, BLENDVPD treats XMM0 implicitly as the mask and do not support non-destructive destination operation. Operation BLENDVPD (128-bit Legacy SSE version) MASK XMM0 IF (MASK[63] = 0) THEN DEST[63:0] DEST[63:0] ELSE DEST [63:0] SRC[63:0] FI IF (MASK[127] = 0) THEN DEST[127:64] DEST[127:64] ELSE DEST [127:64] SRC[127:64] FI DEST[VLMAX-1:128] (Unmodified) VBLENDVPD (VEX.128 encoded version) MASK SRC3 IF (MASK[63] = 0) THEN DEST[63:0] SRC1[63:0] ELSE DEST [63:0] SRC2[63:0] FI IF (MASK[127] = 0) THEN DEST[127:64] SRC1[127:64] ELSE DEST [127:64] SRC2[127:64] FI DEST[VLMAX-1:128] 0 VBLENDVPD (VEX.256 encoded version) MASK SRC3 IF (MASK[63] = 0) THEN DEST[63:0] SRC1[63:0] ELSE DEST [63:0] SRC2[63:0] FI IF (MASK[127] = 0) THEN DEST[127:64] SRC1[127:64] ELSE DEST [127:64] SRC2[127:64] FI 3-84 Vol. 2A BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M IF (MASK[191] = 0) THEN DEST[191:128] SRC1[191:128] ELSE DEST [191:128] SRC2[191:128] FI IF (MASK[255] = 0) THEN DEST[255:192] SRC1[255:192] ELSE DEST [255:192] SRC2[255:192] FI Intel C/C++ Compiler Intrinsic Equivalent BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3); VBLENDVPD __m128 _mm_blendv_pd (__m128d a, __m128d b, __m128d mask); VBLENDVPD __m256 _mm256_blendv_pd (__m256d a, __m256d b, __m256d mask); SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4; additionally #UD If VEX.W = 1. BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol. 2A 3-85 INSTRUCTION SET REFERENCE, A-M BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 14 /r A V/V SSE4_1 Select packed single precision floating-point values from xmm1 and xmm2/m128 from mask specified in XMM0 and store the values into xmm1. VEX.NDS.128.66.0F3A.W0 4A /r /is4 B V/V AVX Conditionally copy singleprecision floating-point values from xmm2 or xmm3/m128 to xmm1, based on mask bits in the specified mask operand, xmm4. V/V AVX Conditionally copy singleprecision floating-point values from ymm2 or ymm3/m256 to ymm1, based on mask bits in the specified mask register, ymm4. BLENDVPS xmm1, xmm2/m128, VBLENDVPS xmm1, xmm2, xmm3/m128, xmm4 VEX.NDS.256.66.0F3A.W0 4A /r /is4 B VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4] Description Conditionally copy each dword data element of single-precision floating-point value from the second source operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits are the most significant bit in each dword element of the mask register. Each quadword element of the destination operand is copied from: • the corresponding dword element in the second source operand, If a mask bit is “1"; or • the corresponding dword element in the first source operand, If a mask bit is “0" 3-86 Vol. 2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M The register assignment of the implicit mask operand for BLENDVPS is defined to be the architectural register XMM0. 128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined to be the architectural register XMM0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD. VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruction will #UD. VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD. VBLENDVPS permits the mask to be any XMM or YMM register. In contrast, BLENDVPS treats XMM0 implicitly as the mask and do not support non-destructive destination operation. Operation BLENDVPS (128-bit Legacy SSE version) MASK XMM0 IF (MASK[31] = 0) THEN DEST[31:0] DEST[31:0] ELSE DEST [31:0] SRC[31:0] FI IF (MASK[63] = 0) THEN DEST[63:32] DEST[63:32] ELSE DEST [63:32] SRC[63:32] FI IF (MASK[95] = 0) THEN DEST[95:64] DEST[95:64] ELSE DEST [95:64] SRC[95:64] FI IF (MASK[127] = 0) THEN DEST[127:96] DEST[127:96] ELSE DEST [127:96] SRC[127:96] FI DEST[VLMAX-1:128] (Unmodified) VBLENDVPS (VEX.128 encoded version) MASK SRC3 IF (MASK[31] = 0) THEN DEST[31:0] SRC1[31:0] ELSE DEST [31:0] SRC2[31:0] FI IF (MASK[63] = 0) THEN DEST[63:32] SRC1[63:32] ELSE DEST [63:32] SRC2[63:32] FI IF (MASK[95] = 0) THEN DEST[95:64] SRC1[95:64] ELSE DEST [95:64] SRC2[95:64] FI BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values Vol. 2A 3-87 INSTRUCTION SET REFERENCE, A-M IF (MASK[127] = 0) THEN DEST[127:96] SRC1[127:96] ELSE DEST [127:96] SRC2[127:96] FI DEST[VLMAX-1:128] 0 VBLENDVPS (VEX.256 encoded version) MASK SRC3 IF (MASK[31] = 0) THEN DEST[31:0] SRC1[31:0] ELSE DEST [31:0] SRC2[31:0] FI IF (MASK[63] = 0) THEN DEST[63:32] SRC1[63:32] ELSE DEST [63:32] SRC2[63:32] FI IF (MASK[95] = 0) THEN DEST[95:64] SRC1[95:64] ELSE DEST [95:64] SRC2[95:64] FI IF (MASK[127] = 0) THEN DEST[127:96] SRC1[127:96] ELSE DEST [127:96] SRC2[127:96] FI IF (MASK[159] = 0) THEN DEST[159:128] SRC1[159:128] ELSE DEST [159:128] SRC2[159:128] FI IF (MASK[191] = 0) THEN DEST[191:160] SRC1[191:160] ELSE DEST [191:160] SRC2[191:160] FI IF (MASK[223] = 0) THEN DEST[223:192] SRC1[223:192] ELSE DEST [223:192] SRC2[223:192] FI IF (MASK[255] = 0) THEN DEST[255:224] SRC1[255:224] ELSE DEST [255:224] SRC2[255:224] FI Intel C/C++ Compiler Intrinsic Equivalent BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3); VBLENDVPS __m128 _mm_blendv_ps (__m128 a, __m128 b, __m128 mask); VBLENDVPS __m256 _mm256_blendv_ps (__m256 a, __m256 b, __m256 mask); SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 4; additionally #UD 3-88 Vol. 2A If VEX.W = 1. BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M BOUND—Check Array Index Against Bounds Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 62 /r BOUND r16, m16&16 A Invalid Valid Check if r16 (array index) is within bounds specified by m16&16. 62 /r BOUND r32, m32&32 A Invalid Valid Check if r32 (array index) is within bounds specified by m16&16. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r) ModRM:r/m (r) NA NA Description BOUND determines if the first operand (array index) is within the bounds of an array specified the second operand (bounds operand). The array index is a signed integer located in a register. The bounds operand is a memory location that contains a pair of signed doubleword-integers (when the operand-size attribute is 32) or a pair of signed word-integers (when the operand-size attribute is 16). The first doubleword (or word) is the lower bound of the array and the second doubleword (or word) is the upper bound of the array. The array index must be greater than or equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes. If the index is not within bounds, a BOUND range exceeded exception (#BR) is signaled. When this exception is generated, the saved return instruction pointer points to the BOUND instruction. The bounds limit data structure (two words or doublewords containing the lower and upper limits of the array) is usually placed just before the array itself, making the limits addressable via a constant offset from the beginning of the array. Because the address of the array already will be present in a register, this practice avoids extra bus cycles to obtain the effective address of the array bounds. This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode. Operation IF 64bit Mode THEN #UD; ELSE IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound) (* Below lower bound or above upper bound *) BOUND—Check Array Index Against Bounds Vol. 2A 3-89 INSTRUCTION SET REFERENCE, A-M THEN #BR; FI; FI; Flags Affected None. Protected Mode Exceptions #BR If the bounds test fails. #UD If second operand is not a memory location. If the LOCK prefix is used. #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Real-Address Mode Exceptions #BR If the bounds test fails. #UD If second operand is not a memory location. #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. If the LOCK prefix is used. Virtual-8086 Mode Exceptions #BR If the bounds test fails. #UD If second operand is not a memory location. If the LOCK prefix is used. #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. 3-90 Vol. 2A BOUND—Check Array Index Against Bounds INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #UD If in 64-bit mode. BOUND—Check Array Index Against Bounds Vol. 2A 3-91 INSTRUCTION SET REFERENCE, A-M VBROADCAST—Load with Broadcast Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description VEX.128.66.0F38.W0 18 /r A I/V AVX Broadcast single-precision floating-point element in mem to four locations in xmm1. A V/V AVX Broadcast single-precision floating-point element in mem to eight locations in ymm1. A V/V AVX Broadcast double-precision floating-point element in mem to four locations in ymm1. A V/V AVX Broadcast 128 bits of floating-point data in mem to low and high 128-bits in ymm1. VBROADCASTSS xmm1, m32 VEX.256.66.0F38.W0 18 /r VBROADCASTSS ymm1, m32 VEX.256.66.0F38.W0 19 /r VBROADCASTSD ymm1, m64 VEX.256.66.0F38.W0 1A /r VBROADCASTF128 ymm1, m128 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Load floating point values from the source operand (second operand) and broadcast to all elements of the destination operand (first operand). The destination operand is a YMM register. The source operand is either a 32-bit, 64bit, or 128-bit memory location. Register source encodings are reserved and will #UD. VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide versions. VBROADCASTSS is supported in both 128-bit and 256-bit wide versions. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception. 3-92 Vol. 2A VBROADCAST—Load with Broadcast INSTRUCTION SET REFERENCE, A-M X0 m32 DEST X0 X0 X0 X0 X0 X0 X0 X0 Figure 3-5. VBROADCASTSS Operation (VEX.256 encoded version) X0 m32 DEST 0 0 0 0 X0 X0 X0 X0 Figure 3-6. VBROADCASTSS Operation (128-bit version) VBROADCAST—Load with Broadcast Vol. 2A 3-93 INSTRUCTION SET REFERENCE, A-M m64 DEST X0 X0 X0 X0 X0 Figure 3-7. VBROADCASTSD Operation m128 DEST X0 X0 X0 Figure 3-8. VBROADCASTF128 Operation Operation VBROADCASTSS (128 bit version) temp SRC[31:0] DEST[31:0] temp DEST[63:32] temp DEST[95:64] temp DEST[127:96] temp DEST[VLMAX-1:128] 0 VBROADCASTSS (VEX.256 encoded version) 3-94 Vol. 2A VBROADCAST—Load with Broadcast INSTRUCTION SET REFERENCE, A-M temp SRC[31:0] DEST[31:0] temp DEST[63:32] temp DEST[95:64] temp DEST[127:96] temp DEST[159:128] temp DEST[191:160] temp DEST[223:192] temp DEST[255:224] temp VBROADCASTSD (VEX.256 encoded version) temp SRC[63:0] DEST[63:0] temp DEST[127:64] temp DEST[191:128] temp DEST[255:192] temp VBROADCASTF128 temp SRC[127:0] DEST[127:0] temp DEST[VLMAX-1:128] temp Intel C/C++ Compiler Intrinsic Equivalent VBROADCASTSS __m128 _mm_broadcast_ss(float *a); VBROADCASTSS __m256 _mm256_broadcast_ss(float *a); VBROADCASTSD __m256d _mm256_broadcast_sd(double *a); VBROADCASTF128 __m256 _mm256_broadcast_ps(__m128 * a); VBROADCASTF128 __m256d _mm256_broadcast_pd(__m128d * a); Flags Affected None. Other Exceptions See Exceptions Type 6; additionally #UD If VEX.L = 0 for VBROADCASTSD If VEX.L = 0 for VBROADCASTF128 If VEX.W = 1. VBROADCAST—Load with Broadcast Vol. 2A 3-95 INSTRUCTION SET REFERENCE, A-M BSF—Bit Scan Forward Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F BC /r BSF r16, r/m16 A Valid Valid Bit scan forward on r/m16. 0F BC /r BSF r32, r/m32 A Valid Valid Bit scan forward on r/m32. REX.W + 0F BC BSF r64, r/m64 A Valid N.E. Bit scan forward on r/m64. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Searches the source operand (second operand) for the least significant set bit (1 bit). If a least significant 1 bit is found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source operand. If the content of the source operand is 0, the content of the destination operand is undefined. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation IF SRC = 0 THEN ZF ← 1; DEST is undefined; ELSE ZF ← 0; temp ← 0; WHILE Bit(SRC, temp) = 0 DO temp ← temp + 1; DEST ← temp; OD; FI; 3-96 Vol. 2A BSF—Bit Scan Forward INSTRUCTION SET REFERENCE, A-M Flags Affected The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, flags are undefined. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. BSF—Bit Scan Forward Vol. 2A 3-97 INSTRUCTION SET REFERENCE, A-M #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-98 Vol. 2A BSF—Bit Scan Forward INSTRUCTION SET REFERENCE, A-M BSR—Bit Scan Reverse Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F BD /r BSR r16, r/m16 A Valid Valid Bit scan reverse on r/m16. 0F BD /r BSR r32, r/m32 A Valid Valid Bit scan reverse on r/m32. REX.W + 0F BD BSR r64, r/m64 A Valid N.E. Bit scan reverse on r/m64. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Searches the source operand (second operand) for the most significant set bit (1 bit). If a most significant 1 bit is found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source operand. If the content source operand is 0, the content of the destination operand is undefined. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation IF SRC = 0 THEN ZF ← 1; DEST is undefined; ELSE ZF ← 0; temp ← OperandSize – 1; WHILE Bit(SRC, temp) = 0 DO temp ← temp - 1; DEST ← temp; OD; FI; BSR—Bit Scan Reverse Vol. 2A 3-99 INSTRUCTION SET REFERENCE, A-M Flags Affected The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, flags are undefined. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. 3-100 Vol. 2A BSR—Bit Scan Reverse INSTRUCTION SET REFERENCE, A-M #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. BSR—Bit Scan Reverse Vol. 2A 3-101 INSTRUCTION SET REFERENCE, A-M BSWAP—Byte Swap Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F C8+rd BSWAP r32 A Valid* Valid Reverses the byte order of a 32-bit register. REX.W + 0F C8+rd BSWAP r64 A Valid N.E. Reverses the byte order of a 64-bit register. NOTES: * See IA-32 Architecture Compatibility section below. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A reg (r, w) NA NA NA Description Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is provided for converting little-endian values to big-endian format and vice versa. To swap bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP instruction references a 16-bit register, the result is undefined. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. IA-32 Architecture Legacy Compatibility The BSWAP instruction is not supported on IA-32 processors earlier than the Intel486™ processor family. For compatibility with this instruction, software should include functionally equivalent code for execution on Intel processors earlier than the Intel486 processor family. Operation TEMP ← DEST IF 64-bit mode AND OperandSize = 64 THEN DEST[7:0] ← TEMP[63:56]; DEST[15:8] ← TEMP[55:48]; DEST[23:16] ← TEMP[47:40]; DEST[31:24] ← TEMP[39:32]; DEST[39:32] ← TEMP[31:24]; 3-102 Vol. 2A BSWAP—Byte Swap INSTRUCTION SET REFERENCE, A-M FI; DEST[47:40] ← TEMP[23:16]; DEST[55:48] ← TEMP[15:8]; DEST[63:56] ← TEMP[7:0]; ELSE DEST[7:0] ← TEMP[31:24]; DEST[15:8] ← TEMP[23:16]; DEST[23:16] ← TEMP[15:8]; DEST[31:24] ← TEMP[7:0]; Flags Affected None. Exceptions (All Operating Modes) #UD BSWAP—Byte Swap If the LOCK prefix is used. Vol. 2A 3-103 INSTRUCTION SET REFERENCE, A-M BT—Bit Test Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F A3 BT r/m16, r16 A Valid Valid Store selected bit in CF flag. 0F A3 BT r/m32, r32 A Valid Valid Store selected bit in CF flag. REX.W + 0F A3 BT r/m64, r64 A Valid N.E. Store selected bit in CF flag. 0F BA /4 ib BT r/m16, imm8 B Valid Valid Store selected bit in CF flag. 0F BA /4 ib BT r/m32, imm8 B Valid Valid Store selected bit in CF flag. REX.W + 0F BA /4 ib BT r/m64, imm8 B Valid N.E. Store selected bit in CF flag. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) ModRM:reg (r) NA NA B ModRM:r/m (r) imm8 NA NA Description Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset (specified by the second operand) and stores the value of the bit in the CF flag. The bit base operand can be a register or a memory location; the bit offset operand can be a register or an immediate value: • If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit mode). • If the bit base operand specifies a memory location, the operand represents the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be referenced by the offset operand depends on the operand size. See also: Bit(BitBase, BitOffset) on page 3-14. Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combination with the displacement field of the memory operand. In this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The processor will ignore the high order bits if they are not zero. When accessing a bit in memory, the processor may access 4 bytes starting from the memory address for a 32-bit operand size, using by the following relationship: 3-104 Vol. 2A BT—Bit Test INSTRUCTION SET REFERENCE, A-M Effective Address + (4 ∗ (BitOffset DIV 32)) Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this relationship: Effective Address + (2 ∗ (BitOffset DIV 16)) It may do so even when only a single byte needs to be accessed to reach the given bit. When using this bit addressing mechanism, software should avoid referencing areas of memory close to address space holes. In particular, it should avoid references to memory-mapped I/O registers. Instead, software should use the MOV instructions to load from or store to these addresses, and use the register form of these instructions to manipulate the data. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit operands. See the summary chart at the beginning of this section for encoding data and limits. Operation CF ← Bit(BitBase, BitOffset); Flags Affected The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, SF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. BT—Bit Test Vol. 2A 3-105 INSTRUCTION SET REFERENCE, A-M Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-106 Vol. 2A BT—Bit Test INSTRUCTION SET REFERENCE, A-M BTC—Bit Test and Complement Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F BB BTC r/m16, r16 A Valid Valid Store selected bit in CF flag and complement. 0F BB BTC r/m32, r32 A Valid Valid Store selected bit in CF flag and complement. REX.W + 0F BB BTC r/m64, r64 A Valid N.E. Store selected bit in CF flag and complement. 0F BA /7 ib BTC r/m16, imm8 B Valid Valid Store selected bit in CF flag and complement. 0F BA /7 ib BTC r/m32, imm8 B Valid Valid Store selected bit in CF flag and complement. REX.W + 0F BA /7 ib BTC r/m64, imm8 B Valid N.E. Store selected bit in CF flag and complement. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r, w) ModRM:reg (r) NA NA B ModRM:r/m (r, w) imm8 NA NA Description Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected bit in the bit string. The bit base operand can be a register or a memory location; the bit offset operand can be a register or an immediate value: • If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit mode). This allows any bit position to be selected. • If the bit base operand specifies a memory location, the operand represents the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be referenced by the offset operand depends on the operand size. See also: Bit(BitBase, BitOffset) on page 3-14. Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combination with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on this addressing mechanism. BTC—Bit Test and Complement Vol. 2A 3-107 INSTRUCTION SET REFERENCE, A-M This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation CF ← Bit(BitBase, BitOffset); Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset); Flags Affected The CF flag contains the value of the selected bit before it is complemented. The ZF flag is unaffected. The OF, SF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) If the destination operand points to a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP(0) 3-108 Vol. 2A If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. BTC—Bit Test and Complement INSTRUCTION SET REFERENCE, A-M #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. BTC—Bit Test and Complement Vol. 2A 3-109 INSTRUCTION SET REFERENCE, A-M BTR—Bit Test and Reset Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F B3 BTR r/m16, r16 A Valid Valid Store selected bit in CF flag and clear. 0F B3 BTR r/m32, r32 A Valid Valid Store selected bit in CF flag and clear. REX.W + 0F B3 BTR r/m64, r64 A Valid N.E. Store selected bit in CF flag and clear. 0F BA /6 ib BTR r/m16, imm8 B Valid Valid Store selected bit in CF flag and clear. 0F BA /6 ib BTR r/m32, imm8 B Valid Valid Store selected bit in CF flag and clear. REX.W + 0F BA /6 ib BTR r/m64, imm8 B Valid N.E. Store selected bit in CF flag and clear. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r, w) ModRM:reg (r) NA NA B ModRM:r/m (r, w) imm8 NA NA Description Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit base operand can be a register or a memory location; the bit offset operand can be a register or an immediate value: • If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit mode). This allows any bit position to be selected. • If the bit base operand specifies a memory location, the operand represents the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be referenced by the offset operand depends on the operand size. See also: Bit(BitBase, BitOffset) on page 3-14. Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combination with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on this addressing mechanism. 3-110 Vol. 2A BTR—Bit Test and Reset INSTRUCTION SET REFERENCE, A-M This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation CF ← Bit(BitBase, BitOffset); Bit(BitBase, BitOffset) ← 0; Flags Affected The CF flag contains the value of the selected bit before it is cleared. The ZF flag is unaffected. The OF, SF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) If the destination operand points to a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP(0) BTR—Bit Test and Reset If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. Vol. 2A 3-111 INSTRUCTION SET REFERENCE, A-M #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. 3-112 Vol. 2A BTR—Bit Test and Reset INSTRUCTION SET REFERENCE, A-M BTS—Bit Test and Set Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F AB BTS r/m16, r16 A Valid Valid Store selected bit in CF flag and set. 0F AB BTS r/m32, r32 A Valid Valid Store selected bit in CF flag and set. REX.W + 0F AB BTS r/m64, r64 A Valid N.E. Store selected bit in CF flag and set. 0F BA /5 ib BTS r/m16, imm8 B Valid Valid Store selected bit in CF flag and set. 0F BA /5 ib BTS r/m32, imm8 B Valid Valid Store selected bit in CF flag and set. REX.W + 0F BA /5 ib BTS r/m64, imm8 B Valid N.E. Store selected bit in CF flag and set. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r, w) ModRM:reg (r) NA NA B ModRM:r/m (r, w) imm8 NA NA Description Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or a memory location; the bit offset operand can be a register or an immediate value: • If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit mode). This allows any bit position to be selected. • If the bit base operand specifies a memory location, the operand represents the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be referenced by the offset operand depends on the operand size. See also: Bit(BitBase, BitOffset) on page 3-14. Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combination with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on this addressing mechanism. BTS—Bit Test and Set Vol. 2A 3-113 INSTRUCTION SET REFERENCE, A-M This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation CF ← Bit(BitBase, BitOffset); Bit(BitBase, BitOffset) ← 1; Flags Affected The CF flag contains the value of the selected bit before it is set. The ZF flag is unaffected. The OF, SF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) If the destination operand points to a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP 3-114 Vol. 2A If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. BTS—Bit Test and Set INSTRUCTION SET REFERENCE, A-M #SS If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. BTS—Bit Test and Set Vol. 2A 3-115 INSTRUCTION SET REFERENCE, A-M CALL—Call Procedure Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode E8 cw CALL rel16 B N.S. Valid Call near, relative, displacement relative to next instruction. E8 cd CALL rel32 B Valid Valid Call near, relative, displacement relative to next instruction. 32-bit displacement sign extended to 64-bits in 64-bit mode. FF /2 CALL r/m16 B N.E. Valid Call near, absolute indirect, address given in r/m16. FF /2 CALL r/m32 B N.E. Valid Call near, absolute indirect, address given in r/m32. FF /2 CALL r/m64 B Valid N.E. Call near, absolute indirect, address given in r/m64. 9A cd CALL ptr16:16 A Invalid Valid Call far, absolute, address given in operand. 9A cp CALL ptr16:32 A Invalid Valid Call far, absolute, address given in operand. FF /3 CALL m16:16 B Valid Valid Call far, absolute indirect address given in m16:16. In 32-bit mode: if selector points to a gate, then RIP = 32-bit zero extended displacement taken from gate; else RIP = zero extended 16-bit offset from far pointer referenced in the instruction. FF /3 3-116 Vol. 2A CALL m16:32 B Valid Valid In 64-bit mode: If selector points to a gate, then RIP = 64-bit displacement taken from gate; else RIP = zero extended 32-bit offset from far pointer referenced in the instruction. CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode REX.W + FF /3 CALL m16:64 B Valid N.E. In 64-bit mode: If selector points to a gate, then RIP = 64-bit displacement taken from gate; else RIP = 64-bit offset from far pointer referenced in the instruction. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A Offset NA NA NA B ModRM:r/m (r) NA NA NA Description Saves procedure linking information on the stack and branches to the called procedure specified using the target operand. The target operand specifies the address of the first instruction in the called procedure. The operand can be an immediate value, a general-purpose register, or a memory location. This instruction can be used to execute four types of calls: • Near Call — A call to a procedure in the current code segment (the segment currently pointed to by the CS register), sometimes referred to as an intrasegment call. • Far Call — A call to a procedure located in a different segment than the current code segment, sometimes referred to as an inter-segment call. • Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level than that of the currently executing program or procedure. • Task switch — A call to a procedure located in a different task. The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for additional information on near, far, and inter-privilege-level calls. See Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information on performing task switches with the CALL instruction. Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the offset of the instruction following the CALL instruction) on the stack (for use later as a return-instruction pointer). The processor then CALL—Call Procedure Vol. 2A 3-117 INSTRUCTION SET REFERENCE, A-M branches to the address in the current code segment specified by the target operand. The target operand specifies either an absolute offset in the code segment (an offset from the base of the code segment) or a relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register; this value points to the instruction following the CALL instruction). The CS register is not changed on near calls. For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory location (r/m16, r/m32, or r/m64). The operand-size attribute determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to 64-bits. Absolute offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute offset indirectly using the stack pointer [ESP] as the base register, the base value used is the value of the ESP before the instruction executes. A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP(RIP) register. In 64-bit mode the relative offset is always a 32-bit immediate value which is sign extended to 64-bits before it is added to the value in the RIP register for the target calculation. As with absolute offsets, the operand-size attribute determines the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always be 64-bits because the operand size is forced to 64-bits for near branches. Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in realaddress or virtual-8086 mode, the processor pushes the current value of both the CS and EIP registers on the stack for use as a return-instruction pointer. The processor then performs a “far branch” to the code segment and offset specified with the target operand for the called procedure. The target operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared. Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be used to perform the following types of far calls: • • • Far call to the same privilege level Far call to a different privilege level (inter-privilege level call) Task switch (far call to another task) In protected mode, the processor always uses the segment selector part of the far address to access the corresponding descriptor in the GDT or LDT. The descriptor 3-118 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M type (code segment, call gate, task gate, or TSS) and access rights determine the type of call operation to be performed. If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, a general-protection exception is generated.) A far call to the same privilege level in protected mode is very similar to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand- size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its descriptor are loaded into CS register; the offset from the instruction is loaded into the EIP register. A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making calls between 16-bit and 32-bit code segments. When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed through a call gate. The segment selector specified by the target operand identifies the call gate. The target operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code segment and the new instruction pointer (offset) from the call gate descriptor. (The offset from the target operand is ignored when a call gate is used.) On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The segment selector for the new stack segment is specified in the TSS for the currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a segment at the same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment selector and stack pointer for the calling procedure’s stack, an optional set of parameters from the calling procedures stack, and the segment selector and instruction pointer for the calling procedure’s code segment. (A value in the call gate descriptor determines how many parameters to copy to the new stack.) Finally, the processor branches to the address of the procedure being called within the new code segment. Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target operand specifies the segment selector of the task gate for the new task activated by the switch (the offset in the target operand is ignored). The task gate in turn points to the TSS for the new task, which contains the segment selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value for the next instruction that was to be executed before the calling task was suspended. This instruction pointer value is loaded into the EIP register to re-start the calling task. The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of the task gate. See Chapter 7, “Task Management,” in the CALL—Call Procedure Vol. 2A 3-119 INSTRUCTION SET REFERENCE, A-M Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information on the mechanics of a task switch. When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS register and the new TSS’s previous task link field is loaded with the old task’s TSS selector. Code is expected to suspend this nested task by executing an IRET instruction which, because the NT flag is set, automatically uses the previous task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruction differs in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET instruction to suspend the task. Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from the first 64 KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only a 16-bit return address offset can be saved. Also, the call should be made using a 16-bit call gate so that 16-bit values can be pushed on the stack. See Chapter 18, “Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information. Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction can be used to perform the following types of far calls: • • • Far call to the same privilege level, remaining in compatibility mode Far call to the same privilege level, transitioning to 64-bit mode Far call to a different privilege level (inter-privilege level call), transitioning to 64bit mode Note that a CALL instruction can not be used to cause a task switch in compatibility mode since task switches are not supported in IA-32e mode. In compatibility mode, the processor always uses the segment selector part of the far address to access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type of call operation to be performed. If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, a general-protection exception is generated.) A far call to the same privilege level in compatibility mode is very similar to one carried out in protected mode. The target operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its descriptor are loaded into CS register and the offset from the instruction is loaded into the EIP register. The difference is that 64-bit mode may be entered. This specified by the L bit in the new code segment descriptor. 3-120 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same privilege level. However, using this mechanism requires that the target code segment descriptor have the L bit set, causing an entry to 64-bit mode. When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is used.) On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for the offset, of which the upper 32-bits are undefined.) On the new stack, the processor pushes the segment selector and stack pointer for the calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called within the new code segment. Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be used to perform the following types of far calls: • • • Far call to the same privilege level, transitioning to compatibility mode Far call to the same privilege level, remaining in 64-bit mode Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit mode since task switches are not supported in IA-32e mode. In 64-bit mode, the processor always uses the segment selector part of the far address to access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type of call operation to be performed. If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, a general-protection exception is generated.) A far call to the same privilege level in 64-bit mode is very similar to one carried out in compatibility mode. The target operand specifies an absolute far address indirectly with a memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct specification of absolute far address is not defined in 64-bit CALL—Call Procedure Vol. 2A 3-121 INSTRUCTION SET REFERENCE, A-M mode. The operand-size attribute determines the size of the offset (16, 32, or 64 bits) in the far address. The new code segment selector and its descriptor are loaded into the CS register; the offset from the instruction is loaded into the EIP register. The new code segment may specify entry either into compatibility or 64-bit mode, based on the L bit value. A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same privilege level. However, using this mechanism requires that the target code segment descriptor have the L bit set. When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target operand can only specify the call gate segment selector indirectly with a memory location (m16:16, m16:32 or m16:64). The processor obtains the segment selector for the new code segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is used.) On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the currently running task. The branch to the new code segment occurs after the stack switch. Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for the offset.) On the new stack, the processor pushes the segment selector and stack pointer for the calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called within the new code segment. Operation IF near call THEN IF near relative call THEN IF OperandSize = 64 THEN tempDEST ← SignExtend(DEST); (* DEST is rel32 *) tempRIP ← RIP + tempDEST; IF stack not large enough for a 8-byte return address THEN #SS(0); FI; Push(RIP); RIP ← tempRIP; FI; IF OperandSize = 32 3-122 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M THEN tempEIP ← EIP + DEST; (* DEST is rel32 *) IF tempEIP is not within code segment limit THEN #GP(0); FI; IF stack not large enough for a 4-byte return address THEN #SS(0); FI; Push(EIP); EIP ← tempEIP; FI; IF OperandSize = 16 THEN tempEIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *) IF tempEIP is not within code segment limit THEN #GP(0); FI; IF stack not large enough for a 2-byte return address THEN #SS(0); FI; Push(IP); EIP ← tempEIP; FI; ELSE (* Near absolute call *) IF OperandSize = 64 THEN tempRIP ← DEST; (* DEST is r/m64 *) IF stack not large enough for a 8-byte return address THEN #SS(0); FI; Push(RIP); RIP ← tempRIP; FI; IF OperandSize = 32 THEN tempEIP ← DEST; (* DEST is r/m32 *) IF tempEIP is not within code segment limit THEN #GP(0); FI; IF stack not large enough for a 4-byte return address THEN #SS(0); FI; Push(EIP); EIP ← tempEIP; FI; IF OperandSize = 16 THEN tempEIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *) IF tempEIP is not within code segment limit THEN #GP(0); FI; IF stack not large enough for a 2-byte return address THEN #SS(0); FI; Push(IP); EIP ← tempEIP; CALL—Call Procedure Vol. 2A 3-123 INSTRUCTION SET REFERENCE, A-M FI; FI;rel/abs FI; near IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *) THEN IF OperandSize = 32 THEN IF stack not large enough for a 6-byte return address THEN #SS(0); FI; IF DEST[31:16] is not zero THEN #GP(0); FI; Push(CS); (* Padded with 16 high-order bits *) Push(EIP); CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *) EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *) ELSE (* OperandSize = 16 *) IF stack not large enough for a 4-byte return address THEN #SS(0); FI; Push(CS); Push(IP); CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *) EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *) FI; FI; IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*) THEN IF segment selector in target operand NULL THEN #GP(0); FI; IF segment selector index not within descriptor table limits THEN #GP(new code segment selector); FI; Read type and access rights of selected segment descriptor; IF IA32_EFER.LMA = 0 THEN IF segment type is not a conforming or nonconforming code segment, call gate, task gate, or TSS THEN #GP(segment selector); FI; ELSE IF segment type is not a conforming or nonconforming code segment or 64-bit call gate, THEN #GP(segment selector); FI; FI; Depending on type and access rights: 3-124 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M GO TO CONFORMING-CODE-SEGMENT; GO TO NONCONFORMING-CODE-SEGMENT; GO TO CALL-GATE; GO TO TASK-GATE; GO TO TASK-STATE-SEGMENT; FI; CONFORMING-CODE-SEGMENT: IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1 THEN GP(new code segment selector); FI; IF DPL > CPL THEN #GP(new code segment selector); FI; IF segment not present THEN #NP(new code segment selector); FI; IF stack not large enough for return address THEN #SS(0); FI; tempEIP ← DEST(Offset); IF OperandSize = 16 THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *) IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit) THEN #GP(0); FI; IF tempEIP is non-canonical THEN #GP(0); FI; IF OperandSize = 32 THEN Push(CS); (* Padded with 16 high-order bits *) Push(EIP); CS ← DEST(CodeSegmentSelector); (* Segment descriptor information also loaded *) CS(RPL) ← CPL; EIP ← tempEIP; ELSE IF OperandSize = 16 THEN Push(CS); Push(IP); CS ← DEST(CodeSegmentSelector); (* Segment descriptor information also loaded *) CS(RPL) ← CPL; EIP ← tempEIP; ELSE (* OperandSize = 64 *) CALL—Call Procedure Vol. 2A 3-125 INSTRUCTION SET REFERENCE, A-M FI; Push(CS); (* Padded with 48 high-order bits *) Push(RIP); CS ← DEST(CodeSegmentSelector); (* Segment descriptor information also loaded *) CS(RPL) ← CPL; RIP ← tempEIP; FI; END; NONCONFORMING-CODE-SEGMENT: IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 THEN GP(new code segment selector); FI; IF (RPL > CPL) or (DPL ≠ CPL) THEN #GP(new code segment selector); FI; IF segment not present THEN #NP(new code segment selector); FI; IF stack not large enough for return address THEN #SS(0); FI; tempEIP ← DEST(Offset); IF OperandSize = 16 THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *) IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit) THEN #GP(0); FI; IF tempEIP is non-canonical THEN #GP(0); FI; IF OperandSize = 32 THEN Push(CS); (* Padded with 16 high-order bits *) Push(EIP); CS ← DEST(CodeSegmentSelector); (* Segment descriptor information also loaded *) CS(RPL) ← CPL; EIP ← tempEIP; ELSE IF OperandSize = 16 THEN Push(CS); Push(IP); CS ← DEST(CodeSegmentSelector); (* Segment descriptor information also loaded *) CS(RPL) ← CPL; EIP ← tempEIP; 3-126 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M FI; ELSE (* OperandSize = 64 *) Push(CS); (* Padded with 48 high-order bits *) Push(RIP); CS ← DEST(CodeSegmentSelector); (* Segment descriptor information also loaded *) CS(RPL) ← CPL; RIP ← tempEIP; FI; END; CALL-GATE: IF call gate (DPL < CPL) or (RPL > DPL) THEN #GP(call-gate selector); FI; IF call gate not present THEN #NP(call-gate selector); FI; IF call-gate code-segment selector is NULL THEN #GP(0); FI; IF call-gate code-segment selector index is outside descriptor table limits THEN #GP(call-gate code-segment selector); FI; Read call-gate code-segment descriptor; IF call-gate code-segment descriptor does not indicate a code segment or call-gate code-segment descriptor DPL > CPL THEN #GP(call-gate code-segment selector); FI; IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set) THEN #GP(call-gate code-segment selector); FI; IF call-gate code segment not present THEN #NP(call-gate code-segment selector); FI; IF call-gate code segment is non-conforming and DPL < CPL THEN go to MORE-PRIVILEGE; ELSE go to SAME-PRIVILEGE; FI; END; MORE-PRIVILEGE: IF current TSS is 32-bit THEN TSSstackAddress ← (new code-segment DPL ∗ 8) + 4; IF (TSSstackAddress + 5) > current TSS limit THEN #TS(current TSS selector); FI; NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4); NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress); ELSE CALL—Call Procedure Vol. 2A 3-127 INSTRUCTION SET REFERENCE, A-M IF current TSS is 16-bit THEN TSSstackAddress ← (new code-segment DPL ∗ 4) + 2 IF (TSSstackAddress + 3) > current TSS limit THEN #TS(current TSS selector); FI; NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2); NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress); ELSE (* current TSS is 64-bit *) TSSstackAddress ← (new code-segment DPL ∗ 8) + 4; IF (TSSstackAddress + 7) > current TSS limit THEN #TS(current TSS selector); FI; NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *) NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress); FI; FI; IF IA32_EFER.LMA = 0 and NewSS is NULL THEN #TS(NewSS); FI; Read new code-segment descriptor and new stack-segment descriptor; IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a writable data segment) THEN #TS(NewSS); FI IF IA32_EFER.LMA = 0 and new stack segment not present THEN #SS(NewSS); FI; IF CallGateSize = 32 THEN IF new stack does not have room for parameters plus 16 bytes THEN #SS(NewSS); FI; IF CallGate(InstructionPointer) not within new code-segment limit THEN #GP(0); FI; SS ← newSS; (* Segment descriptor information also loaded *) ESP ← newESP; CS:EIP ← CallGate(CS:InstructionPointer); (* Segment descriptor information also loaded *) Push(oldSS:oldESP); (* From calling procedure *) temp ← parameter count from call gate, masked to 5 bits; Push(parameters from calling procedure’s stack, temp) Push(oldCS:oldEIP); (* Return address to calling procedure *) ELSE IF CallGateSize = 16 THEN IF new stack does not have room for parameters plus 8 bytes THEN #SS(NewSS); FI; IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit 3-128 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M THEN #GP(0); FI; SS ← newSS; (* Segment descriptor information also loaded *) ESP ← newESP; CS:IP ← CallGate(CS:InstructionPointer); (* Segment descriptor information also loaded *) Push(oldSS:oldESP); (* From calling procedure *) temp ← parameter count from call gate, masked to 5 bits; Push(parameters from calling procedure’s stack, temp) Push(oldCS:oldEIP); (* Return address to calling procedure *) ELSE (* CallGateSize = 64 *) IF pushing 32 bytes on the stack would use a non-canonical address THEN #SS(NewSS); FI; IF (CallGate(InstructionPointer) is non-canonical) THEN #GP(0); FI; SS ← NewSS; (* NewSS is NULL) RSP ← NewESP; CS:IP ← CallGate(CS:InstructionPointer); (* Segment descriptor information also loaded *) Push(oldSS:oldESP); (* From calling procedure *) Push(oldCS:oldEIP); (* Return address to calling procedure *) FI; FI; CPL ← CodeSegment(DPL) CS(RPL) ← CPL END; SAME-PRIVILEGE: IF CallGateSize = 32 THEN IF stack does not have room for 8 bytes THEN #SS(0); FI; IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI; CS:EIP ← CallGate(CS:EIP) (* Segment descriptor information also loaded *) Push(oldCS:oldEIP); (* Return address to calling procedure *) ELSE If CallGateSize = 16 THEN IF stack does not have room for 4 bytes THEN #SS(0); FI; IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI; CS:IP ← CallGate(CS:instruction pointer); CALL—Call Procedure Vol. 2A 3-129 INSTRUCTION SET REFERENCE, A-M (* Segment descriptor information also loaded *) Push(oldCS:oldIP); (* Return address to calling procedure *) ELSE (* CallGateSize = 64) IF pushing 16 bytes on the stack touches non-canonical addresses THEN #SS(0); FI; IF RIP non-canonical THEN #GP(0); FI; CS:IP ← CallGate(CS:instruction pointer); (* Segment descriptor information also loaded *) Push(oldCS:oldIP); (* Return address to calling procedure *) FI; FI; CS(RPL) ← CPL END; TASK-GATE: IF task gate DPL < CPL or RPL THEN #GP(task gate selector); FI; IF task gate not present THEN #NP(task gate selector); FI; Read the TSS segment selector in the task-gate descriptor; IF TSS segment selector local/global bit is set to local or index not within GDT limits THEN #GP(TSS selector); FI; Access TSS descriptor in GDT; IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001) THEN #GP(TSS selector); FI; IF TSS not present THEN #NP(TSS selector); FI; SWITCH-TASKS (with nesting) to TSS; IF EIP not within code segment limit THEN #GP(0); FI; END; TASK-STATE-SEGMENT: IF TSS DPL < CPL or RPL or TSS descriptor indicates TSS not available THEN #GP(TSS selector); FI; IF TSS is not present THEN #NP(TSS selector); FI; SWITCH-TASKS (with nesting) to TSS; IF EIP not within code segment limit THEN #GP(0); FI; 3-130 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M END; Flags Affected All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur. Protected Mode Exceptions #GP(0) If the target offset in destination operand is beyond the new code segment limit. If the segment selector in the destination operand is NULL. If the code segment selector in the gate is NULL. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits. If the segment descriptor pointed to by the segment selector in the destination operand is not for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task state segment. If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the segment’s segment selector is greater than the CPL. If the DPL for a conforming-code segment is greater than the CPL. If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment selector. If the segment descriptor for a segment selector from a call gate does not indicate it is a code segment. If the segment selector from a call gate is beyond the descriptor table limits. If the DPL for a code-segment obtained from a call gate is greater than the CPL. If the segment selector for a TSS has its local/global bit set for local. If a TSS segment descriptor specifies that the TSS is busy or not available. CALL—Call Procedure Vol. 2A 3-131 INSTRUCTION SET REFERENCE, A-M #SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds the bounds of the stack segment, when no stack switch occurs. If a memory operand effective address is outside the SS segment limit. #SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds the bounds of the stack segment, when a stack switch occurs. If the SS register is being loaded as part of a stack switch and the segment pointed to is marked not present. If stack segment does not have room for the return address, parameters, or stack segment pointer, when stack switch occurs. #NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or TSS is not present. #TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS. If the new stack segment selector is NULL. If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code segment being accessed. If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL of the code segment descriptor. If the new stack segment is not a writable data segment. If segment-selector index for stack segment is outside descriptor table limits. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the target offset is beyond the code segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the target offset is beyond the code segment limit. #PF(fault-code) 3-132 Vol. 2A If a page fault occurs. CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. #GP(selector) If a memory address accessed by the selector is in non-canonical space. #GP(0) If the target offset in the destination operand is non-canonical. 64-Bit Mode Exceptions #GP(0) If a memory address is non-canonical. If target offset in destination operand is non-canonical. If the segment selector in the destination operand is NULL. If the code segment selector in the 64-bit gate is NULL. #GP(selector) If code segment or 64-bit call gate is outside descriptor table limits. If code segment or 64-bit call gate overlaps non-canonical space. If the segment descriptor pointed to by the segment selector in the destination operand is not for a conforming-code segment, nonconforming-code segment, or 64-bit call gate. If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and has both the Dbit and the L- bit set. If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the segment’s segment selector is greater than the CPL. If the DPL for a conforming-code segment is greater than the CPL. If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate. If the upper type field of a 64-bit call gate is not 0x0. If the segment selector from a 64-bit call gate is beyond the descriptor table limits. If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL. If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the D-bit clear. If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it is a code segment. CALL—Call Procedure Vol. 2A 3-133 INSTRUCTION SET REFERENCE, A-M #SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack segment when no stack switch occurs. If a memory operand effective address is outside the SS segment limit. If the stack address is in a non-canonical form. #SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error code onto the stack violates the canonical boundary when a stack switch occurs. #NP(selector) If a code segment or 64-bit call gate is not present. #TS(selector) If the load of the new RSP exceeds the limit of the TSS. #UD (64-bit mode only) If a far call is direct to an absolute address in memory. If the LOCK prefix is used. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. 3-134 Vol. 2A CALL—Call Procedure INSTRUCTION SET REFERENCE, A-M CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 98 CBW A Valid Valid AX ← sign-extend of AL. 98 CWDE A Valid Valid EAX ← sign-extend of AX. REX.W + 98 CDQE A Valid N.E. RAX ← sign-extend of EAX. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Double the size of the source operand by means of sign extension. The CBW (convert byte to word) instruction copies the sign (bit 7) in the source operand into every bit in the AH register. The CWDE (convert word to doubleword) instruction copies the sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register. CBW and CWDE reference the same opcode. The CBW instruction is intended for use when the operand-size attribute is 16; CWDE is intended for use when the operandsize attribute is 32. Some assemblers may force the operand size. Others may treat these two mnemonics as synonyms (CBW/CWDE) and use the setting of the operand-size attribute to determine the size of values to be converted. In 64-bit mode, the default operation size is the size of the destination register. Use of the REX.W prefix promotes this instruction (CDQE when promoted) to operate on 64-bit operands. In which case, CDQE copies the sign (bit 31) of the doubleword in the EAX register into the high 32 bits of RAX. Operation IF OperandSize = 16 (* Instruction = CBW *) THEN AX ← SignExtend(AL); ELSE IF (OperandSize = 32, Instruction = CWDE) EAX ← SignExtend(AX); FI; ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*) RAX ← SignExtend(EAX); FI; Flags Affected None. CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword Vol. 2A 3-135 INSTRUCTION SET REFERENCE, A-M Exceptions (All Operating Modes) #UD 3-136 Vol. 2A If the LOCK prefix is used. CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword INSTRUCTION SET REFERENCE, A-M CLC—Clear Carry Flag Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode F8 CLC A Valid Valid Clear CF flag. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit modes and 64-bit mode. Operation CF ← 0; Flags Affected The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected. Exceptions (All Operating Modes) #UD CLC—Clear Carry Flag If the LOCK prefix is used. Vol. 2A 3-137 INSTRUCTION SET REFERENCE, A-M CLD—Clear Direction Flag Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode FC CLD A Valid Valid Clear DF flag. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations increment the index registers (ESI and/or EDI). Operation is the same in all non-64-bit modes and 64-bit mode. Operation DF ← 0; Flags Affected The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected. Exceptions (All Operating Modes) #UD 3-138 Vol. 2A If the LOCK prefix is used. CLD—Clear Direction Flag INSTRUCTION SET REFERENCE, A-M CLFLUSH—Flush Cache Line Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F AE /7 CLFLUSH m8 A Valid Valid Flushes cache line containing m8. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) NA NA NA Description Invalidates the cache line that contains the linear address specified with the source operand from all levels of the processor cache hierarchy (data and instruction). The invalidation is broadcast throughout the cache coherence domain. If, at any level of the cache hierarchy, the line is inconsistent with memory (dirty) it is written to memory before invalidation. The source operand is a byte memory location. The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH (bit 19 of the EDX register, see “CPUID—CPU Identification” in this chapter). The aligned cache line size affected is also indicated with the CPUID instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1). The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It should be noted that processors are free to speculatively fetch and cache data from system memory regions assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types). PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because this speculative fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data can be speculatively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction that references the cache line). CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be ordered by any other fencing or serializing instructions or by another CLFLUSH instruction. For example, software can use an MFENCE instruction to ensure that previous stores are included in the write-back. The CLFLUSH instruction can be used at all privilege levels and is subject to all permission checking and faults associated with a byte load (and in addition, a CLFLUSH instruction is allowed to flush a linear address in an execute-only segment). Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page tables. The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has its own CPUID feature flag, it can be implemented in IA-32 processors CLFLUSH—Flush Cache Line Vol. 2A 3-139 INSTRUCTION SET REFERENCE, A-M that do not include the SSE2 extensions. Also, detecting the presence of the SSE2 extensions with the CPUID instruction does not guarantee that the CLFLUSH instruction is implemented in the processor. CLFLUSH operation is the same in non-64-bit modes and 64-bit mode. Operation Flush_Cache_Line(SRC); Intel C/C++ Compiler Intrinsic Equivalents CLFLUSH void _mm_clflush(void const *p) Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #UD If CPUID.01H:EDX.CLFSH[bit 19] = 0. If the LOCK prefix is used. Real-Address Mode Exceptions GP #UD If any part of the operand lies outside the effective address space from 0 to FFFFH. If CPUID.01H:EDX.CLFSH[bit 19] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) For a page fault. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) For a page fault. #UD If CPUID.01H:EDX.CLFSH[bit 19] = 0. If the LOCK prefix is used. 3-140 Vol. 2A CLFLUSH—Flush Cache Line INSTRUCTION SET REFERENCE, A-M CLI — Clear Interrupt Flag Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode FA CLI A Valid Valid Clear interrupt flag; interrupts disabled when interrupt flag cleared. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF flag causes the processor to ignore maskable external interrupts. The IF flag and the CLI and STI instruction have no affect on the generation of exceptions and NMI interrupts. When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected. Table 3-6 indicates the action of the CLI instruction depending on the processor operating mode and the CPL/IOPL of the running program or procedure. CLI operation is the same in non-64-bit modes and 64-bit mode. Table 3-6. Decision Table for CLI Results PE VM IOPL CPL PVI VIP VME CLI Result 0 X X X X X X IF = 0 1 0 ≥ CPL X X X X IF = 0 1 0 < CPL 3 1 X X VIF = 0 1 0 < CPL <3 X X X GP Fault 1 0 < CPL X 0 X X GP Fault 1 1 3 X X X X IF = 0 1 1 <3 X X X 1 VIF = 0 1 1 <3 X X X 0 GP Fault NOTES: * X = This setting has no impact. Operation IF PE = 0 CLI — Clear Interrupt Flag Vol. 2A 3-141 INSTRUCTION SET REFERENCE, A-M THEN IF ← 0; (* Reset Interrupt Flag *) ELSE IF VM = 0; THEN IF IOPL ≥ CPL THEN IF ← 0; (* Reset Interrupt Flag *) ELSE IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1)) THEN VIF ← 0; (* Reset Virtual Interrupt Flag *) ELSE #GP(0); FI; FI; ELSE (* VM = 1 *) IF IOPL = 3 THEN IF ← 0; (* Reset Interrupt Flag *) ELSE IF (IOPL < 3) AND (VME = 1) THEN VIF ← 0; (* Reset Virtual Interrupt Flag *) ELSE #GP(0); FI; FI; FI; FI; Flags Affected If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal to or less than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS register are unaffected. When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected. Protected Mode Exceptions #GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. #UD If the LOCK prefix is used. 3-142 Vol. 2A CLI — Clear Interrupt Flag INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. #UD If the LOCK prefix is used. CLI — Clear Interrupt Flag Vol. 2A 3-143 INSTRUCTION SET REFERENCE, A-M CLTS—Clear Task-Switched Flag in CR0 Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode 0F 06 CLTS A Valid Valid Clears TS flag in CR0. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in operating-system procedures. It is a privileged instruction that can only be executed at a CPL of 0. It is allowed to be executed in real-address mode to allow initialization for protected mode. The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize the saving of FPU context in multitasking applications. See the description of the TS flag in the section titled “Control Registers” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about this flag. CLTS operation is the same in non-64-bit modes and 64-bit mode. See Chapter 22, “VMX Non-Root Operation,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information about the behavior of this instruction in VMX non-root operation. Operation CR0.TS[bit 3] ← 0; Flags Affected The TS flag in CR0 register is cleared. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD 3-144 Vol. 2A If the LOCK prefix is used. CLTS—Clear Task-Switched Flag in CR0 INSTRUCTION SET REFERENCE, A-M Virtual-8086 Mode Exceptions #GP(0) CLTS is not recognized in virtual-8086 mode. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the CPL is greater than 0. #UD If the LOCK prefix is used. CLTS—Clear Task-Switched Flag in CR0 Vol. 2A 3-145 INSTRUCTION SET REFERENCE, A-M CMC—Complement Carry Flag Opcode Instruction Op/ En 64-bit Mode Compat/ Description Leg Mode F5 CMC A Valid Valid Complement CF flag. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Complements the CF flag in the EFLAGS register. CMC operation is the same in non64-bit modes and 64-bit mode. Operation EFLAGS.CF[bit 0]← NOT EFLAGS.CF[bit 0]; Flags Affected The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are unaffected. Exceptions (All Operating Modes) #UD 3-146 Vol. 2A If the LOCK prefix is used. CMC—Complement Carry Flag INSTRUCTION SET REFERENCE, A-M CMOVcc—Conditional Move Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 47 /r CMOVA r16, r/m16 A Valid Valid Move if above (CF=0 and ZF=0). 0F 47 /r CMOVA r32, r/m32 A Valid Valid Move if above (CF=0 and ZF=0). REX.W + 0F 47 /r CMOVA r64, r/m64 A Valid N.E. Move if above (CF=0 and ZF=0). 0F 43 /r CMOVAE r16, r/m16 A Valid Valid Move if above or equal (CF=0). 0F 43 /r CMOVAE r32, r/m32 A Valid Valid Move if above or equal (CF=0). REX.W + 0F 43 /r CMOVAE r64, r/m64 A Valid N.E. Move if above or equal (CF=0). 0F 42 /r CMOVB r16, r/m16 A Valid Valid Move if below (CF=1). 0F 42 /r CMOVB r32, r/m32 A Valid Valid Move if below (CF=1). REX.W + 0F 42 /r CMOVB r64, r/m64 A Valid N.E. Move if below (CF=1). 0F 46 /r CMOVBE r16, r/m16 A Valid Valid Move if below or equal (CF=1 or ZF=1). 0F 46 /r CMOVBE r32, r/m32 A Valid Valid Move if below or equal (CF=1 or ZF=1). REX.W + 0F 46 /r CMOVBE r64, r/m64 A Valid N.E. Move if below or equal (CF=1 or ZF=1). 0F 42 /r CMOVC r16, r/m16 A Valid Valid Move if carry (CF=1). 0F 42 /r CMOVC r32, r/m32 A Valid Valid Move if carry (CF=1). REX.W + 0F 42 /r CMOVC r64, r/m64 A Valid N.E. Move if carry (CF=1). 0F 44 /r CMOVE r16, r/m16 A Valid Valid Move if equal (ZF=1). 0F 44 /r CMOVE r32, r/m32 A Valid Valid Move if equal (ZF=1). REX.W + 0F 44 /r CMOVE r64, r/m64 A Valid N.E. Move if equal (ZF=1). 0F 4F /r CMOVG r16, r/m16 A Valid Valid Move if greater (ZF=0 and SF=OF). 0F 4F /r CMOVG r32, r/m32 A Valid Valid Move if greater (ZF=0 and SF=OF). REX.W + 0F 4F /r CMOVG r64, r/m64 A V/N.E. NA Move if greater (ZF=0 and SF=OF). CMOVcc—Conditional Move Vol. 2A 3-147 INSTRUCTION SET REFERENCE, A-M Opcode Instruction 0F 4D /r 64-Bit Mode Compat/ Description Leg Mode CMOVGE r16, r/m16 A Valid Valid Move if greater or equal (SF=OF). 0F 4D /r CMOVGE r32, r/m32 A Valid Valid Move if greater or equal (SF=OF). REX.W + 0F 4D /r CMOVGE r64, r/m64 A Valid N.E. Move if greater or equal (SF=OF). 0F 4C /r CMOVL r16, r/m16 A Valid Valid Move if less (SF≠ OF). 0F 4C /r CMOVL r32, r/m32 A Valid Valid Move if less (SF≠ OF). REX.W + 0F 4C /r CMOVL r64, r/m64 A Valid N.E. Move if less (SF≠ OF). 0F 4E /r CMOVLE r16, r/m16 A Valid Valid Move if less or equal (ZF=1 or SF≠ OF). 0F 4E /r CMOVLE r32, r/m32 A Valid Valid Move if less or equal (ZF=1 or SF≠ OF). REX.W + 0F 4E /r CMOVLE r64, r/m64 A Valid N.E. Move if less or equal (ZF=1 or SF≠ OF). 0F 46 /r CMOVNA r16, r/m16 A Valid Valid Move if not above (CF=1 or ZF=1). 0F 46 /r CMOVNA r32, r/m32 A Valid Valid Move if not above (CF=1 or ZF=1). REX.W + 0F 46 /r CMOVNA r64, r/m64 A Valid N.E. Move if not above (CF=1 or ZF=1). 0F 42 /r CMOVNAE r16, r/m16 A Valid Valid Move if not above or equal (CF=1). 0F 42 /r CMOVNAE r32, r/m32 A Valid Valid Move if not above or equal (CF=1). REX.W + 0F 42 /r CMOVNAE r64, r/m64 A Valid N.E. Move if not above or equal (CF=1). 0F 43 /r CMOVNB r16, r/m16 A Valid Valid Move if not below (CF=0). 0F 43 /r CMOVNB r32, r/m32 A Valid Valid Move if not below (CF=0). REX.W + 0F 43 /r CMOVNB r64, r/m64 A Valid N.E. Move if not below (CF=0). 0F 47 /r CMOVNBE r16, r/m16 A Valid Valid Move if not below or equal (CF=0 and ZF=0). 0F 47 /r CMOVNBE r32, r/m32 A Valid Valid Move if not below or equal (CF=0 and ZF=0). 3-148 Vol. 2A Op/ En CMOVcc—Conditional Move INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode REX.W + 0F 47 /r CMOVNBE r64, r/m64 A Valid N.E. Move if not below or equal (CF=0 and ZF=0). 0F 43 /r CMOVNC r16, r/m16 A Valid Valid Move if not carry (CF=0). 0F 43 /r CMOVNC r32, r/m32 A Valid Valid Move if not carry (CF=0). REX.W + 0F 43 /r CMOVNC r64, r/m64 A Valid N.E. Move if not carry (CF=0). 0F 45 /r CMOVNE r16, r/m16 A Valid Valid Move if not equal (ZF=0). 0F 45 /r CMOVNE r32, r/m32 A Valid Valid Move if not equal (ZF=0). REX.W + 0F 45 /r CMOVNE r64, r/m64 A Valid N.E. Move if not equal (ZF=0). 0F 4E /r CMOVNG r16, r/m16 A Valid Valid Move if not greater (ZF=1 or SF≠ OF). 0F 4E /r CMOVNG r32, r/m32 A Valid Valid Move if not greater (ZF=1 or SF≠ OF). REX.W + 0F 4E /r CMOVNG r64, r/m64 A Valid N.E. Move if not greater (ZF=1 or SF≠ OF). 0F 4C /r CMOVNGE r16, r/m16 A Valid Valid Move if not greater or equal (SF≠ OF). 0F 4C /r CMOVNGE r32, r/m32 A Valid Valid Move if not greater or equal (SF≠ OF). REX.W + 0F 4C /r CMOVNGE r64, r/m64 A Valid N.E. Move if not greater or equal (SF≠ OF). 0F 4D /r CMOVNL r16, r/m16 A Valid Valid Move if not less (SF=OF). 0F 4D /r CMOVNL r32, r/m32 A Valid Valid Move if not less (SF=OF). REX.W + 0F 4D /r CMOVNL r64, r/m64 A Valid N.E. Move if not less (SF=OF). 0F 4F /r CMOVNLE r16, r/m16 A Valid Valid Move if not less or equal (ZF=0 and SF=OF). 0F 4F /r CMOVNLE r32, r/m32 A Valid Valid Move if not less or equal (ZF=0 and SF=OF). REX.W + 0F 4F /r CMOVNLE r64, r/m64 A Valid N.E. Move if not less or equal (ZF=0 and SF=OF). 0F 41 /r CMOVNO r16, r/m16 A Valid Valid Move if not overflow (OF=0). 0F 41 /r CMOVNO r32, r/m32 A Valid Valid Move if not overflow (OF=0). CMOVcc—Conditional Move Vol. 2A 3-149 INSTRUCTION SET REFERENCE, A-M Opcode Instruction REX.W + 0F 41 /r 64-Bit Mode Compat/ Description Leg Mode CMOVNO r64, r/m64 A Valid N.E. Move if not overflow (OF=0). 0F 4B /r CMOVNP r16, r/m16 A Valid Valid Move if not parity (PF=0). 0F 4B /r CMOVNP r32, r/m32 A Valid Valid Move if not parity (PF=0). REX.W + 0F 4B /r CMOVNP r64, r/m64 A Valid N.E. Move if not parity (PF=0). 0F 49 /r CMOVNS r16, r/m16 A Valid Valid Move if not sign (SF=0). 0F 49 /r CMOVNS r32, r/m32 A Valid Valid Move if not sign (SF=0). REX.W + 0F 49 /r CMOVNS r64, r/m64 A Valid N.E. Move if not sign (SF=0). 0F 45 /r CMOVNZ r16, r/m16 A Valid Valid Move if not zero (ZF=0). 0F 45 /r CMOVNZ r32, r/m32 A Valid Valid Move if not zero (ZF=0). REX.W + 0F 45 /r CMOVNZ r64, r/m64 A Valid N.E. Move if not zero (ZF=0). 0F 40 /r CMOVO r16, r/m16 A Valid Valid Move if overflow (OF=1). 0F 40 /r CMOVO r32, r/m32 A Valid Valid Move if overflow (OF=1). REX.W + 0F 40 /r CMOVO r64, r/m64 A Valid N.E. Move if overflow (OF=1). 0F 4A /r CMOVP r16, r/m16 A Valid Valid Move if parity (PF=1). 0F 4A /r CMOVP r32, r/m32 A Valid Valid Move if parity (PF=1). REX.W + 0F 4A /r CMOVP r64, r/m64 A Valid N.E. Move if parity (PF=1). 0F 4A /r CMOVPE r16, r/m16 A Valid Valid Move if parity even (PF=1). 0F 4A /r CMOVPE r32, r/m32 A Valid Valid Move if parity even (PF=1). REX.W + 0F 4A /r CMOVPE r64, r/m64 A Valid N.E. Move if parity even (PF=1). 0F 4B /r CMOVPO r16, r/m16 A Valid Valid Move if parity odd (PF=0). 0F 4B /r CMOVPO r32, r/m32 A Valid Valid Move if parity odd (PF=0). REX.W + 0F 4B /r CMOVPO r64, r/m64 A Valid N.E. Move if parity odd (PF=0). 0F 48 /r CMOVS r16, r/m16 A Valid Valid Move if sign (SF=1). 0F 48 /r CMOVS r32, r/m32 A Valid Valid Move if sign (SF=1). REX.W + 0F 48 /r CMOVS r64, r/m64 A Valid N.E. Move if sign (SF=1). 0F 44 /r CMOVZ r16, r/m16 A Valid Valid Move if zero (ZF=1). 3-150 Vol. 2A Op/ En CMOVcc—Conditional Move INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 44 /r CMOVZ r32, r/m32 A Valid Valid Move if zero (ZF=1). REX.W + 0F 44 /r CMOVZ r64, r/m64 A Valid N.E. Move if zero (ZF=1). Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA Description The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified state (or condition). A condition code (cc) is associated with each instruction to indicate the condition being tested for. If the condition is not satisfied, a move is not performed and execution continues with the instruction following the CMOVcc instruction. These instructions can move 16-bit, 32-bit or 64-bit values from memory to a general-purpose register or from one general-purpose register to another. Conditional moves of 8-bit register operands are not supported. The condition for each CMOVcc mnemonic is given in the description column of the above table. The terms “less” and “greater” are used for comparisons of signed integers and the terms “above” and “below” are used for unsigned integers. Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are alternate mnemonics for the opcode 0F 47H. The CMOVcc instructions were introduced in P6 family processors; however, these instructions may not be supported by all IA-32 processors. Software can determine if the CMOVcc instructions are supported by checking the processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification” in this chapter). In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation temp ← SRC IF condition TRUE CMOVcc—Conditional Move Vol. 2A 3-151 INSTRUCTION SET REFERENCE, A-M THEN DEST ← temp; FI; ELSE IF (OperandSize = 32 and IA-32e mode active) THEN DEST[63:32] ← 0; FI; FI; Flags Affected None. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. 3-152 Vol. 2A CMOVcc—Conditional Move INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. CMOVcc—Conditional Move Vol. 2A 3-153 INSTRUCTION SET REFERENCE, A-M CMP—Compare Two Operands Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 3C ib CMP AL, imm8 D Valid Valid Compare imm8 with AL. 3D iw CMP AX, imm16 D Valid Valid Compare imm16 with AX. 3D id CMP EAX, imm32 D Valid Valid Compare imm32 with EAX. REX.W + 3D id CMP RAX, imm32 D Valid N.E. Compare imm32 signextended to 64-bits with RAX. 80 /7 ib CMP r/m8, imm8 C Valid Valid Compare imm8 with r/m8. * REX + 80 /7 ib CMP r/m8 , imm8 C Valid N.E. Compare imm8 with r/m8. 81 /7 iw CMP r/m16, imm16 C Valid Valid Compare imm16 with r/m16. 81 /7 id CMP r/m32, imm32 C Valid Valid Compare imm32 with r/m32. REX.W + 81 /7 id CMP r/m64, imm32 C Valid N.E. Compare imm32 signextended to 64-bits with r/m64. 83 /7 ib CMP r/m16, imm8 C Valid Valid Compare imm8 with r/m16. 83 /7 ib CMP r/m32, imm8 C Valid Valid Compare imm8 with r/m32. REX.W + 83 /7 ib CMP r/m64, imm8 C Valid N.E. Compare imm8 with r/m64. 38 /r CMP r/m8, r8 B Valid Valid Compare r8 with r/m8. * * REX + 38 /r CMP r/m8 , r8 B Valid N.E. Compare r8 with r/m8. 39 /r CMP r/m16, r16 B Valid Valid Compare r16 with r/m16. 39 /r CMP r/m32, r32 B Valid Valid Compare r32 with r/m32. REX.W + 39 /r CMP r/m64,r64 B Valid N.E. Compare r64 with r/m64. 3A /r CMP r8, r/m8 A Valid Valid Compare r/m8 with r8. REX + 3A /r CMP r8*, r/m8* A Valid N.E. Compare r/m8 with r8. 3B /r CMP r16, r/m16 A Valid Valid Compare r/m16 with r16. 3B /r CMP r32, r/m32 A Valid Valid Compare r/m32 with r32. REX.W + 3B /r CMP r64, r/m64 A Valid N.E. Compare r/m64 with r64. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 3-154 Vol. 2A CMP—Compare Two Operands INSTRUCTION SET REFERENCE, A-M Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:r/m (r, w) ModRM:reg (w) NA NA C ModRM:r/m (r, w) imm8 NA NA D AL/AX/EAX/RAX imm8 NA NA Description Compares the first source operand with the second source operand and sets the status flags in the EFLAGS register according to the results. The comparison is performed by subtracting the second operand from the first operand and then setting the status flags in the same manner as the SUB instruction. When an immediate value is used as an operand, it is sign-extended to the length of the first operand. The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on the results of a CMP instruction. Appendix B, “EFLAGS Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows the relationship of the status flags and the condition codes. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation temp ← SRC1 − SignExtend(SRC2); ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*) Flags Affected The CF, OF, SF, ZF, AF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. CMP—Compare Two Operands Vol. 2A 3-155 INSTRUCTION SET REFERENCE, A-M #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-156 Vol. 2A CMP—Compare Two Operands INSTRUCTION SET REFERENCE, A-M CMPPD—Compare Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32- CPUID bit Mode Feature Flag Description 66 0F C2 /r ib A V/V SSE2 Compare packed doubleprecision floating-point values in xmm2/m128 and xmm1 using imm8 as comparison predicate. B V/V AVX Compare packed doubleprecision floating-point values in xmm3/m128 and xmm2 using bits 4:0 of imm8 as a comparison predicate. B V/V AVX Compare packed doubleprecision floating-point values in ymm3/m256 and ymm2 using bits 4:0 of imm8 as a comparison predicate. CMPPD xmm1, xmm2/m128, imm8 VEX.NDS.128.66.0F.WIG C2 /r ib VCMPPD xmm1, xmm2, xmm3/m128, imm8 VEX.NDS.256.66.0F.WIG C2 /r ib VCMPPD ymm1, ymm2, ymm3/m256, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs a SIMD compare of the packed double-precision floating-point values in the source operand (second operand) and the destination operand (first operand) and returns the results of the comparison to the destination operand. The comparison predicate operand (third operand) specifies the type of comparison performed on each of the pairs of packed values. The result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison false). 128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The second source operand (second operand) can be an XMM register or 128-bit memory location. The comparison predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed (see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. Two comparisons are performed with results written to bits 127:0 of the destination operand. CMPPD—Compare Packed Double-Precision Floating-Point Values Vol. 2A 3-157 INSTRUCTION SET REFERENCE, A-M Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions Predicate imm8 Encoding Description Relation where: A Is 1st Operand B Is 2nd Operand Emulation Result if NaN Operand QNaN Oper-and Signals Invalid EQ 000B Equal A=B False No LT 001B Less-than AB Swap Operands, Use LT False Yes Greater-than-orequal A≥B Swap Operands, Use LE False Yes UNORD 011B Unordered A, B = Unordered True No NEQ 100B Not-equal A≠B True No NLT 101B Not-less-than NOT(A < B) True Yes NLE 110B Not-less-than-orequal NOT(A ≤ B) True Yes Not-greater-than NOT(A > B) Swap Operands, Use NLT True Yes Not-greater-thanor-equal NOT(A ≥ B) Swap Operands, Use NLE True Yes Ordered A , B = Ordered False No ORD 111B The unordered relationship is true when at least one of the two source operands being compared is a NaN; the ordered relationship is true when neither source operand is a NaN. A subsequent computational instruction that uses the mask result in the destination operand as an input operand will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN. Note that the processors with “CPUID.1H:ECX.AVX =0” do not implement the greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-orequal relations. These comparisons can be made either by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) or by using software emulation. When using software emulation, the program must 3-158 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M swap the operands (copying registers when necessary to protect the data that will now be in the destination), and then perform the compare using a different predicate. The predicate to be used for these emulations is listed in Table 3-7 under the heading Emulation. Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand CMPPD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-8. Compiler should treat reserved Imm8 values as illegal syntax. Table 3-8. Pseudo-Op and CMPPD Implementation : Pseudo-Op CMPPD Implementation CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0 CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1 CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2 CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3 CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4 CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5 CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6 CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7 The greater-than relations that the processor does not implement, require more than one instruction to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to the correct destination register and that the source operand is left intact.) In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Enhanced Comparison Predicate for VEX-Encoded VCMPPD VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source operand (third operand) can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Two comparisons are performed with results written to bits 127:0 of the destination operand. VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source operand (third operand) can be a YMM register or a 256bit memory location. The destination operand (first operand) is a YMM register. Four comparisons are performed with results written to the destination operand. The comparison predicate operand is an 8-bit immediate: • For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate are reserved. CMPPD—Compare Packed Double-Precision Floating-Point Values Vol. 2A 3-159 INSTRUCTION SET REFERENCE, A-M Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions Predicate imm8 Value Description Result: A Is 1st Operand, B Is 2nd Operand Signals #IA on A >B AB AB A SRC[63:0]) { (* Set EFLAGS *) CASE (RESULT) OF UNORDERED: ZF,PF,CF ← 111; GREATER_THAN: ZF,PF,CF ← 000; LESS_THAN: ZF,PF,CF ← 001; EQUAL: ZF,PF,CF ← 100; ESAC; OF, AF, SF ← 0; } Intel C/C++ Compiler Intrinsic Equivalents int _mm_comieq_sd (__m128d a, __m128d b) int _mm_comilt_sd (__m128d a, __m128d b) int _mm_comile_sd (__m128d a, __m128d b) int _mm_comigt_sd (__m128d a, __m128d b) int _mm_comige_sd (__m128d a, __m128d b) int _mm_comineq_sd (__m128d a, __m128d b) SIMD Floating-Point Exceptions Invalid (if SNaN or QNaN operands), Denormal. Other Exceptions See Exceptions Type 3; additionally #UD If VEX.vvvv != 1111B. COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS Vol. 2A 3-199 INSTRUCTION SET REFERENCE, A-M COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 2F /r A V/V SSE Compare low singleprecision floating-point values in xmm1 and xmm2/mem32 and set the EFLAGS flags accordingly. A V/V AVX Compare low single precision floating-point values in xmm1 and xmm2/mem32 and set the EFLAGS flags accordingly. COMISS xmm1, xmm2/m32 VEX.LIG.0F 2F.WIG /r VCOMISS xmm1, xmm2/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r) ModRM:r/m (r) NA NA Description Compares the single-precision floating-point values in the low doublewords of operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The unordered result is returned if either source operand is a NaN (QNaN or SNaN). Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory location. The COMISS instruction differs from the UCOMISS instruction in that it signals a SIMD floating-point invalid operation exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISS instruction signals an invalid numeric exception only if a source operand is an SNaN. The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. 3-200 Vol. 2A COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS INSTRUCTION SET REFERENCE, A-M Operation RESULT ← OrderedCompare(SRC1[31:0] <> SRC2[31:0]) { (* Set EFLAGS *) CASE (RESULT) OF UNORDERED: ZF,PF,CF ← 111; GREATER_THAN: ZF,PF,CF ← 000; LESS_THAN: ZF,PF,CF ← 001; EQUAL: ZF,PF,CF ← 100; ESAC; OF,AF,SF ← 0; } Intel C/C++ Compiler Intrinsic Equivalents int _mm_comieq_ss (__m128 a, __m128 b) int _mm_comilt_ss (__m128 a, __m128 b) int _mm_comile_ss (__m128 a, __m128 b) int _mm_comigt_ss (__m128 a, __m128 b) int _mm_comige_ss (__m128 a, __m128 b) int _mm_comineq_ss (__m128 a, __m128 b) SIMD Floating-Point Exceptions Invalid (if SNaN or QNaN operands), Denormal. Other Exceptions See Exceptions Type 3; additionally #UD If VEX.vvvv != 1111B. COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS Vol. 2A 3-201 INSTRUCTION SET REFERENCE, A-M CPUID—CPU Identification Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F A2 CPUID A Valid Valid Returns processor identification and feature information to the EAX, EBX, ECX, and EDX registers, as determined by input entered in EAX (in some cases, ECX as well). Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction operates the same in non64-bit modes and 64-bit mode. CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value and the Vendor Identification String in the appropriate registers: MOV EAX, 00H CPUID Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18 shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is implemented. Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX is higher than the maximum input value for basic or extended function for that processor then the data for the highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true: CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *) 1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes. 3-202 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *) CPUID.EAX = 80000008H (* Returns linear/physical address size data. *) CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *) If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the following is true: CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *) When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence on input ECX value in the basic leaf is honored. CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution guarantees that any modifications to flags, registers, and memory for previous instructions are completed before the next instruction is fetched and executed. See also: “Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A “Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Table 3-17. Information Returned by CPUID Instruction Initial EAX Value Information Provided about the Processor Basic CPUID Information 0H EAX EBX ECX EDX Maximum Input Value for Basic CPUID Information (see Table 3-18) “Genu” “ntel” “ineI” 01H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-9) EBX Bits 07-00: Brand Index Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes) Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*. Bits 31-24: Initial APIC ID ECX EDX Feature Information (see Figure 3-10 and Table 3-20) Feature Information (see Figure 3-11 and Table 3-21) NOTES: * The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC IDs reserved for addressing different logical processors in a physical package. CPUID—CPU Identification Vol. 2A 3-203 INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value Information Provided about the Processor 02H EAX EBX ECX EDX Cache and TLB Information (see Table 3-22) Cache and TLB Information Cache and TLB Information Cache and TLB Information 03H EAX EBX Reserved. Reserved. ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value in this register is reserved.) EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value in this register is reserved.) NOTES: Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more information on PSN. CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default). Deterministic Cache Parameters Leaf 04H NOTES: Leaf 04H output depends on the initial value in ECX. See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-227. EAX Bits 04-00: Cache Type Field 0 = Null - No more caches 1 = Data Cache 2 = Instruction Cache 3 = Unified Cache 4-31 = Reserved Bits 07-05: Cache Level (starts at 1) Bit 08: Self Initializing cache level (does not need SW initialization) Bit 09: Fully Associative cache Bits 13-10: Reserved Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache*, ** Bits 31-26: Maximum number of addressable IDs for processor cores in the physical package*, ***, **** 3-204 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value Information Provided about the Processor EBX Bits 11-00: L = System Coherency Line Size* Bits 21-12: P = Physical Line partitions* Bits 31-22: W = Ways of associativity* ECX Bits 31-00: S = Number of Sets* EDX Bit 0: Write-Back Invalidate/Invalidate 0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this cache. 1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing this cache. Bit 1: Cache Inclusiveness 0 = Cache is not inclusive of lower cache levels. 1 = Cache is inclusive of lower cache levels. Bit 2: Complex Cache Indexing 0 = Direct mapped cache. 1 = A complex function is used to index the cache, potentially using all address bits. Bits 31-03: Reserved = 0 NOTES: * Add one to the return value to get the result. ** The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique initial APIC IDs reserved for addressing different logical processors sharing this cache *** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of bits of the initial APIC ID. ****The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. MONITOR/MWAIT Leaf 05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity) Bits 31-16: Reserved = 0 EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity) Bits 31-16: Reserved = 0 CPUID—CPU Identification Vol. 2A 3-205 INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value Information Provided about the Processor ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled Bits 31 - 02: Reserved EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT Bits 07 - 04: Number of C1* sub C-states supported using MWAIT Bits 11 - 08: Number of C2* sub C-states supported using MWAIT Bits 15 - 12: Number of C3* sub C-states supported using MWAIT Bits 19 - 16: Number of C4* sub C-states supported using MWAIT Bits 31 - 20: Reserved = 0 NOTE: * The definition of C0 through C4 states for MWAIT extension are processor-specific C-states, not ACPI C-states. Thermal and Power Management Leaf 06H EAX EBX Bit 00: Digital temperature sensor is supported if set Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]). Bit 02: ARAT. APIC-Timer-always-running feature is supported if set. Bit 03: Reserved Bit 04: PLN. Power limit notification controls are supported if set. Bit 05: ECMD. Clock modulation duty cycle extension is supported if set. Bit 06: PTM. Package thermal management is supported if set. Bits 31 - 07: Reserved Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor Bits 31 - 04: Reserved ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The capability to provide a measure of delivered processor performance (since last reset of the counters), as a percentage of expected processor performance at frequency specified in CPUID Brand String Bits 02 - 01: Reserved = 0 Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H) Bits 31 - 04: Reserved = 0 EDX Reserved = 0 Direct Cache Access Information Leaf 3-206 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value 09H Information Provided about the Processor EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H) EBX Reserved ECX EDX Reserved Reserved Architectural Performance Monitoring Leaf 0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor Bits 23 - 16: Bit width of general-purpose, performance monitoring counter Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events EBX Bit 00: Core cycle event not available if 1 Bit 01: Instruction retired event not available if 1 Bit 02: Reference cycles event not available if 1 Bit 03: Last-level cache reference event not available if 1 Bit 04: Last-level cache misses event not available if 1 Bit 05: Branch instruction retired event not available if 1 Bit 06: Branch mispredict retired event not available if 1 Bits 31- 07: Reserved = 0 ECX Reserved = 0 EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1) Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1) Reserved = 0 Extended Topology Enumeration Leaf 0BH CPUID—CPU Identification NOTES: Most of Leaf 0BH output depends on the initial value in ECX. EDX output do not vary with initial value in ECX. ECX[7:0] output always reflect initial value in ECX. All other output value for an invalid initial value in ECX are 0. Leaf 0BH exists if EBX[15:0] is not zero. Vol. 2A 3-207 INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value Information Provided about the Processor EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. All logical processors with the same next level ID share current level. Bits 31-05: Reserved. EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped by Intel**. Bits 31- 16: Reserved. ECX Bits 07 - 00: Level number. Same value in ECX input Bits 15 - 08: Level type***. Bits 31 - 16:: Reserved. EDX Bits 31- 00: x2APIC ID the current logical processor. NOTES: * Software should use this field (EAX[4:0]) to enumerate processor topology of the system. ** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software and platform hardware configurations. *** The value of the “level type” field is not related to level numbers in any way, higher “level type” values do not mean higher levels. Level type field has the following encoding: 0 : invalid 1 : SMT 2 : Core 3-255 : Reserved Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0) 0DH 3-208 Vol. 2A NOTES: Leaf 0DH main leaf (ECX = 0). EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit field in XCR0 is reserved. EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area are not enabled. CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value Information Provided about the Processor ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0. EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field in XCR0 is reserved. Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1) EAX Reserved EBX Reserved ECX Reserved EDX Reserved Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1) 0DH NOTES: Leaf 0DH output depends on the initial value in ECX. If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Each valid sub-leaf index maps to a valid bit in the XCR0 register starting at bit position 2 EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state feature associated with a valid subleaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*. EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the XSAVE/XRSTOR area. This field reports 0 if the sub-leaf index, n, is invalid*. ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved. EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved. Unimplemented CPUID Leaf Functions 40000000H 4FFFFFFFH Invalid. No existing or future CPU will return processor identification or feature information if the initial EAX value is in the range 40000000H to 4FFFFFFFH. Extended Function CPUID Information 80000000H EAX CPUID—CPU Identification Maximum Input Value for Extended Function CPUID Information (see Table 3-18). Vol. 2A 3-209 INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value Information Provided about the Processor EBX ECX EDX 80000001H EAX Reserved Reserved Reserved Extended Processor Signature and Feature Bits. EBX Reserved ECX Bit 00: LAHF/SAHF available in 64-bit mode Bits 31-01 Reserved EDX Bits 10-00: Reserved Bit 11: SYSCALL/SYSRET available (when in 64-bit mode) Bits 19-12: Reserved = 0 Bit 20: Execute Disable Bit available Bits 25-21: Reserved = 0 Bit 26: 1-GByte pages are available if 1 Bit 27: RDTSCP and IA32_TSC_AUX are available if 1 Bits 28: Reserved = 0 Bit 29: Intel® 64 Architecture available if 1 Bits 31-30: Reserved = 0 80000002H EAX EBX ECX EDX Processor Brand String Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued 80000003H EAX EBX ECX EDX Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued 80000004H EAX EBX ECX EDX Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued 80000005H EAX EBX ECX EDX Reserved = 0 Reserved = 0 Reserved = 0 Reserved = 0 80000006H EAX EBX Reserved = 0 Reserved = 0 3-210 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-17. Information Returned by CPUID Instruction (Contd.) Initial EAX Value Information Provided about the Processor ECX EDX Bits 07-00: Cache Line size in bytes Bits 11-08: Reserved Bits 15-12: L2 Associativity field * Bits 31-16: Cache size in 1K units Reserved = 0 NOTES: * L2 associativity field encodings: 00H - Disabled 01H - Direct mapped 02H - 2-way 04H - 4-way 06H - 8-way 08H - 16-way 0FH - Fully associative 80000007H EAX EBX ECX EDX Reserved = 0 Reserved = 0 Reserved = 0 Bits 07-00: Reserved = 0 Bit 08: Invariant TSC available if 1 Bits 31-09: Reserved = 0 80000008H EAX Linear/Physical Address size Bits 07-00: #Physical Address Bits* Bits 15-8: #Linear Address Bits Bits 31-16: Reserved = 0 EBX ECX EDX Reserved = 0 Reserved = 0 Reserved = 0 NOTES: * If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should come from this field. INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for returning basic processor information. The value is returned in the EAX register (see Table 3-18) and is processor specific. A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “GenuineIntel” and is expressed: CPUID—CPU Identification Vol. 2A 3-211 INSTRUCTION SET REFERENCE, A-M EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *) EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *) ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *) INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recognizes for returning extended processor information. The value is returned in the EAX register (see Table 3-18) and is processor specific. Table 3-18. Highest CPUID Source Operand for Intel 64 and IA-32 Processors Intel 64 or IA-32 Processors Highest Value in EAX Basic Information Extended Function Information CPUID Not Implemented CPUID Not Implemented Later Intel486 Processors and Pentium Processors 01H Not Implemented Pentium Pro and Pentium II Processors, Intel® Celeron® Processors 02H Not Implemented Pentium III Processors 03H Not Implemented Pentium 4 Processors 02H 80000004H Intel Xeon Processors 02H 80000004H Earlier Intel486 Processors Pentium M Processor 02H 80000004H Pentium 4 Processor supporting Hyper-Threading Technology 05H 80000008H Pentium D Processor (8xx) 05H 80000008H Pentium D Processor (9xx) 06H 80000008H Intel Core Duo Processor 0AH 80000008H Intel Core 2 Duo Processor 0AH 80000008H Intel Xeon Processor 3000, 5100, 5200, 5300, 5400 Series 0AH 80000008H Intel Core 2 Duo Processor 8000 Series 0DH 80000008H Intel Xeon Processor 5200, 5400 Series 0AH 80000008H 3-212 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-18. Highest CPUID Source Operand for Intel 64 and IA-32 Processors Intel 64 or IA-32 Processors Highest Value in EAX Basic Information Extended Function Information Intel Atom Processor 0AH 80000008H Intel Core i7 Processor 0BH 80000008H IA32_BIOS_SIGN_ID Returns Microcode Update Signature For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. INPUT EAX = 1: Returns Model, Family, Stepping Information When CPUID executes with EAX set to 1, version information is returned in EAX (see Figure 3-9). For example: model, family, and processor type for the Intel Xeon processor 5100 series is as follows: • • • Model — 1111B Family — 0101B Processor Type — 00B See Table 3-19 for available processor type values. Stepping IDs are provided as needed. 31 28 27 20 19 Extended Family ID EAX 16 15 14 13 12 11 Extended Model ID 8 7 Family ID 4 Model 3 0 Stepping ID Extended Family ID (0) Extended Model ID (0) Processor Type Family (0FH for the Pentium 4 Processor Family) Model Reserved OM16525 Figure 3-9. Version Information Returned by CPUID in EAX CPUID—CPU Identification Vol. 2A 3-213 INSTRUCTION SET REFERENCE, A-M Table 3-19. Processor Type Field Type Encoding Original OEM Processor 00B ® Intel OverDrive Processor 01B Dual processor (not applicable to Intel486 processors) 10B Intel reserved 11B NOTE See Chapter 14 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for information on identifying earlier IA-32 processors. The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display using the following rule: IF Family_ID ≠ 0FH THEN DisplayFamily = Family_ID; ELSE DisplayFamily = Extended_Family_ID + Family_ID; (* Right justify and zero-extend 4-bit field. *) FI; (* Show DisplayFamily as HEX field. *) The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a display using the following rule: IF (Family_ID = 06H or Family_ID = 0FH) THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID; (* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*) ELSE DisplayModel = Model_ID; FI; (* Show DisplayModel as HEX field. *) INPUT EAX = 1: Returns Additional Information in EBX When CPUID executes with EAX set to 1, additional information is returned to the EBX register: • Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand strings for IA-32 processors. More information about this field is provided later in this section. • CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor. 3-214 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M • Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the processor during power up. This field was introduced in the Pentium 4 processor. INPUT EAX = 1: Returns Feature Information in ECX and EDX When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX. • • Figure 3-10 and Table 3-20 show encodings for ECX. Figure 3-11 and Table 3-21 show encodings for EDX. For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags. NOTE Software must confirm that a processor feature is present using feature flags returned by CPUID prior to using the feature. Software should not depend on future offerings retaining all features. CPUID—CPU Identification Vol. 2A 3-215 INSTRUCTION SET REFERENCE, A-M 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 ECX 3 2 1 0 0 AVX OSXSAVE XSAVE AES TSC-Deadline POPCNT MOVBE x2APIC SSE4_2 — SSE4.2 SSE4_1 — SSE4.1 DCA — Direct Cache Access PCID — Process-context Identifiers PDCM — Perf/Debug Capability MSR xTPR Update Control CMPXCHG16B FMA — Fused Multiply Add CNXT-ID — L1 Context ID SSSE3 — SSSE3 Extensions TM2 — Thermal Monitor 2 EST — Enhanced Intel SpeedStep® Technology SMX — Safer Mode Extensions VMX — Virtual Machine Extensions DS-CPL — CPL Qualified Debug Store MONITOR — MONITOR/MWAIT DTES64 — 64-bit DS Area PCLMULQDQ — Carryless Multiplication SSE3 — SSE3 Extensions OM16524b Reserved Figure 3-10. Feature Information Returned in the ECX Register Table 3-20. Feature Information Returned in the ECX Register Bit # Mnemonic Description 0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this technology. 1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction 2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout 3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature. 3-216 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-20. Feature Information Returned in the ECX Register (Contd.) Bit # Mnemonic Description 4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the Debug Store feature to allow for branch message storage qualified by CPL. 5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology 6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See Chapter 6, “Safer Mode Extensions Reference”. 7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this technology. 8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology. 9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the instruction extensions are not present in the processor 10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or shared mode. A value of 0 indicates this feature is not supported. See definition of the IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details. 11 Reserved Reserved 12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state. 13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the “CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a description. 14 xTPR Update Control xTPR Update Control. A value of 1 indicates that the processor supports changing IA32_MISC_ENABLE[bit 23]. 15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance and debug feature indication MSR IA32_PERF_CAPABILITIES. 16 Reserved Reserved 17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that software may set CR4.PCIDE to 1. 18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped device. 19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. CPUID—CPU Identification Vol. 2A 3-217 INSTRUCTION SET REFERENCE, A-M Table 3-20. Feature Information Returned in the ECX Register (Contd.) Bit # Mnemonic Description 21 x2APIC A value of 1 indicates that the processor supports x2APIC feature. 22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction. 23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction. 24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC deadline value. 25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions. 26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states feature, the XSETBV/XGETBV instructions, and XCR0. 27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV instructions to access XCR0, and support for processor extended state management using XSAVE/XRSTOR. 28 AVX A value of 1 indicates the processor supports the AVX instruction extensions. 30 - 29 Reserved Reserved 31 Not Used Always returns 0 3-218 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M ('; 3%(±3HQG%UN(1 70±7KHUP0RQLWRU +77±0XOWLWKUHDGLQJ 66±6HOI6QRRS 66(±66(([WHQVLRQV 66(±66(([WHQVLRQV );65±);6$9();56725 00;±00;7HFKQRORJ\ $&3,±7KHUPDO0RQLWRUDQG&ORFN&WUO '6±'HEXJ6WRUH &/)6+±&)/86+LQVWUXFWLRQ 361±3URFHVVRU6HULDO1XPEHU 36(±3DJH6L]H([WHQVLRQ 3$7±3DJH$WWULEXWH7DEOH &029±&RQGLWLRQDO0RYH&RPSDUH,QVWUXFWLRQ 0&$±0DFKLQH&KHFN$UFKLWHFWXUH 3*(±37(*OREDO%LW 0755±0HPRU\7\SH5DQJH5HJLVWHUV 6(3±6<6(17(5DQG6<6(;,7 $3,&±$3,&RQ&KLS &;±&03;&+*%,QVW 0&(±0DFKLQH&KHFN([FHSWLRQ 3$(±3K\VLFDO$GGUHVV([WHQVLRQV 065±5'065DQG:50656XSSRUW 76&±7LPH6WDPS&RXQWHU 36(±3DJH6L]H([WHQVLRQV '(±'HEXJJLQJ([WHQVLRQV 90(±9LUWXDO0RGH(QKDQFHPHQW )38±[)38RQ&KLS 5HVHUYHG 20 Figure 3-11. Feature Information Returned in the EDX Register CPUID—CPU Identification Vol. 2A 3-219 INSTRUCTION SET REFERENCE, A-M Table 3-21. More on Feature Information Returned in the EDX Register Bit # Mnemonic Description 0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU. 1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional trapping of accesses to DR4 and DR5. 3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs. 4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege. 5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are supported. Some of the MSRs are implementation dependent. 6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 4 Mbyte pages if PAE bit is 1. 7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the feature. This feature does not define the model-specific implementations of machine-check error logging, reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor version to do model specific processing of the exception, or test for the presence of the Machine Check feature. 8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly locked and atomic). 9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some processors permit the APIC to be relocated). 10 Reserved Reserved 11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported. 12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are supported. 3-220 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-21. More on Feature Information Returned in the EDX Register (Contd.) Bit # Mnemonic Description 13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature. 14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported. 15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported 16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear address on a 4KB granularity. 17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to 40 bits in size. 18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the feature is enabled. 19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported. 20 Reserved Reserved 21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer. This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see Chapter 20, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B). 22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that allow processor temperature to be monitored and processor performance to be modulated in predefined duty cycles under software control. 23 MMX Intel MMX Technology. The processor supports the Intel MMX technology. 24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an operating system to indicate that it supports the FXSAVE and FXRSTOR instructions. CPUID—CPU Identification Vol. 2A 3-221 INSTRUCTION SET REFERENCE, A-M Table 3-21. More on Feature Information Returned in the EDX Register (Contd.) Bit # Mnemonic Description 25 SSE SSE. The processor supports the SSE extensions. 26 SSE2 SSE2. The processor supports the SSE2 extensions. 27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its own cache structure for transactions issued to the bus. 28 HTT Multi-Threading. The physical processor package is capable of supporting more than one logical processor. 29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC). 30 Reserved Reserved 31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE MSR enables this capability. INPUT EAX = 2: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX When CPUID executes with EAX set to 2, the processor returns information about the processor’s internal TLBs, cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded form and fall into the following categories: • The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction must be executed with an input value of 2 to get a complete description of the processor’s TLB/Cache/Prefetch hardware. The Intel Xeon processor 7400 series will return a 1. • The most significant bit (bit 31) of each register indicates whether the register contains valid information (set to 0) or is reserved (set to 1). • If a register contains valid information, the information is contained in 1 byte descriptors. There are four types of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-22. Table 3-22 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache, prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general descriptor type (FFH) and not report any byte descriptor of “cache type“ via CPUID leaf 2. 3-222 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-22. Encoding of CPUID Leaf 2 Descriptors Value Type 00H General 01H TLB Description Null descriptor, this byte contains no information Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries 02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries 03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries 04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries 05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries 06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size 08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size 09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size 0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size 0BH TLB 0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries 0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size 0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size 21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size 22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector 23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector 25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector 29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector 2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size 30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size 40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rdlevel cache 41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size 42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size 43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size 44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size 45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size CPUID—CPU Identification Vol. 2A 3-223 INSTRUCTION SET REFERENCE, A-M Table 3-22. Encoding of CPUID Leaf 2 Descriptors (Contd.) Value Type Description 46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size 47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size 48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size 49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H); 2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size 4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size 4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size 4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size 4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size 4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size 4FH TLB Instruction TLB: 4 KByte pages, 32 entries 50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries 51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries 52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries 55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries 56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries 57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries 59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries 5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries 5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries 5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries 5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries 60H Cache 66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size 67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size 68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size 70H Cache Trace cache: 12 K-μop, 8-way set associative 71H Cache Trace cache: 16 K-μop, 8-way set associative 72H Cache Trace cache: 32 K-μop, 8-way set associative 76H TLB 78H Cache 3-224 Vol. 2A 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size Instruction TLB: 2M/4M pages, fully associative, 8 entries 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-22. Encoding of CPUID Leaf 2 Descriptors (Contd.) Value Type Description 79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector 7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector 7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector 7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector 7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size 7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size 80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size 82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size 83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size 84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size 85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size 86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size 87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size CPUID—CPU Identification Vol. 2A 3-225 INSTRUCTION SET REFERENCE, A-M Table 3-22. Encoding of CPUID Leaf 2 Descriptors (Contd.) Value Type E2H Cache Description 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size ECH Cache F0H Prefetch 64-Byte prefetching F1H Prefetch 128-Byte prefetching FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters Example 3-1. Example of Cache and TLB Interpretation The first member of the family of Pentium 4 processors returns the following information about caches and TLBs when the CPUID executes with an input value of 2: EAX EBX ECX EDX 66 5B 50 01H 0H 0H 00 7A 70 00H Which means: • The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID needs to be executed once with an input value of 2 to retrieve complete information about caches and TLBs. • The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register contains valid 1-byte descriptors. • Bytes 1, 2, and 3 of register EAX indicate that the processor has: — 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4MByte pages. — 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages. — 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size. • • The descriptors in registers EBX and ECX are valid, but contain NULL descriptors. Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has: — 00H - NULL descriptor. — 70H - Trace cache: 12 K-μop, 8-way set associative. 3-226 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M — 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size. — 00H - NULL descriptor. INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid index values start from 0. Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally defined fields reported by deterministic cache parameters are documented in Table 3-17. This Cache Size in Bytes = (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1) = (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1) The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical package. This information is constant for all valid index values. Software can query the raw data reported by executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. INPUT EAX = 05H: Returns MONITOR and MWAIT Features When CPUID executes with EAX set to 05H, the processor returns information about features available to MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power management. See Table 3-17. INPUT EAX = 06H: Returns Thermal and Power Management Features When CPUID executes with EAX set to 06H, the processor returns information about thermal and power management features. See Table 3-17. INPUT EAX = 09H: Returns Direct Cache Access Information When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabilities. See Table 3-17. CPUID—CPU Identification Vol. 2A 3-227 INSTRUCTION SET REFERENCE, A-M INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see Table 3-17) is greater than Pn 0. See Table 3-17. For each version of architectural performance monitoring capability, software must enumerate this leaf to discover the programming facilities and the architectural performance events available in the processor. The details are described in Chapter 20, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. INPUT EAX = 0BH: Returns Extended Topology Information When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumeration data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17. INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector representation of all processor state extensions that are supported in the processor and storage size requirements of the XSAVE/XRSTOR area. See Table 3-17. When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid subleaf index), the processor returns information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. See Table 3-17. Software can use the forward-extendable technique depicted below to query the valid sub-leaves and obtain size and offset information for each processor extended state save area: For i = 2 to 62 // sub-leaf 1 is reserved IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; FI; METHODS FOR RETURNING BRANDING INFORMATION Use the following techniques to access branding information: 1. Processor brand string method; this method also returns the processor’s maximum operating frequency 2. Processor brand index; this method uses a software supplied brand string table. These two methods are discussed in the following sections. For methods that are available in early processors, see Section: “Identification of Earlier IA-32 Processors” 3-228 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. The Processor Brand String Method Figure 3-12 describes the algorithm used for detection of the brand string. Processor brand identification software should execute this algorithm on all Intel 64 and IA-32 processors. This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum operating frequency of the processor to the EAX, EBX, ECX, and EDX registers. Input: EAX= 0x80000000 CPUID IF (EAX & 0x80000000) CPUID Function Supported False Processor Brand String Not Supported True Processor Brand String Supported True ≥ Extended EAX Return Value = Max. Extended CPUID Function Index IF (EAX Return Value ≥ 0x80000004) OM15194 Figure 3-12. Determination of Support for the Processor Brand String CPUID—CPU Identification Vol. 2A 3-229 INSTRUCTION SET REFERENCE, A-M How Brand Strings Work To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-terminated. Table 3-23 shows the brand string that is returned by the first processor in the Pentium 4 processor family. 3-230 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M Table 3-23. Processor Brand String Returned with Pentium 4 Processor EAX Input Value 80000002H 80000003H 80000004H Return Values ASCII Equivalent EAX = 20202020H “ ” EBX = 20202020H “ ” ECX = 20202020H “ ” EDX = 6E492020H “nI ” EAX = 286C6574H “(let” EBX = 50202952H “P )R” ECX = 69746E65H “itne” EDX = 52286D75H “R(mu” EAX = 20342029H “ 4 )” EBX = 20555043H “ UPC” ECX = 30303531H “0051” EDX = 007A484DH “\0zHM” Extracting the Maximum Processor Frequency from Brand Strings Figure 3-13 provides an algorithm which software can use to extract the maximum processor operating frequency from the processor brand string. NOTE When a frequency is given in a brand string, it is the maximum qualified frequency of the processor, not the frequency at which the processor is currently running. CPUID—CPU Identification Vol. 2A 3-231 INSTRUCTION SET REFERENCE, A-M Figure 3-13. Algorithm for Extracting Maximum Processor Frequency The Processor Brand Index Method The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand identification table that is maintained in memory by system software and is accessible from system- and user-level code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official Intel family and model number of a processor. When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can then use this index to locate the brand identification string for the processor in the brand identification table. The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that 3-232 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M do not support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand index method is no longer supported. Use brand string method instead. Table 3-24 shows brand indices that have identification strings associated with them. Table 3-24. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings Brand Index Brand String 00H This processor does not support the brand identification feature 01H Intel(R) Celeron(R) processor1 02H Intel(R) Pentium(R) III processor1 03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) processor 04H Intel(R) Pentium(R) III processor 06H Mobile Intel(R) Pentium(R) III processor-M 07H Mobile Intel(R) Celeron(R) processor1 08H Intel(R) Pentium(R) 4 processor 09H Intel(R) Pentium(R) 4 processor 0AH Intel(R) Celeron(R) processor1 0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP 0CH Intel(R) Xeon(R) processor MP 0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor 0FH Mobile Intel(R) Celeron(R) processor1 11H Mobile Genuine Intel(R) processor 12H Intel(R) Celeron(R) M processor 13H Mobile Intel(R) Celeron(R) processor1 14H Intel(R) Celeron(R) processor 15H Mobile Genuine Intel(R) processor 16H Intel(R) Pentium(R) M processor 17H Mobile Intel(R) Celeron(R) processor1 18H – 0FFH RESERVED NOTES: 1. Indicates versions of these processors that were introduced after the Pentium III CPUID—CPU Identification Vol. 2A 3-233 INSTRUCTION SET REFERENCE, A-M IA-32 Architecture Compatibility CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the Intel486 processor. Operation IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number; CASE (EAX) OF EAX = 0: EAX ← Highest basic function input value understood by CPUID; EBX ← Vendor identification string; EDX ← Vendor identification string; ECX ← Vendor identification string; BREAK; EAX = 1H: EAX[3:0] ← Stepping ID; EAX[7:4] ← Model; EAX[11:8] ← Family; EAX[13:12] ← Processor type; EAX[15:14] ← Reserved; EAX[19:16] ← Extended Model; EAX[27:20] ← Extended Family; EAX[31:28] ← Reserved; EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *) EBX[15:8] ← CLFLUSH Line Size; EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *) EBX[24:31] ← Initial APIC ID; ECX ← Feature flags; (* See Figure 3-10. *) EDX ← Feature flags; (* See Figure 3-11. *) BREAK; EAX = 2H: EAX ← Cache and TLB information; EBX ← Cache and TLB information; ECX ← Cache and TLB information; EDX ← Cache and TLB information; BREAK; EAX = 3H: EAX ← Reserved; EBX ← Reserved; ECX ← ProcessorSerialNumber[31:0]; (* Pentium III processors only, otherwise reserved. *) EDX ← ProcessorSerialNumber[63:32]; (* Pentium III processors only, otherwise reserved. * 3-234 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M BREAK EAX = 4H: EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *) EBX ← Deterministic Cache Parameters Leaf; ECX ← Deterministic Cache Parameters Leaf; EDX ← Deterministic Cache Parameters Leaf; BREAK; EAX = 5H: EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *) EBX ← MONITOR/MWAIT Leaf; ECX ← MONITOR/MWAIT Leaf; EDX ← MONITOR/MWAIT Leaf; BREAK; EAX = 6H: EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *) EBX ← Thermal and Power Management Leaf; ECX ← Thermal and Power Management Leaf; EDX ← Thermal and Power Management Leaf; BREAK; EAX = 7H or 8H: EAX ← Reserved = 0; EBX ← Reserved = 0; ECX ← Reserved = 0; EDX ← Reserved = 0; BREAK; EAX = 9H: EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *) EBX ← Direct Cache Access Information Leaf; ECX ← Direct Cache Access Information Leaf; EDX ← Direct Cache Access Information Leaf; BREAK; EAX = AH: EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *) EBX ← Architectural Performance Monitoring Leaf; ECX ← Architectural Performance Monitoring Leaf; EDX ← Architectural Performance Monitoring Leaf; BREAK EAX = BH: EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *) EBX ← Extended Topology Enumeration Leaf; ECX ← Extended Topology Enumeration Leaf; EDX ← Extended Topology Enumeration Leaf; BREAK; CPUID—CPU Identification Vol. 2A 3-235 INSTRUCTION SET REFERENCE, A-M EAX = CH: EAX ← Reserved = 0; EBX ← Reserved = 0; ECX ← Reserved = 0; EDX ← Reserved = 0; BREAK; EAX = DH: EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *) EBX ← Processor Extended State Enumeration Leaf; ECX ← Processor Extended State Enumeration Leaf; EDX ← Processor Extended State Enumeration Leaf; BREAK; BREAK; EAX = 80000000H: EAX ← Highest extended function input value understood by CPUID; EBX ← Reserved; ECX ← Reserved; EDX ← Reserved; BREAK; EAX = 80000001H: EAX ← Reserved; EBX ← Reserved; ECX ← Extended Feature Bits (* See Table 3-17.*); EDX ← Extended Feature Bits (* See Table 3-17. *); BREAK; EAX = 80000002H: EAX ← Processor Brand String; EBX ← Processor Brand String, continued; ECX ← Processor Brand String, continued; EDX ← Processor Brand String, continued; BREAK; EAX = 80000003H: EAX ← Processor Brand String, continued; EBX ← Processor Brand String, continued; ECX ← Processor Brand String, continued; EDX ← Processor Brand String, continued; BREAK; EAX = 80000004H: EAX ← Processor Brand String, continued; EBX ← Processor Brand String, continued; ECX ← Processor Brand String, continued; EDX ← Processor Brand String, continued; BREAK; 3-236 Vol. 2A CPUID—CPU Identification INSTRUCTION SET REFERENCE, A-M = 80000005H: EAX ← Reserved = 0; EBX ← Reserved = 0; ECX ← Reserved = 0; EDX ← Reserved = 0; BREAK; EAX = 80000006H: EAX ← Reserved = 0; EBX ← Reserved = 0; ECX ← Cache information; EDX ← Reserved = 0; BREAK; EAX = 80000007H: EAX ← Reserved = 0; EBX ← Reserved = 0; ECX ← Reserved = 0; EDX ← Reserved = Misc Feature Flags; BREAK; EAX = 80000008H: EAX ← Reserved = Physical Address Size Information; EBX ← Reserved = Virtual Address Size Information; ECX ← Reserved = 0; EDX ← Reserved = 0; BREAK; EAX >= 40000000H and EAX <= 4FFFFFFFH: DEFAULT: (* EAX = Value outside of recognized range for CPUID. *) (* If the highest basic information leaf data depend on ECX input value, ECX is honored.*) EAX ← Reserved; (* Information returned for highest basic information leaf. *) EBX ← Reserved; (* Information returned for highest basic information leaf. *) ECX ← Reserved; (* Information returned for highest basic information leaf. *) EDX ← Reserved; (* Information returned for highest basic information leaf. *) BREAK; ESAC; EAX Flags Affected None. Exceptions (All Operating Modes) #UD If the LOCK prefix is used. In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction results in an invalid opcode (#UD) exception being generated. CPUID—CPU Identification Vol. 2A 3-237 INSTRUCTION SET REFERENCE, A-M CRC32 — Accumulate CRC32 Value Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F2 0F 38 F0 /r CRC32 r32, r/m8 A Valid Valid Accumulate CRC32 on r/m8. F2 REX 0F 38 F0 /r CRC32 r32, r/m8* A Valid N.E. Accumulate CRC32 on r/m8. F2 0F 38 F1 /r CRC32 r32, r/m16 A Valid Valid Accumulate CRC32 on r/m16. F2 0F 38 F1 /r CRC32 r32, r/m32 A Valid Valid Accumulate CRC32 on r/m32. A Valid N.E. Accumulate CRC32 on r/m8. F2 REX.W 0F 38 CRC32 r64, r/m64 A F1 /r Valid N.E. Accumulate CRC32 on r/m64. F2 REX.W 0F 38 CRC32 r64, r/m8 F0 /r NOTES: *In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA Description Starting with an initial value in the first operand (destination operand), accumulates a CRC32 (polynomial 0x11EDC6F41) value for the second operand (source operand) and stores the result in the destination operand. The source operand can be a register or a memory location. The destination operand must be an r32 or r64 register. If the destination is an r64 register, then the 32-bit result is stored in the least significant double word and 00000000H is stored in the most significant double word of the r64 register. The initial value supplied in the destination operand is a double word integer stored in the r32 register or the least significant double word of the r64 register. To incrementally accumulate a CRC32 value, software retains the result of the previous CRC32 operation in the destination operand, then executes the CRC32 instruction again with new input data in the source operand. Data contained in the source operand is processed in reflected bit order. This means that the most significant bit of the source operand is treated as the least significant bit of the quotient, and so on, for all the bits of the source operand. Likewise, the result of the CRC operation is stored in the destination operand in reflected bit order. This means that the most significant bit of the resulting CRC (bit 31) is stored in the least significant bit of the destination operand (bit 0), and so on, for all the bits of the CRC. 3-238 Vol. 2A CRC32 — Accumulate CRC32 Value INSTRUCTION SET REFERENCE, A-M Operation Notes: BIT_REFLECT64: DST[63-0] = SRC[0-63] BIT_REFLECT32: DST[31-0] = SRC[0-31] BIT_REFLECT16: DST[15-0] = SRC[0-15] BIT_REFLECT8: DST[7-0] = SRC[0-7] MOD2: Remainder from Polynomial division modulus 2 CRC32 instruction for 64-bit source operand and 64-bit destination operand: TEMP1[63-0] BIT_REFLECT64 (SRC[63-0]) TEMP2[31-0] BIT_REFLECT32 (DEST[31-0]) TEMP3[95-0] TEMP1[63-0] « 32 TEMP4[95-0] TEMP2[31-0] « 64 TEMP5[95-0] TEMP3[95-0] XOR TEMP4[95-0] TEMP6[31-0] TEMP5[95-0] MOD2 11EDC6F41H DEST[31-0] BIT_REFLECT (TEMP6[31-0]) DEST[63-32] 00000000H CRC32 instruction for 32-bit source operand and 32-bit destination operand: TEMP1[31-0] BIT_REFLECT32 (SRC[31-0]) TEMP2[31-0] BIT_REFLECT32 (DEST[31-0]) TEMP3[63-0] TEMP1[31-0] « 32 TEMP4[63-0] TEMP2[31-0] « 32 TEMP5[63-0] TEMP3[63-0] XOR TEMP4[63-0] TEMP6[31-0] TEMP5[63-0] MOD2 11EDC6F41H DEST[31-0] BIT_REFLECT (TEMP6[31-0]) CRC32 instruction for 16-bit source operand and 32-bit destination operand: TEMP1[15-0] BIT_REFLECT16 (SRC[15-0]) TEMP2[31-0] BIT_REFLECT32 (DEST[31-0]) TEMP3[47-0] TEMP1[15-0] « 32 TEMP4[47-0] TEMP2[31-0] « 16 TEMP5[47-0] TEMP3[47-0] XOR TEMP4[47-0] TEMP6[31-0] TEMP5[47-0] MOD2 11EDC6F41H DEST[31-0] BIT_REFLECT (TEMP6[31-0]) CRC32 instruction for 8-bit source operand and 64-bit destination operand: TEMP1[7-0] BIT_REFLECT8(SRC[7-0]) TEMP2[31-0] BIT_REFLECT32 (DEST[31-0]) TEMP3[39-0] TEMP1[7-0] « 32 TEMP4[39-0] TEMP2[31-0] « 8 TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0] CRC32 — Accumulate CRC32 Value Vol. 2A 3-239 INSTRUCTION SET REFERENCE, A-M TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H DEST[31-0] BIT_REFLECT (TEMP6[31-0]) DEST[63-32] 00000000H CRC32 instruction for 8-bit source operand and 32-bit destination operand: TEMP1[7-0] BIT_REFLECT8(SRC[7-0]) TEMP2[31-0] BIT_REFLECT32 (DEST[31-0]) TEMP3[39-0] TEMP1[7-0] « 32 TEMP4[39-0] TEMP2[31-0] « 8 TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0] TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H DEST[31-0] BIT_REFLECT (TEMP6[31-0]) Flags Affected None Intel C/C++ Compiler Intrinsic Equivalent unsigned int _mm_crc32_u8( unsigned int crc, unsigned char data ) unsigned int _mm_crc32_u16( unsigned int crc, unsigned short data ) unsigned int _mm_crc32_u32( unsigned int crc, unsigned int data ) unsinged __int64 _mm_crc32_u64( unsinged __int64 crc, unsigned __int64 data ) SIMD Floating Point Exceptions None Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF (fault-code) For a page fault. #UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0. If LOCK prefix is used. Real Mode Exceptions #GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH. #SS(0) If a memory operand effective address is outside the SS segment limit. #UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0. If LOCK prefix is used. 3-240 Vol. 2A CRC32 — Accumulate CRC32 Value INSTRUCTION SET REFERENCE, A-M Virtual 8086 Mode Exceptions #GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF (fault-code) For a page fault. #UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0. If LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in Protected Mode. 64-Bit Mode Exceptions #GP(0) If the memory address is in a non-canonical form. #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #PF (fault-code) For a page fault. #UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0. If LOCK prefix is used. CRC32 — Accumulate CRC32 Value Vol. 2A 3-241 INSTRUCTION SET REFERENCE, A-M CVTDQ2PD—Convert Packed Dword Integers to Packed DoublePrecision FP Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F E6 A V/V SSE2 Convert two packed signed doubleword integers from xmm2/m128 to two packed double-precision floatingpoint values in xmm1. A V/V AVX Convert two packed signed doubleword integers from xmm2/mem to two packed double-precision floatingpoint values in xmm1. A V/V AVX Convert four packed signed doubleword integers from xmm2/mem to four packed double-precision floatingpoint values in ymm1. CVTDQ2PD xmm1, xmm2/m64 VEX.128.F3.0F.WIG E6 /r VCVTDQ2PD xmm1, xmm2/m64 VEX.256.F3.0F.WIG E6 /r VCVTDQ2PD ymm1, xmm2/m128 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed signed doubleword integers in the source operand (second operand) to two packed double-precision floating-point values in the destination operand (first operand). In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. 3-242 Vol. 2A CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values INSTRUCTION SET REFERENCE, A-M X3 SRC X3 DEST X2 X2 X1 X1 X0 X0 Figure 3-14. CVTDQ2PD (VEX.256 encoded version) Operation CVTDQ2PD (128-bit Legacy SSE version) DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[VLMAX-1:128] (unmodified) VCVTDQ2PD (VEX.128 encoded version) DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[VLMAX-1:128] 0 VCVTDQ2PD (VEX.256 encoded version) DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[191:128] Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64]) DEST[255:192] Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96) Intel C/C++ Compiler Intrinsic Equivalent CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a) VCVTDQ2PD __m256d _mm256_cvtepi32_pd (__m128i src) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values Vol. 2A 3-243 INSTRUCTION SET REFERENCE, A-M #UD 3-244 Vol. 2A If VEX.vvvv != 1111B. CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values INSTRUCTION SET REFERENCE, A-M CVTDQ2PS—Convert Packed Dword Integers to Packed SinglePrecision FP Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 5B /r A V/V SSE2 Convert four packed signed doubleword integers from xmm2/m128 to four packed single-precision floatingpoint values in xmm1. A V/V AVX Convert four packed signed doubleword integers from xmm2/mem to four packed single-precision floatingpoint values in xmm1. A V/V AVX Convert eight packed signed doubleword integers from ymm2/mem to eight packed single-precision floatingpoint values in ymm1. CVTDQ2PS xmm1, xmm2/m128 VEX.128.0F.WIG 5B /r VCVTDQ2PS xmm1, xmm2/m128 VEX.256.0F.WIG 5B /r VCVTDQ2PS ymm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts four packed signed doubleword integers in the source operand (second operand) to four packed single-precision floating-point values in the destination operand (first operand). In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operation is a YMM register. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values Vol. 2A 3-245 INSTRUCTION SET REFERENCE, A-M Operation CVTDQ2PS (128-bit Legacy SSE version) DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96) DEST[VLMAX-1:128] (unmodified) VCVTDQ2PS (VEX.128 encoded version) DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96) DEST[VLMAX-1:128] 0 VCVTDQ2PS (VEX.256 encoded version) DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96) DEST[159:128] Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128]) DEST[191:160] Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160]) DEST[223:192] Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192]) DEST[255:224] Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224) Intel C/C++ Compiler Intrinsic Equivalent CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a) VCVTDQ2PS __m256 _mm256_cvtepi32_ps (__m256i src) SIMD Floating-Point Exceptions Precision. Other Exceptions See Exceptions Type 2; additionally #UD 3-246 Vol. 2A If VEX.vvvv != 1111B. CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values INSTRUCTION SET REFERENCE, A-M CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F E6 A V/V SSE2 Convert two packed doubleprecision floating-point values from xmm2/m128 to two packed signed doubleword integers in xmm1. A V/V AVX Convert two packed doubleprecision floating-point values in xmm2/mem to two signed doubleword integers in xmm1. A V/V AVX Convert four packed doubleprecision floating-point values in ymm2/mem to four signed doubleword integers in xmm1. CVTPD2DQ xmm1, xmm2/m128 VEX.128.F2.0F.WIG E6 /r VCVTPD2DQ xmm1, xmm2/m128 VEX.256.F2.0F.WIG E6 /r VCVTPD2DQ xmm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed double-precision floating-point values in the source operand (second operand) to two packed signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. The result is stored in the low quadword of the destination operand and the high quadword is cleared to all 0s. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operation is an XMM register. Bits[127:64] of the CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers Vol. 2A 3-247 INSTRUCTION SET REFERENCE, A-M destination XMM register are zeroed. However, the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:64) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. SRC X3 DEST X2 0 X1 X3 X0 X2 X1 X0 Figure 3-15. VCVTPD2DQ (VEX.256 encoded version) Operation CVTPD2DQ (128-bit Legacy SSE version) DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[127:64] 0 DEST[VLMAX-1:128] (unmodified) VCVTPD2DQ (VEX.128 encoded version) DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[VLMAX-1:64] 0 VCVTPD2DQ (VEX.256 encoded version) DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) 3-248 Vol. 2A CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M DEST[95:64] Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128]) DEST[127:96] Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192) DEST[255:128] 0 Intel C/C++ Compiler Intrinsic Equivalent CVTPD2DQ __m128i _mm_cvtpd_epi32 (__m128d src) CVTPD2DQ __m128i _mm256_cvtpd_epi32 (__m256d src) SIMD Floating-Point Exceptions Invalid, Precision. Other Exceptions See Exceptions Type 2; additionally #UD If VEX.vvvv != 1111B. CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers Vol. 2A 3-249 INSTRUCTION SET REFERENCE, A-M CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 66 0F 2D /r CVTPD2PI mm, xmm/m128 A Valid Valid Convert two packed doubleprecision floating-point values from xmm/m128 to two packed signed doubleword integers in mm. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed double-precision floating-point values in the source operand (second operand) to two packed signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register or a 128-bit memory location. The destination operand is an MMX technology register. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the CVTPD2PI instruction is executed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]); DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[127:64]); Intel C/C++ Compiler Intrinsic Equivalent CVTPD1PI __m64 _mm_cvtpd_pi32(__m128d a) 3-250 Vol. 2A CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Invalid, Precision. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. If a memory operand is not aligned on a 16-byte boundary, regardless of segment. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #MF If there is a pending x87 FPU exception. #NM If CR0.TS[bit 3] = 1. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers Vol. 2A 3-251 INSTRUCTION SET REFERENCE, A-M #PF(fault-code) For a page fault. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) #GP(0) If a memory address referencing the SS segment is in a noncanonical form. If the memory address is in a non-canonical form. If memory operand is not aligned on a 16-byte boundary, regardless of segment. #PF(fault-code) For a page fault. #MF If there is a pending x87 FPU exception. #NM If CR0.TS[bit 3] = 1. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. 3-252 Vol. 2A CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 5A /r A V/V SSE2 Convert two packed doubleprecision floating-point values in xmm2/m128 to two packed single-precision floating-point values in xmm1. A V/V AVX Convert two packed doubleprecision floating-point values in xmm2/mem to two single-precision floatingpoint values in xmm1. A V/V AVX Convert four packed doubleprecision floating-point values in ymm2/mem to four single-precision floating-point values in xmm1. CVTPD2PS xmm1, xmm2/m128 VEX.128.66.0F.WIG 5A /r VCVTPD2PS xmm1, xmm2/m128 VEX.256.66.0F.WIG 5A /r VCVTPD2PS xmm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed double-precision floating-point values in the source operand (second operand) to two packed single-precision floating-point values in the destination operand (first operand). When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operation is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values Vol. 2A 3-253 INSTRUCTION SET REFERENCE, A-M VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:64) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. SRC X3 DEST X2 0 X1 X3 X0 X2 X1 X0 Figure 3-16. VCVTPD2PS (VEX.256 encoded version) Operation CVTPD2PS (128-bit Legacy SSE version) DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]) DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64]) DEST[127:64] 0 DEST[VLMAX-1:128] (unmodified) VCVTPD2PS (VEX.128 encoded version) DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]) DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64]) DEST[VLMAX-1:64] 0 VCVTPD2PS (VEX.256 encoded version) DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]) DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64]) DEST[95:64] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128]) DEST[127:96] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192) 3-254 Vol. 2A CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values INSTRUCTION SET REFERENCE, A-M DEST[255:128] 0 Intel C/C++ Compiler Intrinsic Equivalent CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a) CVTPD2PS __m256 _mm256_cvtpd_ps (__m256d a) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2; additionally #UD If VEX.vvvv != 1111B. CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values Vol. 2A 3-255 INSTRUCTION SET REFERENCE, A-M CVTPI2PD—Convert Packed Dword Integers to Packed DoublePrecision FP Values Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 66 0F 2A /r CVTPI2PD xmm, mm/m64* A Valid Valid Convert two packed signed doubleword integers from mm/mem64 to two packed double-precision floatingpoint values in xmm. NOTES: *Operation is different for different operand sets; see the Description section. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed signed doubleword integers in the source operand (second operand) to two packed double-precision floating-point values in the destination operand (first operand). The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an XMM register. In addition, depending on the operand configuration: • For operands xmm, mm: the instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the CVTPI2PD instruction is executed. • For operands xmm, m64: the instruction does not cause a transition to MMX technology and does not take x87 FPU exceptions. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]); DEST[127:64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]); Intel C/C++ Compiler Intrinsic Equivalent CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a) 3-256 Vol. 2A CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Precision. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Real-Address Mode Exceptions GP If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) For a page fault. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values Vol. 2A 3-257 INSTRUCTION SET REFERENCE, A-M #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. #AC(0) 3-258 Vol. 2A If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values INSTRUCTION SET REFERENCE, A-M CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 2A /r CVTPI2PS xmm, mm/m64 A Valid Valid Convert two signed doubleword integers from mm/m64 to two singleprecision floating-point values in xmm. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed signed doubleword integers in the source operand (second operand) to two packed single-precision floating-point values in the destination operand (first operand). The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an XMM register. The results are stored in the low quadword of the destination operand, and the high quadword remains unchanged. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the CVTPI2PS instruction is executed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]); DEST[63:32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]); (* High quadword of destination unchanged *) Intel C/C++ Compiler Intrinsic Equivalent CVTPI2PS __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values Vol. 2A 3-259 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Precision. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Real-Address Mode Exceptions GP If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) 3-260 Vol. 2A For a page fault. CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values INSTRUCTION SET REFERENCE, A-M #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values Vol. 2A 3-261 INSTRUCTION SET REFERENCE, A-M CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 5B /r A V/V SSE2 Convert four packed singleprecision floating-point values from xmm2/m128 to four packed signed doubleword integers in xmm1. A V/V AVX Convert four packed single precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1. A V/V AVX Convert eight packed single precision floating-point values from ymm2/mem to eight packed signed doubleword values in ymm1. CVTPS2DQ xmm1, xmm2/m128 VEX.128.66.0F.WIG 5B /r VCVTPS2DQ xmm1, xmm2/m128 VEX.256.66.0F.WIG 5B /r VCVTPS2DQ ymm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts four or eight packed single-precision floating-point values in the source operand to four or eight signed doubleword integers in the destination operand. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. 3-262 Vol. 2A CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operation is a YMM register. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation CVTPS2DQ (128-bit Legacy SSE version) DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]) DEST[VLMAX-1:128] (unmodified) VCVTPS2DQ (VEX.128 encoded version) DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]) DEST[VLMAX-1:128] 0 VCVTPS2DQ (VEX.256 encoded version) DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96) DEST[159:128] Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128]) DEST[191:160] Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160]) DEST[223:192] Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192]) DEST[255:224] Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224]) Intel C/C++ Compiler Intrinsic Equivalent CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a) VCVTPS2DQ __ m256i _mm256_cvtps_epi32 (__m256 a) SIMD Floating-Point Exceptions Invalid, Precision. Other Exceptions See Exceptions Type 2; additionally #UD If VEX.vvvv != 1111B. CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers Vol. 2A 3-263 INSTRUCTION SET REFERENCE, A-M CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 5A /r A V/V SSE2 Convert two packed singleprecision floating-point values in xmm2/m64 to two packed double-precision floating-point values in xmm1. A V/V AVX Convert two packed singleprecision floating-point values in xmm2/mem to two packed double-precision floating-point values in xmm1. A V/V AVX Convert four packed singleprecision floating-point values in xmm2/mem to four packed doubleprecision floating-point values in ymm1. CVTPS2PD xmm1, xmm2/m64 VEX.128.0F.WIG 5A /r VCVTPS2PD xmm1, xmm2/m64 VEX.256.0F.WIG 5A /r VCVTPS2PD ymm1, xmm2/m128 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two or four packed single-precision floating-point values in the source operand (second operand) to two or four packed double-precision floating-point values in the destination operand (first operand). In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. 3-264 Vol. 2A CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. X3 SRC DEST X3 X2 X2 X1 X1 X0 X0 Figure 3-17. CVTPS2PD (VEX.256 encoded version) Operation CVTPS2PD (128-bit Legacy SSE version) DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[VLMAX-1:128] (unmodified) VCVTPS2PD (VEX.128 encoded version) DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[VLMAX-1:128] 0 VCVTPS2PD (VEX.256 encoded version) DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[191:128] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64]) DEST[255:192] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96) Intel C/C++ Compiler Intrinsic Equivalent CVTPS2PD __m128d _mm_cvtps_pd(__m128 a) VCVTPS2PD __m256d _mm256_cvtps_pd (__m128 a) CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values Vol. 2A 3-265 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Invalid, Denormal. Other Exceptions See Exceptions Type 3; additionally #UDIf VEX.vvvv != 1111B. 3-266 Vol. 2A CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values INSTRUCTION SET REFERENCE, A-M CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 2D /r CVTPS2PI mm, xmm/m64 A Valid Valid Convert two packed singleprecision floating-point values from xmm/m64 to two packed signed doubleword integers in mm. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed single-precision floating-point values in the source operand (second operand) to two packed signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register or a 128-bit memory location. The destination operand is an MMX technology register. When the source operand is an XMM register, the two single-precision floating-point values are contained in the low quadword of the register. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the CVTPS2PI instruction is executed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]); DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]); Intel C/C++ Compiler Intrinsic Equivalent CVTPS2PI __m64 _mm_cvtps_pi32(__m128 a) CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers Vol. 2A 3-267 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Invalid, Precision. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #MF If there is a pending x87 FPU exception. #NM If CR0.TS[bit 3] = 1. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Real-Address Mode Exceptions GP If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) 3-268 Vol. 2A For a page fault. CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers Vol. 2A 3-269 INSTRUCTION SET REFERENCE, A-M CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 2D /r A V/V SSE2 Convert one doubleprecision floating-point value from xmm/m64 to one signed doubleword integer r32. A V/N.E. SSE2 Convert one doubleprecision floating-point value from xmm/m64 to one signed quadword integer sign-extended into r64. A V/V AVX Convert one double precision floating-point value from xmm1/m64 to one signed doubleword integer r32. A V/N.E. AVX Convert one double precision floating-point value from xmm1/m64 to one signed quadword integer sign-extended into r64. CVTSD2SI r32, xmm/m64 F2 REX.W 0F 2D /r CVTSD2SI r64, xmm/m64 VEX.LIG.F2.0F.W0 2D /r VCVTSD2SI r32, xmm1/m64 VEX.LIG.F2.0F.W1 2D /r VCVTSD2SI r64, xmm1/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts a double-precision floating-point value in the source operand (second operand) to a signed doubleword integer in the destination operand (first operand). The source operand can be an XMM register or a 64-bit memory location. The destination operand is a general-purpose register. When the source operand is an XMM register, the double-precision floating-point value is contained in the low quadword of the register. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. 3-270 Vol. 2A CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer INSTRUCTION SET REFERENCE, A-M In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit operation. See the summary chart at the beginning of this section for encoding data and limits. Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit operation. See the summary chart at the beginning of this section for encoding data and limits. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. Operation IF 64-Bit Mode and OperandSize = 64 THEN DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_Integer64(SRC[63:0]); ELSE DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]); FI; Intel C/C++ Compiler Intrinsic Equivalent int _mm_cvtsd_si32(__m128d a) __int64 _mm_cvtsd_si64(__m128d a) SIMD Floating-Point Exceptions Invalid, Precision. Other Exceptions See Exceptions Type 3; additionally #UD If VEX.vvvv != 1111B. CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer Vol. 2A 3-271 INSTRUCTION SET REFERENCE, A-M CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar SinglePrecision FP Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 5A /r A V/V SSE2 Convert one doubleprecision floating-point value in xmm2/m64 to one single-precision floatingpoint value in xmm1. B V/V AVX Convert one doubleprecision floating-point value in xmm3/m64 to one single-precision floatingpoint value and merge with high bits in xmm2. CVTSD2SS xmm1, xmm2/m64 VEX.NDS.LIG.F2.0F.WIG 5A /r VCVTSD2SS xmm1,xmm2, xmm3/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Converts a double-precision floating-point value in the source operand (second operand) to a single-precision floating-point value in the destination operand (first operand). The source operand can be an XMM register or a 64-bit memory location. The destination operand is an XMM register. When the source operand is an XMM register, the double-precision floating-point value is contained in the low quadword of the register. The result is stored in the low doubleword of the destination operand, and the upper 3 doublewords are left unchanged. When the conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. 3-272 Vol. 2A CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Value INSTRUCTION SET REFERENCE, A-M Operation CVTSD2SS (128-bit Legacy SSE version) DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]); (* DEST[VLMAX-1:32] Unmodified *) VCVTSD2SS (VEX.128 encoded version) DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]); DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 3. CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Value Vol. 2A 3-273 INSTRUCTION SET REFERENCE, A-M CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 2A /r A V/V SSE2 Convert one signed doubleword integer from r/m32 to one doubleprecision floating-point value in xmm. A V/N.E. SSE2 Convert one signed quadword integer from r/m64 to one doubleprecision floating-point value in xmm. B V/V AVX Convert one signed doubleword integer from r/m32 to one doubleprecision floating-point value in xmm1. B V/N.E. AVX Convert one signed quadword integer from r/m64 to one doubleprecision floating-point value in xmm1. CVTSI2SD xmm, r/m32 F2 REX.W 0F 2A /r CVTSI2SD xmm, r/m64 VEX.NDS.LIG.F2.0F.W0 2A /r VCVTSI2SD xmm1, xmm2, r/m32 VEX.NDS.LIG.F2.0F.W1 2A /r VCVTSI2SD xmm1, xmm2, r/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the second source operand to a double-precision floating-point value in the destination operand. The result is stored in the low quadword of the destination operand, and the high quadword left unchanged. When conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit operands. See the summary chart at the beginning of this section for encoding data and limits. 3-274 Vol. 2A CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value INSTRUCTION SET REFERENCE, A-M The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and destination operands are XMM registers. 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation CVTSI2SD IF 64-Bit Mode And OperandSize = 64 THEN DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]); ELSE DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]); FI; DEST[VLMAX-1:64] (Unmodified) VCVTSI2SD IF 64-Bit Mode And OperandSize = 64 THEN DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]); ELSE DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]); FI; DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b) CVTSI2SD __m128d _mm_cvtsi64_sd(__m128d a, __int64 b) SIMD Floating-Point Exceptions Precision. Other Exceptions See Exceptions Type 3. CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value Vol. 2A 3-275 INSTRUCTION SET REFERENCE, A-M CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 2A /r A V/V SSE Convert one signed doubleword integer from r/m32 to one singleprecision floating-point value in xmm. A V/N.E. SSE Convert one signed quadword integer from r/m64 to one singleprecision floating-point value in xmm. B V/V AVX Convert one signed doubleword integer from r/m32 to one singleprecision floating-point value in xmm1. B V/N.E. AVX Convert one signed quadword integer from r/m64 to one singleprecision floating-point value in xmm1. CVTSI2SS xmm, r/m32 F3 REX.W 0F 2A /r CVTSI2SS xmm, r/m64 VEX.NDS.LIG.F3.0F.W0 2A /r VCVTSI2SS xmm1, xmm2, r/m32 VEX.NDS.LIG.F3.0F.W1 2A /r VCVTSI2SS xmm1, xmm2, r/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the source operand (second operand) to a single-precision floating-point value in the destination operand (first operand). The source operand can be a general-purpose register or a memory location. The destination operand is an XMM register. The result is stored in the low doubleword of the destination operand, and the upper three doublewords are left unchanged. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. Legacy SSE instructions: In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W 3-276 Vol. 2A CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value INSTRUCTION SET REFERENCE, A-M prefix promotes the instruction to 64-bit operands. See the summary chart at the beginning of this section for encoding data and limits. 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation CVTSI2SS (128-bit Legacy SSE version) IF 64-Bit Mode And OperandSize = 64 THEN DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]); ELSE DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]); FI; DEST[VLMAX-1:32] (Unmodified) VCVTSI2SS (VEX.128 encoded version) IF 64-Bit Mode And OperandSize = 64 THEN DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]); ELSE DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]); FI; DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent CVTSI2SS __m128 _mm_cvtsi32_ss(__m128 a, int b) CVTSI2SS __m128 _mm_cvtsi64_ss(__m128 a, __int64 b) SIMD Floating-Point Exceptions Precision. Other Exceptions See Exceptions Type 3. CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value Vol. 2A 3-277 INSTRUCTION SET REFERENCE, A-M CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar DoublePrecision FP Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 5A /r A V/V SSE2 Convert one single-precision floating-point value in xmm2/m32 to one doubleprecision floating-point value in xmm1. B V/V AVX Convert one single-precision floating-point value in xmm3/m32 to one doubleprecision floating-point value and merge with high bits of xmm2. CVTSS2SD xmm1, xmm2/m32 VEX.NDS.LIG.F3.0F.WIG 5A /r VCVTSS2SD xmm1, xmm2, xmm3/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Converts a single-precision floating-point value in the source operand (second operand) to a double-precision floating-point value in the destination operand (first operand). The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. When the source operand is an XMM register, the single-precision floating-point value is contained in the low doubleword of the register. The result is stored in the low quadword of the destination operand, and the high quadword is left unchanged. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation CVTSS2SD (128-bit Legacy SSE version) 3-278 Vol. 2A CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Value INSTRUCTION SET REFERENCE, A-M DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]); DEST[VLMAX-1:64] (Unmodified) VCVTSS2SD (VEX.128 encoded version) DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0]) DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b) SIMD Floating-Point Exceptions Invalid, Denormal. Other Exceptions See Exceptions Type 3. CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Value Vol. 2A 3-279 INSTRUCTION SET REFERENCE, A-M CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 2D /r A V/V SSE Convert one single-precision floating-point value from xmm/m32 to one signed doubleword integer in r32. A V/N.E. SSE Convert one single-precision floating-point value from xmm/m32 to one signed quadword integer in r64. A V/V AVX Convert one single-precision floating-point value from xmm1/m32 to one signed doubleword integer in r32. A V/N.E. AVX Convert one single-precision floating-point value from xmm1/m32 to one signed quadword integer in r64. CVTSS2SI r32, xmm/m32 F3 REX.W 0F 2D /r CVTSS2SI r64, xmm/m32 VEX.LIG.F3.0F.W0 2D /r VCVTSS2SI r32, xmm1/m32 VEX.LIG.F3.0F.W1 2D /r VCVTSS2SI r64, xmm1/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts a single-precision floating-point value in the source operand (second operand) to a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the destination operand (first operand). The source operand can be an XMM register or a memory location. The destination operand is a general-purpose register. When the source operand is an XMM register, the single-precision floatingpoint value is contained in the low doubleword of the register. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit operands. See the summary chart at the beginning of this section for encoding data and limits. 3-280 Vol. 2A CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer INSTRUCTION SET REFERENCE, A-M Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operands. See the summary chart at the beginning of this section for encoding data and limits. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. Operation IF 64-bit Mode and OperandSize = 64 THEN DEST[64:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]); ELSE DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]); FI; Intel C/C++ Compiler Intrinsic Equivalent int _mm_cvtss_si32(__m128d a) __int64 _mm_cvtss_si64(__m128d a) SIMD Floating-Point Exceptions Invalid, Precision. Other Exceptions See Exceptions Type 3; additionally #UFD If VEX.vvvv != 1111B. CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer Vol. 2A 3-281 INSTRUCTION SET REFERENCE, A-M CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F E6 A V/V SSE2 Convert two packed doubleprecision floating-point values from xmm2/m128 to two packed signed doubleword integers in xmm1 using truncation. A V/V AVX Convert two packed doubleprecision floating-point values in xmm2/mem to two signed doubleword integers in xmm1 using truncation. A V/V AVX Convert four packed doubleprecision floating-point values in ymm2/mem to four signed doubleword integers in xmm1 using truncation. CVTTPD2DQ xmm1, xmm2/m128 VEX.128.66.0F.WIG E6 /r VCVTTPD2DQ xmm1, xmm2/m128 VEX.256.66.0F.WIG E6 /r VCVTTPD2DQ xmm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two or four packed double-precision floating-point values in the source operand (second operand) to two or four packed signed doubleword integers in the destination operand (first operand). When a conversion is inexact, a truncated (round toward zero) value is returned.If a converted result is larger than the maximum signed doubleword integer, the floatingpoint invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. 3-282 Vol. 2A CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. SRC DEST X3 X2 0 X1 X3 X0 X2 X1 X0 Figure 3-18. VCVTTPD2DQ (VEX.256 encoded version) Operation CVTTPD2DQ (128-bit Legacy SSE version) DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]) DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64]) DEST[127:64] 0 DEST[VLMAX-1:128] (unmodified) VCVTTPD2DQ (VEX.128 encoded version) DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]) DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64]) DEST[VLMAX-1:64] 0 VCVTTPD2DQ (VEX.256 encoded version) DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]) DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64]) DEST[95:64] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128]) DEST[127:96] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192) CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers Vol. 2A 3-283 INSTRUCTION SET REFERENCE, A-M DEST[255:128] 0 Intel C/C++ Compiler Intrinsic Equivalent CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a) VCVTTPD2DQ __m128i _mm256_cvttpd_epi32 (__m256d src) SIMD Floating-Point Exceptions Invalid, Precision. Other Exceptions See Exceptions Type 2; additionally #UFD If VEX.vvvv != 1111B. 3-284 Vol. 2A CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers Opcode/ Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 66 0F 2C /r A Valid Valid Convert two packer doubleprecision floating-point values from xmm/m128 to two packed signed doubleword integers in mm using truncation. CVTTPD2PI mm, xmm/m128 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed double-precision floating-point values in the source operand (second operand) to two packed signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register or a 128-bit memory location. The destination operand is an MMX technology register. When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than the maximum signed doubleword integer, the floatingpoint invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the CVTTPD2PI instruction is executed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32_Truncate(SRC[63:0]); DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32_ Truncate(SRC[127:64]); Intel C/C++ Compiler Intrinsic Equivalent CVTTPD1PI __m64 _mm_cvttpd_pi32(__m128d a) CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers Vol. 2A 3-285 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Invalid, Precision. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. If a memory operand is not aligned on a 16-byte boundary, regardless of segment. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #MF If there is a pending x87 FPU exception. #NM If CR0.TS[bit 3] = 1. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. 3-286 Vol. 2A CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M #PF(fault-code) For a page fault. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. If memory operand is not aligned on a 16-byte boundary, regardless of segment. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers Vol. 2A 3-287 INSTRUCTION SET REFERENCE, A-M CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 5B /r A V/V SSE2 Convert four singleprecision floating-point values from xmm2/m128 to four signed doubleword integers in xmm1 using truncation. A V/V AVX Convert four packed single precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1 using truncation. A V/V AVX Convert eight packed single precision floating-point values from ymm2/mem to eight packed signed doubleword values in ymm1 using truncation. CVTTPS2DQ xmm1, xmm2/m128 VEX.128.F3.0F.WIG 5B /r VCVTTPS2DQ xmm1, xmm2/m128 VEX.256.F3.0F.WIG 5B /r VCVTTPS2DQ ymm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts four or eight packed single-precision floating-point values in the source operand to four or eight signed doubleword integers in the destination operand. When a conversion is inexact, a truncated (round toward zero) value is returned.If a converted result is larger than the maximum signed doubleword integer, the floatingpoint invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. 3-288 Vol. 2A CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operation is a YMM register. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation CVTTPS2DQ (128-bit Legacy SSE version) DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]) DEST[VLMAX-1:128] (unmodified) VCVTTPS2DQ (VEX.128 encoded version) DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]) DEST[VLMAX-1:128] 0 VCVTTPS2DQ (VEX.256 encoded version) DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96) DEST[159:128] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128]) DEST[191:160] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160]) DEST[223:192] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192]) DEST[255:224] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224]) Intel C/C++ Compiler Intrinsic Equivalent CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a) VCVTTPS2DQ __m256i _mm256_cvttps_epi32 (__m256 a) SIMD Floating-Point Exceptions Invalid, Precision. CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers Vol. 2A 3-289 INSTRUCTION SET REFERENCE, A-M Other Exceptions See Exceptions Type 2; additionally #UD 3-290 Vol. 2A If VEX.vvvv != 1111B. CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers Opcode/ Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 2C /r A Valid Valid Convert two singleprecision floating-point values from xmm/m64 to two signed doubleword signed integers in mm using truncation. CVTTPS2PI mm, xmm/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts two packed single-precision floating-point values in the source operand (second operand) to two packed signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register or a 64-bit memory location. The destination operand is an MMX technology register. When the source operand is an XMM register, the two single-precision floating-point values are contained in the low quadword of the register. When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than the maximum signed doubleword integer, the floatingpoint invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned. This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the CVTTPS2PI instruction is executed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]); DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]); Intel C/C++ Compiler Intrinsic Equivalent CVTTPS2PI __m64 _mm_cvttps_pi32(__m128 a) CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers Vol. 2A 3-291 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Invalid, Precision. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #MF If there is a pending x87 FPU exception. #NM If CR0.TS[bit 3] = 1. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Real-Address Mode Exceptions GP If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) 3-292 Vol. 2A For a page fault. CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers INSTRUCTION SET REFERENCE, A-M #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #XM If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1. #UD If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers Vol. 2A 3-293 INSTRUCTION SET REFERENCE, A-M CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Integer Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 2C /r A V/V SSE2 Convert one doubleprecision floating-point value from xmm/m64 to one signed doubleword integer in r32 using truncation. A V/N.E. SSE2 Convert one double precision floating-point value from xmm/m64 to one signedquadword integer in r64 using truncation. A V/V AVX Convert one doubleprecision floating-point value from xmm1/m64 to one signed doubleword integer in r32 using truncation. A V/N.E. AVX Convert one double precision floating-point value from xmm1/m64 to one signed quadword integer in r64 using truncation. CVTTSD2SI r32, xmm/m64 F2 REX.W 0F 2C /r CVTTSD2SI r64, xmm/m64 VEX.LIG.F2.0F.W0 2C /r VCVTTSD2SI r32, xmm1/m64 VEX.LIG.F2.0F.W1 2C /r VCVTTSD2SI r64, xmm1/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts a double-precision floating-point value in the source operand (second operand) to a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the destination operand (first operand). The source operand can be an XMM register or a 64-bit memory location. The destination operand is a general purpose register. When the source operand is an XMM register, the double-precision floating-point value is contained in the low quadword of the register. 3-294 Vol. 2A CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Integer INSTRUCTION SET REFERENCE, A-M When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than the maximum signed doubleword integer, the floating point invalid exception is raised. If this exception is masked, the indefinite integer value (80000000H) is returned. Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operation. See the summary chart at the beginning of this section for encoding data and limits. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. Operation IF 64-Bit Mode and OperandSize = 64 THEN DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_ Integer64_Truncate(SRC[63:0]); ELSE DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_ Integer32_Truncate(SRC[63:0]); FI; Intel C/C++ Compiler Intrinsic Equivalent int _mm_cvttsd_si32(__m128d a) __int64 _mm_cvttsd_si64(__m128d a) SIMD Floating-Point Exceptions Invalid, Precision. Other Exceptions See Exceptions Type 3; additionally #UD If VEX.vvvv != 1111B. CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Integer Vol. 2A 3-295 INSTRUCTION SET REFERENCE, A-M CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 2C /r A V/V SSE Convert one single-precision floating-point value from xmm/m32 to one signed doubleword integer in r32 using truncation. A V/N.E. SSE Convert one single-precision floating-point value from xmm/m32 to one signed quadword integer in r64 using truncation. A V/V AVX Convert one single-precision floating-point value from xmm1/m32 to one signed doubleword integer in r32 using truncation. A V/N.E. AVX Convert one single-precision floating-point value from xmm1/m32 to one signed quadword integer in r64 using truncation. CVTTSS2SI r32, xmm/m32 F3 REX.W 0F 2C /r CVTTSS2SI r64, xmm/m32 VEX.LIG.F3.0F.W0 2C /r VCVTTSS2SI r32, xmm1/m32 VEX.LIG.F3.0F.W1 2C /r VCVTTSS2SI r64, xmm1/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Converts a single-precision floating-point value in the source operand (second operand) to a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the destination operand (first operand). The source operand can be an XMM register or a 32-bit memory location. The destination operand is a generalpurpose register. When the source operand is an XMM register, the single-precision floating-point value is contained in the low doubleword of the register. When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than the maximum signed doubleword integer, the floatingpoint invalid exception is raised. If this exception is masked, the indefinite integer value (80000000H) is returned. 3-296 Vol. 2A CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer INSTRUCTION SET REFERENCE, A-M Legacy SSE instructions: In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit operation. See the summary chart at the beginning of this section for encoding data and limits. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. Operation IF 64-Bit Mode and OperandSize = 64 THEN DEST[63:0] ← Convert_Single_Precision_Floating_Point_To_ Integer_Truncate(SRC[31:0]); ELSE DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_ Integer_Truncate(SRC[31:0]); FI; Intel C/C++ Compiler Intrinsic Equivalent int _mm_cvttss_si32(__m128d a) __int64 _mm_cvttss_si64(__m128d a) SIMD Floating-Point Exceptions Invalid, Precision. Other Exceptions See Exceptions Type 3; additionally #UD If VEX.vvvv != 1111B. CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer Vol. 2A 3-297 INSTRUCTION SET REFERENCE, A-M CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 99 CWD A Valid Valid DX:AX ← sign-extend of AX. 99 CDQ A Valid Valid EDX:EAX ← sign-extend of EAX. REX.W + 99 CQO A Valid N.E. RDX:RAX← sign-extend of RAX. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Doubles the size of the operand in register AX, EAX, or RAX (depending on the operand size) by means of sign extension and stores the result in registers DX:AX, EDX:EAX, or RDX:RAX, respectively. The CWD instruction copies the sign (bit 15) of the value in the AX register into every bit position in the DX register. The CDQ instruction copies the sign (bit 31) of the value in the EAX register into every bit position in the EDX register. The CQO instruction (available in 64-bit mode only) copies the sign (bit 63) of the value in the RAX register into every bit position in the RDX register. The CWD instruction can be used to produce a doubleword dividend from a word before word division. The CDQ instruction can be used to produce a quadword dividend from a doubleword before doubleword division. The CQO instruction can be used to produce a double quadword dividend from a quadword before a quadword division. The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32 when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the current setting of the operandsize attribute to determine the size of values to be converted, regardless of the mnemonic used. In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO mnemonics reference the same opcode as CWD/CDQ. See the summary chart at the beginning of this section for encoding data and limits. 3-298 Vol. 2A CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword INSTRUCTION SET REFERENCE, A-M Operation IF OperandSize = 16 (* CWD instruction *) THEN DX ← SignExtend(AX); ELSE IF OperandSize = 32 (* CDQ instruction *) EDX ← SignExtend(EAX); FI; ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*) RDX ← SignExtend(RAX); FI; FI; Flags Affected None. Exceptions (All Operating Modes) #UD If the LOCK prefix is used. CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword Vol. 2A 3-299 INSTRUCTION SET REFERENCE, A-M DAA—Decimal Adjust AL after Addition Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 27 DAA A Invalid Valid Decimal adjust AL after addition. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is the implied source and destination operand. The DAA instruction is only useful when it follows an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte result in the AL register. The DAA instruction then adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF flags are set accordingly. This instruction executes as described above in compatibility mode and legacy mode. It is not valid in 64-bit mode. Operation IF 64-Bit Mode THEN #UD; ELSE old_AL ← AL; old_CF ← CF; CF ← 0; IF (((AL AND 0FH) > 9) or AF = 1) THEN AL ← AL + 6; CF ← old_CF or (Carry from AL ← AL + 6); AF ← 1; ELSE AF ← 0; FI; IF ((old_AL > 99H) or (old_CF = 1)) THEN AL ← AL + 60H; CF ← 1; 3-300 Vol. 2A DAA—Decimal Adjust AL after Addition INSTRUCTION SET REFERENCE, A-M ELSE FI; CF ← 0; FI; Example ADD AL, BL DAA DAA Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000 Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000 After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111 Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000 After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101 Flags Affected The CF and AF flags are set if the adjustment of the value results in a decimal carry in either digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined. Protected Mode Exceptions #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #UD If the LOCK prefix is used. Compatibility Mode Exceptions #UD If the LOCK prefix is used. 64-Bit Mode Exceptions #UD If in 64-bit mode. DAA—Decimal Adjust AL after Addition Vol. 2A 3-301 INSTRUCTION SET REFERENCE, A-M DAS—Decimal Adjust AL after Subtraction Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 2F DAS A Invalid Valid Decimal adjust AL after subtraction. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result. The AL register is the implied source and destination operand. The DAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed BCD value from another and stores a byte result in the AL register. The DAS instruction then adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF and AF flags are set accordingly. This instruction executes as described above in compatibility mode and legacy mode. It is not valid in 64-bit mode. Operation IF 64-Bit Mode THEN #UD; ELSE old_AL ← AL; old_CF ← CF; CF ← 0; IF (((AL AND 0FH) > 9) or AF = 1) THEN AL ← AL - 6; CF ← old_CF or (Borrow from AL ← AL − 6); AF ← 1; ELSE AF ← 0; FI; IF ((old_AL > 99H) or (old_CF = 1)) THEN AL ← AL − 60H; 3-302 Vol. 2A DAS—Decimal Adjust AL after Subtraction INSTRUCTION SET REFERENCE, A-M FI; CF ← 1; FI; Example SUB AL, BL DAA Before: AL = 35H, BL = 47H, EFLAGS(OSZAPC) = XXXXXX After: AL = EEH, BL = 47H, EFLAGS(0SZAPC) = 010111 Before: AL = EEH, BL = 47H, EFLAGS(OSZAPC) = 010111 After: AL = 88H, BL = 47H, EFLAGS(0SZAPC) = X10111 Flags Affected The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined. Protected Mode Exceptions #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #UD If the LOCK prefix is used. Compatibility Mode Exceptions #UD If the LOCK prefix is used. 64-Bit Mode Exceptions #UD If in 64-bit mode. DAS—Decimal Adjust AL after Subtraction Vol. 2A 3-303 INSTRUCTION SET REFERENCE, A-M DEC—Decrement by 1 Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode FE /1 DEC r/m8 A Valid Valid Decrement r/m8 by 1. REX + FE /1 DEC r/m8 * A Valid N.E. Decrement r/m8 by 1. FF /1 DEC r/m16 A Valid Valid Decrement r/m16 by 1. FF /1 DEC r/m32 A Valid Valid Decrement r/m32 by 1. REX.W + FF /1 DEC r/m64 A Valid N.E. Decrement r/m64 by 1. 48+rw DEC r16 B N.E. Valid Decrement r16 by 1. 48+rd DEC r32 B N.E. Valid Decrement r32 by 1. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r, w) NA NA NA B reg (r, w) NA NA NA Description Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destination operand can be a register or a memory location. This instruction allows a loop counter to be updated without disturbing the CF flag. (To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate operand of 1.) This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H through 4FH are REX prefixes). Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← DEST – 1; 3-304 Vol. 2A DEC—Decrement by 1 INSTRUCTION SET REFERENCE, A-M Flags Affected The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) If the destination operand is located in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. Compatibility Mode Exceptions Same exceptions as in protected mode. DEC—Decrement by 1 Vol. 2A 3-305 INSTRUCTION SET REFERENCE, A-M 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. 3-306 Vol. 2A DEC—Decrement by 1 INSTRUCTION SET REFERENCE, A-M DIV—Unsigned Divide Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F6 /6 DIV r/m8 A Valid Valid Unsigned divide AX by r/m8, with result stored in AL ← Quotient, AH ← Remainder. REX + F6 /6 DIV r/m8* A Valid N.E. Unsigned divide AX by r/m8, with result stored in AL ← Quotient, AH ← Remainder. F7 /6 DIV r/m16 A Valid Valid Unsigned divide DX:AX by r/m16, with result stored in AX ← Quotient, DX ← Remainder. F7 /6 DIV r/m32 A Valid Valid Unsigned divide EDX:EAX by r/m32, with result stored in EAX ← Quotient, EDX ← Remainder. REX.W + F7 /6 DIV r/m64 A Valid N.E. Unsigned divide RDX:RAX by r/m64, with result stored in RAX ← Quotient, RDX ← Remainder. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) NA NA NA Description Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (dividend) by the source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, EDX:EAX, or RDX:RAX registers. The source operand can be a generalpurpose register or a memory location. The action of this instruction depends on the operand size (dividend/divisor). Division using 64-bit operand is available only in 64-bit mode. Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag. DIV—Unsigned Divide Vol. 2A 3-307 INSTRUCTION SET REFERENCE, A-M In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction divides the unsigned value in RDX:RAX by the source operand and stores the quotient in RAX, the remainder in RDX. See the summary chart at the beginning of this section for encoding data and limits. See Table 3-25. Table 3-25. DIV Action Operand Size Dividend Divisor Quotient Remainder Maximum Quotient Word/byte AX r/m8 AL AH 255 Doubleword/word DX:AX r/m16 AX DX 65,535 Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1 Doublequadword/ RDX:RAX r/m64 RAX RDX 264 − 1 quadword Operation IF SRC = 0 THEN #DE; FI; (* Divide Error *) IF OperandSize = 8 (* Word/Byte Operation *) THEN temp ← AX / SRC; IF temp > FFH THEN #DE; (* Divide error *) ELSE AL ← temp; AH ← AX MOD SRC; FI; ELSE IF OperandSize = 16 (* Doubleword/word operation *) THEN temp ← DX:AX / SRC; IF temp > FFFFH THEN #DE; (* Divide error *) ELSE AX ← temp; DX ← DX:AX MOD SRC; FI; FI; ELSE IF Operandsize = 32 (* Quadword/doubleword operation *) THEN temp ← EDX:EAX / SRC; 3-308 Vol. 2A DIV—Unsigned Divide INSTRUCTION SET REFERENCE, A-M IF temp > FFFFFFFFH THEN #DE; (* Divide error *) ELSE EAX ← temp; EDX ← EDX:EAX MOD SRC; FI; FI; ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *) THEN temp ← RDX:RAX / SRC; IF temp > FFFFFFFFFFFFFFFFH THEN #DE; (* Divide error *) ELSE RAX ← temp; RDX ← RDX:RAX MOD SRC; FI; FI; FI; Flags Affected The CF, OF, SF, ZF, AF, and PF flags are undefined. Protected Mode Exceptions #DE If the source operand (divisor) is 0 If the quotient is too large for the designated register. #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #DE If the source operand (divisor) is 0. If the quotient is too large for the designated register. #GP DIV—Unsigned Divide If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. Vol. 2A 3-309 INSTRUCTION SET REFERENCE, A-M If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #DE If the source operand (divisor) is 0. If the quotient is too large for the designated register. #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #DE If the source operand (divisor) is 0 #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. If the quotient is too large for the designated register. 3-310 Vol. 2A DIV—Unsigned Divide INSTRUCTION SET REFERENCE, A-M DIVPD—Divide Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 5E /r A V/V SSE2 Divide packed doubleprecision floating-point values in xmm1 by packed double-precision floatingpoint values xmm2/m128. B V/V AVX Divide packed doubleprecision floating-point values in xmm2 by packed double-precision floatingpoint values in xmm3/mem. B V/V AVX Divide packed doubleprecision floating-point values in ymm2 by packed double-precision floatingpoint values in ymm3/mem. DIVPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 5E /r VDIVPD xmm1, xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 5E /r VDIVPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs an SIMD divide of the two or four packed double-precision floating-point values in the first source operand by the two or four packed double-precision floating-point values in the second source operand. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a SIMD double-precision floating-point operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. DIVPD—Divide Packed Double-Precision Floating-Point Values Vol. 2A 3-311 INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation DIVPD (128-bit Legacy SSE version) DEST[63:0] SRC1[63:0] / SRC2[63:0] DEST[127:64] SRC1[127:64] / SRC2[127:64] DEST[VLMAX-1:128] (Unmodified) VDIVPD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] / SRC2[63:0] DEST[127:64] SRC1[127:64] / SRC2[127:64] DEST[VLMAX-1:128] 0 VDIVPD (VEX.256 encoded version) DEST[63:0] SRC1[63:0] / SRC2[63:0] DEST[127:64] SRC1[127:64] / SRC2[127:64] DEST[191:128] SRC1[191:128] / SRC2[191:128] DEST[255:192] SRC1[255:192] / SRC2[255:192] Intel C/C++ Compiler Intrinsic Equivalent DIVPD __m128d _mm_div_pd(__m128d a, __m128d b) VDIVPD __m256d _mm256_div_pd (__m256d a, __m256d b); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal. Other Exceptions See Exceptions Type 2. 3-312 Vol. 2A DIVPD—Divide Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DIVPS—Divide Packed Single-Precision Floating-Point Values Opcode Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 5E /r DIVPS xmm1, xmm2/m128 A V/V SSE Divide packed singleprecision floating-point values in xmm1 by packed single-precision floatingpoint values xmm2/m128. B V/V AVX Divide packed singleprecision floating-point values in xmm2 by packed double-precision floatingpoint values in xmm3/mem. B V/V AVX Divide packed singleprecision floating-point values in ymm2 by packed double-precision floatingpoint values in ymm3/mem. VEX.NDS.128.0F.WIG 5E /r VDIVPS xmm1, xmm2, xmm3/m128 VEX.NDS.256.0F.WIG 5E /r VDIVPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs an SIMD divide of the four or eight packed single-precision floating-point values in the first source operand by the four or eight packed single-precision floating-point values in the second source operand. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a SIMD single-precision floating-point operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. DIVPS—Divide Packed Single-Precision Floating-Point Values Vol. 2A 3-313 INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation DIVPS (128-bit Legacy SSE version) DEST[31:0] SRC1[31:0] / SRC2[31:0] DEST[63:32] SRC1[63:32] / SRC2[63:32] DEST[95:64] SRC1[95:64] / SRC2[95:64] DEST[127:96] SRC1[127:96] / SRC2[127:96] DEST[VLMAX-1:128] (Unmodified) VDIVPS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] / SRC2[31:0] DEST[63:32] SRC1[63:32] / SRC2[63:32] DEST[95:64] SRC1[95:64] / SRC2[95:64] DEST[127:96] SRC1[127:96] / SRC2[127:96] DEST[VLMAX-1:128] 0 VDIVPS (VEX.256 encoded version) DEST[31:0] SRC1[31:0] / SRC2[31:0] DEST[63:32] SRC1[63:32] / SRC2[63:32] DEST[95:64] SRC1[95:64] / SRC2[95:64] DEST[127:96] SRC1[127:96] / SRC2[127:96] DEST[159:128] SRC1[159:128] / SRC2[159:128] DEST[191:160] SRC1[191:160] / SRC2[191:160] DEST[223:192] SRC1[223:192] / SRC2[223:192] DEST[255:224] SRC1[255:224] / SRC2[255:224]. Intel C/C++ Compiler Intrinsic Equivalent DIVPS __m128 _mm_div_ps(__m128 a, __m128 b) VDIVPS __m256 _mm256_div_ps (__m256 a, __m256 b); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal. Other Exceptions See Exceptions Type 2. 3-314 Vol. 2A DIVPS—Divide Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DIVSD—Divide Scalar Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 5E /r A V/V SSE2 Divide low double-precision floating-point value n xmm1 by low double-precision floating-point value in xmm2/mem64. A V/V AVX Divide low double-precision floating point values in xmm2 by low double precision floating-point value in xmm3/mem64. DIVSD xmm1, xmm2/m64 VEX.NDS.LIG.F2.0F.WIG 5E /r VDIVSD xmm1, xmm2, xmm3/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Divides the low double-precision floating-point value in the first source operand by the low double-precision floating-point value in the second source operand, and stores the double-precision floating-point result in the destination operand. The second source operand can be an XMM register or a 64-bit memory location. The first source and destination hyperons are XMM registers. The high quadword of the destination operand is copied from the high quadword of the first source operand. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar double-precision floating-point operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation DIVSD (128-bit Legacy SSE version) DEST[63:0] DEST[63:0] / SRC[63:0] DIVSD—Divide Scalar Double-Precision Floating-Point Values Vol. 2A 3-315 INSTRUCTION SET REFERENCE, A-M DEST[VLMAX-1:64] (Unmodified) VDIVSD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] / SRC2[63:0] DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent DIVSD __m128d _mm_div_sd (m128d a, m128d b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal. Other Exceptions See Exceptions Type 3. 3-316 Vol. 2A DIVSD—Divide Scalar Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DIVSS—Divide Scalar Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 5E /r A V/V SSE Divide low single-precision floating-point value in xmm1 by low singleprecision floating-point value in xmm2/m32. B V/V AVX Divide low single-precision floating point value in xmm2 by low single precision floating-point value in xmm3/m32. DIVSS xmm1, xmm2/m32 VEX.NDS.LIG.F3.0F.WIG 5E /r VDIVSS xmm1, xmm2, xmm3/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Divides the low single-precision floating-point value in the first source operand by the low single-precision floating-point value in the second source operand, and stores the single-precision floating-point result in the destination operand. The second source operand can be an XMM register or a 32-bit memory location. The first source and destination operands are XMM registers. The three high-order doublewords of the destination are copied from the same dwords of the first source operand. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar single-precision floating-point operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation DIVSS (128-bit Legacy SSE version) DEST[31:0] DEST[31:0] / SRC[31:0] DIVSS—Divide Scalar Single-Precision Floating-Point Values Vol. 2A 3-317 INSTRUCTION SET REFERENCE, A-M DEST[VLMAX-1:32] (Unmodified) VDIVSS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] / SRC2[31:0] DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent DIVSS __m128 _mm_div_ss(__m128 a, __m128 b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal. Other Exceptions See Exceptions Type 3. 3-318 Vol. 2A DIVSS—Divide Scalar Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DPPD — Dot Product of Packed Double Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A 41 /r ib A V/V SSE4_1 Selectively multiply packed DP floating-point values from xmm1 with packed DP floating-point values from xmm2, add and selectively store the packed DP floating-point values to xmm1. B V/V AVX Selectively multiply packed DP floating-point values from xmm2 with packed DP floating-point values from xmm3, add and selectively store the packed DP floating-point values to xmm1. DPPD xmm1, xmm2/m128, imm8 VEX.NDS.128.66.0F3A.WIG 41 /r ib VDPPD xmm1,xmm2, xmm3/m128, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Conditionally multiplies the packed double-precision floating-point values in the destination operand (first operand) with the packed double-precision floating-point values in the source (second operand) depending on a mask extracted from bits [5:4] of the immediate operand (third operand). If a condition mask bit is zero, the corresponding multiplication is replaced by a value of 0.0. The two resulting double-precision values are summed into an intermediate result. The intermediate result is conditionally broadcasted to the destination using a broadcast mask specified by bits [1:0] of the immediate byte. If a broadcast mask bit is "1", the intermediate result is copied to the corresponding qword element in the destination operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero. DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the positioning of those NaNs in the desti- DPPD — Dot Product of Packed Double Precision Floating-Point Values Vol. 2A 3-319 INSTRUCTION SET REFERENCE, A-M nation is implementation dependent. NaNs on the input sources or computationally generated NaNs will have at least one NaN propagated to the destination. 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation DP_primitive (SRC1, SRC2) IF (imm8[4] = 1) THEN Temp1[63:0] DEST[63:0] * SRC[63:0]; ELSE Temp1[63:0] +0.0; FI; IF (imm8[5] = 1) THEN Temp1[127:64] DEST[127:64] * SRC[127:64]; ELSE Temp1[127:64] +0.0; FI; Temp2[63:0] Temp1[63:0] + Temp1[127:64]; IF (imm8[0] = 1) THEN DEST[63:0] Temp2[63:0]; ELSE DEST[63:0] +0.0; FI; IF (imm8[1] = 1) THEN DEST[127:64] Temp2[63:0]; ELSE DEST[127:64] +0.0; FI; DPPD (128-bit Legacy SSE version) DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]); DEST[VLMAX-1:128] (Unmodified) VDPPD (VEX.128 encoded version) DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]); DEST[VLMAX-1:128] 0 Flags Affected None 3-320 Vol. 2A DPPD — Dot Product of Packed Double Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M Intel C/C++ Compiler Intrinsic Equivalent DPPD __m128d _mm_dp_pd ( __m128d a, __m128d b, const int mask); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal Exceptions are determined separately for each add and multiply operation. Unmasked exceptions will leave the destination untouched. Other Exceptions See Exceptions Type 2; additionally #UD If VEX.L= 1. DPPD — Dot Product of Packed Double Precision Floating-Point Values Vol. 2A 3-321 INSTRUCTION SET REFERENCE, A-M DPPS — Dot Product of Packed Single Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A 40 /r ib A V/V SSE4_1 Selectively multiply packed SP floating-point values from xmm1 with packed SP floating-point values from xmm2, add and selectively store the packed SP floating-point values or zero values to xmm1. B V/V AVX Multiply packed SP floating point values from xmm1 with packed SP floating point values from xmm2/mem selectively add and store to xmm1. B V/V AVX Multiply packed singleprecision floating-point values from ymm2 with packed SP floating point values from ymm3/mem, selectively add pairs of elements and store to ymm1. DPPS xmm1, xmm2/m128, imm8 VEX.NDS.128.66.0F3A.WIG 40 /r ib VDPPS xmm1,xmm2, xmm3/m128, imm8 VEX.NDS.256.66.0F3A.WIG 40 /r ib VDPPS ymm1, ymm2, ymm3/m256, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Conditionally multiplies the packed single precision floating-point values in the destination operand (first operand) with the packed single-precision floats in the source (second operand) depending on a mask extracted from the high 4 bits of the immediate byte (third operand). If a condition mask bit in Imm8[7:4] is zero, the corresponding multiplication is replaced by a value of 0.0. The four resulting single-precision values are summed into an intermediate result. The intermediate result is conditionally broadcasted to the destination using a broadcast mask specified by bits [3:0] of the immediate byte.. 3-322 Vol. 2A DPPS — Dot Product of Packed Single Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M If a broadcast mask bit is "1", the intermediate result is copied to the corresponding dword element in the destination operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero. DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the positioning of those NaNs in the destination is implementation dependent. NaNs on the input sources or computationally generated NaNs will have at least one NaN propagated to the destination. 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation DP_primitive (SRC1, SRC2) IF (imm8[4] = 1) THEN Temp1[31:0] DEST[31:0] * SRC[31:0]; ELSE Temp1[31:0] +0.0; FI; IF (imm8[5] = 1) THEN Temp1[63:32] DEST[63:32] * SRC[63:32]; ELSE Temp1[63:32] +0.0; FI; IF (imm8[6] = 1) THEN Temp1[95:64] DEST[95:64] * SRC[95:64]; ELSE Temp1[95:64] +0.0; FI; IF (imm8[7] = 1) THEN Temp1[127:96] DEST[127:96] * SRC[127:96]; ELSE Temp1[127:96] +0.0; FI; Temp2[31:0] Temp1[31:0] + Temp1[63:32]; Temp3[31:0] Temp1[95:64] + Temp1[127:96]; Temp4[31:0] Temp2[31:0] + Temp3[31:0]; IF (imm8[0] = 1) THEN DEST[31:0] Temp4[31:0]; ELSE DEST[31:0] +0.0; FI; IF (imm8[1] = 1) DPPS — Dot Product of Packed Single Precision Floating-Point Values Vol. 2A 3-323 INSTRUCTION SET REFERENCE, A-M THEN DEST[63:32] Temp4[31:0]; ELSE DEST[63:32] +0.0; FI; IF (imm8[2] = 1) THEN DEST[95:64] Temp4[31:0]; ELSE DEST[95:64] +0.0; FI; IF (imm8[3] = 1) THEN DEST[127:96] Temp4[31:0]; ELSE DEST[127:96] +0.0; FI; DPP (128-bit Legacy SSE version) DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]); DEST[VLMAX-1:128] (Unmodified) VDPPS (VEX.128 encoded version) DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]); DEST[VLMAX-1:128] 0 VDPPS (VEX.256 encoded version) DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]); DEST[255:128]DP_Primitive(SRC1[255:128], SRC2[255:128]); Intel C/C++ Compiler Intrinsic Equivalent (V)DPPS __m128 _mm_dp_ps ( __m128 a, __m128 b, const int mask); VDPPS __m256 _mm256_dp_ps ( __m256 a, __m256 b, const int mask); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal Exceptions are determined separately for each add and multiply operation, in the order of their execution. Unmasked exceptions will leave the destination operands unchanged. Other Exceptions See Exceptions Type 2. 3-324 Vol. 2A DPPS — Dot Product of Packed Single Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M EMMS—Empty MMX Technology State Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 77 EMMS A Valid Valid Set the x87 FPU tag word to empty. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This operation marks the x87 FPU data registers (which are aliased to the MMX technology registers) as available for use by x87 FPU floating-point instructions. (See Figure 8-7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for the format of the x87 FPU tag word.) All other MMX instructions (other than the EMMS instruction) set all the tags in x87 FPU tag word to valid (all 0s). The EMMS instruction must be used to clear the MMX technology state at the end of all MMX technology procedures or subroutines and before calling other procedures or subroutines that may execute x87 floating-point instructions. If a floating-point instruction loads one of the registers in the x87 FPU data register stack before the x87 FPU tag word has been reset by the EMMS instruction, an x87 floating-point register stack overflow can occur that will result in an x87 floating-point exception or incorrect result. EMMS operation is the same in non-64-bit modes and 64-bit mode. Operation x87FPUTagWord ← FFFFH; Intel C/C++ Compiler Intrinsic Equivalent void _mm_empty() Flags Affected None. Protected Mode Exceptions #UD If CR0.EM[bit 2] = 1. #NM If CR0.TS[bit 3] = 1. EMMS—Empty MMX Technology State Vol. 2A 3-325 INSTRUCTION SET REFERENCE, A-M #MF If there is a pending FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-326 Vol. 2A EMMS—Empty MMX Technology State INSTRUCTION SET REFERENCE, A-M ENTER—Make Stack Frame for Procedure Parameters Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode C8 iw 00 ENTER imm16, 0 A Valid Valid Create a stack frame for a procedure. C8 iw 01 ENTER imm16,1 A Valid Valid Create a nested stack frame for a procedure. C8 iw ib ENTER imm16, imm8 A Valid Valid Create a nested stack frame for a procedure. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A iw imm8 NA NA Description Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the procedure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the procedure. The nesting level determines the number of stack frame pointers that are copied into the “display area” of the new stack frame from the preceding frame. Both of these operands are immediate values. The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP (64 bits) register specifies the current frame pointer and whether SP (16 bits), ESP (32 bits), or RSP (64 bits) specifies the stack pointer. In 64-bit mode, stack-size attribute is always 64-bits. The ENTER and companion LEAVE instructions are provided to support block structured languages. The ENTER instruction (when used) is typically the first instruction in a procedure and is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at the end of the procedure (just before the RET instruction) to release the stack frame. If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP register onto the stack, copies the current stack pointer from the SP/ESP/RSP register into the BP/EBP/RBP register, and loads the SP/ESP/RSP register with the current stack-pointer value minus the value in the size operand. For nesting levels of 1 or greater, the processor pushes additional frame pointers on the stack before adjusting the stack pointer. These additional frame pointers provide the called procedure with access points to other nested frames on the stack. See “Procedure Calls for Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more information about the actions of the ENTER instruction. ENTER—Make Stack Frame for Procedure Parameters Vol. 2A 3-327 INSTRUCTION SET REFERENCE, A-M The ENTER instruction causes a page fault whenever a write using the final value of the stack pointer (within the current stack segment) would do so. In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be encoded. Operation NestingLevel ← NestingLevel MOD 32 IF 64-Bit Mode (StackSize = 64) THEN Push(RBP); FrameTemp ← RSP; ELSE IF StackSize = 32 THEN Push(EBP); FrameTemp ← ESP; FI; ELSE (* StackSize = 16 *) Push(BP); FrameTemp ← SP; FI; IF NestingLevel = 0 THEN GOTO CONTINUE; FI; IF (NestingLevel > 1) THEN FOR i ← 1 to (NestingLevel - 1) DO IF 64-Bit Mode (StackSize = 64) THEN RBP ← RBP - 8; Push([RBP]); (* Quadword push *) ELSE IF OperandSize = 32 THEN IF StackSize = 32 EBP ← EBP - 4; Push([EBP]); (* Doubleword push *) ELSE (* StackSize = 16 *) BP ← BP - 4; Push([BP]); (* Doubleword push *) FI; FI; ELSE (* OperandSize = 16 *) IF StackSize = 32 THEN 3-328 Vol. 2A ENTER—Make Stack Frame for Procedure Parameters INSTRUCTION SET REFERENCE, A-M EBP ← EBP - 2; Push([EBP]); (* Word push *) ELSE (* StackSize = 16 *) BP ← BP - 2; Push([BP]); (* Word push *) FI; FI; OD; FI; IF 64-Bit Mode (StackSize = 64) THEN Push(FrameTemp); (* Quadword push *) ELSE IF OperandSize = 32 THEN Push(FrameTemp); FI; (* Doubleword push *) ELSE (* OperandSize = 16 *) Push(FrameTemp); (* Word push *) FI; CONTINUE: IF 64-Bit Mode (StackSize = 64) THEN RBP ← FrameTemp; RSP ← RSP − Size; ELSE IF StackSize = 32 THEN EBP ← FrameTemp; ESP ← ESP − Size; FI; ELSE (* StackSize = 16 *) BP ← FrameTemp; SP ← SP − Size; FI; END; Flags Affected None. Protected Mode Exceptions #SS(0) If the new value of the SP or ESP register is outside the stack segment limit. ENTER—Make Stack Frame for Procedure Parameters Vol. 2A 3-329 INSTRUCTION SET REFERENCE, A-M #PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current stack segment) would cause a page fault. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #SS If the new value of the SP or ESP register is outside the stack segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #SS(0) If the new value of the SP or ESP register is outside the stack segment limit. #PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current stack segment) would cause a page fault. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If the stack address is in a non-canonical form. #PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current stack segment) would cause a page fault. #UD If the LOCK prefix is used. 3-330 Vol. 2A ENTER—Make Stack Frame for Procedure Parameters INSTRUCTION SET REFERENCE, A-M VEXTRACTF128 — Extract Packed Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description VEX.256.66.0F3A.W0 19 /r ib A V/V Extract 128 bits of packed floating-point values from ymm2 and store results in xmm1/mem. AVX VEXTRACTF128 xmm1/m128, ymm2, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA Description Extracts 128-bits of packed floating-point values from the source operand (second operand) at an 128-bit offset from imm8[0] into the destination operand (first operand). The destination may be either an XMM register or an 128-bit memory location. VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. The high 7 bits of the immediate are ignored. If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception. Operation VEXTRACTF128 (memory destination form) CASE (imm8[0]) OF 0: DEST[127:0] SRC1[127:0] 1: DEST[127:0] SRC1[255:128] ESAC. VEXTRACTF128 (register destination form) CASE (imm8[0]) OF 0: DEST[127:0] SRC1[127:0] 1: DEST[127:0] SRC1[255:128] ESAC. DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent VEXTRACTF128 __m128 _mm256_extractf128_ps (__m256 a, int offset); VEXTRACTF128 — Extract Packed Floating-Point Values Vol. 2A 3-331 INSTRUCTION SET REFERENCE, A-M VEXTRACTF128 __m128d _mm256_extractf128_pd (__m256d a, int offset); VEXTRACTF128 __m128i_mm256_extractf128_si256(__m256i a, int offset); SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 6; additionally #UD If VEX.L= 0 If VEX.W=1. 3-332 Vol. 2A VEXTRACTF128 — Extract Packed Floating-Point Values INSTRUCTION SET REFERENCE, A-M EXTRACTPS — Extract Packed Single Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A 17 A V/V SSE4_1 Extract a single-precision floating-point value from xmm2 at the source offset specified by imm8 and store the result to reg or m32. The upper 32 bits of r64 is zeroed if reg is r64. A V/V AVX Extract one single-precision floating-point value from xmm1 at the offset specified by imm8 and store the result in reg or m32. Zero extend the results in 64-bit register if applicable. /r ib EXTRACTPS reg/m32, xmm2, imm8 VEX.128.66.0F3A.WIG 17 /r ib VEXTRACTPS r/m32, xmm1, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) imm8 NA Description Extracts a single-precision floating-point value from the source operand (second operand) at the 32-bit offset specified from imm8. Immediate bits higher than the most significant offset for the vector length are ignored. The extracted single-precision floating-point value is stored in the low 32-bits of the destination operand In 64-bit mode, destination register operand has default operand size of 64 bits. The upper 32-bits of the register are filled with zero. REX.W is ignored. 128-bit Legacy SSE version: When a REX.W prefix is used in 64-bit mode with a general purpose register (GPR) as a destination operand, the packed single quantity is zero extended to 64 bits. VEX.128 encoded version: When VEX.128.66.0F3A.W1 17 form is used in 64-bit mode with a general purpose register (GPR) as a destination operand, the packed single quantity is zero extended to 64 bits. VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. The source register is an XMM register. Imm8[1:0] determine the starting DWORD offset from which to extract the 32-bit floating-point value. EXTRACTPS — Extract Packed Single Precision Floating-Point Value Vol. 2A 3-333 INSTRUCTION SET REFERENCE, A-M If VEXTRACTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation EXTRACTPS (128-bit Legacy SSE version) SRC_OFFSET IMM8[1:0] IF ( 64-Bit Mode and DEST is register) DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh DEST[63:32] 0 ELSE DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh FI VEXTRACTPS (VEX.128 encoded version) SRC_OFFSET IMM8[1:0] IF ( 64-Bit Mode and DEST is register) DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh DEST[63:32] 0 ELSE DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh FI Intel C/C++ Compiler Intrinsic Equivalent EXTRACTPS _mm_extractmem_ps (float *dest, __m128 a, const int nidx); EXTRACTPS __m128 _mm_extract_ps (__m128 a, const int nidx); SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 5; additionally #UD 3-334 Vol. 2A If VEX.L= 1. EXTRACTPS — Extract Packed Single Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M F2XM1—Compute 2x–1 Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 F0 F2XM1 Valid Valid Replace ST(0) with (2ST(0) – 1). Description Computes the exponential value of 2 to the power of the source operand minus 1. The source operand is located in register ST(0) and the result is also stored in ST(0). The value of the source operand must lie in the range –1.0 to +1.0. If the source value is outside this range, the result is undefined. The following table shows the results obtained when computing the exponential value of various classes of numbers, assuming that neither overflow nor underflow occurs. Table 3-26. Results Obtained from F2XM1 ST(0) SRC ST(0) DEST − 1.0 to −0 − 0.5 to − 0 −0 −0 +0 +0 + 0 to +1.0 + 0 to 1.0 Values other than 2 can be exponentiated using the following formula: xy ← 2(y ∗ log2x) This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation ST(0) ← (2ST(0) − 1); FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. #IA Source operand is an SNaN value or unsupported format. #D Source is a denormal value. F2XM1—Compute 2x–1 Vol. 2A 3-335 INSTRUCTION SET REFERENCE, A-M #U Result is too small for destination format. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-336 Vol. 2A F2XM1—Compute 2x–1 INSTRUCTION SET REFERENCE, A-M FABS—Absolute Value Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 E1 FABS Valid Valid Replace ST with its absolute value. Description Clears the sign bit of ST(0) to create the absolute value of the operand. The following table shows the results obtained when creating the absolute value of various classes of numbers. Table 3-27. Results Obtained from FABS ST(0) SRC ST(0) DEST −• +• −F +F −0 +0 +0 +0 +F +F +• +• NaN NaN NOTES: F Means finite floating-point value. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation ST(0) ← |ST(0)|; FPU Flags Affected C1 Set to 0 if stack underflow occurred; otherwise, set to 0. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. FABS—Absolute Value Vol. 2A 3-337 INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-338 Vol. 2A FABS—Absolute Value INSTRUCTION SET REFERENCE, A-M FADD/FADDP/FIADD—Add Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result in ST(0). DC /0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result in ST(0). D8 C0+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in ST(0). DC C0+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in ST(i). DE C0+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in ST(i), and pop the register stack. DE C1 FADDP Valid Valid Add ST(0) to ST(1), store result in ST(1), and pop the register stack. DA /0 FIADD m32int Valid Valid Add m32int to ST(0) and store result in ST(0). DE /0 FIADD m16int Valid Valid Add m16int to ST(0) and store result in ST(0). Description Adds the destination and source operands and stores the sum in the destination location. The destination operand is always an FPU register; the source operand can be a register or a memory location. Source operands in memory can be in single-precision or double-precision floating-point format or in word or doubleword integer format. The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1) register. The one-operand version adds the contents of a memory location (either a floating-point or an integer value) to the contents of the ST(0) register. The two-operand version, adds the contents of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be doubled by coding: FADD ST(0), ST(0); The FADDP instructions perform the additional operation of popping the FPU register stack after storing the result. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. (The nooperand version of the floating-point add instructions always results in the register stack being popped. In some assemblers, the mnemonic for this instruction is FADD rather than FADDP.) The FIADD instructions convert an integer source operand to double extended-precision floating-point format before performing the addition. FADD/FADDP/FIADD—Add Vol. 2A 3-339 INSTRUCTION SET REFERENCE, A-M The table on the following page shows the results obtained when adding various classes of numbers, assuming that neither overflow nor underflow occurs. When the sum of two operands with opposite signs is 0, the result is +0, except for the round toward −∞ mode, in which case the result is −0. When the source operand is an integer 0, it is treated as a +0. When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both operands are infinities of opposite signs, an invalid-operation exception is generated. See Table 3-28. Table 3-28. FADD/FADDP/FIADD Results DEST -∞ −F −0 +0 +F +∞ NaN -∞ -∞ -∞ -∞ -∞ * NaN − F or − I - ∞ −F SRC SRC ± F or ± 0 + ∞ NaN -∞ SRC −0 -∞ DEST −0 ±0 DEST +∞ NaN +0 -∞ DEST ±0 +0 DEST +∞ NaN + F or + I - ∞ ± F or ± 0 SRC SRC +F +∞ NaN +∞ * +∞ +∞ +∞ +∞ +∞ NaN NaN NaN NaN NaN NaN NaN NaN NaN NOTES: F Means finite floating-point value. I Means integer. * Indicates floating-point invalid-arithmetic-operand (#IA) exception. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation IF Instruction = FIADD THEN DEST ← DEST + ConvertToDoubleExtendedPrecisionFP(SRC); ELSE (* Source operand is floating-point value *) DEST ← DEST + SRC; FI; IF Instruction = FADDP THEN PopRegisterStack; FI; 3-340 Vol. 2A FADD/FADDP/FIADD—Add INSTRUCTION SET REFERENCE, A-M FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS #IA Stack underflow occurred. Operand is an SNaN value or unsupported format. Operands are infinities of unlike sign. #D Source operand is a denormal value. #U Result is too small for destination format. #O Result is too large for destination format. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. FADD/FADDP/FIADD—Add Vol. 2A 3-341 INSTRUCTION SET REFERENCE, A-M #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-342 Vol. 2A FADD/FADDP/FIADD—Add INSTRUCTION SET REFERENCE, A-M FBLD—Load Binary Coded Decimal Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DF /4 FBLD m80 dec Valid Valid Convert BCD value to floating-point and push onto the FPU stack. Description Converts the BCD source operand into double extended-precision floating-point format and pushes the value onto the FPU stack. The source operand is loaded without rounding errors. The sign of the source operand is preserved, including that of −0. The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an undefined result. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation TOP ← TOP − 1; ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC); FPU Flags Affected C1 Set to 1 if stack overflow occurred; otherwise, set to 0. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack overflow occurred. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. FBLD—Load Binary Coded Decimal Vol. 2A 3-343 INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-344 Vol. 2A FBLD—Load Binary Coded Decimal INSTRUCTION SET REFERENCE, A-M FBSTP—Store BCD Integer and Pop Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0). Description Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in the destination operand, and pops the register stack. If the source value is a non-integral value, it is rounded to an integer value, according to rounding mode specified by the RC field of the FPU control word. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. The destination operand specifies the address where the first byte destination value is to be stored. The BCD value (including its sign bit) requires 10 bytes of space in memory. The following table shows the results obtained when storing various classes of numbers in packed BCD format. Table 3-29. FBSTP Results ST(0) DEST − • or Value Too Large for DEST Format * F≤−1 −D −1 < F < -0 ** −0 −0 +0 +0 + 0 < F < +1 ** F ≥ +1 +D + • or Value Too Large for DEST Format * NaN * NOTES: F Means finite floating-point value. D Means packed-BCD number. * Indicates floating-point invalid-operation (#IA) exception. ** ±0 or ±1, depending on the rounding mode. If the converted value is too large for the destination format, or if the source operand is an ∞, SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand condition is signaled. If the invalid-operation exception is not masked, an invalidarithmetic-operand exception (#IA) is generated and no value is stored in the desti- FBSTP—Store BCD Integer and Pop Vol. 2A 3-345 INSTRUCTION SET REFERENCE, A-M nation operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored in memory. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation DEST ← BCD(ST(0)); PopRegisterStack; FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. #IA Converted value that exceeds 18 BCD digits in length. Source operand is an SNaN, QNaN, ±∞, or in an unsupported format. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #GP(0) If a segment register is being loaded with a segment selector that points to a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. 3-346 Vol. 2A FBSTP—Store BCD Integer and Pop INSTRUCTION SET REFERENCE, A-M #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. FBSTP—Store BCD Integer and Pop Vol. 2A 3-347 INSTRUCTION SET REFERENCE, A-M FCHS—Change Sign Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 E0 FCHS Valid Valid Complements sign of ST(0). Description Complements the sign bit of ST(0). This operation changes a positive value into a negative value of equal magnitude or vice versa. The following table shows the results obtained when changing the sign of various classes of numbers. Table 3-30. FCHS Results ST(0) SRC ST(0) DEST −• +• −F +F −0 +0 +0 −0 +F −F +• −• NaN NaN NOTES: * F means finite floating-point value. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation SignBit(ST(0)) ← NOT (SignBit(ST(0))); FPU Flags Affected C1 Set to 0 if stack underflow occurred; otherwise, set to 0. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. 3-348 Vol. 2A FCHS—Change Sign INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FCHS—Change Sign Vol. 2A 3-349 INSTRUCTION SET REFERENCE, A-M FCLEX/FNCLEX—Clear Exceptions Opcode* Instruction 64-Bit Mode Compat/ Leg Mode Description 9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after checking for pending unmasked floatingpoint exceptions. DB E2 FNCLEX* Valid Valid Clear floating-point exception flags without checking for pending unmasked floating-point exceptions. NOTES: * See IA-32 Architecture Compatibility section below. Description Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The FCLEX instruction checks for and handles any pending unmasked floating-point exceptions before clearing the exception flags; the FNCLEX instruction does not. The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction followed by an FNCLEX instruction), and the processor executes each of these instructions separately. If an exception is generated for either of these instructions, the save EIP points to the instruction that caused the exception. IA-32 Architecture Compatibility When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible (under unusual circumstances) for an FNCLEX instruction to be interrupted prior to being executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An FNCLEX instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor. This instruction affects only the x87 FPU floating-point exception flags. It does not affect the SIMD floating-point exception flags in the MXCRS register. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation FPUStatusWord[0:7] ← 0; FPUStatusWord[15] ← 0; 3-350 Vol. 2A FCLEX/FNCLEX—Clear Exceptions INSTRUCTION SET REFERENCE, A-M FPU Flags Affected The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0, C1, C2, and C3 flags are undefined. Floating-Point Exceptions None. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FCLEX/FNCLEX—Clear Exceptions Vol. 2A 3-351 INSTRUCTION SET REFERENCE, A-M FCMOVcc—Floating-Point Conditional Move Opcode* Instruction 64-Bit Mode Compat/ Description Leg Mode* DA C0+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1). DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1). DA D0+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or ZF=1). DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1). DB C0+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0). DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0). DB D0+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0 and ZF=0). DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0). NOTES: * See IA-32 Architecture Compatibility section below. Description Tests the status flags in the EFLAGS register and moves the source operand (second operand) to the destination operand (first operand) if the given test condition is true. The condition for each mnemonic os given in the Description column above and in Chapter 8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. The source operand is always in the ST(i) register and the destination operand is always ST(0). The FCMOVcc instructions are useful for optimizing small IF constructions. They also help eliminate branching overhead for IF operations and the possibility of branch mispredictions by the processor. A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc instructions are supported by checking the processor’s feature information with the CPUID instruction (see “COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS” in this chapter). If both the CMOV and FPU feature bits are set, the FCMOVcc instructions are supported. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. IA-32 Architecture Compatibility The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family processors and are not available in earlier IA-32 processors. 3-352 Vol. 2A FCMOVcc—Floating-Point Conditional Move INSTRUCTION SET REFERENCE, A-M Operation IF condition TRUE THEN ST(0) ← ST(i); FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. Integer Flags Affected None. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FCMOVcc—Floating-Point Conditional Move Vol. 2A 3-353 INSTRUCTION SET REFERENCE, A-M FCOM/FCOMP/FCOMPP—Compare Floating Point Values Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp. DC /2 FCOM m64fp Valid Valid Compare ST(0) with m64fp. D8 D0+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i). D8 D1 FCOM Valid Valid Compare ST(0) with ST(1). D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and pop register stack. DC /3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and pop register stack. D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register stack. D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop register stack. DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop register stack twice. Description Compares the contents of register ST(0) and source value and sets condition code flags C0, C2, and C3 in the FPU status word according to the results (see the table below). The source operand can be a data register or a memory location. If no source operand is given, the value in ST(0) is compared with the value in ST(1). The sign of zero is ignored, so that –0.0 is equal to +0.0. Table 3-31. FCOM/FCOMP/FCOMPP Results Condition C3 C2 C0 ST(0) > SRC 0 0 0 ST(0) < SRC 0 0 1 ST(0) = SRC 1 0 0 Unordered* 1 1 1 NOTES: * Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated. This instruction checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-operand exception (#IA) is raised and, if the exception is masked, the condition flags are set to “unordered.” If the invalidarithmetic-operand exception is unmasked, the condition code flags are not set. 3-354 Vol. 2A FCMOVcc—Floating-Point Conditional Move INSTRUCTION SET REFERENCE, A-M The FCOMP instruction pops the register stack following the comparison operation and the FCOMPP instruction pops the register stack twice following the comparison operation. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. The FCOM instructions perform the same operation as the FUCOM instructions. The only difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arithmetic-operand exception (#IA) when either or both of the operands is a NaN value or is in an unsupported format. The FUCOM instructions perform the same operation as the FCOM instructions, except that they do not generate an invalidarithmetic-operand exception for QNaNs. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation CASE (relation of operands) OF ST > SRC: C3, C2, C0 ← 000; ST < SRC: C3, C2, C0 ← 001; ST = SRC: C3, C2, C0 ← 100; ESAC; IF ST(0) or SRC = NaN or unsupported format THEN #IA IF FPUControlWord.IM = 1 THEN C3, C2, C0 ← 111; FI; FI; IF Instruction = FCOMP THEN PopRegisterStack; FI; IF Instruction = FCOMPP THEN PopRegisterStack; PopRegisterStack; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred; otherwise, set to 0. C0, C2, C3 See table on previous page. FCMOVcc—Floating-Point Conditional Move Vol. 2A 3-355 INSTRUCTION SET REFERENCE, A-M Floating-Point Exceptions #IS Stack underflow occurred. #IA One or both operands are NaN values or have unsupported formats. #D One or both operands are denormal values. Register is marked empty. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. 3-356 Vol. 2A FCMOVcc—Floating-Point Conditional Move INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. FCMOVcc—Floating-Point Conditional Move Vol. 2A 3-357 INSTRUCTION SET REFERENCE, A-M FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DB F0+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status flags accordingly. DF F0+i FCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), set status flags accordingly, and pop register stack. DB E8+i FUCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, and set status flags accordingly. DF E8+i FUCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, set status flags accordingly, and pop register stack. Description Performs an unordered comparison of the contents of registers ST(0) and ST(i) and sets the status flags ZF, PF, and CF in the EFLAGS register according to the results (see the table below). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0. Table 3-32. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results Comparison Results* ZF PF CF ST0 > ST(i) 0 0 0 ST0 < ST(i) 0 0 1 ST0 = ST(i) 1 0 0 Unordered** 1 1 1 NOTES: * See the IA-32 Architecture Compatibility section below. ** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated. An unordered comparison checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this chapter). The FUCOMI/FUCOMIP instructions perform the same operations as the FCOMI/FCOMIP instructions. The only difference is that the FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand exception (#IA) only when either or both operands are an SNaN or are in an unsupported format; QNaNs cause the condition code flags to be set to unordered, but do not cause an exception to be generated. The FCOMI/FCOMIP instructions raise an invalid-operation exception when either or both of the operands are a NaN value of any kind or are in an unsupported format. 3-358 Vol. 2A FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS INSTRUCTION SET REFERENCE, A-M If the operation results in an invalid-arithmetic-operand exception being raised, the status flags in the EFLAGS register are set only if the exception is masked. The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions clear the OF flag in the EFLAGS register (regardless of whether an invalid-operation exception is detected). The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison operation. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. IA-32 Architecture Compatibility The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32 Architecture in the P6 family processors and are not available in earlier IA-32 processors. Operation CASE (relation of operands) OF ST(0) > ST(i): ZF, PF, CF ← 000; ST(0) < ST(i): ZF, PF, CF ← 001; ST(0) = ST(i): ZF, PF, CF ← 100; ESAC; IF Instruction is FCOMI or FCOMIP THEN IF ST(0) or ST(i) = NaN or unsupported format THEN #IA IF FPUControlWord.IM = 1 THEN ZF, PF, CF ← 111; FI; FI; FI; IF Instruction is FUCOMI or FUCOMIP THEN IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format THEN ZF, PF, CF ← 111; ELSE (* ST(0) or ST(i) is SNaN or unsupported format *) #IA; IF FPUControlWord.IM = 1 THEN FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS Vol. 2A 3-359 INSTRUCTION SET REFERENCE, A-M FI; ZF, PF, CF ← 111; FI; FI; IF Instruction is FCOMIP or FUCOMIP THEN PopRegisterStack; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred; otherwise, set to 0. C0, C2, C3 Not affected. Floating-Point Exceptions #IS Stack underflow occurred. #IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or have unsupported formats. (FUCOMI or FUCOMIP instruction) One or both operands are SNaN values (but not QNaNs) or have undefined formats. Detection of a QNaN value does not raise an invalid-operand exception. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-360 Vol. 2A FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS INSTRUCTION SET REFERENCE, A-M FCOS—Cosine Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 FF FCOS Valid Valid Replace ST(0) with its cosine. Description Computes the cosine of the source operand in register ST(0) and stores the result in ST(0). The source operand must be given in radians and must be within the range − 263 to +263. The following table shows the results obtained when taking the cosine of various classes of numbers. Table 3-33. FCOS Results ST(0) SRC ST(0) DEST −• * −F −1 to +1 −0 +1 +0 +1 +F − 1 to + 1 +• * NaN NaN NOTES: F Means finite floating-point value. * Indicates floating-point invalid-arithmetic-operand (#IA) exception. If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in performing such reductions. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation IF |ST(0)| < 263 THEN C2 ← 0; FCOS—Cosine Vol. 2A 3-361 INSTRUCTION SET REFERENCE, A-M ST(0) ← cosine(ST(0)); ELSE (* Source operand is out-of-range *) C2 ← 1; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. Undefined if C2 is 1. C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0. C0, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. #IA Source operand is an SNaN value, ∞, or unsupported format. #D Source is a denormal value. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-362 Vol. 2A FCOS—Cosine INSTRUCTION SET REFERENCE, A-M FDECSTP—Decrement Stack-Top Pointer Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 F6 FDECSTP Valid Valid Decrement TOP field in FPU status word. Description Subtracts one from the TOP field of the FPU status word (decrements the top-ofstack pointer). If the TOP field contains a 0, it is set to 7. The effect of this instruction is to rotate the stack by one position. The contents of the FPU data registers and tag register are not affected. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation IF TOP = 0 THEN TOP ← 7; ELSE TOP ← TOP – 1; FI; FPU Flags Affected The C1 flag is set to 0. The C0, C2, and C3 flags are undefined. Floating-Point Exceptions None. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. FDECSTP—Decrement Stack-Top Pointer Vol. 2A 3-363 INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-364 Vol. 2A FDECSTP—Decrement Stack-Top Pointer INSTRUCTION SET REFERENCE, A-M FDIV/FDIVP/FIDIV—Divide Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store result in ST(0). DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store result in ST(0). D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result in ST(0). DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result in ST(i). DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in ST(i), and pop the register stack. DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in ST(1), and pop the register stack. DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store result in ST(0). DE /6 FIDIV m16int Valid Valid Divide ST(0) by m64int and store result in ST(0). Description Divides the destination operand by the source operand and stores the result in the destination location. The destination operand (dividend) is always in an FPU register; the source operand (divisor) can be a register or a memory location. Source operands in memory can be in single-precision or double-precision floating-point format, word or doubleword integer format. The no-operand version of the instruction divides the contents of the ST(1) register by the contents of the ST(0) register. The one-operand version divides the contents of the ST(0) register by the contents of a memory location (either a floating-point or an integer value). The two-operand version, divides the contents of the ST(0) register by the contents of the ST(i) register or vice versa. The FDIVP instructions perform the additional operation of popping the FPU register stack after storing the result. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. The nooperand version of the floating-point divide instructions always results in the register stack being popped. In some assemblers, the mnemonic for this instruction is FDIV rather than FDIVP. The FIDIV instructions convert an integer source operand to double extended-precision floating-point format before performing the division. When the source operand is an integer 0, it is treated as a +0. FDIV/FDIVP/FIDIV—Divide Vol. 2A 3-365 INSTRUCTION SET REFERENCE, A-M If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception is masked, an ∞ of the appropriate sign is stored in the destination operand. The following table shows the results obtained when dividing various classes of numbers, assuming that neither overflow nor underflow occurs. Table 3-34. FDIV/FDIVP/FIDIV Results DEST SRC −• −F −0 +0 +F +• NaN −• * +0 +0 −0 −0 * NaN −F +• +F +0 −0 −F −• NaN −I +• +F +0 −0 −F −• NaN −0 +• ** * * ** −• NaN +0 −• ** * * ** +• NaN +I −• −F −0 +0 +F +• NaN +F −• −F −0 +0 +F +• NaN +• * −0 −0 +0 +0 * NaN NaN NaN NaN NaN NaN NaN NaN NaN NOTES: F Means finite floating-point value. I Means integer. * Indicates floating-point invalid-arithmetic-operand (#IA) exception. ** Indicates floating-point zero-divide (#Z) exception. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation IF SRC = 0 THEN #Z; ELSE IF Instruction is FIDIV THEN DEST ← DEST / ConvertToDoubleExtendedPrecisionFP(SRC); ELSE (* Source operand is floating-point value *) DEST ← DEST / SRC; FI; FI; 3-366 Vol. 2A FDIV/FDIVP/FIDIV—Divide INSTRUCTION SET REFERENCE, A-M IF Instruction = FDIVP THEN PopRegisterStack; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. #IA Operand is an SNaN value or unsupported format. ±∞ / ±∞; ±0 / ±0 #D Source is a denormal value. #Z DEST / ±0, where DEST is not equal to ±0. #U Result is too small for destination format. #O Result is too large for destination format. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. FDIV/FDIVP/FIDIV—Divide Vol. 2A 3-367 INSTRUCTION SET REFERENCE, A-M Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-368 Vol. 2A FDIV/FDIVP/FIDIV—Divide INSTRUCTION SET REFERENCE, A-M FDIVR/FDIVRP/FIDIVR—Reverse Divide Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D8 /7 FDIVR m32fp Valid Valid Divide m32fp by ST(0) and store result in ST(0). DC /7 FDIVR m64fp Valid Valid Divide m64fp by ST(0) and store result in ST(0). D8 F8+i FDIVR ST(0), ST(i) Valid Valid Divide ST(i) by ST(0) and store result in ST(0). DC F0+i FDIVR ST(i), ST(0) Valid Valid Divide ST(0) by ST(i) and store result in ST(i). DE F0+i FDIVRP ST(i), ST(0) Valid Valid Divide ST(0) by ST(i), store result in ST(i), and pop the register stack. DE F1 FDIVRP Valid Valid Divide ST(0) by ST(1), store result in ST(1), and pop the register stack. DA /7 FIDIVR m32int Valid Valid Divide m32int by ST(0) and store result in ST(0). DE /7 FIDIVR m16int Valid Valid Divide m16int by ST(0) and store result in ST(0). Description Divides the source operand by the destination operand and stores the result in the destination location. The destination operand (divisor) is always in an FPU register; the source operand (dividend) can be a register or a memory location. Source operands in memory can be in single-precision or double-precision floating-point format, word or doubleword integer format. These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions. They are provided to support more efficient coding. The no-operand version of the instruction divides the contents of the ST(0) register by the contents of the ST(1) register. The one-operand version divides the contents of a memory location (either a floating-point or an integer value) by the contents of the ST(0) register. The two-operand version, divides the contents of the ST(i) register by the contents of the ST(0) register or vice versa. The FDIVRP instructions perform the additional operation of popping the FPU register stack after storing the result. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. The nooperand version of the floating-point divide instructions always results in the register stack being popped. In some assemblers, the mnemonic for this instruction is FDIVR rather than FDIVRP. FDIVR/FDIVRP/FIDIVR—Reverse Divide Vol. 2A 3-369 INSTRUCTION SET REFERENCE, A-M The FIDIVR instructions convert an integer source operand to double extended-precision floating-point format before performing the division. If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception is masked, an ∞ of the appropriate sign is stored in the destination operand. The following table shows the results obtained when dividing various classes of numbers, assuming that neither overflow nor underflow occurs. Table 3-35. FDIVR/FDIVRP/FIDIVR Results DEST −• −F −0 +0 +F +• NaN −• * +• +• −• −• * NaN −F +0 +F ** ** −F −0 NaN −I +0 +F ** ** −F −0 NaN −0 +0 +0 * * −0 −0 NaN +0 −0 −0 * * +0 +0 NaN +I −0 −F ** ** +F +0 NaN +F −0 −F ** ** +F +0 NaN +• * −• −• +• +• * NaN NaN NaN NaN NaN NaN NaN NaN NaN SRC NOTES: F Means finite floating-point value. I Means integer. * Indicates floating-point invalid-arithmetic-operand (#IA) exception. ** Indicates floating-point zero-divide (#Z) exception. When the source operand is an integer 0, it is treated as a +0. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation IF DEST = 0 THEN #Z; ELSE IF Instruction = FIDIVR THEN DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) / DEST; ELSE (* Source operand is floating-point value *) 3-370 Vol. 2A FDIVR/FDIVRP/FIDIVR—Reverse Divide INSTRUCTION SET REFERENCE, A-M FI; DEST ← SRC / DEST; FI; IF Instruction = FDIVRP THEN PopRegisterStack; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. #IA Operand is an SNaN value or unsupported format. ±∞ / ±∞; ±0 / ±0 #D Source is a denormal value. #Z SRC / ±0, where SRC is not equal to ±0. #U Result is too small for destination format. #O Result is too large for destination format. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. FDIVR/FDIVRP/FIDIVR—Reverse Divide Vol. 2A 3-371 INSTRUCTION SET REFERENCE, A-M #SS If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-372 Vol. 2A FDIVR/FDIVRP/FIDIVR—Reverse Divide INSTRUCTION SET REFERENCE, A-M FFREE—Free Floating-Point Register Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DD C0+i FFREE ST(i) Valid Valid Sets tag for ST(i) to empty. Description Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents of ST(i) and the FPU stack-top pointer (TOP) are not affected. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation TAG(i) ← 11B; FPU Flags Affected C0, C1, C2, C3 undefined. Floating-Point Exceptions None. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FFREE—Free Floating-Point Register Vol. 2A 3-373 INSTRUCTION SET REFERENCE, A-M FICOM/FICOMP—Compare Integer Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DE /2 FICOM m16int Valid Valid Compare ST(0) with m16int. DA /2 FICOM m32int Valid Valid Compare ST(0) with m32int. DE /3 FICOMP m16int Valid Valid Compare ST(0) with m16int and pop stack register. DA /3 FICOMP m32int Valid Valid Compare ST(0) with m32int and pop stack register. Description Compares the value in ST(0) with an integer source operand and sets the condition code flags C0, C2, and C3 in the FPU status word according to the results (see table below). The integer value is converted to double extended-precision floating-point format before the comparison is made. Table 3-36. FICOM/FICOMP Results Condition C3 C2 C0 ST(0) > SRC 0 0 0 ST(0) < SRC 0 0 1 ST(0) = SRC 1 0 0 Unordered 1 1 1 These instructions perform an “unordered comparison.” An unordered comparison also checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this chapter). If either operand is a NaN or is in an undefined format, the condition flags are set to “unordered.” The sign of zero is ignored, so that –0.0 ← +0.0. The FICOMP instructions pop the register stack following the comparison. To pop the register stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation CASE (relation of operands) OF ST(0) > SRC: C3, C2, C0 ← 000; ST(0) < SRC: C3, C2, C0 ← 001; ST(0) = SRC: C3, C2, C0 ← 100; Unordered: C3, C2, C0 ← 111; 3-374 Vol. 2A FICOM/FICOMP—Compare Integer INSTRUCTION SET REFERENCE, A-M ESAC; IF Instruction = FICOMP THEN PopRegisterStack; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred; otherwise, set to 0. C0, C2, C3 See table on previous page. Floating-Point Exceptions #IS Stack underflow occurred. #IA One or both operands are NaN values or have unsupported formats. #D One or both operands are denormal values. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. FICOM/FICOMP—Compare Integer Vol. 2A 3-375 INSTRUCTION SET REFERENCE, A-M #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-376 Vol. 2A FICOM/FICOMP—Compare Integer INSTRUCTION SET REFERENCE, A-M FILD—Load Integer Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DF /0 FILD m16int Valid Valid Push m16int onto the FPU register stack. DB /0 FILD m32int Valid Valid Push m32int onto the FPU register stack. DF /5 FILD m64int Valid Valid Push m64int onto the FPU register stack. Description Converts the signed-integer source operand into double extended-precision floatingpoint format and pushes the value onto the FPU register stack. The source operand can be a word, doubleword, or quadword integer. It is loaded without rounding errors. The sign of the source operand is preserved. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation TOP ← TOP − 1; ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC); FPU Flags Affected C1 Set to 1 if stack overflow occurred; set to 0 otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack overflow occurred. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. FILD—Load Integer Vol. 2A 3-377 INSTRUCTION SET REFERENCE, A-M #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-378 Vol. 2A FILD—Load Integer INSTRUCTION SET REFERENCE, A-M FINCSTP—Increment Stack-Top Pointer Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 F7 FINCSTP Valid Valid Increment the TOP field in the FPU status register. Description Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). If the TOP field contains a 7, it is set to 0. The effect of this instruction is to rotate the stack by one position. The contents of the FPU data registers and tag register are not affected. This operation is not equivalent to popping the stack, because the tag for the previous top-of-stack register is not marked empty. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation IF TOP = 7 THEN TOP ← 0; ELSE TOP ← TOP + 1; FI; FPU Flags Affected The C1 flag is set to 0. The C0, C2, and C3 flags are undefined. Floating-Point Exceptions None. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. FINCSTP—Increment Stack-Top Pointer Vol. 2A 3-379 INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-380 Vol. 2A FINCSTP—Increment Stack-Top Pointer INSTRUCTION SET REFERENCE, A-M FINIT/FNINIT—Initialize Floating-Point Unit Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description 9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending unmasked floating-point exceptions. DB E3 FNINIT* Valid Valid Initialize FPU without checking for pending unmasked floating-point exceptions. NOTES: * See IA-32 Architecture Compatibility section below. Description Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default states. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers in the register stack are left unchanged, but they are all tagged as empty (11B). Both the instruction and data pointers are cleared. The FINIT instruction checks for and handles any pending unmasked floating-point exceptions before performing the initialization; the FNINIT instruction does not. The assembler issues two instructions for the FINIT instruction (an FWAIT instruction followed by an FNINIT instruction), and the processor executes each of these instructions in separately. If an exception is generated for either of these instructions, the save EIP points to the instruction that caused the exception. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. IA-32 Architecture Compatibility When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual circumstances) for an FNINIT instruction to be interrupted prior to being executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An FNINIT instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor. In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction and data pointers. This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR registers. FINIT/FNINIT—Initialize Floating-Point Unit Vol. 2A 3-381 INSTRUCTION SET REFERENCE, A-M Operation FPUControlWord ← 037FH; FPUStatusWord ← 0; FPUTagWord ← FFFFH; FPUDataPointer ← 0; FPUInstructionPointer ← 0; FPULastInstructionOpcode ← 0; FPU Flags Affected C0, C1, C2, C3 set to 0. Floating-Point Exceptions None. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-382 Vol. 2A FINIT/FNINIT—Initialize Floating-Point Unit INSTRUCTION SET REFERENCE, A-M FIST/FISTP—Store Integer Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DF /2 FIST m16int Valid Valid Store ST(0) in m16int. DB /2 FIST m32int Valid Valid Store ST(0) in m32int. DF /3 FISTP m16int Valid Valid Store ST(0) in m16int and pop register stack. DB /3 FISTP m32int Valid Valid Store ST(0) in m32int and pop register stack. DF /7 FISTP m64int Valid Valid Store ST(0) in m64int and pop register stack. Description The FIST instruction converts the value in the ST(0) register to a signed integer and stores the result in the destination operand. Values can be stored in word or doubleword integer format. The destination operand specifies the address where the first byte of the destination value is to be stored. The FISTP instruction performs the same operation as the FIST instruction and then pops the register stack. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction also stores values in quadword integer format. The following table shows the results obtained when storing various classes of numbers in integer format. Table 3-37. FIST/FISTP Results ST(0) DEST −• or Value Too Large for DEST Format * F ≤ −1 −I −1 < F < −0 ** −0 0 +0 0 +0 0.0 0 0 0 ST(0) < 0.0 0 0 1 ST(0) = 0.0 1 0 0 Unordered 1 1 1 This instruction performs an “unordered comparison.” An unordered comparison also checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this chapter). If the value in register ST(0) is a NaN or is in an undefined format, the condition flags are set to “unordered” and the invalid operation exception is generated. The sign of zero is ignored, so that (– 0.0 ← +0.0). This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation CASE (relation of operands) OF Not comparable: C3, C2, C0 ← 111; ST(0) > 0.0: C3, C2, C0 ← 000; ST(0) < 0.0: C3, C2, C0 ← 001; ST(0) = 0.0: C3, C2, C0 ← 100; ESAC; FPU Flags Affected C1 Set to 0 if stack underflow occurred; otherwise, set to 0. C0, C2, C3 See Table 3-50. Floating-Point Exceptions #IS FTST—TEST Stack underflow occurred. Vol. 2A 3-455 INSTRUCTION SET REFERENCE, A-M #IA The source operand is a NaN value or is in an unsupported format. #D The source operand is a denormal value. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-456 Vol. 2A FTST—TEST INSTRUCTION SET REFERENCE, A-M FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description DD E0+i FUCOM ST(i) Valid Valid Compare ST(0) with ST(i). DD E1 FUCOM Valid Valid Compare ST(0) with ST(1). DD E8+i FUCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register stack. DD E9 FUCOMP Valid Valid Compare ST(0) with ST(1) and pop register stack. DA E9 FUCOMPP Valid Valid Compare ST(0) with ST(1) and pop register stack twice. Description Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition code flags C0, C2, and C3 in the FPU status word according to the results (see the table below). If no operand is specified, the contents of registers ST(0) and ST(1) are compared. The sign of zero is ignored, so that –0.0 is equal to +0.0. Table 3-51. FUCOM/FUCOMP/FUCOMPP Results Comparison Results* C3 C2 C0 ST0 > ST(i) 0 0 0 ST0 < ST(i) 0 0 1 ST0 = ST(i) 1 0 0 Unordered 1 1 1 NOTES: * Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated. An unordered comparison checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this chapter). The FUCOM/FUCOMP/FUCOMPP instructions perform the same operations as the FCOM/FCOMP/FCOMPP instructions. The only difference is that the FUCOM/FUCOMP/FUCOMPP instructions raise the invalidarithmetic-operand exception (#IA) only when either or both operands are an SNaN or are in an unsupported format; QNaNs cause the condition code flags to be set to unordered, but do not cause an exception to be generated. The FCOM/FCOMP/FCOMPP instructions raise an invalid-operation exception when either or both of the operands are a NaN value of any kind or are in an unsupported format. As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalidarithmetic-operand exception being raised, the condition code flags are set only if the exception is masked. FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values Vol. 2A 3-457 INSTRUCTION SET REFERENCE, A-M The FUCOMP instruction pops the register stack following the comparison operation and the FUCOMPP instruction pops the register stack twice following the comparison operation. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation CASE (relation of operands) OF ST > SRC: C3, C2, C0 ← 000; ST < SRC: C3, C2, C0 ← 001; ST = SRC: C3, C2, C0 ← 100; ESAC; IF ST(0) or SRC = QNaN, but not SNaN or unsupported format THEN C3, C2, C0 ← 111; ELSE (* ST(0) or SRC is SNaN or unsupported format *) #IA; IF FPUControlWord.IM = 1 THEN C3, C2, C0 ← 111; FI; FI; IF Instruction = FUCOMP THEN PopRegisterStack; FI; IF Instruction = FUCOMPP THEN PopRegisterStack; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred. C0, C2, C3 See Table 3-51. Floating-Point Exceptions #IS 3-458 Vol. 2A Stack underflow occurred. FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values INSTRUCTION SET REFERENCE, A-M #IA One or both operands are SNaN values or have unsupported formats. Detection of a QNaN value in and of itself does not raise an invalid-operand exception. #D One or both operands are denormal values. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values Vol. 2A 3-459 INSTRUCTION SET REFERENCE, A-M FXAM—Examine ModR/M Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 E5 FXAM Valid Valid Classify value or number in ST(0). Description Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in the FPU status word to indicate the class of value or number in the register (see the table below). Table 3-52. FXAM Results . Class C3 C2 C0 Unsupported 0 0 0 NaN 0 0 1 Normal finite number 0 1 0 Infinity 0 1 1 Zero 1 0 0 Empty 1 0 1 Denormal number 1 1 0 The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty or full. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation C1 ← sign bit of ST; (* 0 for positive, 1 for negative *) CASE (class of value or number in ST(0)) OF Unsupported:C3, C2, C0 ← 000; NaN: C3, C2, C0 ← 001; Normal: C3, C2, C0 ← 010; Infinity: C3, C2, C0 ← 011; Zero: C3, C2, C0 ← 100; Empty: C3, C2, C0 ← 101; Denormal: C3, C2, C0 ← 110; ESAC; 3-460 Vol. 2A FXAM—Examine ModR/M INSTRUCTION SET REFERENCE, A-M FPU Flags Affected C1 Sign of value in ST(0). C0, C2, C3 See Table 3-52. Floating-Point Exceptions None. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FXAM—Examine ModR/M Vol. 2A 3-461 INSTRUCTION SET REFERENCE, A-M FXCH—Exchange Register Contents Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and ST(i). D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and ST(1). Description Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the contents of ST(0) and ST(1) are exchanged. This instruction provides a simple means of moving values in the FPU register stack to the top of the stack [ST(0)], so that they can be operated on by those floatingpoint instructions that can only operate on values in ST(0). For example, the following instruction sequence takes the square root of the third register from the top of the register stack: FXCH ST(3); FSQRT; FXCH ST(3); This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation IF (Number-of-operands) is 1 THEN temp ← ST(0); ST(0) ← SRC; SRC ← temp; ELSE temp ← ST(0); ST(0) ← ST(1); ST(1) ← temp; FI; FPU Flags Affected C1 Set to 0 if stack underflow occurred; otherwise, set to 1. C0, C2, C3 Undefined. Floating-Point Exceptions #IS 3-462 Vol. 2A Stack underflow occurred. FXCH—Exchange Register Contents INSTRUCTION SET REFERENCE, A-M Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FXCH—Exchange Register Contents Vol. 2A 3-463 INSTRUCTION SET REFERENCE, A-M FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F AE /1 FXRSTOR m512byte A Valid Valid Restore the x87 FPU, MMX, XMM, and MXCSR register state from m512byte. REX.W+ 0F AE /1 FXRSTOR64 m512byte A Valid N.E. Restore the x87 FPU, MMX, XMM, and MXCSR register state from m512byte. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte memory image specified in the source operand. This data should have been written to memory previously using the FXSAVE instruction, and in the same format as required by the operating modes. The first byte of the data should be located on a 16-byte boundary. There are three distinct layouts of the FXSAVE state map: one for legacy and compatibility mode, a second format for 64-bit mode FXSAVE/FXRSTOR with REX.W=0, and the third format is for 64-bit mode with FXSAVE64/FXRSTOR64. Table 3-53 shows the layout of the legacy/compatibility mode state information in memory and describes the fields in the memory image for the FXRSTOR and FXSAVE instructions. Table 3-56 shows the layout of the 64-bit mode state information when REX.W is set (FXSAVE64/FXRSTOR64). Table 3-57 shows the layout of the 64-bit mode state information when REX.W is clear (FXSAVE/FXRSTOR). The state image referenced with an FXRSTOR instruction must have been saved using an FXSAVE instruction or be in the same format as required by Table 3-53, Table 3-56, or Table 3-57. Referencing a state image saved with an FSAVE, FNSAVE instruction or incompatible field layout will result in an incorrect state restoration. The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise exceptions when loading x87 FPU state information with the FXRSTOR instruction, use an FWAIT instruction after the FXRSTOR instruction. If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not restore the states of the XMM and MXCSR registers. This behavior is implementation dependent. If the MXCSR state contains an unmasked exception with a corresponding status flag also set, loading the register with the FXRSTOR instruction will not result in a SIMD floating-point error condition being generated. Only the next occurrence of this unmasked exception will result in the exception being generated. 3-464 Vol. 2A FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State INSTRUCTION SET REFERENCE, A-M Bits 16 through 32 of the MXCSR register are defined as reserved and should be set to 0. Attempting to write a 1 in any of these bits from the saved state image will result in a general protection exception (#GP) being generated. Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores the content of bytes 464:511 in an FXSAVE state image. Operation (x87 FPU, MMX, XMM7-XMM0, MXCSR) ← Load(SRC); x87 FPU and SIMD Floating-Point Exceptions None. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See alignment check exception [#AC] below.) For an attempt to set reserved bits in MXCSR. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. If CR0.EM[bit 2] = 1. #UD If CPUID.01H:EDX.FXSR[bit 24] = 0. If instruction is preceded by a LOCK prefix. #AC If this exception is disabled a general protection exception (#GP) is signaled if the memory operand is not aligned on a 16byte boundary, as described above. If the alignment check exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may vary with implementation, as follows. In all implementations where #AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implementation. For instance, for a given implementation, an alignment check exception might be signaled for a 2-byte misalignment, whereas a general protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments). #UD If the LOCK prefix is used. FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State Vol. 2A 3-465 INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH. For an attempt to set reserved bits in MXCSR. #NM If CR0.TS[bit 3] = 1. #UD If CPUID.01H:EDX.FXSR[bit 24] = 0. If CR0.EM[bit 2] = 1. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) For a page fault. #AC For unaligned memory reference. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. If memory operand is not aligned on a 16-byte boundary, regardless of segment. For an attempt to set reserved bits in MXCSR. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. If CR0.EM[bit 2] = 1. #UD If CPUID.01H:EDX.FXSR[bit 24] = 0. If instruction is preceded by a LOCK prefix. #AC 3-466 Vol. 2A If this exception is disabled a general protection exception (#GP) is signaled if the memory operand is not aligned on a 16-byte boundary, as described above. If the alignment check exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may vary with implementation, as follows. In all implementations where #AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implemen- FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State INSTRUCTION SET REFERENCE, A-M tation. For instance, for a given implementation, an alignment check exception might be signaled for a 2-byte misalignment, whereas a general protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments). FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State Vol. 2A 3-467 INSTRUCTION SET REFERENCE, A-M FXSAVE—Save x87 FPU, MMX Technology, and SSE State Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F AE /0 FXSAVE m512byte A Valid Valid Save the x87 FPU, MMX, XMM, and MXCSR register state to m512byte. REX.W+ 0F AE /0 FXSAVE64 m512byte A Valid N.E. Save the x87 FPU, MMX, XMM, and MXCSR register state to m512byte. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) NA NA NA Description Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory location specified in the destination operand. The content layout of the 512 byte region depends on whether the processor is operating in non64-bit operating modes or 64-bit sub-mode of IA-32e mode. Bytes 464:511 are available to software use. The processor does not write to bytes 464:511 of an FXSAVE area. The operation of FXSAVE in non-64-bit modes is described first. Non-64-Bit Mode Operation Table 3-53 shows the layout of the state information in memory when the processor is operating in legacy modes. Table 3-53. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region 15 14 13 Rsrvd 12 CS MXCSR_MASK 11 10 9 8 7 6 5 4 FPU IP FOP Rs FTW rvd MXCSR Rsrvd DS 3 2 FSW 1 0 FCW FPU DP 0 16 Reserved ST0/MM0 32 Reserved ST1/MM1 48 Reserved ST2/MM2 64 Reserved ST3/MM3 80 Reserved ST4/MM4 96 3-468 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State INSTRUCTION SET REFERENCE, A-M Table 3-53. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region (Contd.) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved ST5/MM5 112 Reserved ST6/MM6 128 Reserved ST7/MM7 144 XMM0 160 XMM1 176 XMM2 192 XMM3 208 XMM4 224 XMM5 240 XMM6 256 XMM7 272 Reserved 288 Reserved 304 Reserved 320 Reserved 336 Reserved 352 Reserved 368 Reserved 384 Reserved 400 Reserved 416 Reserved 432 Reserved 448 Available 464 Available 480 Available 496 The destination operand contains the first byte of the memory image, and it must be aligned on a 16-byte boundary. A misaligned destination operand will result in a general-protection (#GP) exception being generated (or in some cases, an alignment check exception [#AC]). FXSAVE—Save x87 FPU, MMX Technology, and SSE State Vol. 2A 3-469 INSTRUCTION SET REFERENCE, A-M The FXSAVE instruction is used when an operating system needs to perform a context switch or when an exception handler needs to save and examine the current state of the x87 FPU, MMX technology, and/or XMM and MXCSR registers. The fields in Table 3-53 are defined in Table 3-54. Table 3-54. Field Definitions Field Definition FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for the layout of the x87 FPU control word. FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for the layout of the x87 FPU status word. Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as described in the following paragraphs. FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode, upper 5 bits are reserved. See Figure 8-8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for the layout of the x87 FPU opcode field. FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field differ depending on the current addressing mode (32-bit or 16-bit) of the processor when the FXSAVE instruction was executed: 32-bit mode — 32-bit IP offset. 16-bit mode — low 16 bits are IP offset; high 16 bits are reserved. See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU instruction pointer. CS x87 FPU Instruction Pointer Selector (16 bits). FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents of this field differ depending on the current addressing mode (32-bit or 16bit) of the processor when the FXSAVE instruction was executed: 32-bit mode — 32-bit DP offset. 16-bit mode — low 16 bits are DP offset; high 16 bits are reserved. See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU operand pointer. DS 3-470 Vol. 2A x87 FPU Instruction Operand (Data) Pointer Selector (16 bits). FXSAVE—Save x87 FPU, MMX Technology, and SSE State INSTRUCTION SET REFERENCE, A-M Table 3-54. Field Definitions (Contd.) Field Definition MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for the layout of the MXCSR register. If the OSFXSR bit in control register CR4 is not set, the FXSAVE instruction may not save this register. This behavior is implementation dependent. MXCSR_ MASK MXCSR_MASK (32 bits). This mask can be used to adjust values written to the MXCSR register, ensuring that reserved bits are set to 0. Set the mask bits and flags in MXCSR to the mode of operation desired for SSE and SSE2 SIMD floating-point instructions. See “Guidelines for Writing to the MXCSR Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for instructions for how to determine and use the MXCSR_MASK value. ST0/MM0 through ST7/MM7 x87 FPU or MMX technology registers. These 80-bit fields contain the x87 FPU data registers or the MMX technology registers, depending on the state of the processor prior to the execution of the FXSAVE instruction. If the processor had been executing x87 FPU instruction prior to the FXSAVE instruction, the x87 FPU data registers are saved; if it had been executing MMX instructions (or SSE or SSE2 instructions that operated on the MMX technology registers), the MMX technology registers are saved. When the MMX technology registers are saved, the high 16 bits of the field are reserved. XMM0 through XMM7 XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not set, the FXSAVE instruction may not save these registers. This behavior is implementation dependent. The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field (unlike the FSAVE instruction, which saves the complete tag word). The tag information is saved in physical register order (R0 through R7), rather than in top-ofstack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 for valid or 0 for empty) is saved for each tag. For example, assume that the tag word is currently set as follows: R7 R6 R5 R4 R3 R2 R1 R0 11 xx xx xx 11 11 11 11 Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special (10B). For this example, the FXSAVE instruction saves only the following 8 bits of information: R7 R6 R5 R4 R3 R2 R1 R0 0 1 1 1 0 0 0 0 FXSAVE—Save x87 FPU, MMX Technology, and SSE State Vol. 2A 3-471 INSTRUCTION SET REFERENCE, A-M Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag. The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as follows: • FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The FXSAVE operation in this regard is similar to the operation of the FNSAVE instruction). • After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology, XMM, and MXCSR registers, the processor retains the contents of the registers. Because of this behavior, the FXSAVE instruction cannot be used by an application program to pass a “clean” x87 FPU state to a procedure, since it retains the current state. To clean the x87 FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE instruction to reinitialize the x87 FPU state. • The format of the memory image saved with the FXSAVE instruction is the same regardless of the current addressing mode (32-bit or 16-bit) and operating mode (protected, real address, or system management). This behavior differs from the FSAVE instructions, where the memory image format is different depending on the addressing mode and operating mode. Because of the different image formats, the memory image saved with the FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and likewise the state saved with the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction. The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP data (assuming the stored data was not the contents of MMX technology registers) using Table 3-55. Table 3-55. Recreating FSAVE Format Exponent all 1’s Exponent all 0’s Fraction all 0’s J and M bits FTW valid bit x87 FTW 0 0 0 0x 1 Special 10 0 0 0 1x 1 Valid 00 0 0 1 00 1 Special 10 0 0 1 10 1 Valid 00 0 1 0 0x 1 Special 10 0 1 0 1x 1 Special 10 0 1 1 00 1 Zero 01 0 1 1 10 1 Special 10 1 0 0 1x 1 Special 10 1 0 0 1x 1 Special 10 3-472 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State INSTRUCTION SET REFERENCE, A-M Table 3-55. Recreating FSAVE Format (Contd.) Exponent all 1’s Exponent all 0’s Fraction all 0’s J and M bits FTW valid bit x87 FTW 1 0 1 00 1 Special 10 1 0 1 10 1 Special 10 0 Empty 11 For all legal combinations above. The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand. The M-bit is defined to be the most significant bit of the fractional portion of the significand (i.e., the bit immediately to the right of the decimal place). When the M-bit is the most significant bit of the fractional portion of the significand, it must be 0 if the fraction is all 0’s. IA-32e Mode Operation In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through XMM7, are saved according to the legacy FXSAVE map. In 64-bit mode, all of the SSE registers, XMM0 through XMM15, are saved. Additionally, there are two different layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 3-56), the FPU IP and FPU DP pointers are 64-bit wide. In the FXSAVE map for 64-bit mode (Table 3-57), the FPU IP and FPU DP pointers are 32-bits. Table 3-56. Layout of the 64-bit-mode FXSAVE64 Map (requires REX.W = 1) 15 14 13 12 11 10 9 FPU IP MXCSR_MASK 8 7 6 FOP MXCSR 5 4 Reserved FTW FPU DP 3 2 FSW 1 0 FCW 0 16 Reserved ST0/MM0 32 Reserved ST1/MM1 48 Reserved ST2/MM2 64 Reserved ST3/MM3 80 Reserved ST4/MM4 96 Reserved ST5/MM5 112 Reserved ST6/MM6 128 Reserved ST7/MM7 144 XMM0 160 XMM1 176 FXSAVE—Save x87 FPU, MMX Technology, and SSE State Vol. 2A 3-473 INSTRUCTION SET REFERENCE, A-M Table 3-56. Layout of the 64-bit-mode FXSAVE64 Map (requires REX.W = 1) (Contd.) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 XMM2 192 XMM3 208 XMM4 224 XMM5 240 XMM6 256 XMM7 272 XMM8 288 XMM9 304 XMM10 320 XMM11 336 XMM12 352 XMM13 368 XMM14 384 XMM15 400 Reserved 416 Reserved 432 Reserved 448 Available 464 Available 480 Available 496 Table 3-57. Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) 15 14 13 Reserved 12 CS MXCSR_MASK 11 10 9 8 7 6 FPU IP FOP MXCSR Reserved 5 4 Reserved FTW 3 2 FSW 1 0 FCW FPU DP 0 16 Reserved ST0/MM0 32 Reserved ST1/MM1 48 Reserved ST2/MM2 64 Reserved ST3/MM3 80 3-474 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State INSTRUCTION SET REFERENCE, A-M Table 3-57. Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) (Contd.) (Contd.) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved ST4/MM4 96 Reserved ST5/MM5 112 Reserved ST6/MM6 128 Reserved ST7/MM7 144 XMM0 160 XMM1 176 XMM2 192 XMM3 208 XMM4 224 XMM5 240 XMM6 256 XMM7 272 XMM8 288 XMM9 304 XMM10 320 XMM11 336 XMM12 352 XMM13 368 XMM14 384 XMM15 400 Reserved 416 Reserved 432 Reserved 448 Available 464 Available 480 Available 496 Operation IF 64-Bit Mode THEN IF REX.W = 1 THEN FXSAVE—Save x87 FPU, MMX Technology, and SSE State Vol. 2A 3-475 INSTRUCTION SET REFERENCE, A-M DEST ← Save64BitPromotedFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR); ELSE DEST ← Save64BitDefaultFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR); FI; FI; ELSE DEST ← SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR); Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See the description of the alignment check exception [#AC] below.) #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. If CR0.EM[bit 2] = 1. #UD If CPUID.01H:EDX.FXSR[bit 24] = 0. #UD If the LOCK prefix is used. #AC If this exception is disabled a general protection exception (#GP) is signaled if the memory operand is not aligned on a 16-byte boundary, as described above. If the alignment check exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may vary with implementation, as follows. In all implementations where #AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implementation. For instance, for a given implementation, an alignment check exception might be signaled for a 2-byte misalignment, whereas a general protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments). Real-Address Mode Exceptions #GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. If CR0.EM[bit 2] = 1. 3-476 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State INSTRUCTION SET REFERENCE, A-M #UD If CPUID.01H:EDX.FXSR[bit 24] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) For a page fault. #AC For unaligned memory reference. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. If memory operand is not aligned on a 16-byte boundary, regardless of segment. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. If CR0.EM[bit 2] = 1. #UD If CPUID.01H:EDX.FXSR[bit 24] = 0. If the LOCK prefix is used. #AC If this exception is disabled a general protection exception (#GP) is signaled if the memory operand is not aligned on a 16-byte boundary, as described above. If the alignment check exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may vary with implementation, as follows. In all implementations where #AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implementation. For instance, for a given implementation, an alignment check exception might be signaled for a 2-byte misalignment, whereas a general protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments). Implementation Note The order in which the processor signals general-protection (#GP) and page-fault (#PF) exceptions when they both occur on an instruction boundary is given in Table 5-2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. This order vary for FXSAVE for different processor implementations. FXSAVE—Save x87 FPU, MMX Technology, and SSE State Vol. 2A 3-477 INSTRUCTION SET REFERENCE, A-M FXTRACT—Extract Exponent and Significand Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 F4 FXTRACT Valid Valid Separate value in ST(0) into exponent and significand, store exponent in ST(0), and push the significand onto the register stack. Description Separates the source value in the ST(0) register into its exponent and significand, stores the exponent in ST(0), and pushes the significand onto the register stack. Following this operation, the new top-of-stack register ST(0) contains the value of the original significand expressed as a floating-point value. The sign and significand of this value are the same as those found in the source operand, and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(1) register contains the value of the original operand’s true (unbiased) exponent expressed as a floatingpoint value. (The operation performed by this instruction is a superset of the IEEErecommended logb(x) function.) This instruction and the F2XM1 instruction are useful for performing power and range scaling operations. The FXTRACT instruction is also useful for converting numbers in double extended-precision floating-point format to decimal representations (e.g., for printing or displaying). If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an exponent value of –∞ is stored in register ST(1) and 0 with the sign of the source operand is stored in register ST(0). This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation TEMP ← Significand(ST(0)); ST(0) ← Exponent(ST(0)); TOP← TOP − 1; ST(0) ← TEMP; FPU Flags Affected C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred. C0, C2, C3 Undefined. Floating-Point Exceptions #IS 3-478 Vol. 2A Stack underflow or overflow occurred. FXTRACT—Extract Exponent and Significand INSTRUCTION SET REFERENCE, A-M #IA Source operand is an SNaN value or unsupported format. #Z ST(0) operand is ±0. #D Source operand is a denormal value. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FXTRACT—Extract Exponent and Significand Vol. 2A 3-479 INSTRUCTION SET REFERENCE, A-M FYL2X—Compute y ∗ log2x Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 F1 FYL2X Valid Valid Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the register stack. Description Computes (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the FPU register stack. The source operand in ST(0) must be a non-zero positive number. The following table shows the results obtained when taking the log of various classes of numbers, assuming that neither overflow nor underflow occurs. Table 3-58. FYL2X Results ST(0) ST(1) -• −F ±0 +0<+F<+1 +1 +F>+ 1 +• NaN -• * * +• +• * -• -• NaN −F * * ** +F −0 −F -• NaN −0 * * * +0 −0 −0 * NaN +0 * * * −0 +0 +0 * NaN +F * * ** −F +0 +F +• NaN +• * * -• -• * +• +• NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NOTES: F Means finite floating-point value. * Indicates floating-point invalid-operation (#IA) exception. ** Indicates floating-point zero-divide (#Z) exception. If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns ∞ with a sign that is the opposite of the sign of the source operand in register ST(1). The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of logarithms with an arbitrary positive base (b): logbx ← (log2b)–1 ∗ log2x This instruction’s operation is the same in non-64-bit modes and 64-bit mode. 3-480 Vol. 2A FYL2X—Compute y * log2x INSTRUCTION SET REFERENCE, A-M Operation ST(1) ← ST(1) ∗ log2ST(0); PopRegisterStack; FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. #IA Either operand is an SNaN or unsupported format. Source operand in register ST(0) is a negative finite value (not -0). #Z Source operand in register ST(0) is ±0. #D Source operand is a denormal value. #U Result is too small for destination format. #O Result is too large for destination format. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FYL2X—Compute y * log2x Vol. 2A 3-481 INSTRUCTION SET REFERENCE, A-M FYL2XP1—Compute y ∗ log2(x +1) Opcode Instruction 64-Bit Mode Compat/ Leg Mode Description D9 F9 FYL2XP1 Valid Valid Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop the register stack. Description Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops the FPU register stack. The source operand in ST(0) must be in the range: – ( 1 – 2 ⁄ 2 ) )to ( 1 – 2 ⁄ 2 ) The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside of its acceptable range, the result is undefined and software should not rely on an exception being generated. Under some circumstances exceptions may be generated when ST(0) is out of range, but this behavior is implementation specific and not guaranteed. The following table shows the results obtained when taking the log epsilon of various classes of numbers, assuming that underflow does not occur. Table 3-59. FYL2XP1 Results ST(0) −(1 − ( 2 ⁄ 2 )) to −0 -0 +0 +0 to +(1 - ( 2 ⁄ 2 )) NaN -• +• * * -• NaN -F +F +0 -0 -F NaN -0 +0 +0 -0 -0 NaN +0 -0 -0 +0 +0 NaN +F -F -0 +0 +F NaN +• -• * * +• NaN NaN NaN NaN NaN NaN NaN ST(1) NOTES: F Means finite floating-point value. * Indicates floating-point invalid-operation (#IA) exception. This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that are close to 0. For small epsilon (ε) values, more significant digits can be retained by using the FYL2XP1 instruction than by using (ε+1) as an argument to the FYL2X instruction. The (ε+1) expression is commonly found in compound interest and annuity calculations. The result can be simply converted into a value in another logarithm base by including a scale factor in the ST(1) source operand. The following 3-482 Vol. 2A FYL2XP1—Compute y * log2(x +1) INSTRUCTION SET REFERENCE, A-M equation is used to calculate the scale factor for a particular logarithm base, where n is the logarithm base desired for the result of the FYL2XP1 instruction: scale factor ← logn 2 This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation ST(1) ← ST(1) ∗ log2(ST(0) + 1.0); PopRegisterStack; FPU Flags Affected C1 Set to 0 if stack underflow occurred. Set if result was rounded up; cleared otherwise. C0, C2, C3 Undefined. Floating-Point Exceptions #IS Stack underflow occurred. #IA Either operand is an SNaN value or unsupported format. #D Source operand is a denormal value. #U Result is too small for destination format. #O Result is too large for destination format. #P Value cannot be represented exactly in destination format. Protected Mode Exceptions #NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. FYL2XP1—Compute y * log2(x +1) Vol. 2A 3-483 INSTRUCTION SET REFERENCE, A-M HADDPD—Packed Double-FP Horizontal Add Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 7C /r A V/V SSE3 Horizontal add packed double-precision floatingpoint values from xmm2/m128 to xmm1. B V/V AVX Horizontal add packed double-precision floatingpoint values from xmm2 and xmm3/mem. B V/V AVX Horizontal add packed double-precision floatingpoint values from ymm2 and ymm3/mem. HADDPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 7C /r VHADDPD xmm1,xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 7C /r VHADDPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Adds the double-precision floating-point values in the high and low quadwords of the destination operand and stores the result in the low quadword of the destination operand. Adds the double-precision floating-point values in the high and low quadwords of the source operand and stores the result in the high quadword of the destination operand. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). See Figure 3-19 for HADDPD; see Figure 3-20 for VHADDPD. 3-484 Vol. 2A HADDPD—Packed Double-FP Horizontal Add INSTRUCTION SET REFERENCE, A-M +$''3'[PP[PPP >@ >@ [PP P >@ >@ [PP [PPP>@ [PPP>@ [PP>@[PP>@ 5HVXOW [PP >@ >@ 20 Figure 3-19. HADDPD—Packed Double-FP Horizontal Add SRC1 X3 X2 X1 X0 SRC2 Y3 Y2 Y1 Y0 DEST Y2 + Y3 X2 + X3 Y0 + Y1 X0 + X1 Figure 3-20. VHADDPD operation 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. HADDPD—Packed Double-FP Horizontal Add Vol. 2A 3-485 INSTRUCTION SET REFERENCE, A-M VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation HADDPD (128-bit Legacy SSE version) DEST[63:0] SRC1[127:64] + SRC1[63:0] DEST[127:64] SRC2[127:64] + SRC2[63:0] DEST[VLMAX-1:128] (Unmodified) VHADDPD (VEX.128 encoded version) DEST[63:0] SRC1[127:64] + SRC1[63:0] DEST[127:64] SRC2[127:64] + SRC2[63:0] DEST[VLMAX-1:128] 0 VHADDPD (VEX.256 encoded version) DEST[63:0] SRC1[127:64] + SRC1[63:0] DEST[127:64] SRC2[127:64] + SRC2[63:0] DEST[191:128] SRC1[255:192] + SRC1[191:128] DEST[255:192] SRC2[255:192] + SRC2[191:128] Intel C/C++ Compiler Intrinsic Equivalent VHADDPD __m256d _mm256_hadd_pd (__m256d a, __m256d b); HADDPD __m128d _mm_hadd_pd (__m128d a, __m128d b); Exceptions When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. Numeric Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. 3-486 Vol. 2A HADDPD—Packed Double-FP Horizontal Add INSTRUCTION SET REFERENCE, A-M HADDPS—Packed Single-FP Horizontal Add Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 7C /r A V/V SSE3 Horizontal add packed single-precision floatingpoint values from xmm2/m128 to xmm1. B V/V AVX Horizontal add packed single-precision floatingpoint values from xmm2 and xmm3/mem. B V/V AVX Horizontal add packed single-precision floatingpoint values from ymm2 and ymm3/mem. HADDPS xmm1, xmm2/m128 VEX.NDS.128.F2.0F.WIG 7C /r VHADDPS xmm1, xmm2, xmm3/m128 VEX.NDS.256.F2.0F.WIG 7C /r VHADDPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Adds the single-precision floating-point values in the first and second dwords of the destination operand and stores the result in the first dword of the destination operand. Adds single-precision floating-point values in the third and fourth dword of the destination operand and stores the result in the second dword of the destination operand. Adds single-precision floating-point values in the first and second dword of the source operand and stores the result in the third dword of the destination operand. Adds single-precision floating-point values in the third and fourth dword of the source operand and stores the result in the fourth dword of the destination operand. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). HADDPS—Packed Single-FP Horizontal Add Vol. 2A 3-487 INSTRUCTION SET REFERENCE, A-M See Figure 3-21 for HADDPS; see Figure 3-22 for VHADDPS. +$''36[PP[PPP >@ >@ >@ >@ [PP P >@ >@ >@ >@ [PP [PPP >@[PP P>@ [PPP >@[PP P>@ [PP>@ [PP>@ [PP>@ [PP>@ >@ >@ >@ 5(68/7 [PP >@ 20 Figure 3-21. HADDPS—Packed Single-FP Horizontal Add SRC1 X7 X6 X5 X4 X3 X2 X1 X0 SRC2 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y2+Y3 Y0+Y1 X2+X3 X0+X1 DEST Y6+Y7 Y4+Y5 X6+X7 X4+X5 Figure 3-22. VHADDPS operation 3-488 Vol. 2A HADDPS—Packed Single-FP Horizontal Add INSTRUCTION SET REFERENCE, A-M 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation HADDPS (128-bit Legacy SSE version) DEST[31:0] SRC1[63:32] + SRC1[31:0] DEST[63:32] SRC1[127:96] + SRC1[95:64] DEST[95:64] SRC2[63:32] + SRC2[31:0] DEST[127:96] SRC2[127:96] + SRC2[95:64] DEST[VLMAX-1:128] (Unmodified) VHADDPS (VEX.128 encoded version) DEST[31:0] SRC1[63:32] + SRC1[31:0] DEST[63:32] SRC1[127:96] + SRC1[95:64] DEST[95:64] SRC2[63:32] + SRC2[31:0] DEST[127:96] SRC2[127:96] + SRC2[95:64] DEST[VLMAX-1:128] 0 VHADDPS (VEX.256 encoded version) DEST[31:0] SRC1[63:32] + SRC1[31:0] DEST[63:32] SRC1[127:96] + SRC1[95:64] DEST[95:64] SRC2[63:32] + SRC2[31:0] DEST[127:96] SRC2[127:96] + SRC2[95:64] DEST[159:128] SRC1[191:160] + SRC1[159:128] DEST[191:160] SRC1[255:224] + SRC1[223:192] DEST[223:192] SRC2[191:160] + SRC2[159:128] DEST[255:224] SRC2[255:224] + SRC2[223:192] Intel C/C++ Compiler Intrinsic Equivalent HADDPS __m128 _mm_hadd_ps (__m128 a, __m128 b); VHADDPS __m256 _mm256_hadd_ps (__m256 a, __m256 b); HADDPS—Packed Single-FP Horizontal Add Vol. 2A 3-489 INSTRUCTION SET REFERENCE, A-M Exceptions When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. Numeric Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. 3-490 Vol. 2A HADDPS—Packed Single-FP Horizontal Add INSTRUCTION SET REFERENCE, A-M HLT—Halt Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F4 HLT A Valid Valid Halt Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Stops instruction execution and places the processor in a HALT state. An enabled interrupt (including NMI and SMI), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal will resume execution. If an interrupt (including NMI) is used to resume execution after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction following the HLT instruction. When a HLT instruction is executed on an Intel 64 or IA-32 processor supporting Intel Hyper-Threading Technology, only the logical processor that executes the instruction is halted. The other logical processors in the physical processor remain active, unless they are each individually halted by executing a HLT instruction. The HLT instruction is a privileged instruction. When the processor is running in protected or virtual-8086 mode, the privilege level of a program or procedure must be 0 to execute the HLT instruction. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation Enter Halt state; Flags Affected None. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. #UD If the LOCK prefix is used. Real-Address Mode Exceptions None. HLT—Halt Vol. 2A 3-491 INSTRUCTION SET REFERENCE, A-M Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-492 Vol. 2A HLT—Halt INSTRUCTION SET REFERENCE, A-M HSUBPD—Packed Double-FP Horizontal Subtract Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 7D /r A V/V SSE3 Horizontal subtract packed double-precision floatingpoint values from xmm2/m128 to xmm1. VEX.NDS.128.66.0F.WIG 7D /r VHSUBPD xmm1,xmm2, xmm3/m128 B V/V AVX Horizontal subtract packed double-precision floatingpoint values from xmm2 and xmm3/mem. VEX.NDS.256.66.0F.WIG 7D /r VHSUBPD ymm1, ymm2, ymm3/m256 B V/V AVX Horizontal subtract packed double-precision floatingpoint values from ymm2 and ymm3/mem. HSUBPD xmm1, xmm2/m128 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both operands. Subtracts the double-precision floating-point value in the high quadword of the destination operand from the low quadword of the destination operand and stores the result in the low quadword of the destination operand. Subtracts the double-precision floating-point value in the high quadword of the source operand from the low quadword of the source operand and stores the result in the high quadword of the destination operand. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). HSUBPD—Packed Double-FP Horizontal Subtract Vol. 2A 3-493 INSTRUCTION SET REFERENCE, A-M See Figure 3-23 for HSUBPD; see Figure 3-24 for VHSUBPD. +68%3'[PP[PPP >@ >@ [PP P >@ >@ [PP [PPP>@ [PPP>@ [PP>@[PP>@ 5HVXOW [PP >@ >@ 20 Figure 3-23. HSUBPD—Packed Double-FP Horizontal Subtract SRC1 X3 X2 X1 X0 SRC2 Y3 Y2 Y1 Y0 DEST Y2 - Y3 X2 - X3 Y0 - Y1 X0 - X1 Figure 3-24. VHSUBPD operation 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. 3-494 Vol. 2A HSUBPD—Packed Double-FP Horizontal Subtract INSTRUCTION SET REFERENCE, A-M VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation HSUBPD (128-bit Legacy SSE version) DEST[63:0] SRC1[63:0] - SRC1[127:64] DEST[127:64] SRC2[63:0] - SRC2[127:64] DEST[VLMAX-1:128] (Unmodified) VHSUBPD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] - SRC1[127:64] DEST[127:64] SRC2[63:0] - SRC2[127:64] DEST[VLMAX-1:128] 0 VHSUBPD (VEX.256 encoded version) DEST[63:0] SRC1[63:0] - SRC1[127:64] DEST[127:64] SRC2[63:0] - SRC2[127:64] DEST[191:128] SRC1[191:128] - SRC1[255:192] DEST[255:192] SRC2[191:128] - SRC2[255:192] Intel C/C++ Compiler Intrinsic Equivalent HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b) VHSUBPD __m256d _mm256_hsub_pd (__m256d a, __m256d b); Exceptions When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. Numeric Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. HSUBPD—Packed Double-FP Horizontal Subtract Vol. 2A 3-495 INSTRUCTION SET REFERENCE, A-M HSUBPS—Packed Single-FP Horizontal Subtract Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 7D /r A V/V SSE3 Horizontal subtract packed single-precision floatingpoint values from xmm2/m128 to xmm1. B V/V AVX Horizontal subtract packed single-precision floatingpoint values from xmm2 and xmm3/mem. B V/V AVX Horizontal subtract packed single-precision floatingpoint values from ymm2 and ymm3/mem. HSUBPS xmm1, xmm2/m128 VEX.NDS.128.F2.0F.WIG 7D /r VHSUBPS xmm1, xmm2, xmm3/m128 VEX.NDS.256.F2.0F.WIG 7D /r VHSUBPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Subtracts the single-precision floating-point value in the second dword of the destination operand from the first dword of the destination operand and stores the result in the first dword of the destination operand. Subtracts the single-precision floating-point value in the fourth dword of the destination operand from the third dword of the destination operand and stores the result in the second dword of the destination operand. Subtracts the single-precision floating-point value in the second dword of the source operand from the first dword of the source operand and stores the result in the third dword of the destination operand. Subtracts the single-precision floating-point value in the fourth dword of the source operand from the third dword of the source operand and stores the result in the fourth dword of the destination operand. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). See Figure 3-25 for HSUBPS; see Figure 3-26 for VHSUBPS. 3-496 Vol. 2A HSUBPS—Packed Single-FP Horizontal Subtract INSTRUCTION SET REFERENCE, A-M +68%36[PP[PPP >@ >@ >@ >@ [PP P >@ >@ >@ >@ [PP [PPP >@[PP P>@ [PPP >@[PP P>@ [PP>@ [PP>@ [PP>@ [PP>@ >@ >@ >@ 5(68/7 [PP >@ 20 Figure 3-25. HSUBPS—Packed Single-FP Horizontal Subtract SRC1 X7 X6 X5 X4 X3 X2 X1 X0 SRC2 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y4-Y5 X6-X7 X4-X5 Y2-Y3 Y0-Y1 X2-X3 X0-X1 DEST Y6-Y7 Figure 3-26. VHSUBPS operation HSUBPS—Packed Single-FP Horizontal Subtract Vol. 2A 3-497 INSTRUCTION SET REFERENCE, A-M 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation HSUBPS (128-bit Legacy SSE version) DEST[31:0] SRC1[31:0] - SRC1[63:32] DEST[63:32] SRC1[95:64] - SRC1[127:96] DEST[95:64] SRC2[31:0] - SRC2[63:32] DEST[127:96] SRC2[95:64] - SRC2[127:96] DEST[VLMAX-1:128] (Unmodified) VHSUBPS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] - SRC1[63:32] DEST[63:32] SRC1[95:64] - SRC1[127:96] DEST[95:64] SRC2[31:0] - SRC2[63:32] DEST[127:96] SRC2[95:64] - SRC2[127:96] DEST[VLMAX-1:128] 0 VHSUBPS (VEX.256 encoded version) DEST[31:0] SRC1[31:0] - SRC1[63:32] DEST[63:32] SRC1[95:64] - SRC1[127:96] DEST[95:64] SRC2[31:0] - SRC2[63:32] DEST[127:96] SRC2[95:64] - SRC2[127:96] DEST[159:128] SRC1[159:128] - SRC1[191:160] DEST[191:160] SRC1[223:192] - SRC1[255:224] DEST[223:192] SRC2[159:128] - SRC2[191:160] DEST[255:224] SRC2[223:192] - SRC2[255:224] Intel C/C++ Compiler Intrinsic Equivalent HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b); VHSUBPS __m256 _mm256_hsub_ps (__m256 a, __m256 b); 3-498 Vol. 2A HSUBPS—Packed Single-FP Horizontal Subtract INSTRUCTION SET REFERENCE, A-M Exceptions When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. Numeric Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2. HSUBPS—Packed Single-FP Horizontal Subtract Vol. 2A 3-499 INSTRUCTION SET REFERENCE, A-M IDIV—Signed Divide Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F6 /7 IDIV r/m8 A Valid Valid Signed divide AX by r/m8, with result stored in: AL ← Quotient, AH ← Remainder. REX + F6 /7 IDIV r/m8* A Valid N.E. Signed divide AX by r/m8, with result stored in AL ← Quotient, AH ← Remainder. F7 /7 IDIV r/m16 A Valid Valid Signed divide DX:AX by r/m16, with result stored in AX ← Quotient, DX ← Remainder. F7 /7 IDIV r/m32 A Valid Valid Signed divide EDX:EAX by r/m32, with result stored in EAX ← Quotient, EDX ← Remainder. REX.W + F7 /7 IDIV r/m64 A Valid N.E. Signed divide RDX:RAX by r/m64, with result stored in RAX ← Quotient, RDX ← Remainder. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX registers. The source operand can be a general-purpose register or a memory location. The action of this instruction depends on the operand size (dividend/divisor). Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction 3-500 Vol. 2A IDIV—Signed Divide INSTRUCTION SET REFERENCE, A-M divides the signed value in RDX:RAX by the source operand. RAX contains a 64-bit quotient; RDX contains a 64-bit remainder. See the summary chart at the beginning of this section for encoding data and limits. See Table 3-60. Table 3-60. IDIV Results Operand Size Dividend Divisor Quotient Remainder Quotient Range Word/byte AX r/m8 AL AH −128 to +127 Doubleword/word DX:AX r/m16 AX DX −32,768 to +32,767 Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 232 − 1 Doublequadword/ quadword RDX:RAX r/m64 RAX RDX −263 to 264 − 1 Operation IF SRC = 0 THEN #DE; (* Divide error *) FI; IF OperandSize = 8 (* Word/byte operation *) THEN temp ← AX / SRC; (* Signed division *) IF (temp > 7FH) or (temp < 80H) (* If a positive result is greater than 7FH or a negative result is less than 80H *) THEN #DE; (* Divide error *) ELSE AL ← temp; AH ← AX SignedModulus SRC; FI; ELSE IF OperandSize = 16 (* Doubleword/word operation *) THEN temp ← DX:AX / SRC; (* Signed division *) IF (temp > 7FFFH) or (temp < 8000H) (* If a positive result is greater than 7FFFH or a negative result is less than 8000H *) THEN #DE; (* Divide error *) ELSE AX ← temp; DX ← DX:AX SignedModulus SRC; FI; FI; IDIV—Signed Divide Vol. 2A 3-501 INSTRUCTION SET REFERENCE, A-M ELSE IF OperandSize = 32 (* Quadword/doubleword operation *) temp ← EDX:EAX / SRC; (* Signed division *) IF (temp > 7FFFFFFFH) or (temp < 80000000H) (* If a positive result is greater than 7FFFFFFFH or a negative result is less than 80000000H *) THEN #DE; (* Divide error *) ELSE EAX ← temp; EDX ← EDXE:AX SignedModulus SRC; FI; FI; ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *) temp ← RDX:RAX / SRC; (* Signed division *) IF (temp > 7FFFFFFFFFFFH) or (temp < 8000000000000000H) (* If a positive result is greater than 7FFFFFFFFFFFH or a negative result is less than 8000000000000000H *) THEN #DE; (* Divide error *) ELSE RAX ← temp; RDX ← RDE:RAX SignedModulus SRC; FI; FI; FI; Flags Affected The CF, OF, SF, ZF, AF, and PF flags are undefined. Protected Mode Exceptions #DE If the source operand (divisor) is 0. #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. The signed result (quotient) is too large for the destination. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-502 Vol. 2A IDIV—Signed Divide INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #DE If the source operand (divisor) is 0. The signed result (quotient) is too large for the destination. #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #DE If the source operand (divisor) is 0. The signed result (quotient) is too large for the destination. #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #DE If the source operand (divisor) is 0 If the quotient is too large for the designated register. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. IDIV—Signed Divide Vol. 2A 3-503 INSTRUCTION SET REFERENCE, A-M IMUL—Signed Multiply Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F6 /5 IMUL r/m8* A Valid Valid AX← AL ∗ r/m byte. F7 /5 IMUL r/m16 A Valid Valid DX:AX ← AX ∗ r/m word. F7 /5 IMUL r/m32 A Valid Valid EDX:EAX ← EAX ∗ r/m32. REX.W + F7 /5 IMUL r/m64 A Valid N.E. RDX:RAX ← RAX ∗ r/m64. 0F AF /r IMUL r16, r/m16 B Valid Valid word register ← word register ∗ r/m16. 0F AF /r IMUL r32, r/m32 B Valid Valid doubleword register ← doubleword register ∗ r/m32. REX.W + 0F AF /r IMUL r64, r/m64 B Valid N.E. Quadword register ← Quadword register ∗ r/m64. 6B /r ib IMUL r16, r/m16, imm8 C Valid Valid word register ← r/m16 ∗ sign-extended immediate byte. 6B /r ib IMUL r32, r/m32, imm8 C Valid Valid doubleword register ← r/m32 ∗ sign-extended immediate byte. REX.W + 6B /r ib IMUL r64, r/m64, imm8 C Valid N.E. Quadword register ← r/m64 ∗ sign-extended immediate byte. 69 /r iw IMUL r16, r/m16, imm16 C Valid Valid word register ← r/m16 ∗ immediate word. 69 /r id IMUL r32, r/m32, imm32 C Valid Valid doubleword register ← r/m32 ∗ immediate doubleword. REX.W + 69 /r id IMUL r64, r/m64, imm32 C Valid N.E. Quadword register ← r/m64 ∗ immediate doubleword. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r, w) NA NA NA B ModRM:reg (r, w) ModRM:r/m (r) NA NA 3-504 Vol. 2A IMUL—Signed Multiply INSTRUCTION SET REFERENCE, A-M Op/En Operand 1 Operand 2 Operand 3 Operand 4 C ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 NA Description Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of operands. • One-operand form — This form is identical to that used by the MUL instruction. Here, the source operand (in a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register (depending on the operand size) and the product is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX registers, respectively. • Two-operand form — With this form the destination operand (the first operand) is multiplied by the source operand (second operand). The destination operand is a general-purpose register and the source operand is an immediate value, a general-purpose register, or a memory location. The product is then stored in the destination operand location. • Three-operand form — This form requires a destination operand (the first operand) and two source operands (the second and the third operands). Here, the first source operand (which can be a general-purpose register or a memory location) is multiplied by the second source operand (an immediate value). The product is then stored in the destination operand (a general-purpose register). When an immediate value is used as an operand, it is sign-extended to the length of the destination operand format. The CF and OF flags are set when significant bit (including the sign bit) are carried into the upper half of the result. The CF and OF flags are cleared when the result (including the sign bit) fits exactly in the lower half of the result. The three forms of the IMUL instruction are similar in that the length of the product is calculated to twice the length of the operands. With the one-operand form, the product is stored exactly in the destination. With the two- and three- operand forms, however, the result is truncated to the length of the destination before it is stored in the destination register. Because of this truncation, the CF or OF flag should be tested to ensure that no significant bits are lost. The two- and three-operand forms may also be used with unsigned operands because the lower half of the product is the same regardless if the operands are signed or unsigned. The CF and OF flags, however, cannot be used to determine if the upper half of the result is non-zero. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. Use of REX.W modifies the three forms of the instruction as follows. IMUL—Signed Multiply Vol. 2A 3-505 INSTRUCTION SET REFERENCE, A-M • One-operand form —The source operand (in a 64-bit general-purpose register or memory location) is multiplied by the value in the RAX register and the product is stored in the RDX:RAX registers. • Two-operand form — The source operand is promoted to 64 bits if it is a register or a memory location. If the source operand is an immediate, it is sign extended to 64 bits. The destination operand is promoted to 64 bits. • Three-operand form — The first source operand (either a register or a memory location) and destination operand are promoted to 64 bits. Operation IF (NumberOfOperands = 1) THEN IF (OperandSize = 8) THEN AX ← AL ∗ SRC (* Signed multiplication *) IF AL = AX THEN CF ← 0; OF ← 0; ELSE CF ← 1; OF ← 1; FI; ELSE IF OperandSize = 16 THEN DX:AX ← AX ∗ SRC (* Signed multiplication *) IF sign_extend_to_32 (AX) = DX:AX THEN CF ← 0; OF ← 0; ELSE CF ← 1; OF ← 1; FI; ELSE IF OperandSize = 32 THEN EDX:EAX ← EAX ∗ SRC (* Signed multiplication *) IF EAX = EDX:EAX THEN CF ← 0; OF ← 0; ELSE CF ← 1; OF ← 1; FI; ELSE (* OperandSize = 64 *) RDX:RAX ← RAX ∗ SRC (* Signed multiplication *) IF RAX = RDX:RAX THEN CF ← 0; OF ← 0; ELSE CF ← 1; OF ← 1; FI; FI; FI; ELSE IF (NumberOfOperands = 2) THEN temp ← DEST ∗ SRC (* Signed multiplication; temp is double DEST size *) DEST ← DEST ∗ SRC (* Signed multiplication *) IF temp ≠ DEST THEN CF ← 1; OF ← 1; ELSE CF ← 0; OF ← 0; FI; 3-506 Vol. 2A IMUL—Signed Multiply INSTRUCTION SET REFERENCE, A-M FI; ELSE (* NumberOfOperands = 3 *) DEST ← SRC1 ∗ SRC2 (* Signed multiplication *) temp ← SRC1 ∗ SRC2 (* Signed multiplication; temp is double SRC1 size *) IF temp ≠ DEST THEN CF ← 1; OF ← 1; ELSE CF ← 0; OF ← 0; FI; FI; Flags Affected For the one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the upper half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the destination operand size and cleared when the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. IMUL—Signed Multiply Vol. 2A 3-507 INSTRUCTION SET REFERENCE, A-M #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-508 Vol. 2A IMUL—Signed Multiply INSTRUCTION SET REFERENCE, A-M IN—Input from Port Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode E4 ib IN AL, imm8 A Valid Valid Input byte from imm8 I/O port address into AL. E5 ib IN AX, imm8 A Valid Valid Input word from imm8 I/O port address into AX. E5 ib IN EAX, imm8 A Valid Valid Input dword from imm8 I/O port address into EAX. EC IN AL,DX B Valid Valid Input byte from I/O port in DX into AL. ED IN AX,DX B Valid Valid Input word from I/O port in DX into AX. ED IN EAX,DX B Valid Valid Input doubleword from I/O port in DX into EAX. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A imm8 NA NA NA B NA NA NA NA Description Copies the value from the I/O port specified with the second operand (source operand) to the destination operand (first operand). The source operand can be a byte-immediate or the DX register; the destination operand can be register AL, AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respectively). Using the DX register as a source operand allows I/O port addresses from 0 to 65,535 to be accessed; using a byte immediate allows I/O port addresses 0 to 255 to be accessed. When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and 32-bit I/O port, the operand-size attribute determines the port size. At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the upper eight bits of the port address will be 0. This instruction is only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on accessing I/O ports in the I/O address space. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. IN—Input from Port Vol. 2A 3-509 INSTRUCTION SET REFERENCE, A-M Operation IF ((PE = 1) and ((CPL > IOPL) or (VM = 1))) THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *) IF (Any I/O Permission Bit for I/O port being accessed = 1) THEN (* I/O operation is not allowed *) #GP(0); ELSE ( * I/O operation is allowed *) DEST ← SRC; (* Read from selected I/O port *) FI; ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *) DEST ← SRC; (* Read from selected I/O port *) FI; Flags Affected None. Protected Mode Exceptions #GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the corresponding I/O permission bits in TSS for the I/O port being accessed is 1. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the corresponding I/O permission bits in TSS for the I/O port being accessed is 1. #UD If the LOCK prefix is used. 3-510 Vol. 2A IN—Input from Port INSTRUCTION SET REFERENCE, A-M INC—Increment by 1 Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode FE /0 INC r/m8 A Valid Valid Increment r/m byte by 1. REX + FE /0 INC r/m8* A Valid N.E. Increment r/m byte by 1. FF /0 INC r/m16 A Valid Valid Increment r/m word by 1. FF /0 INC r/m32 A Valid Valid Increment r/m doubleword by 1. REX.W + FF /0 INC r/m64 A Valid N.E. Increment r/m quadword by 1. 40+ rw** INC r16 B N.E. Valid Increment word register by 1. 40+ rd INC r32 B N.E. Valid Increment doubleword register by 1. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. ** 40H through 47H are REX prefixes in 64-bit mode. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r, w) NA NA NA B reg (r, w) NA NA NA Description Adds 1 to the destination operand, while preserving the state of the CF flag. The destination operand can be a register or a memory location. This instruction allows a loop counter to be updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of 1 to perform an increment operation that does updates the CF flag.) This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. In 64-bit mode, INC r16 and INC r32 are not encodable (because opcodes 40H through 47H are REX prefixes). Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. INC—Increment by 1 Vol. 2A 3-511 INSTRUCTION SET REFERENCE, A-M Operation DEST ← DEST + 1; AFlags Affected The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) If the destination operand is located in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULLsegment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used but the destination is not a memory operand. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used but the destination is not a memory operand. 3-512 Vol. 2A INC—Increment by 1 INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used but the destination is not a memory operand. INC—Increment by 1 Vol. 2A 3-513 INSTRUCTION SET REFERENCE, A-M INS/INSB/INSW/INSD—Input from Port to String Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 6C INS m8, DX A Valid Valid Input byte from I/O port specified in DX into memory location specified in ES:(E)DI or RDI.* 6D INS m16, DX A Valid Valid Input word from I/O port specified in DX into memory location specified in ES:(E)DI or RDI.1 6D INS m32, DX A Valid Valid Input doubleword from I/O port specified in DX into memory location specified in ES:(E)DI or RDI.1 6C INSB A Valid Valid Input byte from I/O port specified in DX into memory location specified with ES:(E)DI or RDI.1 6D INSW A Valid Valid Input word from I/O port specified in DX into memory location specified in ES:(E)DI or RDI.1 6D INSD A Valid Valid Input doubleword from I/O port specified in DX into memory location specified in ES:(E)DI or RDI.1 NOTES: * In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only 32-bit (EDI) and 16-bit (DI) address sizes are supported. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Copies the data from the I/O port specified with the source operand (second operand) to the destination operand (first operand). The source operand is an I/O port address (from 0 to 65,535) that is read from the DX register. The destination operand is a memory location, the address of which is read from either the ES:DI, ES:EDI or the RDI registers (depending on the address-size attribute of the instruc- 3-514 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String INSTRUCTION SET REFERENCE, A-M tion, 16, 32 or 64, respectively). (The ES segment cannot be overridden with a segment override prefix.) The size of the I/O port being accessed (that is, the size of the source and destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port. At the assembly-code level, two forms of this instruction are allowed: the “explicitoperands” form and the “no-operands” form. The explicit-operands form (specified with the INS mnemonic) allows the source and destination operands to be specified explicitly. Here, the source operand must be “DX,” and the destination operand should be a symbol that indicates the size of the I/O port and the destination address. This explicit-operands form is provided to allow documentation; however, note that the documentation provided by this form can be misleading. That is, the destination operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword), but it does not have to specify the correct location. The location is always specified by the ES:(E)DI registers, which must be loaded correctly before the INS instruction is executed. The no-operands form provides “short forms” of the byte, word, and doubleword versions of the INS instructions. Here also DX is assumed by the processor to be the source operand and ES:(E)DI is assumed to be the destination operand. The size of the I/O port is specified with the choice of mnemonic: INSB (byte), INSW (word), or INSD (doubleword). After the byte, word, or doubleword is transfer from the I/O port to the memory location, the DI/EDI/RDI register is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations. The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the REP prefix. These instructions are only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on accessing I/O ports in the I/O address space. In 64-bit mode, default address size is 64 bits, 32 bit address size is supported using the prefix 67H. The address of the memory destination is specified by RDI or EDI. 16-bit address size is not supported in 64-bit mode. The operand size is not promoted. Operation IF ((PE = 1) and ((CPL > IOPL) or (VM = 1))) THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *) INS/INSB/INSW/INSD—Input from Port to String Vol. 2A 3-515 INSTRUCTION SET REFERENCE, A-M FI; IF (Any I/O Permission Bit for I/O port being accessed = 1) THEN (* I/O operation is not allowed *) #GP(0); ELSE (* I/O operation is allowed *) DEST ← SRC; (* Read from I/O port *) FI; ELSE (Real Mode or Protected Mode with CPL IOPL *) DEST ← SRC; (* Read from I/O port *) Non-64-bit Mode: IF (Byte transfer) THEN IF DF = 0 THEN (E)DI ← (E)DI + 1; ELSE (E)DI ← (E)DI – 1; FI; ELSE IF (Word transfer) THEN IF DF = 0 THEN (E)DI ← (E)DI + 2; ELSE (E)DI ← (E)DI – 2; FI; ELSE (* Doubleword transfer *) THEN IF DF = 0 THEN (E)DI ← (E)DI + 4; ELSE (E)DI ← (E)DI – 4; FI; FI; FI; FI64-bit Mode: IF (Byte transfer) THEN IF DF = 0 THEN (E|R)DI ← (E|R)DI + 1; ELSE (E|R)DI ← (E|R)DI – 1; FI; ELSE IF (Word transfer) THEN IF DF = 0 THEN (E)DI ← (E)DI + 2; ELSE (E)DI ← (E)DI – 2; FI; ELSE (* Doubleword transfer *) THEN IF DF = 0 THEN (E|R)DI ← (E|R)DI + 4; ELSE (E|R)DI ← (E|R)DI – 4; FI; FI; FI; 3-516 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String INSTRUCTION SET REFERENCE, A-M Flags Affected None. Protected Mode Exceptions #GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the corresponding I/O permission bits in TSS for the I/O port being accessed is 1. If the destination is located in a non-writable segment. If an illegal memory operand effective address in the ES segments is given. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the corresponding I/O permission bits in TSS for the I/O port being accessed is 1. If the memory address is in a non-canonical form. INS/INSB/INSW/INSD—Input from Port to String Vol. 2A 3-517 INSTRUCTION SET REFERENCE, A-M #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-518 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String INSTRUCTION SET REFERENCE, A-M VINSERTF128 — Insert Packed Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description VEX.NDS.256.66.0F3A.W0 18 /r ib A V/V Insert a single precision floating-point value selected by imm8 from xmm2/m32 into xmm1 at the specified destination element specified by imm8 and zero out destination elements in xmm1 as indicated in imm8. AVX VINSERTF128 ymm1, ymm2, xmm3/m128, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs an insertion of 128-bits of packed floating-point values from the second source operand (third operand) into an the destination operand (first operand) at an 128-bit offset from imm8[0]. The remaining portions of the destination are written by the corresponding fields of the first source operand (second operand). The second source operand can be either an XMM register or a 128-bit memory location. The high 7 bits of the immediate are ignored. Operation TEMP[255:0] SRC1[255:0] CASE (imm8[0]) OF 0: TEMP[127:0] SRC2[127:0] 1: TEMP[255:128] SRC2[127:0] ESAC DEST TEMP Intel C/C++ Compiler Intrinsic Equivalent INSERTF128 __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset); INSERTF128 __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset); INSERTF128 __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset); VINSERTF128 — Insert Packed Floating-Point Values Vol. 2A 3-519 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 6; additionally #UD 3-520 Vol. 2A If VEX.W = 1. VINSERTF128 — Insert Packed Floating-Point Values INSTRUCTION SET REFERENCE, A-M INSERTPS — Insert Packed Single Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A 21 /r ib A V/V SSE4_1 Insert a single precision floating-point value selected by imm8 from xmm2/m32 into xmm1 at the specified destination element specified by imm8 and zero out destination elements in xmm1 as indicated in imm8. B V/V AVX Insert a single precision floating point value selected by imm8 from xmm3/m32 and merge into xmm2 at the specified destination element specified by imm8 and zero out destination elements in xmm1 as indicated in imm8. INSERTPS xmm1, xmm2/m32, imm8 VEX.NDS.128.66.0F3A.WIG 21 /r ib VINSERTPS xmm1, xmm2, xmm3/m32, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) imm8 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description (register source form) Select a single precision floating-point element from second source as indicated by Count_S bits of the immediate operand and insert it into the first source at the location indicated by the Count_D bits of the immediate operand. Store in the destination and zero out destination elements based on the ZMask bits of the immediate operand. (memory source form) Load a floating-point element from a 32-bit memory location and insert it into the first source at the location indicated by the Count_D bits of the immediate operand. Store in the destination and zero out destination elements based on the ZMask bits of the immediate operand. INSERTPS — Insert Packed Single Precision Floating-Point Value Vol. 2A 3-521 INSTRUCTION SET REFERENCE, A-M 128-bit Legacy SSE version: The first source register is an XMM register. The second source operand is either an XMM register or a 32-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version. The destination and first source register is an XMM register. The second source operand is either an XMM register or a 32-bit memory location. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. If VINSERTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation INSERTPS (128-bit Legacy SSE version) IF (SRC == REG) THEN COUNT_S imm8[7:6] ELSE COUNT_S 0 COUNT_D imm8[5:4] ZMASK imm8[3:0] CASE (COUNT_S) OF 0: TMP SRC[31:0] 1: TMP SRC[63:32] 2: TMP SRC[95:64] 3: TMP SRC[127:96] ESAC; CASE (COUNT_D) OF 0: TMP2[31:0] TMP TMP2[127:32] DEST[127:32] 1: TMP2[63:32] TMP TMP2[31:0] DEST[31:0] TMP2[127:64] DEST[127:64] 2: TMP2[95:64] TMP TMP2[63:0] DEST[63:0] TMP2[127:96] DEST[127:96] 3: TMP2[127:96] TMP TMP2[95:0] DEST[95:0] ESAC; IF (ZMASK[0] == 1) THEN DEST[31:0] 00000000H ELSE DEST[31:0] TMP2[31:0] IF (ZMASK[1] == 1) THEN DEST[63:32] 00000000H ELSE DEST[63:32] TMP2[63:32] 3-522 Vol. 2A INSERTPS — Insert Packed Single Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M IF (ZMASK[2] == 1) THEN DEST[95:64] 00000000H ELSE DEST[95:64] TMP2[95:64] IF (ZMASK[3] == 1) THEN DEST[127:96] 00000000H ELSE DEST[127:96] TMP2[127:96] DEST[VLMAX-1:128] (Unmodified) VINSERTPS (VEX.128 encoded version) IF (SRC == REG) THEN COUNT_S imm8[7:6] ELSE COUNT_S 0 COUNT_D imm8[5:4] ZMASK imm8[3:0] CASE (COUNT_S) OF 0: TMP SRC2[31:0] 1: TMP SRC2[63:32] 2: TMP SRC2[95:64] 3: TMP SRC2[127:96] ESAC; CASE (COUNT_D) OF 0: TMP2[31:0] TMP TMP2[127:32] SRC1[127:32] 1: TMP2[63:32] TMP TMP2[31:0] SRC1[31:0] TMP2[127:64] SRC1[127:64] 2: TMP2[95:64] TMP TMP2[63:0] SRC1[63:0] TMP2[127:96] SRC1[127:96] 3: TMP2[127:96] TMP TMP2[95:0] SRC1[95:0] ESAC; IF (ZMASK[0] == 1) THEN DEST[31:0] 00000000H ELSE DEST[31:0] TMP2[31:0] IF (ZMASK[1] == 1) THEN DEST[63:32] 00000000H ELSE DEST[63:32] TMP2[63:32] IF (ZMASK[2] == 1) THEN DEST[95:64] 00000000H ELSE DEST[95:64] TMP2[95:64] IF (ZMASK[3] == 1) THEN DEST[127:96] 00000000H ELSE DEST[127:96] TMP2[127:96] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx); INSERTPS — Insert Packed Single Precision Floating-Point Value Vol. 2A 3-523 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 5. 3-524 Vol. 2A INSERTPS — Insert Packed Single Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M INT n/INTO/INT 3—Call to Interrupt Procedure Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode CC INT 3 A Valid Valid Interrupt 3—trap to debugger. CD ib INT imm8 B Valid Valid Interrupt vector number specified by immediate byte. CE INTO A Invalid Valid Interrupt 4—if overflow flag is 1. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA B imm8 NA NA NA Description The INT n instruction generates a call to the interrupt or exception handler specified with the destination operand (see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). The destination operand specifies an interrupt vector number from 0 to 255, encoded as an 8-bit unsigned intermediate value. Each interrupt vector number provides an index to a gate descriptor in the IDT. The first 32 interrupt vector numbers are reserved by Intel for system use. Some of these interrupts are used for internally generated exceptions. The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception (#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. (The INTO instruction cannot be used in 64-bit mode.) The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the debug exception handler. (This one byte form is valuable because it can be used to replace the first byte of any instruction with a breakpoint, including other one byte instructions, without over-writing other code). To further support its function as a debug breakpoint, the interrupt generated with the CC opcode also differs from the regular software interrupts as follows: • Interrupt redirection does not happen when in VME mode; the interrupt is handled by a protected-mode handler. • The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at any IOPL level. INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-525 INSTRUCTION SET REFERENCE, A-M Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features. Intel and Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this opcode can be created by direct numeric code definition or by self-modifying code. The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that of a far call made with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS register is pushed onto the stack before the return address. (The return address is a far address consisting of the current values of the CS and EIP registers.) Returns from interrupt procedures are handled with the IRET instruction, which pops the EFLAGS information and return address from the stack. The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception handler procedure. In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an interrupt gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment. (Note that in real-address mode, the IDT is called the interrupt vector table, and its pointers are called interrupt vectors.) The following decision table indicates which action in the lower portion of the table is taken given the conditions in the upper portion of the table. Each Y in the lower section of the decision table represents a procedure defined in the “Operation” section for this instruction (except #GP). Table 3-61. Decision Table PE 0 1 1 1 1 1 1 1 VM – – – – – 0 1 1 IOPL – – – – – – <3 =3 DPL/CPL RELATIONSHIP – DPL< CPL – DPL> CPL DPL= CPL or C DPL< CPL & NC – – INTERRUPT TYPE – S/W – – – – – – GATE TYPE – – Task Trap or Interrupt Trap or Interrupt Trap or Interrupt Trap or Interrupt Trap or Interrupt REAL-ADDRESSMODE Y Y Y Y Y Y Y Y Y Y Y Y Y PROTECTED-MODE TRAP-ORINTERRUPT-GATE INTER-PRIVILEGELEVEL-INTERRUPT INTRA-PRIVILEGELEVEL-INTERRUPT 3-526 Vol. 2A Y Y INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M Table 3-61. Decision Table (Contd.) INTERRUPT-FROMVIRTUAL-8086MODE Y TASK-GATE #GP Y Y Y Y NOTES: − Don't Care. Y Yes, action taken. Blank Action not taken. When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n instruction. If the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3, the processor executes a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target CPL of the interrupt handler procedure must be 0 to execute the protected mode interrupt to privilege level 0. The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The initial base address value of the IDTR after the processor is powered up or reset is 0. Operation The following operational description applies not only to the INT n and INTO instructions, but also to external interrupts, nonmaskable interrupts (NMIs), and exceptions. Some of these events push onto the stack an error code. The operational description specifies numerous checks whose failure may result in delivery of a nested exception. In these cases, the original event is not delivered. The operational description specifies the error code delivered by any nested exception. In some cases, the error code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values. The pseudofunction produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext; (2) if idt is 1, the error code is (num « 3) | 2 | ext. In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT depends on the nature of the event whose delivery encountered a nested exception: if that event is a software interrupt, EXT is 0; otherwise, EXT is 1. IF PE = 0 THEN GOTO REAL-ADDRESS-MODE; ELSE (* PE = 1 *) IF (VM = 1 and IOPL < 3 AND INT n) THEN #GP(0); (* Bit 0 of error code is 0 because INT n *) INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-527 INSTRUCTION SET REFERENCE, A-M ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *) IF (IA32_EFER.LMA = 0) THEN (* Protected mode, or virtual-8086 mode interrupt *) GOTO PROTECTED-MODE; ELSE (* IA-32e mode interrupt *) GOTO IA-32e-MODE; FI; FI; FI; REAL-ADDRESS-MODE: IF ((vector_number « 2) + 3) is not within IDT limit THEN #GP; FI; IF stack not large enough for a 6-byte return information THEN #SS; FI; Push (EFLAGS[15:0]); IF ← 0; (* Clear interrupt flag *) TF ← 0; (* Clear trap flag *) AC ← 0; (* Clear AC flag *) Push(CS); Push(IP); (* No error codes are pushed in real-address mode*) CS ← IDT(Descriptor (vector_number « 2), selector)); EIP ← IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *) END; PROTECTED-MODE: IF ((vector_number « 3) + 7) is not within IDT limits or selected IDT descriptor is not an interrupt-, trap-, or task-gate type THEN #GP(error_code(vector_number,1,EXT)); FI; (* idt operand to error_code set because vector is used *) IF software interrupt (* Generated by INT n, INT3, or INTO *) THEN IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *) THEN #GP(error_code(vector_number,1,0)); FI; (* idt operand to error_code set because vector is used *) (* ext operand to error_code is 0 because INT n, INT3, or INTO*) FI; IF gate not present THEN #NP(error_code(vector_number,1,EXT)); FI; (* idt operand to error_code set because vector is used *) IF task gate (* Specified in the selected interrupt table descriptor *) THEN GOTO TASK-GATE; ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *) FI; 3-528 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M END; IA-32e-MODE: IF INTO and CS.L = 1 (64-bit mode) THEN #UD; FI; IF ((vector_number « 4) + 15) is not in IDT limits or selected IDT descriptor is not an interrupt-, or trap-gate type THEN #GP(error_code(vector_number,1,EXT)); (* idt operand to error_code set because vector is used *) FI; IF software interrupt (* Generated by INT n, INT 3, or INTO *) THEN IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *) THEN #GP(error_code(vector_number,1,0)); (* idt operand to error_code set because vector is used *) (* ext operand to error_code is 0 because INT n, INT3, or INTO*) FI; FI; IF gate not present THEN #NP(error_code(vector_number,1,EXT)); (* idt operand to error_code set because vector is used *) FI; GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *) END; TASK-GATE: (* PE = 1, task gate *) Read TSS selector in task gate (IDT descriptor); IF local/global bit is set to local or index not within GDT limits THEN #GP(error_code(TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) Access TSS descriptor in GDT; IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001) THEN #GP(TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) IF TSS not present THEN #NP(TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) SWITCH-TASKS (with nesting) to TSS; IF interrupt caused by fault with error code THEN IF stack limit does not allow push of error code THEN #SS(EXT); FI; Push(error code); FI; INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-529 INSTRUCTION SET REFERENCE, A-M IF EIP not within code segment limit THEN #GP(EXT); FI; END; TRAP-OR-INTERRUPT-GATE: Read new code-segment selector for trap or interrupt gate (IDT descriptor); IF new code-segment selector is NULL THEN #GP(EXT); FI; (* Error code contains NULL selector *) IF new code-segment selector is not within its descriptor table limits THEN #GP(error_code(new code-segment selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) Read descriptor referenced by new code-segment selector; IF descriptor does not indicate a code segment or new code-segment DPL > CPL THEN #GP(error_code(new code-segment selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) IF new code-segment descriptor is not present, THEN #NP(error_code(new code-segment selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) IF new code segment is non-conforming with DPL < CPL THEN IF VM = 0 THEN GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT; (* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment, DPL < CPL *) ELSE (* VM = 1 *) IF new code-segment DPL ≠ 0 THEN #GP(error_code(new code-segment selector,0,EXT)); (* idt operand to error_code is 0 because selector is used *) GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI; (* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *) FI; ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *) IF VM = 1 THEN #GP(error_code(new code-segment selector,0,EXT)); (* idt operand to error_code is 0 because selector is used *) IF new code segment is conforming or new code-segment DPL = CPL THEN GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT; ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *) #GP(error_code(new code-segment selector,0,EXT)); (* idt operand to error_code is 0 because selector is used *) FI; FI; 3-530 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M END; INTER-PRIVILEGE-LEVEL-INTERRUPT: (* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *) IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *) THEN (* Identify stack-segment selector for new privilege level in current TSS *) IF current TSS is 32-bit THEN TSSstackAddress ← (new code-segment DPL « 3) + 4; IF (TSSstackAddress + 5) > current TSS limit THEN #TS(error_code(current TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4); NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress); ELSE (* current TSS is 16-bit *) TSSstackAddress ← (new code-segment DPL « 2) + 2 IF (TSSstackAddress + 3) > current TSS limit THEN #TS(error_code(current TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2); NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress); FI; IF NewSS is NULL THEN #TS(EXT); FI; IF NewSS index is not within its descriptor-table limits or NewSS RPL ≠ new code-segment DPL THEN #TS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) Read new stack-segment descriptor for NewSS in GDT or LDT; IF new stack-segment DPL ≠ new code-segment DPL or new stack-segment Type does not indicate writable data segment THEN #TS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) IF NewSS is not present THEN #SS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) ELSE (* IA-32e mode *) IF IDT-gate IST = 0 THEN TSSstackAddress ← (new code-segment DPL « 3) + 4; ELSE TSSstackAddress ← (IDT gate IST « 3) + 28; FI; IF (TSSstackAddress + 7) > current TSS limit THEN #TS(error_code(current TSS selector,0,EXT); FI; INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-531 INSTRUCTION SET REFERENCE, A-M (* idt operand to error_code is 0 because selector is used *) NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress); NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *) FI; IF IDT gate is 32-bit THEN IF new stack does not have room for 24 bytes (error code pushed) or 20 bytes (no error code pushed) THEN #SS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) FI ELSE IF IDT gate is 16-bit THEN IF new stack does not have room for 12 bytes (error code pushed) or 10 bytes (no error code pushed); THEN #SS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) ELSE (* 64-bit IDT gate*) IF StackAddress is non-canonical THEN #SS(EXT); FI; (* Error code contains NULL selector *) FI; FI; IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *) THEN IF instruction pointer from IDT gate is not within new code-segment limits THEN #GP(EXT); FI; (* Error code contains NULL selector *) ESP ← NewESP; SS ← NewSS; (* Segment descriptor information also loaded *) ELSE (* IA-32e mode *) IF instruction pointer from IDT gate contains a non-canonical address THEN #GP(EXT); FI; (* Error code contains NULL selector *) RSP ← NewRSP & FFFFFFFFFFFFFFF0H; SS ← NewSS; FI; IF IDT gate is 32-bit THEN CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *) ELSE IF IDT gate 16-bit THEN CS:IP ← Gate(CS:IP); (* Segment descriptor information also loaded *) 3-532 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M ELSE (* 64-bit IDT gate *) CS:RIP ← Gate(CS:RIP); (* Segment descriptor information also loaded *) FI; FI; IF IDT gate is 32-bit THEN Push(far pointer to old stack); (* Old SS and ESP, 3 words padded to 4 *) Push(EFLAGS); Push(far pointer to return instruction); (* Old CS and EIP, 3 words padded to 4 *) Push(ErrorCode); (* If needed, 4 bytes *) ELSE IF IDT gate 16-bit THEN Push(far pointer to old stack); (* Old SS and SP, 2 words *) Push(EFLAGS(15-0]); Push(far pointer to return instruction); (* Old CS and IP, 2 words *) Push(ErrorCode); (* If needed, 2 bytes *) ELSE (* 64-bit IDT gate *) Push(far pointer to old stack); (* Old SS and SP, each an 8-byte push *) Push(RFLAGS); (* 8-byte push *) Push(far pointer to return instruction); (* Old CS and RIP, each an 8-byte push *) Push(ErrorCode); (* If needed, 8-bytes *) FI; FI; CPL ← new code-segment DPL; CS(RPL) ← CPL; IF IDT gate is interrupt gate THEN IF ← 0 (* Interrupt flag set to 0, interrupts disabled *); FI; TF ← 0; VM ← 0; RF ← 0; NT ← 0; END; INTERRUPT-FROM-VIRTUAL-8086-MODE: (* Identify stack-segment selector for privilege level 0 in current TSS *) IF current TSS is 32-bit INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-533 INSTRUCTION SET REFERENCE, A-M THEN IF TSS limit < 9 THEN #TS(error_code(current TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) NewSS ← 2 bytes loaded from (current TSS base + 8); NewESP ← 4 bytes loaded from (current TSS base + 4); ELSE (* current TSS is 16-bit *) IF TSS limit < 5 THEN #TS(error_code(current TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) NewSS ← 2 bytes loaded from (current TSS base + 4); NewESP ← 2 bytes loaded from (current TSS base + 2); FI; IF NewSS is NULL THEN #TS(EXT); FI; (* Error code contains NULL selector *) IF NewSS index is not within its descriptor table limits or NewSS RPL ≠ 0 THEN #TS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) Read new stack-segment descriptor for NewSS in GDT or LDT; IF new stack-segment DPL ≠ 0 or stack segment does not indicate writable data segment THEN #TS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) IF new stack segment not present THEN #SS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) IF IDT gate is 32-bit THEN IF new stack does not have room for 40 bytes (error code pushed) or 36 bytes (no error code pushed) THEN #SS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) ELSE (* IDT gate is 16-bit) IF new stack does not have room for 20 bytes (error code pushed) or 18 bytes (no error code pushed) THEN #SS(error_code(NewSS,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) FI; IF instruction pointer from IDT gate is not within new code-segment limits THEN #GP(EXT); FI; (* Error code contains NULL selector *) tempEFLAGS ← EFLAGS; VM ← 0; TF ← 0; 3-534 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M RF ← 0; NT ← 0; IF service through interrupt gate THEN IF = 0; FI; TempSS ← SS; TempESP ← ESP; SS ← NewSS; ESP ← NewESP; (* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates; Segment selector pushes in 32-bit mode are padded to two words *) Push(GS); Push(FS); Push(DS); Push(ES); Push(TempSS); Push(TempESP); Push(TempEFlags); Push(CS); Push(EIP); GS ← 0; (* Segment registers made NULL, invalid for use in protected mode *) FS ← 0; DS ← 0; ES ← 0; CS:IP ← Gate(CS); (* Segment descriptor information also loaded *) IF OperandSize = 32 THEN EIP ← Gate(instruction pointer); ELSE (* OperandSize is 16 *) EIP ← Gate(instruction pointer) AND 0000FFFFH; FI; (* Start execution of new routine in Protected Mode *) END; INTRA-PRIVILEGE-LEVEL-INTERRUPT: (* PE = 1, DPL = CPL or conforming segment *) IF IA32_EFER.LMA = 1 (* IA-32e mode *) IF IDT-descriptor IST ≠ 0 THEN TSSstackAddress ← (IDT-descriptor IST « 3) + 28; IF (TSSstackAddress + 7) > TSS limit THEN #TS(error_code(current TSS selector,0,EXT)); FI; (* idt operand to error_code is 0 because selector is used *) NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress); FI; INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-535 INSTRUCTION SET REFERENCE, A-M IF 32-bit gate (* implies IA32_EFER.LMA = 0 *) THEN IF current stack does not have room for 16 bytes (error code pushed) or 12 bytes (no error code pushed) THEN #SS(EXT); FI; (* Error code contains NULL selector *) ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *) IF current stack does not have room for 8 bytes (error code pushed) or 6 bytes (no error code pushed) THEN #SS(EXT); FI; (* Error code contains NULL selector *) ELSE (* IA32_EFER.LMA = 1, 64-bit gate*) IF NewRSP contains a non-canonical address THEN #SS(EXT); (* Error code contains NULL selector *) FI; FI; IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *) THEN IF instruction pointer from IDT gate is not within new code-segment limit THEN #GP(EXT); FI; (* Error code contains NULL selector *) ELSE IF instruction pointer from IDT gate contains a non-canonical address THEN #GP(EXT); FI; (* Error code contains NULL selector *) RSP ← NewRSP & FFFFFFFFFFFFFFF0H; FI; IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *) THEN Push (EFLAGS); Push (far pointer to return instruction); (* 3 words padded to 4 *) CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *) Push (ErrorCode); (* If any *) ELSE IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *) THEN Push (FLAGS); Push (far pointer to return location); (* 2 words *) CS:IP ← Gate(CS:IP); (* Segment descriptor information also loaded *) Push (ErrorCode); (* If any *) ELSE (* IA32_EFER.LMA = 1, 64-bit gate*) Push(far pointer to old stack); (* Old SS and SP, each an 8-byte push *) Push(RFLAGS); (* 8-byte push *) Push(far pointer to return instruction); (* Old CS and RIP, each an 8-byte push *) 3-536 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M Push(ErrorCode); (* If needed, 8 bytes *) CS:RIP ← GATE(CS:RIP); (* Segment descriptor information also loaded *) FI; FI; CS(RPL) ← CPL; IF IDT gate is interrupt gate THEN IF ← 0; FI; (* Interrupt flag set to 0; interrupts disabled *) TF ← 0; NT ← 0; VM ← 0; RF ← 0; END; Flags Affected The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, depending on the mode of operation of the processor when the INT instruction is executed (see the “Operation” section). If the interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS image in the new task’s TSS. Protected Mode Exceptions #GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code segment limits. If the segment selector in the interrupt-, trap-, or task gate is NULL. If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside its descriptor table limits. If the interrupt vector number is outside the IDT limits. If an IDT descriptor is not an interrupt-, trap-, or task-descriptor. If an interrupt is generated by the INT n, INT 3, or INTO instruction and the DPL of an interrupt-, trap-, or task-descriptor is less than the CPL. If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor for a code segment. If the segment selector for a TSS has its local/global bit set for local. If a TSS segment descriptor specifies that the TSS is busy or not available. #SS(error_code) If pushing the return address, flags, or error code onto the stack exceeds the bounds of the stack segment and no stack switch occurs. INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-537 INSTRUCTION SET REFERENCE, A-M If the SS register is being loaded and the segment pointed to is marked not present. If pushing the return address, flags, error code, or stack segment pointer exceeds the bounds of the new stack segment when a stack switch occurs. #NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present. #TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment being accessed by the interrupt or trap gate. If DPL of the stack segment descriptor pointed to by the stack segment selector in the TSS is not equal to the DPL of the code segment descriptor for the interrupt or trap gate. If the stack segment selector in the TSS is NULL. If the stack segment for the TSS is not a writable data segment. If segment-selector index for stack segment is outside descriptor table limits. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. #AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the interrupt vector number is outside the IDT limits. #SS If stack limit violation on push. If pushing the return address, flags, or error code onto the stack exceeds the bounds of the stack segment. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the interrupt-, trap-, or task-gate descriptor is not equal to 3. If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code segment limits. If the segment selector in the interrupt-, trap-, or task gate is NULL. If a interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside its descriptor table limits. 3-538 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M If the interrupt vector number is outside the IDT limits. If an IDT descriptor is not an interrupt-, trap-, or task-descriptor. If an interrupt is generated by the INT n instruction and the DPL of an interrupt-, trap-, or task-descriptor is less than the CPL. If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor for a code segment. If the segment selector for a TSS has its local/global bit set for local. #SS(error_code) If the SS register is being loaded and the segment pointed to is marked not present. If pushing the return address, flags, error code, stack segment pointer, or data segments exceeds the bounds of the stack segment. #NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present. #TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment being accessed by the interrupt or trap gate. If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the DPL of the code segment descriptor for the interrupt or trap gate. If the stack segment selector in the TSS is NULL. If the stack segment for the TSS is not a writable data segment. If segment-selector index for stack segment is outside descriptor table limits. #PF(fault-code) If a page fault occurs. #BP If the INT 3 instruction is executed. #OF If the INTO instruction is executed and the OF flag is set. #UD If the LOCK prefix is used. #AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is non-canonical. If the segment selector in the 64-bit interrupt or trap gate is NULL. If the interrupt vector number is outside the IDT limits. INT n/INTO/INT 3—Call to Interrupt Procedure Vol. 2A 3-539 INSTRUCTION SET REFERENCE, A-M If the interrupt vector number points to a gate which is in noncanonical space. If the interrupt vector number points to a descriptor which is not a 64-bit interrupt gate or 64-bit trap gate. If the descriptor pointed to by the gate selector is outside the descriptor table limit. If the descriptor pointed to by the gate selector is in non-canonical space. If the descriptor pointed to by the gate selector is not a code segment. If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both the L-bit and D-bit set. If the descriptor pointed to by the gate selector has DPL > CPL. #SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space with no stack switch. If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in non-canonical space on a stack switch (either CPL change or no-CPL with IST). #NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present. #TS(error_code) If an attempt to load RSP from the TSS causes an access to noncanonical space. If the RSP from the TSS is outside descriptor table limits. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. #AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned. 3-540 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure INSTRUCTION SET REFERENCE, A-M INVD—Invalidate Internal Caches Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 08 INVD A Valid Valid Flush internal caches; initiate flushing of external caches. NOTES: * See the IA-32 Architecture Compatibility section below. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that directs external caches to also flush themselves. Data held in internal caches is not written back to main memory. After executing this instruction, the processor does not wait for the external caches to complete their flushing operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache flush signal. The INVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a program or procedure must be 0 to execute this instruction. Use this instruction with care. Data cached internally and not written back to main memory will be lost. Unless there is a specific requirement or benefit to flushing caches without writing back modified cache lines (for example, testing or fault recovery where cache coherency with main memory is not a concern), software should use the WBINVD instruction. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. IA-32 Architecture Compatibility The INVD instruction is implementation dependent; it may be implemented differently on different families of Intel 64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier than the Intel486 processor. Operation Flush(InternalCaches); SignalFlush(ExternalCaches); Continue (* Continue execution *) INVD—Invalidate Internal Caches Vol. 2A 3-541 INSTRUCTION SET REFERENCE, A-M Flags Affected None. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) The INVD instruction cannot be executed in virtual-8086 mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. 3-542 Vol. 2A INVD—Invalidate Internal Caches INSTRUCTION SET REFERENCE, A-M INVLPG—Invalidate TLB Entry Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 01/7 INVLPG m A Valid Valid Invalidate TLB Entry for page that contains m. NOTES: * See the IA-32 Architecture Compatibility section below. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source operand. The source operand is a memory address. The processor determines the page that contains that address and flushes the TLB entry for that page. The INVLPG instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a program or procedure must be 0 to execute this instruction. The INVLPG instruction normally flushes the TLB entry only for the specified page; however, in some cases, it flushes the entire TLB. See “MOV—Move to/from Control Registers” in this chapter for further information on operations that flush the TLB. This instruction’s operation is the same in all non-64-bit modes. It also operates the same in 64-bit mode, except if the memory address is in non-canonical form. In this case, INVLPG is the same as a NOP. IA-32 Architecture Compatibility The INVLPG instruction is implementation dependent, and its function may be implemented differently on different families of Intel 64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier than the Intel486 processor. Operation Flush(RelevantTLBEntries); Continue; (* Continue execution *) Flags Affected None. INVLPG—Invalidate TLB Entry Vol. 2A 3-543 INSTRUCTION SET REFERENCE, A-M Protected Mode Exceptions #GP(0) If the current privilege level is not 0. #UD Operand is a register. If the LOCK prefix is used. Real-Address Mode Exceptions #UD Operand is a register. If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode. 64-Bit Mode Exceptions #GP(0) If the current privilege level is not 0. #UD Operand is a register. If the LOCK prefix is used. 3-544 Vol. 2A INVLPG—Invalidate TLB Entry INSTRUCTION SET REFERENCE, A-M IRET/IRETD—Interrupt Return Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode CF IRET A Valid Valid Interrupt return (16-bit operand size). CF IRETD A Valid Valid Interrupt return (32-bit operand size). REX.W + CF IRETQ A Valid N.E. Interrupt return (64-bit operand size). Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Returns program control from an exception or interrupt handler to a program or procedure that was interrupted by an exception, an external interrupt, or a softwaregenerated interrupt. These instructions are also used to perform a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task switch or when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the section titled “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the IRET mnemonic interchangeably for both operand sizes. In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure. During this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted program or procedure. In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting of these flags, the processor performs the following types of interrupt returns: • • • • • Return from virtual-8086 mode. Return to virtual-8086 mode. Intra-privilege level return. Inter-privilege level return. Return from nested task (task switch). IRET/IRETD—Interrupt Return Vol. 2A 3-545 INSTRUCTION SET REFERENCE, A-M If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt procedure, without a task switch. The code segment being returned to must be equally or less privileged than the interrupt handler routine (as indicated by the RPL field of the code segment selector popped from the stack). As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return is to virtual-8086 mode, the processor also pops the data segment registers from the stack. If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the IRET instruction is executed. If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection exception. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to 64 bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits. See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information about the behavior of this instruction in VMX non-root operation. Operation IF PE = 0 THEN GOTO REAL-ADDRESS-MODE; ELSE IF (IA32_EFER.LMA = 0) THEN (* Protected mode *) GOTO PROTECTED-MODE; ELSE (* IA-32e mode *) GOTO IA-32e-MODE; FI; FI; REAL-ADDRESS-MODE; IF OperandSize = 32 THEN IF top 12 bytes of stack not within stack limits THEN #SS; FI; 3-546 Vol. 2A IRET/IRETD—Interrupt Return INSTRUCTION SET REFERENCE, A-M tempEIP ← 4 bytes at end of stack IF tempEIP[31:16] is not zero THEN #GP(0); FI; EIP ← Pop(); CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *) tempEFLAGS ← Pop(); EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H); ELSE (* OperandSize = 16 *) IF top 6 bytes of stack are not within stack limits THEN #SS; FI; EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *) CS ← Pop(); (* 16-bit pop *) EFLAGS[15:0] ← Pop(); FI; END; PROTECTED-MODE: IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *) THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *) FI; IF NT = 1 THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *) FI; IF OperandSize = 32 THEN IF top 12 bytes of stack not within stack limits THEN #SS(0); FI; tempEIP ← Pop(); tempCS ← Pop(); tempEFLAGS ← Pop(); ELSE (* OperandSize = 16 *) IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI; tempEIP ← Pop(); tempCS ← Pop(); tempEFLAGS ← Pop(); tempEIP ← tempEIP AND FFFFH; tempEFLAGS ← tempEFLAGS AND FFFFH; FI; IF tempEFLAGS(VM) = 1 and CPL = 0 THEN GOTO RETURN-TO-VIRTUAL-8086-MODE; ELSE IRET/IRETD—Interrupt Return Vol. 2A 3-547 INSTRUCTION SET REFERENCE, A-M GOTO PROTECTED-MODE-RETURN; FI; IA-32e-MODE: IF NT = 1 THEN #GP(0); ELSE IF OperandSize = 32 THEN IF top 12 bytes of stack not within stack limits THEN #SS(0); FI; tempEIP ← Pop(); tempCS ← Pop(); tempEFLAGS ← Pop(); ELSE IF OperandSize = 16 THEN IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI; tempEIP ← Pop(); tempCS ← Pop(); tempEFLAGS ← Pop(); tempEIP ← tempEIP AND FFFFH; tempEFLAGS ← tempEFLAGS AND FFFFH; FI; ELSE (* OperandSize = 64 *) THEN tempRIP ← Pop(); tempCS ← Pop(); tempEFLAGS ← Pop(); tempRSP ← Pop(); tempSS ← Pop(); FI; GOTO IA-32e-MODE-RETURN; RETURN-FROM-VIRTUAL-8086-MODE: (* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *) IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *) THEN IF OperandSize = 32 THEN IF top 12 bytes of stack not within stack limits THEN #SS(0); FI; IF instruction pointer not within code segment limits THEN #GP(0); FI; EIP ← Pop(); CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *) EFLAGS ← Pop(); 3-548 Vol. 2A IRET/IRETD—Interrupt Return INSTRUCTION SET REFERENCE, A-M FI; END; (* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *) ELSE (* OperandSize = 16 *) IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI; IF instruction pointer not within code segment limits THEN #GP(0); FI; EIP ← Pop(); EIP ← EIP AND 0000FFFFH; CS ← Pop(); (* 16-bit pop *) EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *) FI; ELSE #GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *) RETURN-TO-VIRTUAL-8086-MODE: (* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM IF top 24 bytes of stack are not within stack segment limits THEN #SS(0); FI; IF instruction pointer not within code segment limits THEN #GP(0); FI; CS ← tempCS; EIP ← tempEIP & FFFFH; EFLAGS ← tempEFLAGS; TempESP ← Pop(); TempSS ← Pop(); ES ← Pop(); (* Pop 2 words; throw away high-order word *) DS ← Pop(); (* Pop 2 words; throw away high-order word *) FS ← Pop(); (* Pop 2 words; throw away high-order word *) GS ← Pop(); (* Pop 2 words; throw away high-order word *) SS:ESP ← TempSS:TempESP; CPL ← 3; (* Resume execution in Virtual-8086 mode *) END; = 1 in flag image *) TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *) Read segment selector in link field of current TSS; IF local/global bit is set to local or index not within GDT limits THEN #TS (TSS selector); FI; Access TSS for task specified in link field of current TSS; IF TSS descriptor type is not TSS or if the TSS is marked not busy IRET/IRETD—Interrupt Return Vol. 2A 3-549 INSTRUCTION SET REFERENCE, A-M THEN #TS (TSS selector); FI; IF TSS not present THEN #NP(TSS selector); FI; SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS; Mark the task just abandoned as NOT BUSY; IF EIP is not within code segment limit THEN #GP(0); FI; END; PROTECTED-MODE-RETURN: (* PE = 1 *) IF return code segment selector is NULL THEN GP(0); FI; IF return code segment selector addresses descriptor beyond descriptor table limit THEN GP(selector); FI; Read segment descriptor pointed to by the return code segment selector; IF return code segment descriptor is not a code segment THEN #GP(selector); FI; IF return code segment selector RPL < CPL THEN #GP(selector); FI; IF return code segment descriptor is conforming and return code segment DPL > return code segment selector RPL THEN #GP(selector); FI; IF return code segment descriptor is not present THEN #NP(selector); FI; IF return code segment selector RPL > CPL THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL; ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI; END; RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *) IF new mode ≠ 64-Bit Mode THEN IF tempEIP is not within code segment limits THEN #GP(0); FI; EIP ← tempEIP; ELSE (* new mode = 64-bit mode *) IF tempRIP is non-canonical THEN #GP(0); FI; RIP ← tempRIP; FI; CS ← tempCS; (* Segment descriptor information also loaded *) EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS; IF OperandSize = 32 or OperandSize = 64 3-550 Vol. 2A IRET/IRETD—Interrupt Return INSTRUCTION SET REFERENCE, A-M THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI; IF CPL ≤ IOPL THEN EFLAGS(IF) ← tempEFLAGS; FI; IF CPL = 0 THEN (* VM = 0 in flags image *) EFLAGS(IOPL) ← tempEFLAGS; IF OperandSize = 32 or OperandSize = 64 THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI; FI; END; RETURN-TO-OUTER-PRIVILEGE-LEVEL: IF OperandSize = 32 THEN IF top 8 bytes on stack are not within limits THEN #SS(0); FI; ELSE (* OperandSize = 16 *) IF top 4 bytes on stack are not within limits THEN #SS(0); FI; FI; Read return segment selector; IF stack segment selector is NULL THEN #GP(0); FI; IF return stack segment selector index is not within its descriptor table limits THEN #GP(SSselector); FI; Read segment descriptor pointed to by return segment selector; IF stack segment selector RPL ≠ RPL of the return code segment selector or the stack segment descriptor does not indicate a a writable data segment; or the stack segment DPL ≠ RPL of the return code segment selector THEN #GP(SS selector); FI; IF stack segment is not present THEN #SS(SS selector); FI; IF new mode ≠ 64-Bit Mode THEN IF tempEIP is not within code segment limits THEN #GP(0); FI; EIP ← tempEIP; ELSE (* new mode = 64-bit mode *) IF tempRIP is non-canonical THEN #GP(0); FI; RIP ← tempRIP; FI; CS ← tempCS; IRET/IRETD—Interrupt Return Vol. 2A 3-551 INSTRUCTION SET REFERENCE, A-M EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS; IF OperandSize = 32 THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI; IF CPL ≤ IOPL THEN EFLAGS(IF) ← tempEFLAGS; FI; IF CPL = 0 THEN EFLAGS(IOPL) ← tempEFLAGS; IF OperandSize = 32 THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI; IF OperandSize = 64 THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI; FI; CPL ← RPL of the return code segment selector; FOR each of segment register (ES, FS, GS, and DS) DO IF segment register points to data or non-conforming code segment and CPL > segment descriptor DPL (* Stored in hidden part of segment register *) THEN (* Segment register invalid *) SegmentSelector ← 0; (* NULL segment selector *) FI; OD; END; IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *) IF ( (return code segment selector is NULL) or (return RIP is non-canonical) or (SS selector is NULL going back to compatibility mode) or (SS selector is NULL going back to CPL3 64-bit mode) or (RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector) ) THEN GP(0); FI; IF return code segment selector addresses descriptor beyond descriptor table limit THEN GP(selector); FI; Read segment descriptor pointed to by the return code segment selector; IF return code segment descriptor is not a code segment THEN #GP(selector); FI; IF return code segment selector RPL < CPL THEN #GP(selector); FI; IF return code segment descriptor is conforming and return code segment DPL > return code segment selector RPL THEN #GP(selector); FI; IF return code segment descriptor is not present THEN #NP(selector); FI; IF return code segment selector RPL > CPL 3-552 Vol. 2A IRET/IRETD—Interrupt Return INSTRUCTION SET REFERENCE, A-M THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL; ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI; END; Flags Affected All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified according to the EFLAGS image stored in the previous task’s TSS. Protected Mode Exceptions #GP(0) If the return code or stack segment selector is NULL. If the return instruction pointer is not within the return code segment limit. #GP(selector) If a segment selector index is outside its descriptor table limits. If the return code segment selector RPL is greater than the CPL. If the DPL of a conforming-code segment is greater than the return code segment selector RPL. If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment selector. If the stack segment descriptor DPL is not equal to the RPL of the return code segment selector. If the stack segment is not a writable data segment. If the stack segment selector RPL is not equal to the RPL of the return code segment selector. If the segment descriptor for a code segment does not indicate it is a code segment. If the segment selector for a TSS has its local/global bit set for local. If a TSS segment descriptor specifies that the TSS is not busy. If a TSS segment descriptor specifies that the TSS is not available. #SS(0) If the top bytes of stack are not within stack limits. #NP(selector) If the return code or stack segment is not present. #PF(fault-code) If a page fault occurs. #AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is enabled. #UD If the LOCK prefix is used. IRET/IRETD—Interrupt Return Vol. 2A 3-553 INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #GP If the return instruction pointer is not within the return code segment limit. #SS If the top bytes of stack are not within stack limits. Virtual-8086 Mode Exceptions #GP(0) If the return instruction pointer is not within the return code segment limit. #PF(fault-code) If a page fault occurs. IF IOPL not equal to 3. #SS(0) If the top bytes of stack are not within stack limits. #AC(0) If an unaligned memory reference occurs and alignment checking is enabled. #UD If the LOCK prefix is used. Compatibility Mode Exceptions #GP(0) If EFLAGS.NT[bit 14] = 1. Other exceptions same as in Protected Mode. 64-Bit Mode Exceptions #GP(0) If EFLAGS.NT[bit 14] = 1. If the return code segment selector is NULL. If the stack segment selector is NULL going back to compatibility mode. If the stack segment selector is NULL going back to CPL3 64-bit mode. If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode. If the return instruction pointer is not within the return code segment limit. If the return instruction pointer is non-canonical. #GP(Selector) If a segment selector index is outside its descriptor table limits. If a segment descriptor memory address is non-canonical. If the segment descriptor for a code segment does not indicate it is a code segment. If the proposed new code segment descriptor has both the D-bit and L-bit set. If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment selector. If CPL is greater than the RPL of the code segment selector. 3-554 Vol. 2A IRET/IRETD—Interrupt Return INSTRUCTION SET REFERENCE, A-M If the DPL of a conforming-code segment is greater than the return code segment selector RPL. If the stack segment is not a writable data segment. If the stack segment descriptor DPL is not equal to the RPL of the return code segment selector. If the stack segment selector RPL is not equal to the RPL of the return code segment selector. #SS(0) If an attempt to pop a value off the stack violates the SS limit. If an attempt to pop a value off the stack causes a non-canonical address to be referenced. #NP(selector) If the return code or stack segment is not present. #PF(fault-code) If a page fault occurs. #AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is enabled. #UD If the LOCK prefix is used. IRET/IRETD—Interrupt Return Vol. 2A 3-555 INSTRUCTION SET REFERENCE, A-M Jcc—Jump if Condition Is Met Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 77 cb JA rel8 A Valid Valid Jump short if above (CF=0 and ZF=0). 73 cb JAE rel8 A Valid Valid Jump short if above or equal (CF=0). 72 cb JB rel8 A Valid Valid Jump short if below (CF=1). 76 cb JBE rel8 A Valid Valid Jump short if below or equal (CF=1 or ZF=1). 72 cb JC rel8 A Valid Valid Jump short if carry (CF=1). E3 cb JCXZ rel8 A N.E. Valid Jump short if CX register is 0. E3 cb JECXZ rel8 A Valid Valid Jump short if ECX register is 0. E3 cb JRCXZ rel8 A Valid N.E. Jump short if RCX register is 0. 74 cb JE rel8 A Valid Valid Jump short if equal (ZF=1). 7F cb JG rel8 A Valid Valid Jump short if greater (ZF=0 and SF=OF). 7D cb JGE rel8 A Valid Valid Jump short if greater or equal (SF=OF). 7C cb JL rel8 A Valid Valid Jump short if less (SF≠ OF). 7E cb JLE rel8 A Valid Valid Jump short if less or equal (ZF=1 or SF≠ OF). 76 cb JNA rel8 A Valid Valid Jump short if not above (CF=1 or ZF=1). 72 cb JNAE rel8 A Valid Valid Jump short if not above or equal (CF=1). 73 cb JNB rel8 A Valid Valid Jump short if not below (CF=0). 77 cb JNBE rel8 A Valid Valid Jump short if not below or equal (CF=0 and ZF=0). 73 cb JNC rel8 A Valid Valid Jump short if not carry (CF=0). 75 cb JNE rel8 A Valid Valid Jump short if not equal (ZF=0). 7E cb JNG rel8 A Valid Valid Jump short if not greater (ZF=1 or SF≠ OF). 3-556 Vol. 2A Jcc—Jump if Condition Is Met INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 7C cb JNGE rel8 A Valid Valid Jump short if not greater or equal (SF≠ OF). 7D cb JNL rel8 A Valid Valid Jump short if not less (SF=OF). 7F cb JNLE rel8 A Valid Valid Jump short if not less or equal (ZF=0 and SF=OF). 71 cb JNO rel8 A Valid Valid Jump short if not overflow (OF=0). 7B cb JNP rel8 A Valid Valid Jump short if not parity (PF=0). 79 cb JNS rel8 A Valid Valid Jump short if not sign (SF=0). 75 cb JNZ rel8 A Valid Valid Jump short if not zero (ZF=0). 70 cb JO rel8 A Valid Valid Jump short if overflow (OF=1). 7A cb JP rel8 A Valid Valid Jump short if parity (PF=1). 7A cb JPE rel8 A Valid Valid Jump short if parity even (PF=1). 7B cb JPO rel8 A Valid Valid Jump short if parity odd (PF=0). 78 cb JS rel8 A Valid Valid Jump short if sign (SF=1). 74 cb JZ rel8 A Valid Valid Jump short if zero (ZF ← 1). 0F 87 cw JA rel16 A N.S. Valid Jump near if above (CF=0 and ZF=0). Not supported in 64-bit mode. 0F 87 cd JA rel32 A Valid Valid Jump near if above (CF=0 and ZF=0). 0F 83 cw JAE rel16 A N.S. Valid Jump near if above or equal (CF=0). Not supported in 64bit mode. 0F 83 cd JAE rel32 A Valid Valid Jump near if above or equal (CF=0). 0F 82 cw JB rel16 A N.S. Valid Jump near if below (CF=1). Not supported in 64-bit mode. 0F 82 cd JB rel32 A Valid Valid Jump near if below (CF=1). Jcc—Jump if Condition Is Met Vol. 2A 3-557 INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 86 cw JBE rel16 A N.S. Valid Jump near if below or equal (CF=1 or ZF=1). Not supported in 64-bit mode. 0F 86 cd JBE rel32 A Valid Valid Jump near if below or equal (CF=1 or ZF=1). 0F 82 cw JC rel16 A N.S. Valid Jump near if carry (CF=1). Not supported in 64-bit mode. 0F 82 cd JC rel32 A Valid Valid Jump near if carry (CF=1). 0F 84 cw JE rel16 A N.S. Valid Jump near if equal (ZF=1). Not supported in 64-bit mode. 0F 84 cd JE rel32 A Valid Valid Jump near if equal (ZF=1). 0F 84 cw JZ rel16 A N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit mode. 0F 84 cd JZ rel32 A Valid Valid Jump near if 0 (ZF=1). 0F 8F cw JG rel16 A N.S. Valid Jump near if greater (ZF=0 and SF=OF). Not supported in 64-bit mode. 0F 8F cd JG rel32 A Valid Valid Jump near if greater (ZF=0 and SF=OF). 0F 8D cw JGE rel16 A N.S. Valid Jump near if greater or equal (SF=OF). Not supported in 64-bit mode. 0F 8D cd JGE rel32 A Valid Valid Jump near if greater or equal (SF=OF). 0F 8C cw JL rel16 A N.S. Valid Jump near if less (SF≠ OF). Not supported in 64-bit mode. 0F 8C cd JL rel32 A Valid Valid Jump near if less (SF≠ OF). 0F 8E cw JLE rel16 A N.S. Valid Jump near if less or equal (ZF=1 or SF≠ OF). Not supported in 64-bit mode. 0F 8E cd JLE rel32 A Valid Valid Jump near if less or equal (ZF=1 or SF≠ OF). 3-558 Vol. 2A Jcc—Jump if Condition Is Met INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 86 cw JNA rel16 A N.S. Valid Jump near if not above (CF=1 or ZF=1). Not supported in 64-bit mode. 0F 86 cd JNA rel32 A Valid Valid Jump near if not above (CF=1 or ZF=1). 0F 82 cw JNAE rel16 A N.S. Valid Jump near if not above or equal (CF=1). Not supported in 64-bit mode. 0F 82 cd JNAE rel32 A Valid Valid Jump near if not above or equal (CF=1). 0F 83 cw JNB rel16 A N.S. Valid Jump near if not below (CF=0). Not supported in 64bit mode. 0F 83 cd JNB rel32 A Valid Valid Jump near if not below (CF=0). 0F 87 cw JNBE rel16 A N.S. Valid Jump near if not below or equal (CF=0 and ZF=0). Not supported in 64-bit mode. 0F 87 cd JNBE rel32 A Valid Valid Jump near if not below or equal (CF=0 and ZF=0). 0F 83 cw JNC rel16 A N.S. Valid Jump near if not carry (CF=0). Not supported in 64bit mode. 0F 83 cd JNC rel32 A Valid Valid Jump near if not carry (CF=0). 0F 85 cw JNE rel16 A N.S. Valid Jump near if not equal (ZF=0). Not supported in 64-bit mode. 0F 85 cd JNE rel32 A Valid Valid Jump near if not equal (ZF=0). 0F 8E cw JNG rel16 A N.S. Valid Jump near if not greater (ZF=1 or SF≠ OF). Not supported in 64-bit mode. 0F 8E cd JNG rel32 A Valid Valid Jump near if not greater (ZF=1 or SF≠ OF). 0F 8C cw JNGE rel16 A N.S. Valid Jump near if not greater or equal (SF≠ OF). Not supported in 64-bit mode. Jcc—Jump if Condition Is Met Vol. 2A 3-559 INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 8C cd JNGE rel32 A Valid Valid Jump near if not greater or equal (SF≠ OF). 0F 8D cw JNL rel16 A N.S. Valid Jump near if not less (SF=OF). Not supported in 64-bit mode. 0F 8D cd JNL rel32 A Valid Valid Jump near if not less (SF=OF). 0F 8F cw JNLE rel16 A N.S. Valid Jump near if not less or equal (ZF=0 and SF=OF). Not supported in 64-bit mode. 0F 8F cd JNLE rel32 A Valid Valid Jump near if not less or equal (ZF=0 and SF=OF). 0F 81 cw JNO rel16 A N.S. Valid Jump near if not overflow (OF=0). Not supported in 64-bit mode. 0F 81 cd JNO rel32 A Valid Valid Jump near if not overflow (OF=0). 0F 8B cw JNP rel16 A N.S. Valid Jump near if not parity (PF=0). Not supported in 64bit mode. 0F 8B cd JNP rel32 A Valid Valid Jump near if not parity (PF=0). 0F 89 cw JNS rel16 A N.S. Valid Jump near if not sign (SF=0). Not supported in 64-bit mode. 0F 89 cd JNS rel32 A Valid Valid Jump near if not sign (SF=0). 0F 85 cw JNZ rel16 A N.S. Valid Jump near if not zero (ZF=0). Not supported in 64-bit mode. 0F 85 cd JNZ rel32 A Valid Valid Jump near if not zero (ZF=0). 0F 80 cw JO rel16 A N.S. Valid Jump near if overflow (OF=1). Not supported in 64-bit mode. 0F 80 cd JO rel32 A Valid Valid Jump near if overflow (OF=1). 3-560 Vol. 2A Jcc—Jump if Condition Is Met INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 8A cw JP rel16 A N.S. Valid Jump near if parity (PF=1). Not supported in 64-bit mode. 0F 8A cd JP rel32 A Valid Valid Jump near if parity (PF=1). 0F 8A cw JPE rel16 A N.S. Valid Jump near if parity even (PF=1). Not supported in 64bit mode. 0F 8A cd JPE rel32 A Valid Valid Jump near if parity even (PF=1). 0F 8B cw JPO rel16 A N.S. Valid Jump near if parity odd (PF=0). Not supported in 64bit mode. 0F 8B cd JPO rel32 A Valid Valid Jump near if parity odd (PF=0). 0F 88 cw JS rel16 A N.S. Valid Jump near if sign (SF=1). Not supported in 64-bit mode. 0F 88 cd JS rel32 A Valid Valid Jump near if sign (SF=1). 0F 84 cw JZ rel16 A N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit mode. 0F 84 cd JZ rel32 A Valid Valid Jump near if 0 (ZF=1). Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A Offset NA NA NA Description Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruction specified by the destination operand. A condition code (cc) is associated with each instruction to indicate the condition being tested for. If the condition is not satisfied, the jump is not performed and execution continues with the instruction following the Jcc instruction. The target instruction is specified with a relative offset (a signed offset relative to the current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at the machine code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction coding is most efficient for offsets of –128 to Jcc—Jump if Condition Is Met Vol. 2A 3-561 INSTRUCTION SET REFERENCE, A-M +127. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. The conditions for each Jcc mnemonic are given in the “Description” column of the table on the preceding page. The terms “less” and “greater” are used for comparisons of signed integers and the terms “above” and “below” are used for unsigned integers. Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H. The Jcc instruction does not support far jumps (jumps to other code segments). When the target for the conditional jump is in a different segment, use the opposite condition from the condition being tested for the Jcc instruction, and then access the target with an unconditional far jump (JMP instruction) to the other segment. For example, the following conditional far jump is illegal: JZ FARLABEL; To accomplish this far jump, use the following two instructions: JNZ BEYOND; JMP FARLABEL; BEYOND: The JRCXZ, JECXZ and JCXZ instructions differ from other Jcc instructions because they do not check status flags. Instead, they check RCX, ECX or CX for 0. The register checked is determined by the address-size attribute. These instructions are useful when used at the beginning of a loop that terminates with a conditional loop instruction (such as LOOPNE). They can be used to prevent an instruction sequence from entering a loop when RCX, ECX or CX is 0. This would cause the loop to execute 264, 232 or 64K times (not zero times). All conditional jumps are converted to code fetches of one or two cache lines, regardless of jump address or cacheability. In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset sign extended to 64 bits. JMP Near is RIP = RIP + 32-bit offset sign extended to 64-bits. Operation IF condition THEN tempEIP ← EIP + SignExtend(DEST); IF OperandSize = 16 THEN tempEIP ← tempEIP AND 0000FFFFH; FI; IF tempEIP is not within code segment limit THEN #GP(0); 3-562 Vol. 2A Jcc—Jump if Condition Is Met INSTRUCTION SET REFERENCE, A-M FI; ELSE EIP ← tempEIP FI; Protected Mode Exceptions #GP(0) If the offset being jumped to is beyond the limits of the CS segment. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effective address space from 0 to FFFFH. This condition can occur if a 32-bit address size override prefix is used. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the memory address is in a non-canonical form. #UD If the LOCK prefix is used. Jcc—Jump if Condition Is Met Vol. 2A 3-563 INSTRUCTION SET REFERENCE, A-M JMP—Jump Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode EB cb JMP rel8 A Valid Valid Jump short, RIP = RIP + 8-bit displacement sign extended to 64-bits E9 cw JMP rel16 A N.S. Valid Jump near, relative, displacement relative to next instruction. Not supported in 64-bit mode. E9 cd JMP rel32 A Valid Valid Jump near, relative, RIP = RIP + 32-bit displacement sign extended to 64-bits FF /4 JMP r/m16 B N.S. Valid Jump near, absolute indirect, address = zero-extended r/m16. Not supported in 64bit mode. FF /4 JMP r/m32 B N.S. Valid Jump near, absolute indirect, address given in r/m32. Not supported in 64-bit mode. FF /4 JMP r/m64 B Valid N.E. Jump near, absolute indirect, RIP = 64-Bit offset from register or memory EA cd JMP ptr16:16 A Inv. Valid Jump far, absolute, address given in operand EA cp JMP ptr16:32 A Inv. Valid Jump far, absolute, address given in operand FF /5 JMP m16:16 A Valid Valid Jump far, absolute indirect, address given in m16:16 FF /5 JMP m16:32 A Valid Valid Jump far, absolute indirect, address given in m16:32. REX.W + FF /5 JMP m16:64 A Valid N.E. Jump far, absolute indirect, address given in m16:64. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A Offset NA NA NA B ModRM:r/m (r) NA NA NA Description 3-564 Vol. 2A JMP—Jump INSTRUCTION SET REFERENCE, A-M Transfers program control to a different point in the instruction stream without recording return information. The destination (target) operand specifies the address of the instruction being jumped to. This operand can be an immediate value, a general-purpose register, or a memory location. This instruction can be used to execute four different types of jumps: • Near jump—A jump to an instruction within the current code segment (the segment currently pointed to by the CS register), sometimes referred to as an intrasegment jump. • Short jump—A near jump where the jump range is limited to –128 to +127 from the current EIP value. • Far jump—A jump to an instruction located in a different segment than the current code segment but at the same privilege level, sometimes referred to as an intersegment jump. • Task switch—A jump to an instruction located in a different task. A task switch can only be executed in protected mode (see Chapter 7, in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information on performing task switches with the JMP instruction). Near and Short Jumps. When executing a near jump, the processor jumps to the address (within the current code segment) that is specified with the target operand. The target operand specifies either an absolute offset (that is an offset from the base of the code segment) or a relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register). A near jump to a relative offset of 8-bits (rel8) is referred to as a short jump. The CS register is not changed on near and short jumps. An absolute offset is specified indirectly in a general-purpose register or a memory location (r/m16 or r/m32). The operand-size attribute determines the size of the target operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP register. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at the machine code level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value is added to the value in the EIP register. (Here, the EIP register contains the address of the instruction following the JMP instruction). When using relative offsets, the opcode (for short vs. near jumps) and the operand-size attribute (for near relative jumps) determines the size of the target operand (8, 16, or 32 bits). Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in realaddress or virtual-8086 mode, the processor jumps to the code segment and offset specified with the target operand. Here the target operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the segment and address of the called procedure is encoded in the instruction, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With the indi- JMP—Jump Vol. 2A 3-565 INSTRUCTION SET REFERENCE, A-M rect method, the target operand specifies a memory location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared. Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP instruction can be used to perform the following three types of far jumps: • • • A far jump to a conforming or non-conforming code segment. A far jump through a call gate. A task switch. (The JMP instruction cannot be used to perform inter-privilege-level far jumps.) In protected mode, the processor always uses the segment selector part of the far address to access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access rights determine the type of jump to be performed. If the selected descriptor is for a code segment, a far jump to a code segment at the same privilege level is performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, a general-protection exception is generated.) A far jump to the same privilege level in protected mode is very similar to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its descriptor are loaded into CS register, and the offset from the instruction is loaded into the EIP register. Note that a call gate (described in the next paragraph) can also be used to perform far call to a code segment at the same privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making jumps between 16-bit and 32-bit code segments. When executing a far jump through a call gate, the segment selector specified by the target operand identifies the call gate. (The offset part of the target operand is ignored.) The processor then jumps to the code segment specified in the call gate descriptor and begins executing the instruction at the offset specified in the call gate. No stack switch occurs. Here again, the target operand can specify the far address of the call gate either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). Executing a task switch with the JMP instruction is somewhat similar to executing a jump through a call gate. Here the target operand specifies the segment selector of the task gate for the task being switched to (and the offset part of the target operand is ignored). The task gate in turn points to the TSS for the task, which contains the segment selectors for the task’s code and stack segments. The TSS also contains the EIP value for the next instruction that was to be executed before the task was suspended. This instruction pointer value is loaded into the EIP register so that the task begins executing again at this next instruction. 3-566 Vol. 2A JMP—Jump INSTRUCTION SET REFERENCE, A-M The JMP instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of the task gate. See Chapter 7 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for detailed information on the mechanics of a task switch. Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is not set in the EFLAGS register and the new TSS’s previous task link field is not loaded with the old task’s TSS selector. A return to the previous task can thus not be carried out by executing the IRET instruction. Switching tasks with the JMP instruction differs in this regard from the CALL instruction which does set the NT flag and save the previous task link information, allowing a return to the calling task with an IRET instruction. In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector points to a gate, then RIP equals the 64-bit displacement taken from gate; else RIP equals the zero-extended offset from the far pointer referenced in the instruction. See the summary chart at the beginning of this section for encoding data and limits. Operation IF near jump IF 64-bit Mode THEN IF near relative jump THEN tempRIP ← RIP + DEST; (* RIP is instruction following JMP instruction*) ELSE (* Near absolute jump *) tempRIP ← DEST; FI; ELSE IF near relative jump THEN tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*) ELSE (* Near absolute jump *) tempEIP ← DEST; FI; FI; IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and tempEIP outside code segment limit THEN #GP(0); FI IF 64-bit mode and tempRIP is not canonical THEN #GP(0); FI; IF OperandSize = 32 THEN EIP ← tempEIP; JMP—Jump Vol. 2A 3-567 INSTRUCTION SET REFERENCE, A-M ELSE IF OperandSize = 16 THEN (* OperandSize = 16 *) EIP ← tempEIP AND 0000FFFFH; ELSE (* OperandSize = 64) RIP ← tempRIP; FI; FI; FI; IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *) THEN tempEIP ← DEST(Offset); (* DEST is ptr16:32 or [m16:32] *) IF tempEIP is beyond code segment limit THEN #GP(0); FI; CS ← DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *) IF OperandSize = 32 THEN EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *) ELSE (* OperandSize = 16 *) EIP ← tempEIP AND 0000FFFFH; (* Clear upper 16 bits *) FI; FI; IF far jump and (PE = 1 and VM = 0) (* IA-32e mode or protected mode, not virtual-8086 mode *) THEN IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal or segment selector in target operand NULL THEN #GP(0); FI; IF segment selector index not within descriptor table limits THEN #GP(new selector); FI; Read type and access rights of segment descriptor; IF (EFER.LMA = 0) THEN IF segment type is not a conforming or nonconforming code segment, call gate, task gate, or TSS THEN #GP(segment selector); FI; ELSE IF segment type is not a conforming or nonconforming code segment call gate THEN #GP(segment selector); FI; FI; Depending on type and access rights: GO TO CONFORMING-CODE-SEGMENT; GO TO NONCONFORMING-CODE-SEGMENT; 3-568 Vol. 2A JMP—Jump INSTRUCTION SET REFERENCE, A-M GO TO CALL-GATE; GO TO TASK-GATE; GO TO TASK-STATE-SEGMENT; ELSE #GP(segment selector); FI; CONFORMING-CODE-SEGMENT: IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 THEN GP(new code segment selector); FI; IF DPL > CPL THEN #GP(segment selector); FI; IF segment not present THEN #NP(segment selector); FI; tempEIP ← DEST(Offset); IF OperandSize = 16 THEN tempEIP ← tempEIP AND 0000FFFFH; FI; IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and tempEIP outside code segment limit THEN #GP(0); FI IF tempEIP is non-canonical THEN #GP(0); FI; CS ← DEST[segment selector]; (* Segment descriptor information also loaded *) CS(RPL) ← CPL EIP ← tempEIP; END; NONCONFORMING-CODE-SEGMENT: IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 THEN GP(new code segment selector); FI; IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(code segment selector); FI; IF segment not present THEN #NP(segment selector); FI; tempEIP ← DEST(Offset); IF OperandSize = 16 THEN tempEIP ← tempEIP AND 0000FFFFH; FI; IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) and tempEIP outside code segment limit THEN #GP(0); FI IF tempEIP is non-canonical THEN #GP(0); FI; CS ← DEST[segment selector]; (* Segment descriptor information also loaded *) CS(RPL) ← CPL; EIP ← tempEIP; END; JMP—Jump Vol. 2A 3-569 INSTRUCTION SET REFERENCE, A-M CALL-GATE: IF call gate DPL < CPL or call gate DPL < call gate segment-selector RPL THEN #GP(call gate selector); FI; IF call gate not present THEN #NP(call gate selector); FI; IF call gate code-segment selector is NULL THEN #GP(0); FI; IF call gate code-segment selector index outside descriptor table limits THEN #GP(code segment selector); FI; Read code segment descriptor; IF code-segment segment descriptor does not indicate a code segment or code-segment segment descriptor is conforming and DPL > CPL or code-segment segment descriptor is non-conforming and DPL ≠ CPL THEN #GP(code segment selector); FI; IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment or code-segment segment descriptor has both L-Bit and D-bit set) THEN #GP(code segment selector); FI; IF code segment is not present THEN #NP(code-segment selector); FI; IF instruction pointer is not within code-segment limit THEN #GP(0); FI; tempEIP ← DEST(Offset); IF GateSize = 16 THEN tempEIP ← tempEIP AND 0000FFFFH; FI; IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP outside code segment limit THEN #GP(0); FI CS ← DEST[SegmentSelector); (* Segment descriptor information also loaded *) CS(RPL) ← CPL; EIP ← tempEIP; END; TASK-GATE: IF task gate DPL < CPL or task gate DPL < task gate segment-selector RPL THEN #GP(task gate selector); FI; IF task gate not present THEN #NP(gate selector); FI; Read the TSS segment selector in the task-gate descriptor; IF TSS segment selector local/global bit is set to local or index not within GDT limits or TSS descriptor specifies that the TSS is busy THEN #GP(TSS selector); FI; 3-570 Vol. 2A JMP—Jump INSTRUCTION SET REFERENCE, A-M IF TSS not present THEN #NP(TSS selector); FI; SWITCH-TASKS to TSS; IF EIP not within code segment limit THEN #GP(0); FI; END; TASK-STATE-SEGMENT: IF TSS DPL < CPL or TSS DPL < TSS segment-selector RPL or TSS descriptor indicates TSS not available THEN #GP(TSS selector); FI; IF TSS is not present THEN #NP(TSS selector); FI; SWITCH-TASKS to TSS; IF EIP not within code segment limit THEN #GP(0); FI; END; Flags Affected All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur. Protected Mode Exceptions #GP(0) If offset in target operand, call gate, or TSS is beyond the code segment limits. If the segment selector in the destination operand, call gate, task gate, or TSS is NULL. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #GP(selector) If the segment selector index is outside descriptor table limits. If the segment descriptor pointed to by the segment selector in the destination operand is not for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task state segment. If the DPL for a nonconforming-code segment is not equal to the CPL (When not using a call gate.) If the RPL for the segment’s segment selector is greater than the CPL. If the DPL for a conforming-code segment is greater than the CPL. JMP—Jump Vol. 2A 3-571 INSTRUCTION SET REFERENCE, A-M If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment selector. If the segment descriptor for selector in a call gate does not indicate it is a code segment. If the segment descriptor for the segment selector in a task gate does not indicate an available TSS. If the segment selector for a TSS has its local/global bit set for local. If a TSS segment descriptor specifies that the TSS is busy or not available. #SS(0) #NP (selector) If a memory operand effective address is outside the SS segment limit. If the code segment being accessed is not present. If call gate, task gate, or TSS not present. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. (Only occurs when fetching target from memory.) #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If the target operand is beyond the code segment limits. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. (Only occurs when fetching target from memory.) #UD If the LOCK prefix is used. 3-572 Vol. 2A JMP—Jump INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same as 64-bit mode exceptions. 64-Bit Mode Exceptions #GP(0) If a memory address is non-canonical. If target offset in destination operand is non-canonical. If target offset in destination operand is beyond the new code segment limit. If the segment selector in the destination operand is NULL. If the code segment selector in the 64-bit gate is NULL. #GP(selector) If the code segment or 64-bit call gate is outside descriptor table limits. If the code segment or 64-bit call gate overlaps non-canonical space. If the segment descriptor from a 64-bit call gate is in noncanonical space. If the segment descriptor pointed to by the segment selector in the destination operand is not for a conforming-code segment, nonconforming-code segment, 64-bit call gate. If the segment descriptor pointed to by the segment selector in the destination operand is a code segment, and has both the D-bit and the L-bit set. If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the segment’s segment selector is greater than the CPL. If the DPL for a conforming-code segment is greater than the CPL. If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate. If the upper type field of a 64-bit call gate is not 0x0. If the segment selector from a 64-bit call gate is beyond the descriptor table limits. If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the D-bit clear. If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it is a code segment. If the code segment is non-confirming and CPL ≠ DPL. If the code segment is confirming and CPL < DPL. #NP(selector) If a code segment or 64-bit call gate is not present. #UD (64-bit mode only) If a far jump is direct to an absolute address in memory. JMP—Jump Vol. 2A 3-573 INSTRUCTION SET REFERENCE, A-M If the LOCK prefix is used. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. 3-574 Vol. 2A JMP—Jump INSTRUCTION SET REFERENCE, A-M LAHF—Load Status Flags into AH Register Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 9F LAHF A Invalid* Valid Load: AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF). NOTES: *Valid in specific steppings. See Description section. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description This instruction executes as described above in compatibility mode and legacy mode. It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1. Operation IF 64-Bit Mode THEN IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1; THEN AH ← RFLAGS(SF:ZF:0:AF:0:PF:1:CF); ELSE #UD; FI; ELSE AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF); FI; Flags Affected None. The state of the flags in the EFLAGS register is not affected. Protected Mode Exceptions #UD If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. LAHF—Load Status Flags into AH Register Vol. 2A 3-575 INSTRUCTION SET REFERENCE, A-M Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0. If the LOCK prefix is used. 3-576 Vol. 2A LAHF—Load Status Flags into AH Register INSTRUCTION SET REFERENCE, A-M LAR—Load Access Rights Byte Opcode Instruction 0F 02 /r Op/ En 64-Bit Mode Compat/ Description Leg Mode LAR r16, r16/m16 A Valid Valid r16 ← r16/m16 masked by FF00H. 0F 02 /r LAR r32, r32/m161 A Valid Valid r32 ← r32/m16 masked by 00FxFF00H REX.W + 0F 02 /r LAR r64, r32/m161 A Valid N.E. r64 ← r32/m16 masked by 00FxFF00H and zero extended NOTES: 1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are ignored. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Loads the access rights from the segment descriptor specified by the second operand (source operand) into the first operand (destination operand) and sets the ZF flag in the flag register. The source operand (which can be a register or a memory location) contains the segment selector for the segment descriptor being accessed. If the source operand is a memory address, only 16 bits of data are accessed. The destination operand is a general-purpose register. The processor performs access checks as part of the loading process. Once loaded in the destination register, software can perform additional checks on the access rights information. When the operand size is 32 bits, the access rights for a segment descriptor include the type and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in the second doubleword (bytes 4 through 7) of the segment descriptor. The doubleword is masked by 00FXFF00H before it is loaded into the destination operand. When the operand size is 16 bits, the access rights include the type and DPL fields. Here, the two lower-order bytes of the doubleword are masked by FF00H before being loaded into the destination operand. This instruction performs the following checks before it loads the access rights in the destination register: • • Checks that the segment selector is not NULL. Checks that the segment selector points to a descriptor that is within the limits of the GDT or LDT being accessed LAR—Load Access Rights Byte Vol. 2A 3-577 INSTRUCTION SET REFERENCE, A-M • Checks that the descriptor type is valid for this instruction. All code and data segment descriptors are valid for (can be accessed with) the LAR instruction. The valid system segment and gate descriptor types are given in Table 3-62. • If the segment is not a conforming code segment, it checks that the specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or equal to the DPL of the segment selector). If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is cleared and no access rights are loaded in the destination operand. The LAR instruction can only be executed in protected mode and IA-32e mode. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix permits access to 64-bit registers as destination. When the destination operand size is 64 bits, the access rights are loaded from the second doubleword (bytes 4 through 7) of the segment descriptor. The doubleword is masked by 00FXFF00H and zero extended to 64 bits before it is loaded into the destination operand. Table 3-62. Segment and Gate Types Type Protected Mode Name IA-32e Mode Valid Name Valid 0 Reserved No Reserved No 1 Available 16-bit TSS Yes Reserved No 2 LDT Yes LDT No 3 Busy 16-bit TSS Yes Reserved No 4 16-bit call gate Yes Reserved No 5 16-bit/32-bit task gate Yes Reserved No 6 16-bit interrupt gate No Reserved No 7 16-bit trap gate No Reserved No 8 Reserved No Reserved No 9 Available 32-bit TSS Yes Available 64-bit TSS Yes A Reserved No Reserved No B Busy 32-bit TSS Yes Busy 64-bit TSS Yes C 32-bit call gate Yes 64-bit call gate Yes D Reserved No Reserved No E 32-bit interrupt gate No 64-bit interrupt gate No F 32-bit trap gate No 64-bit trap gate No 3-578 Vol. 2A LAR—Load Access Rights Byte INSTRUCTION SET REFERENCE, A-M Operation IF Offset(SRC) > descriptor table limit THEN ZF = 0; ELSE IF SegmentDescriptor(Type) ≠ conforming code segment and (CPL > DPL) or (RPL > DPL) or segment type is not valid for instruction THEN ZF ← 0 ELSE TEMP ← Read segment descriptor ; IF OperandSize = 64 THEN DEST ← (ACCESSRIGHTWORD(TEMP) AND 00000000_00FxFF00H); ELSE (* OperandSize = 32*) DEST ← (ACCESSRIGHTWORD(TEMP) AND 00FxFF00H); ELSE (* OperandSize = 16 *) DEST ← (ACCESSRIGHTWORD(TEMP) AND FF00H); FI; FI; FI; Flags Affected The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is set to 0. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while the current privilege level is 3. #UD If the LOCK prefix is used. LAR—Load Access Rights Byte Vol. 2A 3-579 INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #UD The LAR instruction is not recognized in real-address mode. Virtual-8086 Mode Exceptions #UD The LAR instruction cannot be executed in virtual-8086 mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If the memory operand effective address referencing the SS segment is in a non-canonical form. #GP(0) If the memory operand effective address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while the current privilege level is 3. #UD If the LOCK prefix is used. 3-580 Vol. 2A LAR—Load Access Rights Byte INSTRUCTION SET REFERENCE, A-M LDDQU—Load Unaligned Integer 128 Bits Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F F0 /r A V/V SSE3 Load unaligned data from mem and return double quadword in xmm1. A V/V AVX Load unaligned packed integer values from mem to xmm1. A V/V AVX Load unaligned packed integer values from mem to ymm1. LDDQU xmm1, mem VEX.128.F2.0F.WIG F0 /r VLDDQU xmm1, m128 VEX.256.F2.0F.WIG F0 /r VLDDQU ymm1, m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description The instruction is functionally similar to (V)MOVDQU ymm/xmm, m256/m128 for loading from memory. That is: 32/16 bytes of data starting at an address specified by the source memory operand (second operand) are fetched from memory and placed in a destination register (first operand). The source operand need not be aligned on a 32/16-byte boundary. Up to 64/32 bytes may be loaded from memory; this is implementation dependent. This instruction may improve performance relative to (V)MOVDQU if the source operand crosses a cache line boundary. In situations that require the data loaded by (V)LDDQU be modified and stored to the same location, use (V)MOVDQU or (V)MOVDQA instead of (V)LDDQU. To move a double quadword to or from memory locations that are known to be aligned on 16-byte boundaries, use the (V)MOVDQA instruction. Implementation Notes • If the source is aligned to a 32/16-byte boundary, based on the implementation, the 32/16 bytes may be loaded more than once. For that reason, the usage of (V)LDDQU should be avoided when using uncached or write-combining (WC) memory regions. For uncached or WC memory regions, keep using (V)MOVDQU. • This instruction is a replacement for (V)MOVDQU (load) in situations where cache line splits significantly affect performance. It should not be used in situations where store-load forwarding is performance critical. If performance of store-load forwarding is critical to the application, use (V)MOVDQA store-load pairs when LDDQU—Load Unaligned Integer 128 Bits Vol. 2A 3-581 INSTRUCTION SET REFERENCE, A-M data is 256/128-bit aligned or (V)MOVDQU store-load pairs when data is 256/128-bit unaligned. • If the memory address is not aligned on 32/16-byte boundary, some implementations may load up to 64/32 bytes and return 32/16 bytes in the destination. Some processor implementations may issue multiple loads to access the appropriate 32/16 bytes. Developers of multi-threaded or multi-processor software should be aware that on these processors the loads will be performed in a non-atomic way. • If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be generated (depending on processor implementation) when the memory address is not aligned on an 8-byte boundary. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation LDDQU (128-bit Legacy SSE version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] (Unmodified) VLDDQU (VEX.128 encoded version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] 0 VLDDQU (VEX.256 encoded version) DEST[255:0] SRC[255:0] Intel C/C++ Compiler Intrinsic Equivalent LDDQU __m128i _mm_lddqu_si128 (__m128i * p); LDDQU __m256i _mm256_lddqu_si256 (__m256i * p); Numeric Exceptions None. Other Exceptions See Exceptions Type 4; Note treatment of #AC varies. 3-582 Vol. 2A LDDQU—Load Unaligned Integer 128 Bits INSTRUCTION SET REFERENCE, A-M LDMXCSR—Load MXCSR Register Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F,AE,/2 A V/V SSE Load MXCSR register from m32. A V/V AVX Load MXCSR register from m32. LDMXCSR m32 VEX.LZ.0F.WIG AE /2 VLDMXCSR m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Loads the source operand into the MXCSR control/status register. The source operand is a 32-bit memory location. See “MXCSR Control and Status Register” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of the MXCSR register and its contents. The LDMXCSR instruction is typically used in conjunction with the (V)STMXCSR instruction, which stores the contents of the MXCSR register in memory. The default MXCSR value at reset is 1F80H. If a (V)LDMXCSR instruction clears a SIMD floating-point exception mask bit and sets the corresponding exception flag bit, a SIMD floating-point exception will not be immediately generated. The exception will be generated only upon the execution of the next instruction that meets both conditions below: • • the instruction must operate on an XMM or YMM register operand, the instruction causes that particular SIMD floating-point exception to be reported. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. If VLDMXCSR is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation MXCSR ← m32; C/C++ Compiler Intrinsic Equivalent _mm_setcsr(unsigned int i) LDMXCSR—Load MXCSR Register Vol. 2A 3-583 INSTRUCTION SET REFERENCE, A-M Numeric Exceptions None. Other Exceptions See Exceptions Type 9; additionally #GP 3-584 Vol. 2A For an attempt to set reserved bits in MXCSR. LDMXCSR—Load MXCSR Register INSTRUCTION SET REFERENCE, A-M LDS/LES/LFS/LGS/LSS—Load Far Pointer Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode C5 /r LDS r16,m16:16 A Invalid Valid Load DS:r16 with far pointer from memory. C5 /r LDS r32,m16:32 A Invalid Valid Load DS:r32 with far pointer from memory. 0F B2 /r LSS r16,m16:16 A Valid Valid Load SS:r16 with far pointer from memory. 0F B2 /r LSS r32,m16:32 A Valid Valid Load SS:r32 with far pointer from memory. REX + 0F B2 /r LSS r64,m16:64 A Valid N.E. Load SS:r64 with far pointer from memory. C4 /r LES r16,m16:16 A Invalid Valid Load ES:r16 with far pointer from memory. C4 /r LES r32,m16:32 A Invalid Valid Load ES:r32 with far pointer from memory. 0F B4 /r LFS r16,m16:16 A Valid Valid Load FS:r16 with far pointer from memory. 0F B4 /r LFS r32,m16:32 A Valid Valid Load FS:r32 with far pointer from memory. REX + 0F B4 /r LFS r64,m16:64 A Valid N.E. Load FS:r64 with far pointer from memory. 0F B5 /r LGS r16,m16:16 A Valid Valid Load GS:r16 with far pointer from memory. 0F B5 /r LGS r32,m16:32 A Valid Valid Load GS:r32 with far pointer from memory. REX + 0F B5 /r LGS r64,m16:64 A Valid N.E. Load GS:r64 with far pointer from memory. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Loads a far pointer (segment selector and offset) from the second operand (source operand) into a segment register and the first operand (destination operand). The source operand specifies a 48-bit or a 32-bit pointer in memory depending on the current setting of the operand-size attribute (32 bits or 16 bits, respectively). The LDS/LES/LFS/LGS/LSS—Load Far Pointer Vol. 2A 3-585 INSTRUCTION SET REFERENCE, A-M instruction opcode and the destination operand specify a segment register/generalpurpose register pair. The 16-bit segment selector from the source operand is loaded into the segment register specified with the opcode (DS, SS, ES, FS, or GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination operand. If one of these instructions is executed in protected mode, additional information from the segment descriptor pointed to by the segment selector in the source operand is loaded in the hidden part of the selected segment register. Also in protected mode, a NULL selector (values 0000 through 0003) can be loaded into DS, ES, FS, or GS registers without causing a protection exception. (Any subsequent reference to a segment whose corresponding segment register is loaded with a NULL selector, causes a general-protection exception (#GP) and no memory reference to the segment occurs.) In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.W promotes operation to specify a source operand referencing an 80-bit pointer (16-bit selector, 64-bit offset) in memory. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). See the summary chart at the beginning of this section for encoding data and limits. Operation 64-BIT_MODE IF SS is loaded THEN IF SegmentSelector = NULL and ( (RPL = 3) or (RPL ≠ 3 and RPL ≠ CPL) ) THEN #GP(0); ELSE IF descriptor is in non-canonical space THEN #GP(0); FI; ELSE IF Segment selector index is not within descriptor table limits or segment selector RPL ≠ CPL or access rights indicate nonwritable data segment or DPL ≠ CPL THEN #GP(selector); FI; ELSE IF Segment marked not present THEN #SS(selector); FI; FI; SS ← SegmentSelector(SRC); SS ← SegmentDescriptor([SRC]); ELSE IF attempt to load DS, or ES THEN #UD; ELSE IF FS, or GS is loaded with non-NULL segment selector THEN IF Segment selector index is not within descriptor table limits or access rights indicate segment neither data nor readable code segment 3-586 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer INSTRUCTION SET REFERENCE, A-M or segment is data or nonconforming-code segment and ( RPL > DPL or CPL > DPL) THEN #GP(selector); FI; ELSE IF Segment marked not present THEN #NP(selector); FI; FI; SegmentRegister ← SegmentSelector(SRC) ; SegmentRegister ← SegmentDescriptor([SRC]); FI; ELSE IF FS, or GS is loaded with a NULL selector: THEN SegmentRegister ← NULLSelector; SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag; not accessible by software *) FI; DEST ← Offset(SRC); PREOTECTED MODE OR COMPATIBILITY MODE; IF SS is loaded THEN IF SegementSelector = NULL THEN #GP(0); ELSE IF Segment selector index is not within descriptor table limits or segment selector RPL ≠ CPL or access rights indicate nonwritable data segment or DPL ≠ CPL THEN #GP(selector); FI; ELSE IF Segment marked not present THEN #SS(selector); FI; FI; SS ← SegmentSelector(SRC); SS ← SegmentDescriptor([SRC]); ELSE IF DS, ES, FS, or GS is loaded with non-NULL segment selector THEN IF Segment selector index is not within descriptor table limits or access rights indicate segment neither data nor readable code segment or segment is data or nonconforming-code segment and (RPL > DPL or CPL > DPL) THEN #GP(selector); FI; ELSE IF Segment marked not present THEN #NP(selector); FI; FI; SegmentRegister ← SegmentSelector(SRC) AND RPL; SegmentRegister ← SegmentDescriptor([SRC]); FI; LDS/LES/LFS/LGS/LSS—Load Far Pointer Vol. 2A 3-587 INSTRUCTION SET REFERENCE, A-M ELSE IF DS, ES, FS, or GS is loaded with a NULL selector: THEN SegmentRegister ← NULLSelector; SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag; not accessible by software *) FI; DEST ← Offset(SRC); Real-Address or Virtual-8086 Mode SegmentRegister ← SegmentSelector(SRC); FI; DEST ← Offset(SRC); Flags Affected None. Protected Mode Exceptions #UD If source operand is not a memory location. If the LOCK prefix is used. #GP(0) If a NULL selector is loaded into the SS register. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #GP(selector) If the SS register is being loaded and any of the following is true: the segment selector index is not within the descriptor table limits, the segment selector RPL is not equal to CPL, the segment is a non-writable data segment, or DPL is not equal to CPL. If the DS, ES, FS, or GS register is being loaded with a non-NULL segment selector and any of the following is true: the segment selector index is not within descriptor table limits, the segment is neither a data nor a readable code segment, or the segment is a data or nonconforming-code segment and both RPL and CPL are greater than DPL. #SS(0) If a memory operand effective address is outside the SS segment limit. #SS(selector) If the SS register is being loaded and the segment is marked not present. #NP(selector) If DS, ES, FS, or GS register is being loaded with a non-NULL segment selector and the segment is marked not present. #PF(fault-code) If a page fault occurs. 3-588 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer INSTRUCTION SET REFERENCE, A-M #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If source operand is not a memory location. If the LOCK prefix is used. Virtual-8086 Mode Exceptions #UD If source operand is not a memory location. If the LOCK prefix is used. #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the memory address is in a non-canonical form. If a NULL selector is attempted to be loaded into the SS register in compatibility mode. If a NULL selector is attempted to be loaded into the SS register in CPL3 and 64-bit mode. If a NULL selector is attempted to be loaded into the SS register in non-CPL3 and 64-bit mode where its RPL is not equal to CPL. #GP(Selector) If the FS, or GS register is being loaded with a non-NULL segment selector and any of the following is true: the segment selector index is not within descriptor table limits, the memory address of the descriptor is non-canonical, the segment is neither a data nor a readable code segment, or the segment is a data or nonconforming-code segment and both RPL and CPL are greater than DPL. LDS/LES/LFS/LGS/LSS—Load Far Pointer Vol. 2A 3-589 INSTRUCTION SET REFERENCE, A-M If the SS register is being loaded and any of the following is true: the segment selector index is not within the descriptor table limits, the memory address of the descriptor is non-canonical, the segment selector RPL is not equal to CPL, the segment is a nonwritable data segment, or DPL is not equal to CPL. #SS(0) If a memory operand effective address is non-canonical #SS(Selector) If the SS register is being loaded and the segment is marked not present. #NP(selector) If FS, or GS register is being loaded with a non-NULL segment selector and the segment is marked not present. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If source operand is not a memory location. If the LOCK prefix is used. 3-590 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer INSTRUCTION SET REFERENCE, A-M LEA—Load Effective Address Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 8D /r LEA r16,m A Valid Valid Store effective address for m in register r16. 8D /r LEA r32,m A Valid Valid Store effective address for m in register r32. REX.W + 8D /r LEA r64,m A Valid N.E. Store effective address for m in register r64. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Computes the effective address of the second operand (the source operand) and stores it in the first operand (destination operand). The source operand is a memory address (offset part) specified with one of the processors addressing modes; the destination operand is a general-purpose register. The address-size and operand-size attributes affect the action performed by this instruction, as shown in the following table. The operand-size attribute of the instruction is determined by the chosen register; the address-size attribute is determined by the attribute of the code segment. Table 3-63. Non-64-bit Mode LEA Operation with Address and Operand Size Attributes Operand Size Address Size Action Performed 16 16 16-bit effective address is calculated and stored in requested 16-bit register destination. 16 32 32-bit effective address is calculated. The lower 16 bits of the address are stored in the requested 16-bit register destination. 32 16 16-bit effective address is calculated. The 16-bit address is zero-extended and stored in the requested 32-bit register destination. 32 32 32-bit effective address is calculated and stored in the requested 32-bit register destination. Different assemblers may use different algorithms based on the size attribute and symbolic reference of the source operand. LEA—Load Effective Address Vol. 2A 3-591 INSTRUCTION SET REFERENCE, A-M In 64-bit mode, the instruction’s destination operand is governed by operand size attribute, the default operand size is 32 bits. Address calculation is governed by address size attribute, the default address size is 64-bits. In 64-bit mode, address size of 16 bits is not encodable. See Table 3-64. Table 3-64. 64-bit Mode LEA Operation with Address and Operand Size Attributes Operand Size Address Size Action Performed 16 32 32-bit effective address is calculated (using 67H prefix). The lower 16 bits of the address are stored in the requested 16-bit register destination (using 66H prefix). 16 64 64-bit effective address is calculated (default address size). The lower 16 bits of the address are stored in the requested 16-bit register destination (using 66H prefix). 32 32 32-bit effective address is calculated (using 67H prefix) and stored in the requested 32-bit register destination. 32 64 64-bit effective address is calculated (default address size) and the lower 32 bits of the address are stored in the requested 32-bit register destination. 64 32 32-bit effective address is calculated (using 67H prefix), zero-extended to 64-bits, and stored in the requested 64bit register destination (using REX.W). 64 64 64-bit effective address is calculated (default address size) and all 64-bits of the address are stored in the requested 64-bit register destination (using REX.W). Operation IF OperandSize = 16 and AddressSize = 16 THEN DEST ← EffectiveAddress(SRC); (* 16-bit address *) ELSE IF OperandSize = 16 and AddressSize = 32 THEN temp ← EffectiveAddress(SRC); (* 32-bit address *) DEST ← temp[0:15]; (* 16-bit address *) FI; ELSE IF OperandSize = 32 and AddressSize = 16 THEN temp ← EffectiveAddress(SRC); (* 16-bit address *) DEST ← ZeroExtend(temp); (* 32-bit address *) FI; ELSE IF OperandSize = 32 and AddressSize = 32 THEN DEST ← EffectiveAddress(SRC); (* 32-bit address *) 3-592 Vol. 2A LEA—Load Effective Address INSTRUCTION SET REFERENCE, A-M FI; ELSE IF OperandSize = 16 and AddressSize = 64 THEN temp ← EffectiveAddress(SRC); (* 64-bit address *) DEST ← temp[0:15]; (* 16-bit address *) FI; ELSE IF OperandSize = 32 and AddressSize = 64 THEN temp ← EffectiveAddress(SRC); (* 64-bit address *) DEST ← temp[0:31]; (* 16-bit address *) FI; ELSE IF OperandSize = 64 and AddressSize = 64 THEN DEST ← EffectiveAddress(SRC); (* 64-bit address *) FI; FI; Flags Affected None. Protected Mode Exceptions #UD If source operand is not a memory location. If the LOCK prefix is used. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. LEA—Load Effective Address Vol. 2A 3-593 INSTRUCTION SET REFERENCE, A-M LEAVE—High Level Procedure Exit Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode C9 LEAVE A Valid Valid Set SP to BP, then pop BP. C9 LEAVE A N.E. Valid Set ESP to EBP, then pop EBP. C9 LEAVE A Valid N.E. Set RSP to RBP, then pop RBP. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruction copies the frame pointer (in the EBP register) into the stack pointer register (ESP), which releases the stack space allocated to the stack frame. The old frame pointer (the frame pointer for the calling procedure that was saved by the ENTER instruction) is then popped from the stack into the EBP register, restoring the calling procedure’s stack frame. A RET instruction is commonly executed following a LEAVE instruction to return program control to the calling procedure. See “Procedure Calls for Block-Structured Languages” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed information on the use of the ENTER and LEAVE instructions. In 64-bit mode, the instruction’s default operation size is 64 bits; 32-bit operation cannot be encoded. See the summary chart at the beginning of this section for encoding data and limits. Operation IF StackAddressSize = 32 THEN ESP ← EBP; ELSE IF StackAddressSize = 64 THEN RSP ← RBP; FI; ELSE IF StackAddressSize = 16 THEN SP ← BP; FI; FI; IF OperandSize = 32 3-594 Vol. 2A LEAVE—High Level Procedure Exit INSTRUCTION SET REFERENCE, A-M FI; THEN EBP ← Pop(); ELSE IF OperandSize = 64 THEN RBP ← Pop(); FI; ELSE IF OperandSize = 16 THEN BP ← Pop(); FI; Flags Affected None. Protected Mode Exceptions #SS(0) If the EBP register points to a location that is not within the limits of the current stack segment. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If the EBP register points to a location outside of the effective address space from 0 to FFFFH. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If the EBP register points to a location outside of the effective address space from 0 to FFFFH. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If the stack address is in a non-canonical form. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. LEAVE—High Level Procedure Exit Vol. 2A 3-595 INSTRUCTION SET REFERENCE, A-M LFENCE—Load Fence Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F AE /5 LFENCE A Valid Valid Serializes load operations. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Performs a serializing operation on all load-from-memory instructions that were issued prior the LFENCE instruction. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no later instruction begins execution until LFENCE completes. In particular, an instruction that loads from memory and that precedes an LFENCE receives data from memory prior to completion of the LFENCE. (An LFENCE that follows an instruction that stores to memory might complete before the data being stored have become globally visible.) Instructions following an LFENCE may be fetched from memory before the LFENCE, but they will not execute until the LFENCE completes. Weakly ordered memory types can be used to achieve higher processor performance through such techniques as out-of-order issue and speculative reads. The degree to which a consumer of data recognizes or knows that the data is weakly ordered varies among applications and may be unknown to the producer of this data. The LFENCE instruction provides a performance-efficient way of ensuring load ordering between routines that produce weakly-ordered results and routines that consume that data. Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC, and WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution. Thus, it is not ordered with respect to executions of the LFENCE instruction; data can be brought into the caches speculatively just before, during, or after the execution of an LFENCE instruction. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation Wait_On_Following_Instructions_Until(preceding_instructions_complete); Intel C/C++ Compiler Intrinsic Equivalent void _mm_lfence(void) Exceptions (All Modes of Operation) #UD 3-596 Vol. 2A If CPUID.01H:EDX.SSE2[bit 26] = 0. LFENCE—Load Fence INSTRUCTION SET REFERENCE, A-M If the LOCK prefix is used. LFENCE—Load Fence Vol. 2A 3-597 INSTRUCTION SET REFERENCE, A-M LGDT/LIDT—Load Global/Interrupt Descriptor Table Register Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 01 /2 LGDT m16&32 A N.E. Valid Load m into GDTR. 0F 01 /3 LIDT m16&32 A N.E. Valid Load m into IDTR. 0F 01 /2 LGDT m16&64 A Valid N.E. Load m into GDTR. 0F 01 /3 LIDT m16&64 A Valid N.E. Load m into IDTR. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Loads the values in the source operand into the global descriptor table register (GDTR) or the interrupt descriptor table register (IDTR). The source operand specifies a 6-byte memory location that contains the base address (a linear address) and the limit (size of table in bytes) of the global descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base address (upper 4 bytes of the data operand) are loaded into the register. If the operand-size attribute is 16 bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, the high-order byte of the operand is not used and the high-order byte of the base address in the GDTR or IDTR is filled with zeros. The LGDT and LIDT instructions are used only in operating-system software; they are not used in application programs. They are the only instructions that directly load a linear address (that is, not a segment-relative address) and a limit in protected mode. They are commonly executed in real-address mode to allow processor initialization prior to switching to protected mode. In 64-bit mode, the instruction’s operand size is fixed at 8+2 bytes (an 8-byte base and a 2-byte limit). See the summary chart at the beginning of this section for encoding data and limits. See “SGDT—Store Global Descriptor Table Register” in Chapter 4, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for information on storing the contents of the GDTR and IDTR. Operation IF Instruction is LIDT THEN IF OperandSize = 16 THEN 3-598 Vol. 2A LGDT/LIDT—Load Global/Interrupt Descriptor Table Register INSTRUCTION SET REFERENCE, A-M IDTR(Limit) ← SRC[0:15]; IDTR(Base) ← SRC[16:47] AND 00FFFFFFH; ELSE IF 32-bit Operand Size THEN IDTR(Limit) ← SRC[0:15]; IDTR(Base) ← SRC[16:47]; FI; ELSE IF 64-bit Operand Size (* In 64-Bit Mode *) THEN IDTR(Limit) ← SRC[0:15]; IDTR(Base) ← SRC[16:79]; FI; FI; ELSE (* Instruction is LGDT *) IF OperandSize = 16 THEN GDTR(Limit) ← SRC[0:15]; GDTR(Base) ← SRC[16:47] AND 00FFFFFFH; ELSE IF 32-bit Operand Size THEN GDTR(Limit) ← SRC[0:15]; GDTR(Base) ← SRC[16:47]; FI; ELSE IF 64-bit Operand Size (* In 64-Bit Mode *) THEN GDTR(Limit) ← SRC[0:15]; GDTR(Base) ← SRC[16:79]; FI; FI; FI; Flags Affected None. Protected Mode Exceptions #UD If source operand is not a memory location. #GP(0) If the current privilege level is not 0. If the LOCK prefix is used. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. LGDT/LIDT—Load Global/Interrupt Descriptor Table Register Vol. 2A 3-599 INSTRUCTION SET REFERENCE, A-M #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. Real-Address Mode Exceptions #UD If source operand is not a memory location. If the LOCK prefix is used. #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. Virtual-8086 Mode Exceptions #UD If source operand is not a memory location. If the LOCK prefix is used. #GP(0) The LGDT and LIDT instructions are not recognized in virtual8086 mode. #GP If the current privilege level is not 0. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the current privilege level is not 0. #UD If source operand is not a memory location. #PF(fault-code) If a page fault occurs. If the memory address is in a non-canonical form. If the LOCK prefix is used. 3-600 Vol. 2A LGDT/LIDT—Load Global/Interrupt Descriptor Table Register INSTRUCTION SET REFERENCE, A-M LLDT—Load Local Descriptor Table Register Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 00 /2 LLDT r/m16 A Valid Valid Load segment selector r/m16 into LDTR. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Loads the source operand into the segment selector field of the local descriptor table register (LDTR). The source operand (a general-purpose register or a memory location) contains a segment selector that points to a local descriptor table (LDT). After the segment selector is loaded in the LDTR, the processor uses the segment selector to locate the segment descriptor for the LDT in the global descriptor table (GDT). It then loads the segment limit and base address for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment (TSS) for the current task. If bits 2-15 of the source operand are 0, LDTR is marked invalid and the LLDT instruction completes silently. However, all subsequent references to descriptors in the LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general protection exception (#GP). The operand-size attribute has no effect on this instruction. The LLDT instruction is provided for use in operating-system software; it should not be used in application programs. This instruction can only be executed in protected mode or 64-bit mode. In 64-bit mode, the operand size is fixed at 16 bits. Operation IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI; IF segment selector is valid Read segment descriptor; IF SegmentDescriptor(Type) ≠ LDT THEN #GP(segment selector); FI; LLDT—Load Local Descriptor Table Register Vol. 2A 3-601 INSTRUCTION SET REFERENCE, A-M IF segment descriptor is not present THEN #NP(segment selector); FI; LDTR(SegmentSelector) ← SRC; LDTR(SegmentDescriptor) ← GDTSegmentDescriptor; ELSE LDTR ← INVALID FI; Flags Affected None. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the GDT is not a Local Descriptor Table. Segment selector is beyond GDT limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #NP(selector) If the LDT descriptor is not present. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD The LLDT instruction is not recognized in real-address mode. Virtual-8086 Mode Exceptions #UD The LLDT instruction is not recognized in virtual-8086 mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the current privilege level is not 0. If the memory address is in a non-canonical form. 3-602 Vol. 2A LLDT—Load Local Descriptor Table Register INSTRUCTION SET REFERENCE, A-M #GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the GDT is not a Local Descriptor Table. #NP(selector) If the LDT descriptor is not present. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. Segment selector is beyond GDT limit. LLDT—Load Local Descriptor Table Register Vol. 2A 3-603 INSTRUCTION SET REFERENCE, A-M LMSW—Load Machine Status Word Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 01 /6 LMSW r/m16 A Valid Valid Loads r/m16 in machine status word of CR0. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The source operand can be a 16-bit general-purpose register or a memory location. Only the low-order 4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are not affected. The operand-size attribute has no effect on this instruction. If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to switch to protected mode. While in protected mode, the LMSW instruction cannot be used to clear the PE flag and force a switch back to real-address mode. The LMSW instruction is provided for use in operating-system software; it should not be used in application programs. In protected or virtual-8086 mode, it can only be executed at CPL 0. This instruction is provided for compatibility with the Intel 286 processor; programs and procedures intended to run on the Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should use the MOV (control registers) instruction to load the whole CR0 register. The MOV CR0 instruction can be used to set and clear the PE flag in CR0, allowing a procedure or program to switch between protected and real-address modes. This instruction is a serializing instruction. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note that the operand size is fixed at 16 bits. See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information about the behavior of this instruction in VMX non-root operation. Operation CR0[0:3] ← SRC[0:3]; 3-604 Vol. 2A LMSW—Load Machine Status Word INSTRUCTION SET REFERENCE, A-M Flags Affected None. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the current privilege level is not 0. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. If the memory address is in a non-canonical form. LMSW—Load Machine Status Word Vol. 2A 3-605 INSTRUCTION SET REFERENCE, A-M LOCK—Assert LOCK# Signal Prefix Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F0 LOCK A Valid Valid Asserts LOCK# signal for duration of the accompanying instruction. NOTES: * See IA-32 Architecture Compatibility section below. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Causes the processor’s LOCK# signal to be asserted during execution of the accompanying instruction (turns the instruction into an atomic instruction). In a multiprocessor environment, the LOCK# signal ensures that the processor has exclusive use of any shared memory while the signal is asserted. Note that, in later Intel 64 and IA-32 processors (including the Pentium 4, Intel Xeon, and P6 family processors), locking may occur without the LOCK# signal being asserted. See the “IA-32 Architecture Compatibility” section below. The LOCK prefix can be prepended only to the following instructions and only to those forms of the instructions where the destination operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of these instructions and the source operand is a memory operand, an undefined opcode exception (#UD) may be generated. An undefined opcode exception will also be generated if the LOCK prefix is used with any instruction not in the above list. The XCHG instruction always asserts the LOCK# signal regardless of the presence or absence of the LOCK prefix. The LOCK prefix is typically used with the BTS instruction to perform a read-modifywrite operation on a memory location in shared memory environment. The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory locking is observed for arbitrarily misaligned fields. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. IA-32 Architecture Compatibility Beginning with the P6 family processors, when the LOCK prefix is prefixed to an instruction and the memory area being accessed is cached internally in the processor, the LOCK# signal is generally not asserted. Instead, only the processor’s cache is locked. Here, the processor’s cache coherency mechanism ensures that the 3-606 Vol. 2A LOCK—Assert LOCK# Signal Prefix INSTRUCTION SET REFERENCE, A-M operation is carried out atomically with regards to memory. See “Effects of a Locked Operation on Internal Processor Caches” in Chapter 8 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, the for more information on locking of caches. Operation AssertLOCK#(DurationOfAccompaningInstruction); Flags Affected None. Protected Mode Exceptions #UD If the LOCK prefix is used with an instruction not listed: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, XCHG. Other exceptions can be generated by the instruction when the LOCK prefix is applied. Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. LOCK—Assert LOCK# Signal Prefix Vol. 2A 3-607 INSTRUCTION SET REFERENCE, A-M LODS/LODSB/LODSW/LODSD/LODSQ—Load String Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode AC LODS m8 A Valid Valid For legacy mode, Load byte at address DS:(E)SI into AL. For 64-bit mode load byte at address (R)SI into AL. AD LODS m16 A Valid Valid For legacy mode, Load word at address DS:(E)SI into AX. For 64-bit mode load word at address (R)SI into AX. AD LODS m32 A Valid Valid For legacy mode, Load dword at address DS:(E)SI into EAX. For 64-bit mode load dword at address (R)SI into EAX. REX.W + AD LODS m64 A Valid N.E. Load qword at address (R)SI into RAX. AC LODSB A Valid Valid For legacy mode, Load byte at address DS:(E)SI into AL. For 64-bit mode load byte at address (R)SI into AL. AD LODSW A Valid Valid For legacy mode, Load word at address DS:(E)SI into AX. For 64-bit mode load word at address (R)SI into AX. AD LODSD A Valid Valid For legacy mode, Load dword at address DS:(E)SI into EAX. For 64-bit mode load dword at address (R)SI into EAX. REX.W + AD LODSQ A Valid N.E. Load qword at address (R)SI into RAX. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register, respectively. The source operand is a memory location, the address of which 3-608 Vol. 2A LODS/LODSB/LODSW/LODSD/LODSQ—Load String INSTRUCTION SET REFERENCE, A-M is read from the DS:ESI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or 16, respectively). The DS segment may be overridden with a segment override prefix. At the assembly-code level, two forms of this instruction are allowed: the “explicitoperands” form and the “no-operands” form. The explicit-operands form (specified with the LODS mnemonic) allows the source operand to be specified explicitly. Here, the source operand should be a symbol that indicates the size and location of the source value. The destination operand is then automatically selected to match the size of the source operand (the AL register for byte operands, AX for word operands, and EAX for doubleword operands). This explicit-operands form is provided to allow documentation; however, note that the documentation provided by this form can be misleading. That is, the source operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword), but it does not have to specify the correct location. The location is always specified by the DS:(E)SI registers, which must be loaded correctly before the load string instruction is executed. The no-operands form provides “short forms” of the byte, word, and doubleword versions of the LODS instructions. Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or EAX register is assumed to be the destination operand. The size of the source and destination operands is selected with the mnemonic: LODSB (byte loaded into register AL), LODSW (word loaded into AX), or LODSD (doubleword loaded into EAX). After the byte, word, or doubleword is transferred from the memory location into the AL, AX, or EAX register, the (E)SI register is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incremented; if the DF flag is 1, the ESI register is decremented.) The (E)SI register is incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations. In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. LODS/LODSQ load the quadword at address (R)SI into RAX. The (R)SI register is then incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for block loads of ECX bytes, words, or doublewords. More often, however, these instructions are used within a LOOP construct because further processing of the data moved into the register is usually necessary before the next transfer can be made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the REP prefix. Operation IF AL ← SRC; (* Byte load *) THEN AL ← SRC; (* Byte load *) IF DF = 0 THEN (E)SI ← (E)SI + 1; LODS/LODSB/LODSW/LODSD/LODSQ—Load String Vol. 2A 3-609 INSTRUCTION SET REFERENCE, A-M ELSE (E)SI ← (E)SI – 1; FI; ELSE IF AX ← SRC; (* Word load *) THEN IF DF = 0 THEN (E)SI ← (E)SI + 2; ELSE (E)SI ← (E)SI – 2; IF; FI; ELSE IF EAX ← SRC; (* Doubleword load *) THEN IF DF = 0 THEN (E)SI ← (E)SI + 4; ELSE (E)SI ← (E)SI – 4; FI; FI; ELSE IF RAX ← SRC; (* Quadword load *) THEN IF DF = 0 THEN (R)SI ← (R)SI + 8; ELSE (R)SI ← (R)SI – 8; FI; FI; FI; Flags Affected None. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. 3-610 Vol. 2A LODS/LODSB/LODSW/LODSD/LODSQ—Load String INSTRUCTION SET REFERENCE, A-M #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. LODS/LODSB/LODSW/LODSD/LODSQ—Load String Vol. 2A 3-611 INSTRUCTION SET REFERENCE, A-M LOOP/LOOPcc—Loop According to ECX Counter Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode E2 cb LOOP rel8 A Valid Valid Decrement count; jump short if count ≠ 0. E1 cb LOOPE rel8 A Valid Valid Decrement count; jump short if count ≠ 0 and ZF = 1. E0 cb LOOPNE rel8 A Valid Valid Decrement count; jump short if count ≠ 0 and ZF = 0. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A Offset NA NA NA Description Performs a loop operation using the RCX, ECX or CX register as a counter (depending on whether address size is 64 bits, 32 bits, or 16 bits). Note that the LOOP instruction ignores REX.W; but 64-bit address size can be over-ridden using a 67H prefix. Each time the LOOP instruction is executed, the count register is decremented, then checked for 0. If the count is 0, the loop is terminated and program execution continues with the instruction following the LOOP instruction. If the count is not zero, a near jump is performed to the destination (target) operand, which is presumably the instruction at the beginning of the loop. The target instruction is specified with a relative offset (a signed offset relative to the current value of the instruction pointer in the IP/EIP/RIP register). This offset is generally specified as a label in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value, which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this instruction. Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for terminating the loop before the count reaches zero. With these forms of the instruction, a condition code (cc) is associated with each instruction to indicate the condition being tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other instructions in the loop. 3-612 Vol. 2A LOOP/LOOPcc—Loop According to ECX Counter INSTRUCTION SET REFERENCE, A-M Operation IF (AddressSize = 32) THEN Count is ECX; ELSE IF (AddressSize = 64) Count is RCX; ELSE Count is CX; FI; Count ← Count – 1; IF Instruction is not LOOP THEN IF (Instruction ← LOOPE) or (Instruction ← LOOPZ) THEN IF (ZF = 1) and (Count ≠ 0) THEN BranchCond ← 1; ELSE BranchCond ← 0; FI; ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ) IF (ZF = 0 ) and (Count ≠ 0) THEN BranchCond ← 1; ELSE BranchCond ← 0; FI; FI; ELSE (* Instruction = LOOP *) IF (Count ≠ 0) THEN BranchCond ← 1; ELSE BranchCond ← 0; FI; FI; IF BranchCond = 1 THEN IF OperandSize = 32 THEN EIP ← EIP + SignExtend(DEST); ELSE IF OperandSize = 64 THEN RIP ← RIP + SignExtend(DEST); FI; ELSE IF OperandSize = 16 THEN EIP ← EIP AND 0000FFFFH; FI; ELSE IF OperandSize = (32 or 64) THEN IF (R/E)IP < CS.Base or (R/E)IP > CS.Limit #GP; FI; FI; LOOP/LOOPcc—Loop According to ECX Counter Vol. 2A 3-613 INSTRUCTION SET REFERENCE, A-M FI; ELSE Terminate loop and continue program execution at (R/E)IP; FI; Flags Affected None. Protected Mode Exceptions #GP(0) If the offset being jumped to is beyond the limits of the CS segment. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effective address space from 0 to FFFFH. This condition can occur if a 32-bit address size override prefix is used. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the offset being jumped to is in a non-canonical form. #UD If the LOCK prefix is used. 3-614 Vol. 2A LOOP/LOOPcc—Loop According to ECX Counter INSTRUCTION SET REFERENCE, A-M LSL—Load Segment Limit Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 03 /r LSL r16, r16/m16 A Valid Valid Load: r16 ← segment limit, selector r16/m16. 0F 03 /r LSL r32, r32/m16* A Valid Valid Load: r32 ← segment limit, selector r32/m16. REX.W + 0F 03 /r LSL r64, r32/m16* A Valid Valid Load: r64 ← segment limit, selector r32/m16 NOTES: * For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Loads the unscrambled segment limit from the segment descriptor specified with the second operand (source operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS register. The source operand (which can be a register or a memory location) contains the segment selector for the segment descriptor being accessed. The destination operand is a general-purpose register. The processor performs access checks as part of the loading process. Once loaded in the destination register, software can compare the segment limit with the offset of a pointer. The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of the segment descriptor. If the descriptor has a byte granular segment limit (the granularity flag is set to 0), the destination operand is loaded with a byte granular value (byte limit). If the descriptor has a page granular segment limit (the granularity flag is set to 1), the LSL instruction will translate the page granular limit (page limit) into a byte limit before loading it into the destination operand. The translation is performed by shifting the 20-bit “raw” limit left 12 bits and filling the loworder 12 bits with 1s. When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are truncated and only the low-order 16 bits are loaded into the destination operand. This instruction performs the following checks before it loads the segment limit into the destination register: • Checks that the segment selector is not NULL. LSL—Load Segment Limit Vol. 2A 3-615 INSTRUCTION SET REFERENCE, A-M • Checks that the segment selector points to a descriptor that is within the limits of the GDT or LDT being accessed • Checks that the descriptor type is valid for this instruction. All code and data segment descriptors are valid for (can be accessed with) the LSL instruction. The valid special segment and gate descriptor types are given in the following table. • If the segment is not a conforming code segment, the instruction checks that the specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or equal to the DPL of the segment selector). If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is cleared and no value is loaded in the destination operand. Table 3-65. Segment and Gate Descriptor Types Type Protected Mode Name IA-32e Mode Valid Name Valid 0 Reserved No Upper 8 byte of a 16Byte descriptor Yes 1 Available 16-bit TSS Yes Reserved No 2 LDT Yes LDT Yes 3 Busy 16-bit TSS Yes Reserved No 4 16-bit call gate No Reserved No 5 16-bit/32-bit task gate No Reserved No 6 16-bit interrupt gate No Reserved No 7 16-bit trap gate No Reserved No 8 Reserved No Reserved No 9 Available 32-bit TSS Yes 64-bit TSS Yes A Reserved No Reserved No B Busy 32-bit TSS Yes Busy 64-bit TSS Yes C 32-bit call gate No 64-bit call gate No D Reserved No Reserved No E 32-bit interrupt gate No 64-bit interrupt gate No F 32-bit trap gate No 64-bit trap gate No 3-616 Vol. 2A LSL—Load Segment Limit INSTRUCTION SET REFERENCE, A-M Operation IF SRC(Offset) > descriptor table limit THEN ZF ← 0; FI; Read segment descriptor; IF SegmentDescriptor(Type) ≠ conforming code segment and (CPL > DPL) OR (RPL > DPL) or Segment type is not valid for instruction THEN ZF ← 0; ELSE temp ← SegmentLimit([SRC]); IF (G ← 1) THEN temp ← ShiftLeft(12, temp) OR 00000FFFH; ELSE IF OperandSize = 32 THEN DEST ← temp; FI; ELSE IF OperandSize = 64 (* REX.W used *) THEN DEST (* Zero-extended *) ← temp; FI; ELSE (* OperandSize = 16 *) DEST ← temp AND FFFFH; FI; FI; Flags Affected The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set to 0. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #UD LSL—Load Segment Limit The LSL instruction cannot be executed in real-address mode. Vol. 2A 3-617 INSTRUCTION SET REFERENCE, A-M Virtual-8086 Mode Exceptions #UD The LSL instruction cannot be executed in virtual-8086 mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If the memory operand effective address referencing the SS segment is in a non-canonical form. #GP(0) If the memory operand effective address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while the current privilege level is 3. #UD If the LOCK prefix is used. 3-618 Vol. 2A LSL—Load Segment Limit INSTRUCTION SET REFERENCE, A-M LTR—Load Task Register Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 00 /3 LTR r/m16 A Valid Valid Load r/m16 into task register. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Loads the source operand into the segment selector field of the task register. The source operand (a general-purpose register or a memory location) contains a segment selector that points to a task state segment (TSS). After the segment selector is loaded in the task register, the processor uses the segment selector to locate the segment descriptor for the TSS in the global descriptor table (GDT). It then loads the segment limit and base address for the TSS from the segment descriptor into the task register. The task pointed to by the task register is marked busy, but a switch to the task does not occur. The LTR instruction is provided for use in operating-system software; it should not be used in application programs. It can only be executed in protected mode when the CPL is 0. It is commonly used in initialization code to establish the first task to be executed. The operand-size attribute has no effect on this instruction. In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a 16-byte descriptor to load the 64-bit base. Operation IF SRC is a NULL selector THEN #GP(0); IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global THEN #GP(segment selector); FI; Read segment descriptor; IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI; IF segment descriptor is not present THEN #NP(segment selector); FI; LTR—Load Task Register Vol. 2A 3-619 INSTRUCTION SET REFERENCE, A-M TSSsegmentDescriptor(busy) ← 1; (* Locked read-modify-write operation on the entire descriptor when setting busy flag *) TaskRegister(SegmentSelector) ← SRC; TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor; Flags Affected None. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the source operand contains a NULL segment selector. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. #GP(selector) If the source selector points to a segment that is not a TSS or to one for a task that is already busy. #NP(selector) If the TSS is marked not present. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. If the selector points to LDT or is beyond the GDT limit. Real-Address Mode Exceptions #UD The LTR instruction is not recognized in real-address mode. Virtual-8086 Mode Exceptions #UD The LTR instruction is not recognized in virtual-8086 mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the current privilege level is not 0. If the memory address is in a non-canonical form. If the source operand contains a NULL segment selector. 3-620 Vol. 2A LTR—Load Task Register INSTRUCTION SET REFERENCE, A-M #GP(selector) If the source selector points to a segment that is not a TSS or to one for a task that is already busy. If the selector points to LDT or is beyond the GDT limit. If the descriptor type of the upper 8-byte of the 16-byte descriptor is non-zero. #NP(selector) If the TSS is marked not present. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. LTR—Load Task Register Vol. 2A 3-621 INSTRUCTION SET REFERENCE, A-M MASKMOVDQU—Store Selected Bytes of Double Quadword Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F F7 /r A V/V SSE2 Selectively write bytes from xmm1 to memory location using the byte mask in xmm2. The default memory location is specified by DS:EDI/RDI. A V/V AVX Selectively write bytes from xmm1 to memory location using the byte mask in xmm2. The default memory location is specified by DS:DI/EDI/RDI. MASKMOVDQU xmm1, xmm2 VEX.128.66.0F.WIG F7 /r VMASKMOVDQU xmm1, xmm2 Instruction Operand Encoding1 Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r) ModRM:r/m (r) NA NA Description Stores selected bytes from the source operand (first operand) into an 128-bit memory location. The mask operand (second operand) selects which bytes from the source operand are written to memory. The source and mask operands are XMM registers. The location of the first byte of the memory location is specified by DI/EDI and DS registers. The memory location does not need to be aligned on a natural boundary. (The size of the store address depends on the address-size attribute.) The most significant bit in each byte of the mask operand determines whether the corresponding byte in the source operand is written to the corresponding byte location in memory: 0 indicates no write and 1 indicates write. The MASKMOVDQU instruction generates a non-temporal hint to the processor to minimize cache pollution. The non-temporal hint is implemented by using a write combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with the SFENCE or MFENCE instruction should be used in conjunction with MASKMOVDQU instructions if multiple processors might use different memory types to read/write the destination memory locations. 1.ModRM.MOD = 011B required 3-622 Vol. 2A MASKMOVDQU—Store Selected Bytes of Double Quadword INSTRUCTION SET REFERENCE, A-M Behavior with a mask of all 0s is as follows: • • No data will be written to memory. • Exceptions associated with addressing memory and page faults may still be signaled (implementation dependent). • If the destination memory region is mapped as UC or WP, enforcement of associated semantics for these memory types is not guaranteed (that is, is reserved) and is implementation-specific. Signaling of breakpoints (code or data) is not guaranteed; different processor implementations may signal or not signal these breakpoints. The MASKMOVDQU instruction can be used to improve performance of algorithms that need to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a read for ownership; doing so generates unnecessary bandwidth since data is to be written directly using the byte-mask without allocating old data prior to the store. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation IF (MASK[7] = 1) THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI; IF (MASK[15] = 1) THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI; (* Repeat operation for 3rd through 14th bytes in source operand *) IF (MASK[127] = 1) THEN DEST[DI/EDI +15] ← SRC[127:120] ELSE (* Memory location unchanged *); FI; Intel C/C++ Compiler Intrinsic Equivalent void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p) Other Exceptions See Exceptions Type 4; additionally #UD If VEX.L= 1 If VEX.vvvv != 1111B. MASKMOVDQU—Store Selected Bytes of Double Quadword Vol. 2A 3-623 INSTRUCTION SET REFERENCE, A-M VMASKMOV—Conditional SIMD Packed Loads and Stores Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description VEX.NDS.128.66.0F38.W0 2C /r A V/V AVX Conditionally load packed single-precision values from m128 using mask in xmm2 and store in xmm1. A V/V AVX Conditionally load packed single-precision values from m256 using mask in ymm2 and store in ymm1. A V/V AVX Conditionally load packed double-precision values from m128 using mask in xmm2 and store in xmm1. A V/V AVX Conditionally load packed double-precision values from m256 using mask in ymm2 and store in ymm1. B V/V AVX Conditionally store packed single-precision values from xmm2 using mask in xmm1. B V/V AVX Conditionally store packed single-precision values from ymm2 using mask in ymm1. B V/V AVX Conditionally store packed double-precision values from xmm2 using mask in xmm1. B V/V AVX Conditionally store packed double-precision values from ymm2 using mask in ymm1. VMASKMOVPS xmm1, xmm2, m128 VEX.NDS.256.66.0F38.W0 2C /r VMASKMOVPS ymm1, ymm2, m256 VEX.NDS.128.66.0F38.W0 2D /r VMASKMOVPD xmm1, xmm2, m128 VEX.NDS.256.66.0F38.W0 2D /r VMASKMOVPD ymm1, ymm2, m256 VEX.NDS.128.66.0F38.W0 2E /r VMASKMOVPS m128, xmm1, xmm2 VEX.NDS.256.66.0F38.W0 2E /r VMASKMOVPS m256, ymm1, ymm2 VEX.NDS.128.66.0F38.W0 2F /r VMASKMOVPD m128, xmm1, xmm2 VEX.NDS.256.66.0F38.W0 2F /r VMASKMOVPD m256, ymm1, ymm2 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA B ModRM:r/m (w) VEX.vvvv (r) ModRM:r/m (r) NA Description 3-624 Vol. 2A VMASKMOV—Conditional SIMD Packed Loads and Stores INSTRUCTION SET REFERENCE, A-M Conditionally moves packed data elements from the second source operand into the corresponding data element of the destination operand, depending on the mask bits associated with each data element. The mask bits are specified in the first source operand. The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask is 1, the corresponding data element is copied from the second source operand to the destination operand. If the mask is 0, the corresponding data element is set to zero in the load form of these instructions, and unmodified in the store form. The second source operand is a memory address for the load form of these instruction. The destination operand is a memory address for the store form of these instructions. The other operands are both XMM registers (for VEX.128 version) or YMM registers (for VEX.256 version). Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no faults will be detected if the mask bits are all zero. Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to these instructions Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s. VMASKMOV should not be used to access memory mapped I/O and un-cached memory as the access and the ordering of the individual loads or stores it does is implementation specific. In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an implementation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored. Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in rm_field, and the destination register is encoded in reg_field. Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded in reg_field, and the destination memory location is encoded in rm_field. Operation VMASKMOVPS -128-bit load DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0 DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0 DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0 DEST[127:97] IF (SRC1[127]) Load_32(mem + 12) ELSE 0 DEST[VLMAX-1:128] 0 VMASKMOVPS - 256-bit load VMASKMOV—Conditional SIMD Packed Loads and Stores Vol. 2A 3-625 INSTRUCTION SET REFERENCE, A-M DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0 DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0 DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0 DEST[127:96] IF (SRC1[127]) Load_32(mem + 12) ELSE 0 DEST[159:128] IF (SRC1[159]) Load_32(mem + 16) ELSE 0 DEST[191:160] IF (SRC1[191]) Load_32(mem + 20) ELSE 0 DEST[223:192] IF (SRC1[223]) Load_32(mem + 24) ELSE 0 DEST[255:224] IF (SRC1[255]) Load_32(mem + 28) ELSE 0 VMASKMOVPD - 128-bit load DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0 DEST[127:64] IF (SRC1[127]) Load_64(mem + 16) ELSE 0 DEST[VLMAX-1:128] 0 VMASKMOVPD - 256-bit load DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0 DEST[127:64] IF (SRC1[127]) Load_64(mem + 8) ELSE 0 DEST[195:128] IF (SRC1[191]) Load_64(mem + 16) ELSE 0 DEST[255:196] IF (SRC1[255]) Load_64(mem + 24) ELSE 0 VMASKMOVPS - 128-bit store IF (SRC1[31]) DEST[31:0] SRC2[31:0] IF (SRC1[63]) DEST[63:32] SRC2[63:32] IF (SRC1[95]) DEST[95:64] SRC2[95:64] IF (SRC1[127]) DEST[127:96] SRC2[127:96] VMASKMOVPS - 256-bit store IF (SRC1[31]) DEST[31:0] SRC2[31:0] IF (SRC1[63]) DEST[63:32] SRC2[63:32] IF (SRC1[95]) DEST[95:64] SRC2[95:64] IF (SRC1[127]) DEST[127:96] SRC2[127:96] IF (SRC1[159]) DEST[159:128] SRC2[159:128] IF (SRC1[191]) DEST[191:160] SRC2[191:160] IF (SRC1[223]) DEST[223:192] SRC2[223:192] IF (SRC1[255]) DEST[255:224] SRC2[255:224] VMASKMOVPD - 128-bit store IF (SRC1[63]) DEST[63:0] SRC2[63:0] IF (SRC1[127]) DEST[127:64] SRC2[127:64] VMASKMOVPD - 256-bit store IF (SRC1[63]) DEST[63:0] SRC2[63:0] IF (SRC1[127]) DEST[127:64] SRC2[127:64] 3-626 Vol. 2A VMASKMOV—Conditional SIMD Packed Loads and Stores INSTRUCTION SET REFERENCE, A-M IF (SRC1[191]) DEST[191:128] SRC2[191:128] IF (SRC1[255]) DEST[255:192] SRC2[255:192] Intel C/C++ Compiler Intrinsic Equivalent __m256 _mm256_maskload_ps(float const *a, __m256i mask) void _mm256_maskstore_ps(float *a, __m256i mask, __m256 b) __m256d _mm256_maskload_pd(double *a, __m256i mask); void _mm256_maskstore_pd(double *a, __m256i mask, __m256d b); __m128 _mm256_maskload_ps(float const *a, __m128i mask) void _mm256_maskstore_ps(float *a, __m128i mask, __m128 b) __m128d _mm256_maskload_pd(double *a, __m128i mask); void _mm256_maskstore_pd(double *a, __m128i mask, __m128d b); SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 6 (No AC# reported for any mask bit combinations); additionally #UD If VEX.W = 1. VMASKMOV—Conditional SIMD Packed Loads and Stores Vol. 2A 3-627 INSTRUCTION SET REFERENCE, A-M MASKMOVQ—Store Selected Bytes of Quadword Opcode Instruction Op/ En 0F F7 /r MASKMOVQ mm1, A mm2 64-Bit Mode Compat/ Description Leg Mode Valid Valid Selectively write bytes from mm1 to memory location using the byte mask in mm2. The default memory location is specified by DS:EDI/RDI. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r) ModRM:r/m (r) NA NA Description Stores selected bytes from the source operand (first operand) into a 64-bit memory location. The mask operand (second operand) selects which bytes from the source operand are written to memory. The source and mask operands are MMX technology registers. The location of the first byte of the memory location is specified by DI/EDI and DS registers. (The size of the store address depends on the address-size attribute.) The most significant bit in each byte of the mask operand determines whether the corresponding byte in the source operand is written to the corresponding byte location in memory: 0 indicates no write and 1 indicates write. The MASKMOVQ instruction generates a non-temporal hint to the processor to minimize cache pollution. The non-temporal hint is implemented by using a write combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with the SFENCE or MFENCE instruction should be used in conjunction with MASKMOVQ instructions if multiple processors might use different memory types to read/write the destination memory locations. This instruction causes a transition from x87 FPU to MMX technology state (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows: • • • No data will be written to memory. Transition from x87 FPU to MMX technology state will occur. Exceptions associated with addressing memory and page faults may still be signaled (implementation dependent). 3-628 Vol. 2A MASKMOVQ—Store Selected Bytes of Quadword INSTRUCTION SET REFERENCE, A-M • Signaling of breakpoints (code or data) is not guaranteed (implementation dependent). • If the destination memory region is mapped as UC or WP, enforcement of associated semantics for these memory types is not guaranteed (that is, is reserved) and is implementation-specific. The MASKMOVQ instruction can be used to improve performance for algorithms that need to merge data on a byte-by-byte basis. It should not cause a read for ownership; doing so generates unnecessary bandwidth since data is to be written directly using the byte-mask without allocating old data prior to the store. In 64-bit mode, the memory address is specified by DS:RDI. Operation IF (MASK[7] = 1) THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI; IF (MASK[15] = 1) THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI; (* Repeat operation for 3rd through 6th bytes in source operand *) IF (MASK[63] = 1) THEN DEST[DI/EDI +15] ← SRC[63:56] ELSE (* Memory location unchanged *); FI; Intel C/C++ Compiler Intrinsic Equivalent void _mm_maskmove_si64(__m64d, __m64n, char * p) Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments (even if mask is all 0s). If the destination operand is in a nonwritable segment. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) For an illegal address in the SS segment (even if mask is all 0s). #PF(fault-code) For a page fault (implementation specific). #NM If CR0.TS[bit 3] = 1. #MF If there is a pending FPU exception. #UD If CR0.EM[bit 2] = 1. If CPUID.01H:EDX.SSE[bit 25] = 0. If Mod field of the ModR/M byte not 11B. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. MASKMOVQ—Store Selected Bytes of Quadword Vol. 2A 3-629 INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions GP If any part of the operand lies outside the effective address space from 0 to FFFFH. (even if mask is all 0s). #NM If CR0.TS[bit 3] = 1. #MF If there is a pending FPU exception. #UD If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) For a page fault (implementation specific). #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the memory address is in a non-canonical form. #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #PF(fault-code) For a page fault (implementation specific). #NM If CR0.TS[bit 3] = 1. #MF If there is a pending FPU exception. #UD If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE[bit 25] = 0. If Mod field of the ModR/M byte not 11B. If the LOCK prefix is used. #AC(0) 3-630 Vol. 2A If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. MASKMOVQ—Store Selected Bytes of Quadword INSTRUCTION SET REFERENCE, A-M MAXPD—Return Maximum Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 5F /r A V/V SSE2 Return the maximum double-precision floatingpoint values between xmm2/m128 and xmm1. B V/V AVX Return the maximum double-precision floatingpoint values between xmm2 and xmm3/mem. B V/V AVX Return the maximum packed double-precision floating-point values between ymm2 and ymm3/mem. MAXPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 5F /r VMAXPD xmm1,xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 5F /r VMAXPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs an SIMD compare of the packed double-precision floating-point values in the first source operand and the second source operand and returns the maximum value for each pair of values to the destination operand. If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand (from either the first or second operand) be returned, the action of MAXPD can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register MAXPD—Return Maximum Packed Double-Precision Floating-Point Values Vol. 2A 3-631 INSTRUCTION SET REFERENCE, A-M and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation MAX(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 > SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MAXPD (128-bit Legacy SSE version) DEST[63:0] MAX(DEST[63:0], SRC[63:0]) DEST[127:64] MAX(DEST[127:64], SRC[127:64]) DEST[VLMAX-1:128] (Unmodified) VMAXPD (VEX.128 encoded version) DEST[63:0] MAX(SRC1[63:0], SRC2[63:0]) DEST[127:64] MAX(SRC1[127:64], SRC2[127:64]) DEST[VLMAX-1:128] 0 VMAXPD (VEX.256 encoded version) DEST[63:0] MAX(SRC1[63:0], SRC2[63:0]) DEST[127:64] MAX(SRC1[127:64], SRC2[127:64]) DEST[191:128] MAX(SRC1[191:128], SRC2[191:128]) DEST[255:192] MAX(SRC1[255:192], SRC2[255:192]) Intel C/C++ Compiler Intrinsic Equivalent MAXPD __m128d _mm_max_pd(__m128d a, __m128d b); VMAXPD __m256d _mm256_max_pd (__m256d a, __m256d b); 3-632 Vol. 2A MAXPD—Return Maximum Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. Other Exceptions See Exceptions Type 2. MAXPD—Return Maximum Packed Double-Precision Floating-Point Values Vol. 2A 3-633 INSTRUCTION SET REFERENCE, A-M MAXPS—Return Maximum Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 5F /r A V/V SSE Return the maximum singleprecision floating-point values between xmm2/m128 and xmm1. B V/V AVX Return the maximum singleprecision floating-point values between xmm2 and xmm3/mem. B V/V AVX Return the maximum single double-precision floatingpoint values between ymm2 and ymm3/mem. MAXPS xmm1, xmm2/m128 VEX.NDS.128.0F.WIG 5F /r VMAXPS xmm1,xmm2, xmm3/m128 VEX.NDS.256.0F.WIG 5F /r VMAXPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs an SIMD compare of the packed single-precision floating-point values in the first source operand and the second source operand and returns the maximum value for each pair of values to the destination operand. If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand (from either the first or second operand) be returned, the action of MAXPS can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register 3-634 Vol. 2A MAXPS—Return Maximum Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation MAX(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 > SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MAXPS (128-bit Legacy SSE version) DEST[31:0] MAX(DEST[31:0], SRC[31:0]) DEST[63:32] MAX(DEST[63:32], SRC[63:32]) DEST[95:64] MAX(DEST[95:64], SRC[95:64]) DEST[127:96] MAX(DEST[127:96], SRC[127:96]) DEST[VLMAX-1:128] (Unmodified) VMAXPS (VEX.128 encoded version) DEST[31:0] MAX(SRC1[31:0], SRC2[31:0]) DEST[63:32] MAX(SRC1[63:32], SRC2[63:32]) DEST[95:64] MAX(SRC1[95:64], SRC2[95:64]) DEST[127:96] MAX(SRC1[127:96], SRC2[127:96]) DEST[VLMAX-1:128] 0 VMAXPS (VEX.256 encoded version) DEST[31:0] MAX(SRC1[31:0], SRC2[31:0]) DEST[63:32] MAX(SRC1[63:32], SRC2[63:32]) DEST[95:64] MAX(SRC1[95:64], SRC2[95:64]) DEST[127:96] MAX(SRC1[127:96], SRC2[127:96]) DEST[159:128] MAX(SRC1[159:128], SRC2[159:128]) DEST[191:160] MAX(SRC1[191:160], SRC2[191:160]) DEST[223:192] MAX(SRC1[223:192], SRC2[223:192]) MAXPS—Return Maximum Packed Single-Precision Floating-Point Values Vol. 2A 3-635 INSTRUCTION SET REFERENCE, A-M DEST[255:224] MAX(SRC1[255:224], SRC2[255:224]) Intel C/C++ Compiler Intrinsic Equivalent MAXPS __m128 _mm_max_ps (__m128 a, __m128 b); VMAXPS __m256 _mm256_max_ps (__m256 a, __m256 b); SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. Other Exceptions See Exceptions Type 2. 3-636 Vol. 2A MAXPS—Return Maximum Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 5F /r A V/V SSE2 Return the maximum scalar double-precision floatingpoint value between xmm2/mem64 and xmm1. B V/V AVX Return the maximum scalar double-precision floatingpoint value between xmm3/mem64 and xmm2. MAXSD xmm1, xmm2/m64 VEX.NDS.LIG.F2.0F.WIG 5F /r VMAXSD xmm1, xmm2, xmm3/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Compares the low double-precision floating-point values in the first source operand and second the source operand, and returns the maximum value to the low quadword of the destination operand. The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers. When the second source operand is a memory operand, only 64 bits are accessed. The high quadword of the destination operand is copied from the same bits of first source operand. If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN of either source operand be returned, the action of MAXSD can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value Vol. 2A 3-637 INSTRUCTION SET REFERENCE, A-M 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation MAX(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 > SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MAXSD (128-bit Legacy SSE version) DEST[63:0] MAX(DEST[63:0], SRC[63:0]) DEST[VLMAX-1:64] (Unmodified) VMAXSD (VEX.128 encoded version) DEST[63:0] MAX(SRC1[63:0], SRC2[63:0]) DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MAXSD __m128d _mm_max_sd(__m128d a, __m128d b) SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. Other Exceptions See Exceptions Type 3. 3-638 Vol. 2A MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 5F /r A V/V SSE Return the maximum scalar single-precision floatingpoint value between xmm2/mem32 and xmm1. B V/V AVX Return the maximum scalar single-precision floatingpoint value between xmm3/mem32 and xmm2. MAXSS xmm1, xmm2/m32 VEX.NDS.LIG.F3.0F.WIG 5F /r VMAXSS xmm1, xmm2, xmm3/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Compares the low single-precision floating-point values in the first source operand and the second source operand, and returns the maximum value to the low doubleword of the destination operand. If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN from either source operand be returned, the action of MAXSS can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. The second source operand can be an XMM register or a 32-bit memory location. The first source and destination operands are XMM registers. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value Vol. 2A 3-639 INSTRUCTION SET REFERENCE, A-M Operation MAX(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 > SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MAXSS (128-bit Legacy SSE version) DEST[31:0] MAX(DEST[31:0], SRC[31:0]) DEST[VLMAX-1:32] (Unmodified) VMAXSS (VEX.128 encoded version) DEST[31:0] MAX(SRC1[31:0], SRC2[31:0]) DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent __m128d _mm_max_ss(__m128d a, __m128d b) SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. Other Exceptions See Exceptions Type 3. 3-640 Vol. 2A MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M MFENCE—Memory Fence Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F AE /6 MFENCE A Valid Valid Serializes load and store operations. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Performs a serializing operation on all load-from-memory and store-to-memory instructions that were issued prior the MFENCE instruction. This serializing operation guarantees that every load and store instruction that precedes the MFENCE instruction in program order becomes globally visible before any load or store instruction that follows the MFENCE instruction.1 The MFENCE instruction is ordered with respect to all load and store instructions, other MFENCE instructions, any LFENCE and SFENCE instructions, and any serializing instructions (such as the CPUID instruction). MFENCE does not serialize the instruction stream. Weakly ordered memory types can be used to achieve higher processor performance through such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing. The degree to which a consumer of data recognizes or knows that the data is weakly ordered varies among applications and may be unknown to the producer of this data. The MFENCE instruction provides a performance-efficient way of ensuring load and store ordering between routines that produce weaklyordered results and routines that consume that data. Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC, and WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution. Thus, it is not ordered with respect to executions of the MFENCE instruction; data can be brought into the caches speculatively just before, during, or after the execution of an MFENCE instruction.Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC, and WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution. Thus, it is not ordered with respect to executions of the MFENCE instruction; data can be brought into the caches speculatively just before, during, or after the execution of an MFENCE instruction. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. 1. A load instruction is considered to become globally visible when the value to be loaded into its destination register is determined. MFENCE—Memory Fence Vol. 2A 3-641 INSTRUCTION SET REFERENCE, A-M Operation Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible); Intel C/C++ Compiler Intrinsic Equivalent void _mm_mfence(void) Exceptions (All Modes of Operation) #UD If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. 3-642 Vol. 2A MFENCE—Memory Fence INSTRUCTION SET REFERENCE, A-M MINPD—Return Minimum Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 5D /r A V/V SSE2 Return the minimum doubleprecision floating-point values between xmm2/m128 and xmm1. B V/V AVX Return the minimum doubleprecision floating-point values between xmm2 and xmm3/mem. B V/V AVX Return the minimum packed double-precision floatingpoint values between ymm2 and ymm3/mem. MINPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 5D /r VMINPD xmm1,xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 5D /r VMINPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs an SIMD compare of the packed double-precision floating-point values in the first source operand and the second source operand and returns the minimum value for each pair of values to the destination operand. If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand (from either the first or second operand) be returned, the action of MINPD can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register MINPD—Return Minimum Packed Double-Precision Floating-Point Values Vol. 2A 3-643 INSTRUCTION SET REFERENCE, A-M and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. Operation MIN(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 < SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MINPD (128-bit Legacy SSE version) DEST[63:0] MIN(SRC1[63:0], SRC2[63:0]) DEST[127:64] MIN(SRC1[127:64], SRC2[127:64]) DEST[VLMAX-1:128] (Unmodified) VMINPD (VEX.128 encoded version) DEST[63:0] MIN(SRC1[63:0], SRC2[63:0]) DEST[127:64] MIN(SRC1[127:64], SRC2[127:64]) DEST[VLMAX-1:128] 0 VMINPD (VEX.256 encoded version) DEST[63:0] MIN(SRC1[63:0], SRC2[63:0]) DEST[127:64] MIN(SRC1[127:64], SRC2[127:64]) DEST[191:128] MIN(SRC1[191:128], SRC2[191:128]) DEST[255:192] MIN(SRC1[255:192], SRC2[255:192]) Intel C/C++ Compiler Intrinsic Equivalent MINPD __m128d _mm_min_pd(__m128d a, __m128d b); VMINPD __m256d _mm256_min_pd (__m256d a, __m256d b); SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. 3-644 Vol. 2A MINPD—Return Minimum Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M Other Exceptions See Exceptions Type 2. MINPD—Return Minimum Packed Double-Precision Floating-Point Values Vol. 2A 3-645 INSTRUCTION SET REFERENCE, A-M MINPS—Return Minimum Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 5D /r A V/V SSE Return the minimum singleprecision floating-point values between xmm2/m128 and xmm1. B V/V AVX Return the minimum singleprecision floating-point values between xmm2 and xmm3/mem. B V/V AVX Return the minimum single double-precision floatingpoint values between ymm2 and ymm3/mem. MINPS xmm1, xmm2/m128 VEX.NDS.128.0F.WIG 5D /r VMINPS xmm1,xmm2, xmm3/m128 VEX.NDS.256.0F.WIG 5D /r VMINPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs an SIMD compare of the packed single-precision floating-point values in the first source operand and the second source operand and returns the minimum value for each pair of values to the destination operand. If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand (from either the first or second operand) be returned, the action of MINPS can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register 3-646 Vol. 2A MINPS—Return Minimum Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation MIN(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 < SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MINPS (128-bit Legacy SSE version) DEST[31:0] MIN(SRC1[31:0], SRC2[31:0]) DEST[63:32] MIN(SRC1[63:32], SRC2[63:32]) DEST[95:64] MIN(SRC1[95:64], SRC2[95:64]) DEST[127:96] MIN(SRC1[127:96], SRC2[127:96]) DEST[VLMAX-1:128] (Unmodified) VMINPS (VEX.128 encoded version) DEST[31:0] MIN(SRC1[31:0], SRC2[31:0]) DEST[63:32] MIN(SRC1[63:32], SRC2[63:32]) DEST[95:64] MIN(SRC1[95:64], SRC2[95:64]) DEST[127:96] MIN(SRC1[127:96], SRC2[127:96]) DEST[VLMAX-1:128] 0 VMINPS (VEX.256 encoded version) DEST[31:0] MIN(SRC1[31:0], SRC2[31:0]) DEST[63:32] MIN(SRC1[63:32], SRC2[63:32]) DEST[95:64] MIN(SRC1[95:64], SRC2[95:64]) DEST[127:96] MIN(SRC1[127:96], SRC2[127:96]) DEST[159:128] MIN(SRC1[159:128], SRC2[159:128]) DEST[191:160] MIN(SRC1[191:160], SRC2[191:160]) DEST[223:192] MIN(SRC1[223:192], SRC2[223:192]) MINPS—Return Minimum Packed Single-Precision Floating-Point Values Vol. 2A 3-647 INSTRUCTION SET REFERENCE, A-M DEST[255:224] MIN(SRC1[255:224], SRC2[255:224]) Intel C/C++ Compiler Intrinsic Equivalent MINPS __m128d _mm_min_ps(__m128d a, __m128d b); VMINPS __m256 _mm256_min_ps (__m256 a, __m256 b); SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. Other Exceptions See Exceptions Type 2. 3-648 Vol. 2A MINPS—Return Minimum Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M MINSD—Return Minimum Scalar Double-Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 5D /r A V/V SSE2 Return the minimum scalar double-precision floatingpoint value between xmm2/mem64 and xmm1. B V/V AVX Return the minimum scalar double precision floatingpoint value between xmm3/mem64 and xmm2. MINSD xmm1, xmm2/m64 VEX.NDS.LIG.F2.0F.WIG 5D /r VMINSD xmm1, xmm2, xmm3/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Compares the low double-precision floating-point values in the first source operand and the second source operand, and returns the minimum value to the low quadword of the destination operand. When the source operand is a memory operand, only the 64 bits are accessed. The high quadword of the destination operand is copied from the same bits in the first source operand. If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand (from either the first or second source) be returned, the action of MINSD can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged. MINSD—Return Minimum Scalar Double-Precision Floating-Point Value Vol. 2A 3-649 INSTRUCTION SET REFERENCE, A-M VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation MIN(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 < SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MINSD (128-bit Legacy SSE version) DEST[63:0] MIN(SRC1[63:0], SRC2[63:0]) DEST[VLMAX-1:64] (Unmodified) MINSD (VEX.128 encoded version) DEST[63:0] MIN(SRC1[63:0], SRC2[63:0]) DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MINSD __m128d _mm_min_sd(__m128d a, __m128d b) SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. Other Exceptions See Exceptions Type 3. 3-650 Vol. 2A MINSD—Return Minimum Scalar Double-Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M MINSS—Return Minimum Scalar Single-Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 5D /r A V/V SSE Return the minimum scalar single-precision floatingpoint value between xmm2/mem32 and xmm1. B V/V AVX Return the minimum scalar single precision floatingpoint value between xmm3/mem32 and xmm2. MINSS xmm1, xmm2/m32 VEX.NDS.LIG.F3. VMINSS 0F.WIG 5D /r xmm1,xmm2, xmm3/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Compares the low single-precision floating-point values in the first source operand and the second source operand and returns the minimum value to the low doubleword of the destination operand. If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If a value in the second operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN in either source operand be returned, the action of MINSD can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. The second source operand can be an XMM register or a 32-bit memory location. The first source and destination operands are XMM registers. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. MINSS—Return Minimum Scalar Single-Precision Floating-Point Value Vol. 2A 3-651 INSTRUCTION SET REFERENCE, A-M Operation MIN(SRC1, SRC2) { IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2; ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI; ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI; ELSE IF (SRC1 < SRC2) THEN DEST SRC1; ELSE DEST SRC2; FI; } MINSS (128-bit Legacy SSE version) DEST[31:0] MIN(SRC1[31:0], SRC2[31:0]) DEST[VLMAX-1:32] (Unmodified) VMINSS (VEX.128 encoded version) DEST[31:0] MIN(SRC1[31:0], SRC2[31:0]) DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MINSS __m128d _mm_min_ss(__m128d a, __m128d b) SIMD Floating-Point Exceptions Invalid (including QNaN source operand), Denormal. Other Exceptions See Exceptions Type 3. 3-652 Vol. 2A MINSS—Return Minimum Scalar Single-Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M MONITOR—Set Up Monitor Address Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 01 C8 MONITOR A Valid Valid Sets up a linear address range to be monitored by hardware and activates the monitor. The address range should be a write-back memory caching type. The address is DS:EAX (DS:RAX in 64-bit mode). Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description The MONITOR instruction arms address monitoring hardware using an address specified in EAX (the address range that the monitoring hardware checks for store operations can be determined by using CPUID). A store to an address within the specified address range triggers the monitoring hardware. The state of monitor hardware is used by MWAIT. The content of EAX is an effective address (in 64-bit mode, RAX is used). By default, the DS segment is used to create a linear address that is monitored. Segment overrides can be used. ECX and EDX are also used. They communicate other information to MONITOR. ECX specifies optional extensions. EDX specifies optional hints; it does not change the architectural behavior of the instruction. For the Pentium 4 processor (family 15, model 3), no extensions or hints are defined. Undefined hints in EDX are ignored by the processor; undefined extensions in ECX raises a general protection fault. The address range must use memory of the write-back type. Only write-back memory will correctly trigger the monitoring hardware. Additional information on determining what address range to use in order to prevent false wake-ups is described in Chapter 8, “Multiple-Processor Management” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. The MONITOR instruction is ordered as a load operation with respect to other memory transactions. The instruction is subject to the permission checking and faults associated with a byte load. Like a load, MONITOR sets the A-bit but not the D-bit in page tables. The MONITOR CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability of MONITOR and MWAIT in the processor. When set, MONITOR may be MONITOR—Set Up Monitor Address Vol. 2A 3-653 INSTRUCTION SET REFERENCE, A-M executed only at privilege level 0 (use at any other privilege level results in an invalid-opcode exception). The operating system or system BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR; disabling MONITOR clears the CPUID feature flag and causes execution to generate an illegal opcode exception. The instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation MONITOR sets up an address range for the monitor hardware using the content of EAX (RAX in 64-bit mode) as an effective address and puts the monitor hardware in armed state. Always use memory of the write-back caching type. A store to the specified address range will trigger the monitor hardware. The content of ECX and EDX are used to communicate other information to the monitor hardware. Intel C/C++ Compiler Intrinsic Equivalent MONITOR void _mm_monitor(void const *p, unsigned extensions,unsigned hints) Numeric Exceptions None Protected Mode Exceptions #GP(0) If the value in EAX is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector. If ECX ≠ 0. #SS(0) If the value in EAX is outside the SS segment limit. #PF(fault-code) For a page fault. #UD If CPUID.01H:ECX.MONITOR[bit 3] = 0. If current privilege level is not 0. Real Address Mode Exceptions #GP If the CS, DS, ES, FS, or GS register is used to access memory and the value in EAX is outside of the effective address space from 0 to FFFFH. If ECX ≠ 0. #SS If the SS register is used to access memory and the value in EAX is outside of the effective address space from 0 to FFFFH. #UD If CPUID.01H:ECX.MONITOR[bit 3] = 0. 3-654 Vol. 2A MONITOR—Set Up Monitor Address INSTRUCTION SET REFERENCE, A-M Virtual 8086 Mode Exceptions #UD The MONITOR instruction is not recognized in virtual-8086 mode (even if CPUID.01H:ECX.MONITOR[bit 3] = 1). Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS segment is in a non-canonical form. If RCX ≠ 0. #SS(0) If the SS register is used to access memory and the value in EAX is in a non-canonical form. #PF(fault-code) For a page fault. #UD If the current privilege level is not 0. If CPUID.01H:ECX.MONITOR[bit 3] = 0. MONITOR—Set Up Monitor Address Vol. 2A 3-655 INSTRUCTION SET REFERENCE, A-M MOV—Move Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 88 /r MOV r/m8,r8 A Valid Valid Move r8 to r/m8. REX + 88 /r MOV r/m8***,r8*** A Valid N.E. Move r8 to r/m8. 89 /r MOV r/m16,r16 A Valid Valid Move r16 to r/m16. 89 /r MOV r/m32,r32 A Valid Valid Move r32 to r/m32. REX.W + 89 /r MOV r/m64,r64 A Valid N.E. Move r64 to r/m64. 8A /r MOV r8,r/m8 B Valid Valid Move r/m8 to r8. REX + 8A /r MOV r8***,r/m8*** B Valid N.E. Move r/m8 to r8. 8B /r MOV r16,r/m16 B Valid Valid Move r/m16 to r16. 8B /r MOV r32,r/m32 B Valid Valid Move r/m32 to r32. REX.W + 8B /r MOV r64,r/m64 B Valid N.E. Move r/m64 to r64. 8C /r MOV r/m16,Sreg** A Valid Valid Move segment register to r/m16. REX.W + 8C /r MOV r/m64,Sreg** A Valid Valid Move zero extended 16-bit segment register to r/m64. 8E /r MOV Sreg,r/m16** B Valid Valid Move r/m16 to segment register. REX.W + 8E /r MOV Sreg,r/m64** B Valid Valid Move lower 16 bits of r/m64 to segment register. A0 MOV AL,moffs8* C Valid Valid Move byte at (seg:offset) to AL. REX.W + A0 MOV AL,moffs8* C Valid N.E. Move byte at (offset) to AL. A1 MOV AX,moffs16* C Valid Valid Move word at (seg:offset) to AX. A1 MOV EAX,moffs32* C Valid Valid Move doubleword at (seg:offset) to EAX. REX.W + A1 MOV RAX,moffs64* C Valid N.E. Move quadword at (offset) to RAX. A2 MOV moffs8,AL D Valid Valid Move AL to (seg:offset). REX.W + A2 MOV moffs8***,AL D Valid N.E. Move AL to (offset). A3 MOV moffs16*,AX D Valid Valid Move AX to (seg:offset). A3 MOV moffs32*,EAX Valid Valid Move EAX to (seg:offset). 3-656 Vol. 2A D MOV—Move INSTRUCTION SET REFERENCE, A-M Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode REX.W + A3 MOV moffs64*,RAX D Valid N.E. Move RAX to (offset). B0+ rb MOV r8, imm8 E Valid Valid Move imm8 to r8. REX + B0+ rb *** MOV r8 , imm8 E Valid N.E. Move imm8 to r8. B8+ rw MOV r16, imm16 E Valid Valid Move imm16 to r16. B8+ rd MOV r32, imm32 E Valid Valid Move imm32 to r32. REX.W + B8+ rd MOV r64, imm64 E Valid N.E. Move imm64 to r64. C6 /0 MOV r/m8, imm8 F Valid Valid Move imm8 to r/m8. REX + C6 /0 MOV r/m8***, imm8 F Valid N.E. Move imm8 to r/m8. C7 /0 MOV r/m16, imm16 F Valid Valid Move imm16 to r/m16. C7 /0 MOV r/m32, imm32 F Valid Valid Move imm32 to r/m32. REX.W + C7 /0 MOV r/m64, imm32 F Valid N.E. Move imm32 sign extended to 64-bits to r/m64. NOTES: * The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64 refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64 bits. ** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” section for further information). ***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. MOV—Move Vol. 2A 3-657 INSTRUCTION SET REFERENCE, A-M Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA B ModRM:reg (w) ModRM:r/m (r) NA NA C AL/AX/EAX/RAX Displacement NA NA D Displacement AL/AX/EAX/RAX NA NA E reg (w) imm8/16/32/64 NA NA F ModRM:r/m (w) imm8/16/32/64 NA NA Description Copies the second operand (source operand) to the first operand (destination operand). The source operand can be an immediate value, general-purpose register, segment register, or memory location; the destination register can be a generalpurpose register, segment register, or memory location. Both operands must be the same size, which can be a byte, a word, a doubleword, or a quadword. The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode exception (#UD). To load the CS register, use the far JMP, CALL, or RET instruction. If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid segment selector. In protected mode, moving a segment selector into a segment register automatically causes the segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) part of the segment register. While loading this information, the segment selector and segment descriptor information is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT entry for the specified segment selector. A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference occurs. Loading the SS register with a MOV instruction inhibits all interrupts until after the execution of the next instruction. This operation allows a stack pointer to be loaded into the ESP register with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient method of loading the SS and ESP registers. When operating in 32-bit mode and moving data between a segment register and a general-purpose register, the 32-bit IA-32 processors do not require the use of the 16-bit operand-size prefix (a byte with the value 66H) with this instruction, but most assemblers will insert it if the standard form of the instruction is used (for example, MOV DS, AX). The processor will execute this instruction correctly, but it will usually 3-658 Vol. 2A MOV—Move INSTRUCTION SET REFERENCE, A-M require an extra clock. With most assemblers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the processor executes the instruction with a 32-bit general-purpose register, it assumes that the 16 least-significant bits of the general-purpose register are the destination or source operand. If the register is a destination operand, the resulting value in the two high-order bytes of the register is implementation dependent. For the Pentium 4, Intel Xeon, and P6 family processors, the two high-order bytes are filled with zeros; for earlier 32-bit IA-32 processors, the two high order bytes are undefined. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← SRC; Loading a segment register while in protected mode results in special checks and actions, as described in the following listing. These checks are performed on the segment selector and the segment descriptor to which it points. IF SS is loaded THEN IF segment selector is NULL THEN #GP(0); FI; IF segment selector index is outside descriptor table limits or segment selector's RPL ≠ CPL or segment is not a writable data segment or DPL ≠ CPL THEN #GP(selector); FI; IF segment not marked present THEN #SS(selector); ELSE SS ← segment selector; SS ← segment descriptor; FI; 1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV SS instruction, the breakpoint may not be triggered. However, in a sequence of instructions that load the SS register, only the first instruction in the sequence is guaranteed to delay an interrupt. In the following sequence, interrupts may be recognized before MOV ESP, EBP executes: MOV SS, EDX MOV SS, EAX MOV ESP, EBP MOV—Move Vol. 2A 3-659 INSTRUCTION SET REFERENCE, A-M FI; IF DS, ES, FS, or GS is loaded with non-NULL selector THEN IF segment selector index is outside descriptor table limits or segment is not a data or readable code segment or ((segment is a data or nonconforming code segment) and (both RPL and CPL > DPL)) THEN #GP(selector); FI; IF segment not marked present THEN #NP(selector); ELSE SegmentRegister ← segment selector; SegmentRegister ← segment descriptor; FI; FI; IF DS, ES, FS, or GS is loaded with NULL selector THEN SegmentRegister ← segment selector; SegmentRegister ← segment descriptor; FI; Flags Affected None. Protected Mode Exceptions #GP(0) If attempt is made to load SS register with NULL segment selector. If the destination operand is in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #GP(selector) If segment selector index is outside descriptor table limits. If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s DPL are not equal to the CPL. If the SS register is being loaded and the segment pointed to is a non-writable data segment. If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or readable code segment. If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or nonconforming code segment, but both the RPL and the CPL are greater than the DPL. 3-660 Vol. 2A MOV—Move INSTRUCTION SET REFERENCE, A-M #SS(0) If a memory operand effective address is outside the SS segment limit. #SS(selector) If the SS register is being loaded and the segment pointed to is marked not present. #NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not present. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If attempt is made to load the CS register. If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If attempt is made to load the CS register. If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If attempt is made to load the CS register. If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the memory address is in a non-canonical form. If an attempt is made to load SS register with NULL segment selector when CPL = 3. If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL ≠ RPL. MOV—Move Vol. 2A 3-661 INSTRUCTION SET REFERENCE, A-M #GP(selector) If segment selector index is outside descriptor table limits. If the memory access to the descriptor table is non-canonical. If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s DPL are not equal to the CPL. If the SS register is being loaded and the segment pointed to is a nonwritable data segment. If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or readable code segment. If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or nonconforming code segment, but both the RPL and the CPL are greater than the DPL. #SS(0) If the stack address is in a non-canonical form. #SS(selector) If the SS register is being loaded and the segment pointed to is marked not present. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If attempt is made to load the CS register. If the LOCK prefix is used. 3-662 Vol. 2A MOV—Move INSTRUCTION SET REFERENCE, A-M MOV—Move to/from Control Registers Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 20/r MOV r32, CR0– CR7 A N.E. Valid Move control register to r32 0F 20/r MOV r64, CR0– CR7 A Valid N.E. Move extended control register to r64. REX.R + 0F 20 /0 MOV r64, CR8 A Valid N.E. Move extended CR8 to r64.1 0F 22 /r MOV CR0–CR7, r32 A N.E. Valid Move r32 to control register 0F 22 /r MOV CR0–CR7, r64 A Valid N.E. Move r64 to extended control register. REX.R + 0F 22 /0 MOV CR8, r64 A Valid N.E. Move r64 to extended CR8.1 NOTE: 1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not architecturally defined as a serializing instruction. For more information, see Chapter 8 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a generalpurpose register or the contents of a general purpose register to a control register. The operand size for these instructions is always 32 bits in non-64-bit modes, regardless of the operand-size attribute. (See “Control Registers” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the flags and fields in the control registers.) This instruction can be executed only when the current privilege level is 0. At the opcode level, the reg field within the ModR/M byte specifies which of the control registers is loaded or read. The 2 bits in the mod field are ignored. The r/m field specifies the general-purpose register loaded or read. Attempts to reference CR1, CR5, CR6, CR7, and CR9–CR15 result in undefined opcode (#UD) exceptions. When loading control registers, programs should not attempt to change the reserved bits; that is, always set reserved bits to the value previously read. An attempt to change CR4's reserved bits will cause a general protection fault. Reserved bits in CR0 and CR3 remain clear after any load of those registers; attempts to set them have no MOV—Move to/from Control Registers Vol. 2A 3-663 INSTRUCTION SET REFERENCE, A-M impact. On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after any load of CR0; attempts to clear this bit have no impact. In certain cases, these instructions have the side effect of invalidating entries in the TLBs and the paging-structure caches. See Section 4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for details. The following side effects are implementation-specific for the Pentium 4, Intel Xeon, and P6 processor family: when modifying PE or PG in register CR0, or PSE or PAE in register CR4, all TLB entries are flushed, including global entries. Software should not depend on this functionality in all Intel 64 or IA-32 processors. In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix must be used to access CR8. Use of REX.B permits access to additional registers (R8R15). Use of the REX.W prefix or 66H prefix is ignored. Use of the REX.R prefix to specify a register other than CR8 causes an invalid-opcode exception. See the summary chart at the beginning of this section for encoding data and limits. If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether the instruction invalidates entries in the TLBs and the paging-structure caches (see Section 4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The instruction does not modify bit 63 of CR3, which is reserved and always 0. See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information about the behavior of this instruction in VMX non-root operation. Operation DEST ← SRC; Flags Affected The OF, SF, ZF, AF, PF, and CF flags are undefined. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1). If an attempt is made to write a 1 to any reserved bit in CR4. If an attempt is made to write 1 to CR4.PCIDE. If any of the reserved bits are set in the page-directory pointers table (PDPT) and the loading of a control register causes the PDPT to be loaded into the processor. #UD 3-664 Vol. 2A If the LOCK prefix is used. MOV—Move to/from Control Registers INSTRUCTION SET REFERENCE, A-M If an attempt is made to access CR1, CR5, CR6, or CR7. Real-Address Mode Exceptions #GP If an attempt is made to write a 1 to any reserved bit in CR4. If an attempt is made to write 1 to CR4.PCIDE. If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 when the PE flag is set to 0). #UD If the LOCK prefix is used. If an attempt is made to access CR1, CR5, CR6, or CR7. Virtual-8086 Mode Exceptions #GP(0) These instructions cannot be executed in virtual-8086 mode. Compatibility Mode Exceptions #GP(0) If the current privilege level is not 0. If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1). If an attempt is made to change CR4.PCIDE from 0 to 1 while CR3[11:0] ≠ 000H. If an attempt is made to clear CR0.PG[bit 31] while CR4.PCIDE = 1. If an attempt is made to write a 1 to any reserved bit in CR3. If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5]. #UD If the LOCK prefix is used. If an attempt is made to access CR1, CR5, CR6, or CR7. 64-Bit Mode Exceptions #GP(0) If the current privilege level is not 0. If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1). If an attempt is made to change CR4.PCIDE from 0 to 1 while CR3[11:0] ≠ 000H. If an attempt is made to clear CR0.PG[bit 31]. If an attempt is made to write a 1 to any reserved bit in CR4. If an attempt is made to write a 1 to any reserved bit in CR8. If an attempt is made to write a 1 to any reserved bit in CR3. MOV—Move to/from Control Registers Vol. 2A 3-665 INSTRUCTION SET REFERENCE, A-M If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5]. #UD If the LOCK prefix is used. If an attempt is made to access CR1, CR5, CR6, or CR7. If the REX.R prefix is used to specify a register other than CR8. 3-666 Vol. 2A MOV—Move to/from Control Registers INSTRUCTION SET REFERENCE, A-M MOV—Move to/from Debug Registers Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 21/r MOV r32, DR0– DR7 A N.E. Valid Move debug register to r32 0F 21/r MOV r64, DR0– DR7 A Valid N.E. Move extended debug register to r64. 0F 23 /r MOV DR0–DR7, r32 A N.E. Valid Move r32 to debug register 0F 23 /r MOV DR0–DR7, r64 A Valid N.E. Move r64 to extended debug register. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or DR7) to a general-purpose register or vice versa. The operand size for these instructions is always 32 bits in non-64-bit modes, regardless of the operand-size attribute. (See Chapter 20, “Introduction to Virtual-Machine Extensions”, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the flags and fields in the debug registers.) The instructions must be executed at privilege level 0 or in real-address mode. When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug registers in a manner that is compatible with Intel386 and Intel486 processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7, respectively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5 result in an undefined opcode (#UD) exception. (The CR4 register was added to the IA-32 Architecture beginning with the Pentium processor.) At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers is loaded or read. The two bits in the mod field are ignored. The r/m field specifies the general-purpose register loaded or read. In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B prefix permits access to additional registers (R8–R15). Use of the REX.W or 66H prefix is ignored. Use of the REX.R prefix causes an invalid-opcode exception. See the summary chart at the beginning of this section for encoding data and limits. MOV—Move to/from Debug Registers Vol. 2A 3-667 INSTRUCTION SET REFERENCE, A-M Operation IF ((DE = 1) and (SRC or DEST = DR4 or DR5)) THEN #UD; ELSE DEST ← SRC; FI; Flags Affected The OF, SF, ZF, AF, PF, and CF flags are undefined. Protected Mode Exceptions #GP(0) If the current privilege level is not 0. #UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or DR5. If the LOCK prefix is used. #DB If any debug register is accessed while the DR7.GD[bit 13] = 1. Real-Address Mode Exceptions #UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or DR5. If the LOCK prefix is used. #DB If any debug register is accessed while the DR7.GD[bit 13] = 1. Virtual-8086 Mode Exceptions #GP(0) The debug registers cannot be loaded or read when in virtual8086 mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the current privilege level is not 0. #UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or DR5. If the LOCK prefix is used. If the REX.R prefix is used. #DB 3-668 Vol. 2A If any debug register is accessed while the DR7.GD[bit 13] = 1. MOV—Move to/from Debug Registers INSTRUCTION SET REFERENCE, A-M MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 28 /r A V/V SSE2 Move packed doubleprecision floating-point values from xmm2/m128 to xmm1. B V/V SSE2 Move packed doubleprecision floating-point values from xmm1 to xmm2/m128. A V/V AVX Move aligned packed double-precision floatingpoint values from xmm2/mem to xmm1. B V/V AVX Move aligned packed double-precision floatingpoint values from xmm1 to xmm2/mem. A V/V AVX Move aligned packed double-precision floatingpoint values from ymm2/mem to ymm1. B V/V AVX Move aligned packed double-precision floatingpoint values from ymm1 to ymm2/mem. MOVAPD xmm1, xmm2/m128 66 0F 29 /r MOVAPD xmm2/m128, xmm1 VEX.128.66.0F.WIG 28 /r VMOVAPD xmm1, xmm2/m128 VEX.128.66.0F.WIG 29 /r VMOVAPD xmm2/m128, xmm1 VEX.256.66.0F.WIG 28 /r VMOVAPD ymm1, ymm2/m256 VEX.256.66.0F.WIG 29 /r VMOVAPD ymm2/m256, ymm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description Moves 2 or 4 double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM or YMM register from an 128-bit or 256-bit memory location, to store the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or to move data between two XMM or two YMM registers. When the source or destina- MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values Vol. 2A 3-669 INSTRUCTION SET REFERENCE, A-M tion operand is a memory operand, the operand must be aligned on a 16-byte (128bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection exception (#GP) will be generated. To move double-precision floating-point values to and from unaligned memory locations, use the (V)MOVUPD instruction. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. 128-bit versions: Moves 128 bits of packed double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPD instruction. 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register destination are zeroed. VEX.256 encoded version: Moves 256 bits of packed double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPD instruction. Operation MOVAPD (128-bit load- and register-copy- form Legacy SSE version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] (Unmodified) (V)MOVAPD (128-bit store-form version) DEST[127:0] SRC[127:0] VMOVAPD (VEX.128 encoded version) DEST[127:0] SRC[127:0] 3-670 Vol. 2A MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DEST[VLMAX-1:128] 0 VMOVAPD (VEX.256 encoded version) DEST[255:0] SRC[255:0] Intel C/C++ Compiler Intrinsic Equivalent MOVAPD __m128d _mm_load_pd (double const * p); MOVAPD _mm_store_pd(double * p, __m128d a); VMOVAPD __m256d _mm256_load_pd (double const * p); VMOVAPD _mm256_store_pd(double * p, __m256d a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 1.SSE2; additionally #UD If VEX.vvvv != 1111B. MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values Vol. 2A 3-671 INSTRUCTION SET REFERENCE, A-M MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 28 /r A V/V SSE Move packed singleprecision floating-point values from xmm2/m128 to xmm1. B V/V SSE Move packed singleprecision floating-point values from xmm1 to xmm2/m128. A V/V AVX Move aligned packed singleprecision floating-point values from xmm2/mem to xmm1. B V/V AVX Move aligned packed singleprecision floating-point values from xmm1 to xmm2/mem. A V/V AVX Move aligned packed singleprecision floating-point values from ymm2/mem to ymm1. B V/V AVX Move aligned packed singleprecision floating-point values from ymm1 to ymm2/mem. MOVAPS xmm1, xmm2/m128 0F 29 /r MOVAPS xmm2/m128, xmm1 VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2/m128 VEX.128.0F.WIG 29 /r VMOVAPS xmm2/m128, xmm1 VEX.256.0F.WIG 28 /r VMOVAPS ymm1, ymm2/m256 VEX.256.0F.WIG 29 /r VMOVAPS ymm2/m256, ymm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description Moves 4 or8 single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM or YMM register from an 128-bit or 256-bit memory location, to store the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or to move data between two XMM or two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128- 3-672 Vol. 2A MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the (V)MOVUPS instruction. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. 128-bit versions: Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPS instruction. 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.256 encoded version: Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. Operation MOVAPS (128-bit load- and register-copy- form Legacy SSE version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] (Unmodified) (V)MOVAPS (128-bit store form) DEST[127:0] SRC[127:0] VMOVAPS (VEX.128 encoded version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] 0 VMOVAPS (VEX.256 encoded version) MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values Vol. 2A 3-673 INSTRUCTION SET REFERENCE, A-M DEST[255:0] SRC[255:0] Intel C/C++ Compiler Intrinsic Equivalent MOVAPS __m128 _mm_load_ps (float const * p); MOVAPS _mm_store_ps(float * p, __m128 a); VMOVAPS __m256 _mm256_load_ps (float const * p); VMOVAPS _mm256_store_ps(float * p, __m256 a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 1.SSE; additionally #UD 3-674 Vol. 2A If VEX.vvvv != 1111B. MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M MOVBE—Move Data After Swapping Bytes Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 38 F0 /r MOVBE r16, m16 A Valid Valid Reverse byte order in m16 and move to r16 0F 38 F0 /r MOVBE r32, m32 A Valid Valid Reverse byte order in m32 and move to r32 REX.W + 0F 38 F0 /r MOVBE r64, m64 A Valid N.E. Reverse byte order in m64 and move to r64. 0F 38 F1 /r MOVBE m16, r16 B Valid Valid Reverse byte order in r16 and move to m16 0F 38 F1 /r MOVBE m32, r32 B Valid Valid Reverse byte order in r32 and move to m32 REX.W + 0F 38 F1 /r MOVBE m64, r64 B Valid N.E. Reverse byte order in r64 and move to m64. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description Performs a byte swap operation on the data copied from the second operand (source operand) and store the result in the first operand (destination operand). The source operand can be a general-purpose register, or memory location; the destination register can be a general-purpose register, or a memory location; however, both operands can not be registers, and only one operand can be a memory location. Both operands must be the same size, which can be a word, a doubleword or quadword. The MOVBE instruction is provided for swapping the bytes on a read from memory or on a write to memory; thus providing support for converting little-endian values to big-endian format and vice versa. In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation TEMP ← SRC MOVBE—Move Data After Swapping Bytes Vol. 2A 3-675 INSTRUCTION SET REFERENCE, A-M IF ( OperandSize = 16) THEN DEST[7:0] ← TEMP[15:8]; DEST[15:8] ← TEMP[7:0]; ELES IF ( OperandSize = 32) DEST[7:0] ← TEMP[31:24]; DEST[15:8] ← TEMP[23:16]; DEST[23:16] ← TEMP[15:8]; DEST[31:23] ← TEMP[7:0]; ELSE IF ( OperandSize = 64) DEST[7:0] ← TEMP[63:56]; DEST[15:8] ← TEMP[55:48]; DEST[23:16] ← TEMP[47:40]; DEST[31:24] ← TEMP[39:32]; DEST[39:32] ← TEMP[31:24]; DEST[47:40] ← TEMP[23:16]; DEST[55:48] ← TEMP[15:8]; DEST[63:56] ← TEMP[7:0]; FI; Flags Affected None. Protected Mode Exceptions #GP(0) If the destination operand is in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 . If the LOCK prefix is used. If REP (F3H) prefix is used. Real-Address Mode Exceptions #GP 3-676 Vol. 2A If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. MOVBE—Move Data After Swapping Bytes INSTRUCTION SET REFERENCE, A-M #SS #UD If a memory operand effective address is outside the SS segment limit. If CPUID.01H:ECX.MOVBE[bit 22] = 0 . If the LOCK prefix is used. If REP (F3H) prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 . If the LOCK prefix is used. If REP (F3H) prefix is used. If REPNE (F2H) prefix is used and CPUID.01H:ECX.SSE4_2[bit 20] = 0. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If the memory address is in a non-canonical form. #SS(0) If the stack address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 . If the LOCK prefix is used. If REP (F3H) prefix is used. MOVBE—Move Data After Swapping Bytes Vol. 2A 3-677 INSTRUCTION SET REFERENCE, A-M MOVD/MOVQ—Move Doubleword/Move Quadword Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 6E /r A V/V SSE2 Move doubleword from r/m32 to mm. A V/N.E. SSE2 Move quadword from r/m64 to mm. B V/V SSE2 Move doubleword from mm to r/m32. B V/N.E. SSE2 Move quadword from mm to r/m64. A V/V AVX Move doubleword from r/m32 to xmm1. A V/N.E. AVX Move quadword from r/m64 to xmm1. A V/V SSE2 Move doubleword from r/m32 to xmm. A V/N.E. SSE2 Move quadword from r/m64 to xmm. B V/V SSE2 Move doubleword from xmm register to r/m32. B V/N.E. SSE2 Move quadword from xmm register to r/m64. B V/V AVX Move doubleword from xmm1 register to r/m32. B V/N.E. AVX Move quadword from xmm1 register to r/m64. MOVD mm, r/m32 REX.W + 0F 6E /r MOVQ mm, r/m64 0F 7E /r MOVD r/m32, mm REX.W + 0F 7E /r MOVQ r/m64, mm VEX.128.66.0F.W0 6E / VMOVD xmm1, r32/m32 VEX.128.66.0F.W1 6E /r VMOVQ xmm1, r64/m64 66 0F 6E /r MOVD xmm, r/m32 66 REX.W 0F 6E /r MOVQ xmm, r/m64 66 0F 7E /r MOVD r/m32, xmm 66 REX.W 0F 7E /r MOVQ r/m64, xmm VEX.128.66.0F.W0 7E /r VMOVD r32/m32, xmm1 VEX.128.66.0F.W1 7E /r VMOVQ r64/m64, xmm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description Copies a doubleword from the source operand (second operand) to the destination 3-678 Vol. 2A MOVD/MOVQ—Move Doubleword/Move Quadword INSTRUCTION SET REFERENCE, A-M operand (first operand). The source and destination operands can be generalpurpose registers, MMX technology registers, XMM registers, or 32-bit memory locations. This instruction can be used to move a doubleword to and from the low doubleword of an MMX technology register and a general-purpose register or a 32-bit memory location, or to and from the low doubleword of an XMM register and a general-purpose register or a 32-bit memory location. The instruction cannot be used to transfer data between MMX technology registers, between XMM registers, between general-purpose registers, or between memory locations. When the destination operand is an MMX technology register, the source operand is written to the low doubleword of the register, and the register is zero-extended to 64 bits. When the destination operand is an XMM register, the source operand is written to the low doubleword of the register, and the register is zero-extended to 128 bits. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation MOVD (when destination operand is MMX technology register) DEST[31:0] ← SRC; DEST[63:32] ← 00000000H; MOVD (when destination operand is XMM register) DEST[31:0] ← SRC; DEST[127:32] ← 000000000000000000000000H; DEST[VLMAX-1:128] (Unmodified) MOVD (when source operand is MMX technology or XMM register) DEST ← SRC[31:0]; VMOVD (VEX-encoded version when destination is an XMM register) DEST[31:0] SRC[31:0] DEST[VLMAX-1:32] 0 MOVQ (when destination operand is XMM register) DEST[63:0] ← SRC[63:0]; DEST[127:64] ← 0000000000000000H; DEST[VLMAX-1:128] (Unmodified) MOVQ (when destination operand is r/m64) DEST[63:0] ← SRC[63:0]; MOVQ (when source operand is XMM register or r/m64) DEST ← SRC[63:0]; MOVD/MOVQ—Move Doubleword/Move Quadword Vol. 2A 3-679 INSTRUCTION SET REFERENCE, A-M VMOVQ (VEX-encoded version when destination is an XMM register) DEST[63:0] SRC[63:0] DEST[VLMAX-1:64] 0 Intel C/C++ Compiler Intrinsic Equivalent MOVD __m64 _mm_cvtsi32_si64 (int i ) MOVD int _mm_cvtsi64_si32 ( __m64m ) MOVD __m128i _mm_cvtsi32_si128 (int a) MOVD int _mm_cvtsi128_si32 ( __m128i a) Flags Affected None. SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally #UD If VEX.L = 1. If VEX.vvvv != 1111B. 3-680 Vol. 2A MOVD/MOVQ—Move Doubleword/Move Quadword INSTRUCTION SET REFERENCE, A-M MOVDDUP—Move One Double-FP and Duplicate Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 12 /r A V/V SSE3 Move one double-precision floating-point value from the lower 64-bit operand in xmm2/m64 to xmm1 and duplicate. A V/V AVX Move double-precision floating-point values from xmm2/mem and duplicate into xmm1. A V/V AVX Move even index doubleprecision floating-point values from ymm2/mem and duplicate each element into ymm1. MOVDDUP xmm1, xmm2/m64 VEX.128.F2.0F.WIG 12 /r VMOVDDUP xmm1, xmm2/m64 VEX.256.F2.0F.WIG 12 /r VMOVDDUP ymm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description The linear address corresponds to the address of the least-significant byte of the referenced memory data. When a memory address is indicated, the 8 bytes of data at memory location m64 are loaded. When the register-register form of this operation is used, the lower half of the 128-bit source register is duplicated and copied into the 128-bit destination register. See Figure 3-27. MOVDDUP—Move One Double-FP and Duplicate Vol. 2A 3-681 INSTRUCTION SET REFERENCE, A-M 029''83[PP[PPP >@ [PP>@[PPP>@ [PP>@[PPP>@ >@ >@ [PPP 5(68/7 [PP 20 Figure 3-27. MOVDDUP—Move One Double-FP and Duplicate In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation IF (Source = m64) THEN (* Load instruction *) xmm1[63:0] = m64; xmm1[127:64] = m64; ELSE (* Move instruction *) xmm1[63:0] = xmm2[63:0]; xmm1[127:64] = xmm2[63:0]; FI; MOVDDUP (128-bit Legacy SSE version) DEST[63:0] SRC[63:0] DEST[127:64] SRC[63:0] DEST[VLMAX-1:128] (Unmodified) VMOVDDUP (VEX.128 encoded version) DEST[63:0] SRC[63:0] DEST[127:64] SRC[63:0] 3-682 Vol. 2A MOVDDUP—Move One Double-FP and Duplicate INSTRUCTION SET REFERENCE, A-M DEST[VLMAX-1:128] 0 VMOVDDUP (VEX.256 encoded version) DEST[63:0] SRC[63:0] DEST[127:64] SRC[63:0] DEST[191:128] SRC[191:128] DEST[255:192] SRC[191:128] Intel C/C++ Compiler Intrinsic Equivalent MOVDDUP __m128d _mm_movedup_pd(__m128d a) MOVDDUP __m128d _mm_loaddup_pd(double const * dp) SIMD Floating-Point Exceptions None Other Exceptions See Exceptions Type 5; additionally #UD If VEX.vvvv != 1111B. MOVDDUP—Move One Double-FP and Duplicate Vol. 2A 3-683 INSTRUCTION SET REFERENCE, A-M MOVDQA—Move Aligned Double Quadword Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 6F /r A V/V SSE2 Move aligned double quadword from xmm2/m128 to xmm1. B V/V SSE2 Move aligned double quadword from xmm1 to xmm2/m128. A V/V AVX Move aligned packed integer values from xmm2/mem to xmm1. B V/V AVX Move aligned packed integer values from xmm1 to xmm2/mem. A V/V AVX Move aligned packed integer values from ymm2/mem to ymm1. B V/V AVX Move aligned packed integer values from ymm1 to ymm2/mem. MOVDQA xmm1, xmm2/m128 66 0F 7F /r MOVDQA xmm2/m128, xmm1 VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, xmm2/m128 VEX.128.66.0F.WIG 7F /r VMOVDQA xmm2/m128, xmm1 VEX.256.66.0F.WIG 6F /r VMOVDQA ymm1, ymm2/m256 VEX.256.66.0F.WIG 7F /r VMOVDQA ymm2/m256, ymm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description 128-bit versions: Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 3-684 Vol. 2A MOVDQA—Move Aligned Double Quadword INSTRUCTION SET REFERENCE, A-M 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.256 encoded version: Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation MOVDQA (128-bit load- and register- form Legacy SSE version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] (Unmodified) (* #GP if SRC or DEST unaligned memory operand *) (V)MOVDQA (128-bit store forms) DEST[127:0] SRC[127:0] VMOVDQA (VEX.128 encoded version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] 0 VMOVDQA (VEX.256 encoded version) DEST[255:0] SRC[255:0] Intel C/C++ Compiler Intrinsic Equivalent MOVDQA __m128i _mm_load_si128 ( __m128i *p) MOVDQA void _mm_store_si128 ( __m128i *p, __m128i a) VMOVDQA __m256i _mm256_load_si256 (__m256i * p); VMOVDQA _mm256_store_si256(_m256i *p, __m256i a); MOVDQA—Move Aligned Double Quadword Vol. 2A 3-685 INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 1.SSE2; additionally #UD 3-686 Vol. 2A If VEX.vvvv != 1111B. MOVDQA—Move Aligned Double Quadword INSTRUCTION SET REFERENCE, A-M MOVDQU—Move Unaligned Double Quadword Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 6F /r A V/V SSE2 Move unaligned double quadword from xmm2/m128 to xmm1. B V/V SSE2 Move unaligned double quadword from xmm1 to xmm2/m128. A V/V AVX Move unaligned packed integer values from xmm2/mem to xmm1. B V/V AVX Move unaligned packed integer values from xmm1 to xmm2/mem. A V/V AVX Move unaligned packed integer values from ymm2/mem to ymm1. B V/V AVX Move unaligned packed integer values from ymm1 to ymm2/mem. MOVDQU xmm1, xmm2/m128 F3 0F 7F /r MOVDQU xmm2/m128, xmm1 VEX.128.F3.0F.WIG 6F /r VMOVDQU xmm1, xmm2/m128 VEX.128.F3.0F.WIG 7F /r VMOVDQU xmm2/m128, xmm1 VEX.256.F3.0F.WIG 6F /r VMOVDQU ymm1, ymm2/m256 VEX.256.F3.0F.WIG 7F /r VMOVDQU ymm2/m256, ymm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description 128-bit versions: Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte boundary without causing a general-protection exception (#GP) to be generated.1 To move a double quadword to or from memory locations that are known to be aligned on 16-byte boundaries, use the MOVDQA instruction. MOVDQU—Move Unaligned Double Quadword Vol. 2A 3-687 INSTRUCTION SET REFERENCE, A-M While executing in 16-bit addressing mode, a linear address for a 128-bit data access that overlaps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific processor implementation may or may not generate a generalprotection exception (#GP) in this situation, and the address that spans the end of the segment may or may not wrap around to the beginning of the segment. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. When the source or destination operand is a memory operand, the operand may be unaligned to any alignment without causing a general-protection exception (#GP) to be generated VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.256 encoded version: Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation MOVDQU load and register copy (128-bit Legacy SSE version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] (Unmodified) (V)MOVDQU 128-bit store-form versions DEST[127:0] SRC[127:0] VMOVDQU (VEX.128 encoded version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] 0 VMOVDQU (VEX.256 encoded version) DEST[255:0] SRC[255:0] 1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be generated (depending on processor implementation) when the operand is not aligned on an 8-byte boundary. 3-688 Vol. 2A MOVDQU—Move Unaligned Double Quadword INSTRUCTION SET REFERENCE, A-M Intel C/C++ Compiler Intrinsic Equivalent MOVDQU void _mm_storeu_si128 ( __m128i *p, __m128i a) MOVDQU __m128i _mm_loadu_si128 ( __m128i *p) VMOVDQU __m256i _mm256_loadu_si256 (__m256i * p); VMOVDQU _mm256_storeu_si256(_m256i *p, __m256i a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 4; additionally #UD If VEX.vvvv != 1111B. MOVDQU—Move Unaligned Double Quadword Vol. 2A 3-689 INSTRUCTION SET REFERENCE, A-M MOVDQ2Q—Move Quadword from XMM to MMX Technology Register Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F2 0F D6 MOVDQ2Q mm, xmm A Valid Valid Move low quadword from xmm to mmx register. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:reg (r) NA NA Description Moves the low quadword from the source operand (second operand) to the destination operand (first operand). The source operand is an XMM register and the destination operand is an MMX technology register. This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the MOVDQ2Q instruction is executed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST ← SRC[63:0]; Intel C/C++ Compiler Intrinsic Equivalent MOVDQ2Q __m64 _mm_movepi64_pi64 ( __m128i a) SIMD Floating-Point Exceptions None. Protected Mode Exceptions #NM #UD If CR0.TS[bit 3] = 1. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. #MF 3-690 Vol. 2A If there is a pending x87 FPU exception. MOVDQ2Q—Move Quadword from XMM to MMX Technology Register INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. MOVDQ2Q—Move Quadword from XMM to MMX Technology Register Vol. 2A 3-691 INSTRUCTION SET REFERENCE, A-M MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 12 /r A V/V SSE3 Move two packed singleprecision floating-point values from high quadword of xmm2 to low quadword of xmm1. B V/V AVX Merge two packed singleprecision floating-point values from high quadword of xmm3 and low quadword of xmm2. MOVHLPS xmm1, xmm2 VEX.NDS.128.0F.WIG 12 /r VMOVHLPS xmm1, xmm2, xmm3 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:reg (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction cannot be used for memory to register moves. 128-bit two-argument form: Moves two packed single-precision floating-point values from the high quadword of the second XMM argument (second operand) to the low quadword of the first XMM register (first argument). The high quadword of the destination operand is left unchanged. Bits (VLMAX-1:64) of the corresponding YMM destination register are unmodified. 128-bit three-argument form Moves two packed single-precision floating-point values from the high quadword of the third XMM argument (third operand) to the low quadword of the destination (first operand). Copies the high quadword from the second XMM argument (second operand) to the high quadword of the destination (first operand). Bits (VLMAX1:128) of the destination YMM register are zeroed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). If VMOVHLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. 3-692 Vol. 2A MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low INSTRUCTION SET REFERENCE, A-M Operation MOVHLPS (128-bit two-argument form) DEST[63:0] SRC[127:64] DEST[VLMAX-1:64] (Unmodified) VMOVHLPS (128-bit three-argument form) DEST[63:0] SRC2[127:64] DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 7; additionally #UD If VEX.L= 1. MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low Vol. 2A 3-693 INSTRUCTION SET REFERENCE, A-M MOVHPD—Move High Packed Double-Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 16 /r A V/V SSE2 Move double-precision floating-point value from m64 to high quadword of xmm. B V/V SSE2 Move double-precision floating-point value from high quadword of xmm to m64. C V/V AVX Merge double-precision floating-point value from m64 and the low quadword of xmm1. B V/V AVX Move double-precision floating-point values from high quadword of xmm1 to m64. MOVHPD xmm, m64 66 0F 17 /r MOVHPD m64, xmm VEX.NDS.128.66.0F.WIG 16 /r VMOVHPD xmm2, xmm1, m64 VEX128.66.0F.WIG 17/r VMOVHPD m64, xmm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA C ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction cannot be used for register to register or memory to memory moves. 128-bit Legacy SSE load: Moves a double-precision floating-point value from the source 64-bit memory operand and stores it in the high 64-bits of the destination XMM register. The lower 64bits of the XMM register are preserved. The upper 128-bits of the corresponding YMM destination register are preserved. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). VEX.128 encoded load: Loads a double-precision floating-point value from the source 64-bit memory operand (third operand) and stores it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from second XMM register (second operand) 3-694 Vol. 2A MOVHPD—Move High Packed Double-Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M are stored in the lower 64-bits of the destination. The upper 128-bits of the destination YMM register are zeroed. 128-bit store: Stores a double-precision floating-point value from the high 64-bits of the XMM register source (second operand) to the 64-bit memory location (first operand). Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as the existing 66 0F 17 store. For VMOVHPD (store) (VEX.128.66.0F 17 /r) instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD. If VMOVHPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation MOVHPD (128-bit Legacy SSE load) DEST[63:0] (Unmodified) DEST[127:64] SRC[63:0] DEST[VLMAX-1:128] (Unmodified) VMOVHPD (VEX.128 encoded load) DEST[63:0] SRC1[63:0] DEST[127:64] SRC2[63:0] DEST[VLMAX-1:128] 0 VMOVHPD (store) DEST[63:0] SRC[127:64] Intel C/C++ Compiler Intrinsic Equivalent MOVHPD __m128d _mm_loadh_pd ( __m128d a, double *p) MOVHPD void _mm_storeh_pd (double *p, __m128d a) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally #UD If VEX.L= 1. MOVHPD—Move High Packed Double-Precision Floating-Point Value Vol. 2A 3-695 INSTRUCTION SET REFERENCE, A-M MOVHPS—Move High Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 16 /r A V/V SSE Move two packed singleprecision floating-point values from m64 to high quadword of xmm. B V/V SSE Move two packed singleprecision floating-point values from high quadword of xmm to m64. C V/V AVX Merge two packed singleprecision floating-point values from m64 and the low quadword of xmm1. B V/V AVX Move two packed singleprecision floating-point values from high quadword of xmm1to m64. MOVHPS xmm, m64 0F 17 /r MOVHPS m64, xmm VEX.NDS.128.0F.WIG 16 /r VMOVHPS xmm2, xmm1, m64 VEX.128.0F.WIG 17/r VMOVHPS m64, xmm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA C ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction cannot be used for register to register or memory to memory moves. 128-bit Legacy SSE load: Moves two packed single-precision floating-point values from the source 64-bit memory operand and stores them in the high 64-bits of the destination XMM register. The lower 64bits of the XMM register are preserved. The upper 128-bits of the corresponding YMM destination register are preserved. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). VEX.128 encoded load: Loads two single-precision floating-point values from the source 64-bit memory operand (third operand) and stores it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from second XMM register (second operand) 3-696 Vol. 2A MOVHPS—Move High Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M are stored in the lower 64-bits of the destination. The upper 128-bits of the destination YMM register are zeroed. 128-bit store: Stores two packed single-precision floating-point values from the high 64-bits of the XMM register source (second operand) to the 64-bit memory location (first operand). Note: VMOVHPS (store) (VEX.NDS.128.0F 17 /r) is legal and has the same behavior as the existing 0F 17 store. For VMOVHPS (store) (VEX.NDS.128.0F 17 /r) instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD. If VMOVHPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation MOVHPS (128-bit Legacy SSE load) DEST[63:0] (Unmodified) DEST[127:64] SRC[63:0] DEST[VLMAX-1:128] (Unmodified) VMOVHPS (VEX.128 encoded load) DEST[63:0] SRC1[63:0] DEST[127:64] SRC2[63:0] DEST[VLMAX-1:128] 0 VMOVHPS (store) DEST[63:0] SRC[127:64] Intel C/C++ Compiler Intrinsic Equivalent MOVHPS __m128d _mm_loadh_pi ( __m128d a, __m64 *p) MOVHPS void _mm_storeh_pi (__m64 *p, __m128d a) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally #UD If VEX.L= 1. MOVHPS—Move High Packed Single-Precision Floating-Point Values Vol. 2A 3-697 INSTRUCTION SET REFERENCE, A-M MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 16 /r A V/V SSE Move two packed singleprecision floating-point values from low quadword of xmm2 to high quadword of xmm1. B V/V AVX Merge two packed singleprecision floating-point values from low quadword of xmm3 and low quadword of xmm2. MOVLHPS xmm1, xmm2 VEX.NDS.128.0F.WIG 16 /r VMOVLHPS xmm1, xmm2, xmm3 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:reg (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction cannot be used for memory to register moves. 128-bit two-argument form: Moves two packed single-precision floating-point values from the low quadword of the second XMM argument (second operand) to the high quadword of the first XMM register (first argument). The low quadword of the destination operand is left unchanged. The upper 128 bits of the corresponding YMM destination register are unmodified. 128-bit three-argument form Moves two packed single-precision floating-point values from the low quadword of the third XMM argument (third operand) to the high quadword of the destination (first operand). Copies the low quadword from the second XMM argument (second operand) to the low quadword of the destination (first operand). The upper 128-bits of the destination YMM register are zeroed. If VMOVLHPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 3-698 Vol. 2A MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High INSTRUCTION SET REFERENCE, A-M Operation MOVLHPS (128-bit two-argument form) DEST[63:0] (Unmodified) DEST[127:64] SRC[63:0] DEST[VLMAX-1:128] (Unmodified) VMOVLHPS (128-bit three-argument form) DEST[63:0] SRC1[63:0] DEST[127:64] SRC2[63:0] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MOVHLPS __m128 _mm_movelh_ps(__m128 a, __m128 b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 7; additionally #UD If VEX.L= 1. MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High Vol. 2A 3-699 INSTRUCTION SET REFERENCE, A-M MOVLPD—Move Low Packed Double-Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 12 /r A V/V SSE2 Move double-precision floating-point value from m64 to low quadword of xmm register. B V/V SSE2 Move double-precision floating-point nvalue from low quadword of xmm register to m64. C V/V AVX Merge double-precision floating-point value from m64 and the high quadword of xmm1. B V/V AVX Move double-precision floating-point values from low quadword of xmm1 to m64. MOVLPD xmm, m64 66 0F 13 /r MOVLPD m64, xmm VEX.NDS.128.66.0F.WIG 12 /r VMOVLPD xmm2, xmm1, m64 VEX.128.66.0F.WIG 13/r VMOVLPD m64, xmm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA C ModRM:r/m (r) ModRM:reg (r, w) VEX.vvvv (r) NA Description This instruction cannot be used for register to register or memory to memory moves. 128-bit Legacy SSE load: Moves a double-precision floating-point value from the source 64-bit memory operand and stores it in the low 64-bits of the destination XMM register. The upper 64bits of the XMM register are preserved. The upper 128-bits of the corresponding YMM destination register are preserved. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). VEX.128 encoded load: Loads a double-precision floating-point value from the source 64-bit memory operand (third operand), merges it with the upper 64-bits of the first source XMM register (second operand), and stores it in the low 128-bits of the destination XMM 3-700 Vol. 2A MOVLPD—Move Low Packed Double-Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M register (first operand). The upper 128-bits of the destination YMM register are zeroed. 128-bit store: Stores a double-precision floating-point value from the low 64-bits of the XMM register source (second operand) to the 64-bit memory location (first operand). Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as the existing 66 0F 13 store. For VMOVLPD (store) (VEX.128.66.0F 13 /r) instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD. If VMOVLPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation MOVLPD (128-bit Legacy SSE load) DEST[63:0] SRC[63:0] DEST[VLMAX-1:64] (Unmodified) VMOVLPD (VEX.128 encoded load) DEST[63:0] SRC2[63:0] DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 VMOVLPD (store) DEST[63:0] SRC[63:0] Intel C/C++ Compiler Intrinsic Equivalent MOVLPD __m128d _mm_loadl_pd ( __m128d a, double *p) MOVLPD void _mm_storel_pd (double *p, __m128d a) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally #UD If VEX.L= 1. If VEX.vvvv != 1111B. MOVLPD—Move Low Packed Double-Precision Floating-Point Value Vol. 2A 3-701 INSTRUCTION SET REFERENCE, A-M MOVLPS—Move Low Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 12 /r A V/V SSE Move two packed singleprecision floating-point values from m64 to low quadword of xmm. B V/V SSE Move two packed singleprecision floating-point values from low quadword of xmm to m64. C V/V AVX Merge two packed singleprecision floating-point values from m64 and the high quadword of xmm1. B V/V AVX Move two packed singleprecision floating-point values from low quadword of xmm1 to m64. MOVLPS xmm, m64 0F 13 /r MOVLPS m64, xmm VEX.NDS.128.0F.WIG 12 /r VMOVLPS xmm2, xmm1, m64 VEX.128.0F.WIG 13/r VMOVLPS m64, xmm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA C ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description This instruction cannot be used for register to register or memory to memory moves. 128-bit Legacy SSE load: Moves two packed single-precision floating-point values from the source 64-bit memory operand and stores them in the low 64-bits of the destination XMM register. The upper 64bits of the XMM register are preserved. The upper 128-bits of the corresponding YMM destination register are preserved. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). VEX.128 encoded load: Loads two packed single-precision floating-point values from the source 64-bit memory operand (third operand), merges them with the upper 64-bits of the first source XMM register (second operand), and stores them in the low 128-bits of the 3-702 Vol. 2A MOVLPS—Move Low Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M destination XMM register (first operand). The upper 128-bits of the destination YMM register are zeroed. 128-bit store: Loads two packed single-precision floating-point values from the low 64-bits of the XMM register source (second operand) to the 64-bit memory location (first operand). Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the existing 0F 13 store. For VMOVLPS (store) (VEX.128.0F 13 /r) instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD. If VMOVLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation MOVLPS (128-bit Legacy SSE load) DEST[63:0] SRC[63:0] DEST[VLMAX-1:64] (Unmodified) VMOVLPS (VEX.128 encoded load) DEST[63:0] SRC2[63:0] DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 VMOVLPS (store) DEST[63:0] SRC[63:0] Intel C/C++ Compiler Intrinsic Equivalent MOVLPS __m128 _mm_loadl_pi ( __m128 a, __m64 *p) MOVLPS void _mm_storel_pi (__m64 *p, __m128 a) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally #UD If VEX.L= 1. If VEX.vvvv != 1111B. MOVLPS—Move Low Packed Single-Precision Floating-Point Values Vol. 2A 3-703 INSTRUCTION SET REFERENCE, A-M MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 50 /r A V/V SSE2 Extract 2-bit sign mask from xmm and store in reg. The upper bits of r32 or r64 are filled with zeros. A V/V AVX Extract 2-bit sign mask from xmm2 and store in reg. The upper bits of r32 or r64 are zeroed. A V/V AVX Extract 4-bit sign mask from ymm2 and store in reg. The upper bits of r32 or r64 are zeroed. MOVMSKPD reg, xmm VEX.128.66.0F.WIG 50 /r VMOVMSKPD reg, xmm2 VEX.256.66.0F.WIG 50 /r VMOVMSKPD reg, ymm2 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:reg (r) NA NA Description Extracts the sign bits from the packed double-precision floating-point values in the source operand (second operand), formats them into a 2-bit mask, and stores the mask in the destination operand (first operand). The source operand is an XMM register, and the destination operand is a general-purpose register. The mask is stored in the 2 low-order bits of the destination operand. Zero-extend the upper bits of the destination. In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit mode. 128-bit versions: The source operand is a YMM register. The destination operand is a general purpose register. VEX.256 encoded version: The source operand is a YMM register. The destination operand is a general purpose register. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. Operation 3-704 Vol. 2A MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask INSTRUCTION SET REFERENCE, A-M (V)MOVMSKPD (128-bit versions) DEST[0] SRC[63] DEST[1] SRC[127] IF DEST = r32 THEN DEST[31:2] 0; ELSE DEST[63:2] 0; FI VMOVMSKPD (VEX.256 encoded version) DEST[0] SRC[63] DEST[1] SRC[127] DEST[2] SRC[191] DEST[3] SRC[255] IF DEST = r32 THEN DEST[31:4] 0; ELSE DEST[63:4] 0; FI Intel C/C++ Compiler Intrinsic Equivalent MOVMSKPD int _mm_movemask_pd ( __m128d a) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 7; additionally #UD If VEX.vvvv != 1111B. MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask Vol. 2A 3-705 INSTRUCTION SET REFERENCE, A-M MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 50 /r A V/V SSE Extract 4-bit sign mask from xmm and store in reg. The upper bits of r32 or r64 are filled with zeros. A V/V AVX Extract 4-bit sign mask from xmm2 and store in reg. The upper bits of r32 or r64 are zeroed. A V/V AVX Extract 8-bit sign mask from ymm2 and store in reg. The upper bits of r32 or r64 are zeroed. MOVMSKPS reg, xmm VEX.128.0F.WIG 50 /r VMOVMSKPS reg, xmm2 VEX.256.0F.WIG 50 /r VMOVMSKPS reg, ymm2 Instruction Operand Encoding1 Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Extracts the sign bits from the packed single-precision floating-point values in the source operand (second operand), formats them into a 4- or 8-bit mask, and stores the mask in the destination operand (first operand). The source operand is an XMM or YMM register, and the destination operand is a general-purpose register. The mask is stored in the 4 or 8 low-order bits of the destination operand. The upper bits of the destination operand beyond the mask are filled with zeros. In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit mode. 128-bit versions: The source operand is a YMM register. The destination operand is a general purpose register. VEX.256 encoded version: The source operand is a YMM register. The destination operand is a general purpose register. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. 1. ModRM.MOD = 011B required 3-706 Vol. 2A MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask INSTRUCTION SET REFERENCE, A-M Operation DEST[0] ← SRC[31]; DEST[1] ← SRC[63]; DEST[2] ← SRC[95]; DEST[3] ← SRC[127]; IF DEST = r32 THEN DEST[31:4] ← ZeroExtend; ELSE DEST[63:4] ← ZeroExtend; FI; (V)MOVMSKPS (128-bit version) DEST[0] SRC[31] DEST[1] SRC[63] DEST[2] SRC[95] DEST[3] SRC[127] IF DEST = r32 THEN DEST[31:4] 0; ELSE DEST[63:4] 0; FI VMOVMSKPS (VEX.256 encoded version) DEST[0] SRC[31] DEST[1] SRC[63] DEST[2] SRC[95] DEST[3] SRC[127] DEST[4] SRC[159] DEST[5] SRC[191] DEST[6] SRC[223] DEST[7] SRC[255] IF DEST = r32 THEN DEST[31:8] 0; ELSE DEST[63:8] 0; FI Intel C/C++ Compiler Intrinsic Equivalent int _mm_movemask_ps(__m128 a) int _mm256_movemask_ps(__m256 a) SIMD Floating-Point Exceptions None. MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask Vol. 2A 3-707 INSTRUCTION SET REFERENCE, A-M Other Exceptions See Exceptions Type 7; additionally #UD 3-708 Vol. 2A If VEX.vvvv != 1111B. MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask INSTRUCTION SET REFERENCE, A-M MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 38 2A /r A V/V SSE4_1 Move double quadword from m128 to xmm using non-temporal hint if WC memory type. A V/V AVX Move double quadword from m128 to xmm using nontemporal hint if WC memory type. MOVNTDQA xmm1, m128 VEX.128.66.0F38.WIG 2A /r VMOVNTDQA xmm1, m128 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description MOVNTDQA loads a double quadword from the source operand (second operand) to the destination operand (first operand) using a non-temporal hint. A processor implementation may make use of the non-temporal hint associated with this instruction if the memory source is WC (write combining) memory type. An implementation may also make use of the non-temporal hint associated with this instruction if the memory source is WB (write back) memory type. A processor’s implementation of the non-temporal hint does not override the effective memory type semantics, but the implementation of the hint is processor dependent. For example, a processor implementation may choose to ignore the hint and process the instruction as a normal MOVDQA for any memory type. Another implementation of the hint for WC memory type may optimize data transfer throughput of WC reads. A third implementation may optimize cache reads generated by MOVNTDQA on WB memory type to reduce cache evictions. WC Streaming Load Hint For WC memory type in particular, the processor never appears to read the data into the cache hierarchy. Instead, the non-temporal hint may be implemented by loading a temporary internal buffer with the equivalent of an aligned cache line without filling this data to the cache. Any memory-type aliased lines in the cache will be snooped and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line will receive data from the temporary internal buffer if data is available. The temporary internal buffer may be flushed by the processor at any time for any reason, for example: • A load operation other than a MOVNTDQA which references memory already resident in a temporary internal buffer. MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint Vol. 2A 3-709 INSTRUCTION SET REFERENCE, A-M • • A non-WC reference to memory already resident in a temporary internal buffer. • • Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line. Interleaving of reads and writes to memory currently residing in a single temporary internal buffer. Certain micro-architectural conditions including resource shortages, detection of a mis-speculation condition, and various fault conditions The memory type of the region being read can override the non-temporal hint, if the memory address specified for the non-temporal read is not a WC memory region. Information on non-temporal reads and writes can be found in Chapter 11, “Memory Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Because the WC protocol uses a weakly-ordered memory consistency model, an MFENCE or locked instruction should be used in conjunction with MOVNTDQA instructions if multiple processors might reference the same WC memory locations or in order to synchronize reads of a processor with writes by other agents in the system. Because of the speculative nature of fetching due to MOVNTDQA, Streaming loads must not be used to reference memory addresses that are mapped to I/O devices having side effects or when reads to these devices are destructive. For additional information on MOVNTDQA usages, see Section 12.10.3 in Chapter 12, “Programming with SSE3, SSSE3 and SSE4” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will cause a #GP. Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions will #UD. Operation MOVNTDQA (128bit- Legacy SSE form) DEST SRC DEST[VLMAX-1:128] (Unmodified) VMOVNTDQA (VEX.128 encoded form) DEST SRC DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MOVNTDQA __m128i _mm_stream_load_si128 (__m128i *p); Flags Affected None 3-710 Vol. 2A MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint INSTRUCTION SET REFERENCE, A-M Other Exceptions See Exceptions Type 1.SSE4.1; additionally #UD If VEX.L= 1. If VEX.vvvv != 1111B. MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint Vol. 2A 3-711 INSTRUCTION SET REFERENCE, A-M MOVNTDQ—Store Double Quadword Using Non-Temporal Hint Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F E7 /r A V/V SSE2 Move double quadword from xmm to m128 using non-temporal hint. A V/V AVX Move packed integer values in xmm1 to m128 using non-temporal hint. A V/V AVX Move packed integer values in ymm1 to m256 using non-temporal hint. MOVNTDQ m128, xmm VEX.128.66.0F.WIG E7 /r VMOVNTDQ m128, xmm1 VEX.256.66.0F.WIG E7 /r VMOVNTDQ m256, ymm1 Instruction Operand Encoding1 Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA Description Moves the packed integers in the source operand (second operand) to the destination operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The source operand is an XMM register or YMM register, which is assumed to contain integer data (packed bytes, words, doublewords, or quadwords). The destination operand is a 128-bit or 256-bit memory location. The memory operand must be aligned on a 16-byte (128-bit version) or 32-byte (VEX.256 encoded version) boundary otherwise a general-protection exception (#GP) will be generated. The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTDQ instructions if multiple processors might use different memory types to read/write the destination memory locations. 1. ModRM.MOD = 011B required 3-712 Vol. 2A MOVNTDQ—Store Double Quadword Using Non-Temporal Hint INSTRUCTION SET REFERENCE, A-M In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions will #UD. Operation DEST ← SRC; Intel C/C++ Compiler Intrinsic Equivalent MOVNTDQ void _mm_stream_pd( double* p, __m128d a) VMOVNTDQ void _mm256_stream_si256 (__m256i * p, __m256i a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 1.SSE2; additionally #UD If VEX.vvvv != 1111B. MOVNTDQ—Store Double Quadword Using Non-Temporal Hint Vol. 2A 3-713 INSTRUCTION SET REFERENCE, A-M MOVNTI—Store Doubleword Using Non-Temporal Hint Opcode Instruction 0F C3 /r REX.W + 0F C3 /r Op/ En 64-Bit Mode Compat/ Description Leg Mode MOVNTI m32, r32 A Valid Valid Move doubleword from r32 to m32 using non-temporal hint. MOVNTI m64, r64 A Valid N.E. Move quadword from r64 to m64 using non-temporal hint. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA Description Moves the doubleword integer in the source operand (second operand) to the destination operand (first operand) using a non-temporal hint to minimize cache pollution during the write to memory. The source operand is a general-purpose register. The destination operand is a 32-bit memory location. The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTI instructions if multiple processors might use different memory types to read/write the destination memory locations. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← SRC; 3-714 Vol. 2A MOVNTI—Store Doubleword Using Non-Temporal Hint INSTRUCTION SET REFERENCE, A-M Intel C/C++ Compiler Intrinsic Equivalent MOVNTI void _mm_stream_si32 (int *p, int a) SIMD Floating-Point Exceptions None. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #UD If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH. #UD If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) For a page fault. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) For a page fault. #UD If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. MOVNTI—Store Doubleword Using Non-Temporal Hint Vol. 2A 3-715 INSTRUCTION SET REFERENCE, A-M MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 2B /r A V/V SSE2 Move packed doubleprecision floating-point values from xmm to m128 using non-temporal hint. A V/V AVX Move packed doubleprecision values in xmm1 to m128 using non-temporal hint. A V/V AVX Move packed doubleprecision values in ymm1 to m256 using non-temporal hint. MOVNTPD m128, xmm VEX.128.66.0F.WIG 2B /r VMOVNTPD m128, xmm1 VEX.256.66.0F.WIG 2B /r VMOVNTPD m256, ymm1 Instruction Operand Encoding1 Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA Description Moves the packed double-precision floating-point values in the source operand (second operand) to the destination operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The source operand is an XMM register or YMM register, which is assumed to contain packed double-precision, floating-pointing data. The destination operand is a 128-bit or 256-bit memory location. The memory operand must be aligned on a 16-byte (128-bit version) or 32byte (VEX.256 encoded version) boundary otherwise a general-protection exception (#GP) will be generated. The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. 1. ModRM.MOD = 011B required 3-716 Vol. 2A MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint INSTRUCTION SET REFERENCE, A-M Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPD instructions if multiple processors might use different memory types to read/write the destination memory locations. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions will #UD. Operation DEST ← SRC; Intel C/C++ Compiler Intrinsic Equivalent MOVNTPD void _mm_stream_pd(double *p, __m128d a) VMOVNTPD void _mm256_stream_pd (double * p, __m256d a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 1.SSE2; additionally #UD If VEX.vvvv != 1111B. MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint Vol. 2A 3-717 INSTRUCTION SET REFERENCE, A-M MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 2B /r A V/V SSE Move packed singleprecision floating-point values from xmm to m128 using non-temporal hint. A V/V AVX Move packed singleprecision values xmm1 to mem using non-temporal hint. A V/V AVX Move packed singleprecision values ymm1 to mem using non-temporal hint. MOVNTPS m128, xmm VEX.128.0F.WIG 2B /r VMOVNTPS m128, xmm1 VEX.256.0F.WIG 2B /r VMOVNTPS m256, ymm1 Instruction Operand Encoding1 Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA Description Moves the packed single-precision floating-point values in the source operand (second operand) to the destination operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The source operand is an XMM register or YMM register, which is assumed to contain packed single-precision, floating-pointing. The destination operand is a 128-bit or 256-bitmemory location. The memory operand must be aligned on a 16-byte (128-bit version) or 32-byte (VEX.256 encoded version) boundary otherwise a general-protection exception (#GP) will be generated. The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. 1. ModRM.MOD = 011B required 3-718 Vol. 2A MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint INSTRUCTION SET REFERENCE, A-M Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPS instructions if multiple processors might use different memory types to read/write the destination memory locations. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation DEST ← SRC; Intel C/C++ Compiler Intrinsic Equivalent MOVNTDQ void _mm_stream_ps(float * p, __m128 a) VMOVNTPS void _mm256_stream_ps (float * p, __m256 a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 1.SSE; additionally #UD If VEX.vvvv != 1111B. MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint Vol. 2A 3-719 INSTRUCTION SET REFERENCE, A-M MOVNTQ—Store of Quadword Using Non-Temporal Hint Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F E7 /r MOVNTQ m64, mm A Valid Valid Move quadword from mm to m64 using non-temporal hint. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (w) ModRM:reg (r) NA NA Description Moves the quadword in the source operand (second operand) to the destination operand (first operand) using a non-temporal hint to minimize cache pollution during the write to memory. The source operand is an MMX technology register, which is assumed to contain packed integer data (packed bytes, words, or doublewords). The destination operand is a 64-bit memory location. The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTQ instructions if multiple processors might use different memory types to read/write the destination memory locations. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Operation DEST ← SRC; Intel C/C++ Compiler Intrinsic Equivalent MOVNTQ void _mm_stream_pi(__m64 * p, __m64 a) 3-720 Vol. 2A MOVNTQ—Store of Quadword Using Non-Temporal Hint INSTRUCTION SET REFERENCE, A-M SIMD Floating-Point Exceptions None. Protected Mode Exceptions #GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. #SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If CR0.EM[bit 2] = 1. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. Real-Address Mode Exceptions #GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If CR0.EM[bit 2] = 1. If CPUID.01H:EDX.SSE2[bit 26] = 0. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) For a page fault. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. MOVNTQ—Store of Quadword Using Non-Temporal Hint Vol. 2A 3-721 INSTRUCTION SET REFERENCE, A-M #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) For a page fault. #NM If CR0.TS[bit 3] = 1. #MF If there is a pending x87 FPU exception. #UD If CR0.EM[bit 2] = 1. If CPUID.01H:EDX.SSE[bit 25] = 0. If the LOCK prefix is used. #AC(0) 3-722 Vol. 2A If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. MOVNTQ—Store of Quadword Using Non-Temporal Hint INSTRUCTION SET REFERENCE, A-M MOVQ—Move Quadword Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 6F /r MOVQ mm, mm/m64 A Valid Valid Move quadword from mm/m64 to mm. 0F 7F /r MOVQ mm/m64, mm B Valid Valid Move quadword from mm to mm/m64. F3 0F 7E MOVQ xmm1, xmm2/m64 A Valid Valid Move quadword from xmm2/mem64 to xmm1. 66 0F D6 MOVQ xmm2/m64, xmm1 B Valid Valid Move quadword from xmm1 to xmm2/mem64. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description Copies a quadword from the source operand (second operand) to the destination operand (first operand). The source and destination operands can be MMX technology registers, XMM registers, or 64-bit memory locations. This instruction can be used to move a quadword between two MMX technology registers or between an MMX technology register and a 64-bit memory location, or to move data between two XMM registers or between an XMM register and a 64-bit memory location. The instruction cannot be used to transfer data between memory locations. When the source operand is an XMM register, the low quadword is moved; when the destination operand is an XMM register, the quadword is stored to the low quadword of the register, and the high quadword is cleared to all 0s. In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). Operation MOVQ instruction when operating on MMX technology registers and memory locations: DEST ← SRC; MOVQ instruction when source and destination operands are XMM registers: DEST[63:0] ← SRC[63:0]; DEST[127:64] ← 0000000000000000H; MOVQ—Move Quadword Vol. 2A 3-723 INSTRUCTION SET REFERENCE, A-M MOVQ instruction when source operand is XMM register and destination operand is memory location: DEST ← SRC[63:0]; MOVQ instruction when source operand is memory location and destination operand is XMM register: DEST[63:0] ← SRC; DEST[127:64] ← 0000000000000000H; Flags Affected None. Intel C/C++ Compiler Intrinsic Equivalent MOVQ m128i _mm_mov_epi64(__m128i a) SIMD Floating-Point Exceptions None. Protected Mode Exceptions #GP(0) If the destination operand is in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #UD If CR0.EM[bit 2] = 1. 128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0. Execution of 128-bit instructions on a non-SSE2 capable processor (one that is MMX technology capable) will result in the instruction operating on the mm registers, not #UD. If the LOCK prefix is used. #NM If CR0.TS[bit 3] = 1. #MF (MMX register operations only) If there is a pending FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. 3-724 Vol. 2A MOVQ—Move Quadword INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #GP If any part of the operand lies outside of the effective address space from 0 to FFFFH. #UD If CR0.EM[bit 2] = 1. 128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0. Execution of 128-bit instructions on a non-SSE2 capable processor (one that is MMX technology capable) will result in the instruction operating on the mm registers, not #UD. If the LOCK prefix is used. #NM If CR0.TS[bit 3] = 1. #MF (MMX register operations only) If there is a pending FPU exception. Virtual-8086 Mode Exceptions Same exceptions as in real address mode. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #UD If CR0.EM[bit 2] = 1. (XMM register operations only) If CR4.OSFXSR[bit 9] = 0. (XMM register operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. #NM If CR0.TS[bit 3] = 1. #MF (MMX register operations only) If there is a pending FPU exception. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. MOVQ—Move Quadword Vol. 2A 3-725 INSTRUCTION SET REFERENCE, A-M MOVQ2DQ—Move Quadword from MMX Technology to XMM Register Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F3 0F D6 MOVQ2DQ xmm, mm A Valid Valid Move quadword from mmx to low quadword of xmm. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:reg (r) NA NA Description Moves the quadword from the source operand (second operand) to the low quadword of the destination operand (first operand). The source operand is an MMX technology register and the destination operand is an XMM register. This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before the MOVQ2DQ instruction is executed. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Operation DEST[63:0] ← SRC[63:0]; DEST[127:64] ← 00000000000000000H; Intel C/C++ Compiler Intrinsic Equivalent MOVQ2DQ __128i _mm_movpi64_pi64 ( __m64 a) SIMD Floating-Point Exceptions None. Protected Mode Exceptions #NM #UD If CR0.TS[bit 3] = 1. If CR0.EM[bit 2] = 1. If CR4.OSFXSR[bit 9] = 0. If CPUID.01H:EDX.SSE2[bit 26] = 0. If the LOCK prefix is used. #MF 3-726 Vol. 2A If there is a pending x87 FPU exception. MOVQ2DQ—Move Quadword from MMX Technology to XMM Register INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions Same exceptions as in protected mode. Virtual-8086 Mode Exceptions Same exceptions as in protected mode. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions Same exceptions as in protected mode. MOVQ2DQ—Move Quadword from MMX Technology to XMM Register Vol. 2A 3-727 INSTRUCTION SET REFERENCE, A-M MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String \ Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode A4 MOVS m8, m8 A Valid Valid For legacy mode, Move byte from address DS:(E)SI to ES:(E)DI. For 64-bit mode move byte from address (R|E)SI to (R|E)DI. A5 MOVS m16, m16 A Valid Valid For legacy mode, move word from address DS:(E)SI to ES:(E)DI. For 64-bit mode move word at address (R|E)SI to (R|E)DI. A5 MOVS m32, m32 A Valid Valid For legacy mode, move dword from address DS:(E)SI to ES:(E)DI. For 64-bit mode move dword from address (R|E)SI to (R|E)DI. REX.W + A5 MOVS m64, m64 A Valid N.E. Move qword from address (R|E)SI to (R|E)DI. A4 MOVSB A Valid Valid For legacy mode, Move byte from address DS:(E)SI to ES:(E)DI. For 64-bit mode move byte from address (R|E)SI to (R|E)DI. A5 MOVSW A Valid Valid For legacy mode, move word from address DS:(E)SI to ES:(E)DI. For 64-bit mode move word at address (R|E)SI to (R|E)DI. A5 MOVSD A Valid Valid For legacy mode, move dword from address DS:(E)SI to ES:(E)DI. For 64-bit mode move dword from address (R|E)SI to (R|E)DI. REX.W + A5 MOVSQ A Valid N.E. Move qword from address (R|E)SI to (R|E)DI. 3-728 Vol. 2A MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String INSTRUCTION SET REFERENCE, A-M Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description Moves the byte, word, or doubleword specified with the second operand (source operand) to the location specified with the first operand (destination operand). Both the source and destination operands are located in memory. The address of the source operand is read from the DS:ESI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or 16, respectively). The address of the destination operand is read from the ES:EDI or the ES:DI registers (again depending on the address-size attribute of the instruction). The DS segment may be overridden with a segment override prefix, but the ES segment cannot be overridden. At the assembly-code level, two forms of this instruction are allowed: the “explicitoperands” form and the “no-operands” form. The explicit-operands form (specified with the MOVS mnemonic) allows the source and destination operands to be specified explicitly. Here, the source and destination operands should be symbols that indicate the size and location of the source value and the destination, respectively. This explicit-operands form is provided to allow documentation; however, note that the documentation provided by this form can be misleading. That is, the source and destination operand symbols must specify the correct type (size) of the operands (bytes, words, or doublewords), but they do not have to specify the correct location. The locations of the source and destination operands are always specified by the DS:(E)SI and ES:(E)DI registers, which must be loaded correctly before the move string instruction is executed. The no-operands form provides “short forms” of the byte, word, and doubleword versions of the MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to be the source and destination operands, respectively. The size of the source and destination operands is selected with the mnemonic: MOVSB (byte move), MOVSW (word move), or MOVSD (doubleword move). After the move operation, the (E)SI and (E)DI registers are incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers are decremented.) The registers are incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations. The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix (see “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the REP prefix) for block moves of ECX bytes, words, or doublewords. In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is supported using the prefix 67H. The 64-bit addresses are specified by RSI and RDI; MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String Vol. 2A 3-729 INSTRUCTION SET REFERENCE, A-M 32-bit address are specified by ESI and EDI. Use of the REX.W prefix promotes doubleword operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← SRC; Non-64-bit Mode: IF (Byte move) THEN IF DF = 0 THEN (E)SI ← (E)SI + 1; (E)DI ← (E)DI + 1; ELSE (E)SI ← (E)SI – 1; (E)DI ← (E)DI – 1; FI; ELSE IF (Word move) THEN IF DF = 0 (E)SI ← (E)SI + 2; (E)DI ← (E)DI + 2; FI; ELSE (E)SI ← (E)SI – 2; (E)DI ← (E)DI – 2; FI; ELSE IF (Doubleword move) THEN IF DF = 0 (E)SI ← (E)SI + 4; (E)DI ← (E)DI + 4; FI; ELSE (E)SI ← (E)SI – 4; (E)DI ← (E)DI – 4; FI; FI; 64-bit Mode: IF (Byte move) THEN IF DF = 0 THEN (R|E)SI ← (R|E)SI + 1; (R|E)DI ← (R|E)DI + 1; 3-730 Vol. 2A MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String INSTRUCTION SET REFERENCE, A-M ELSE (R|E)SI ← (R|E)SI – 1; (R|E)DI ← (R|E)DI – 1; FI; ELSE IF (Word move) THEN IF DF = 0 (R|E)SI ← (R|E)SI + 2; (R|E)DI ← (R|E)DI + 2; FI; ELSE (R|E)SI ← (R|E)SI – 2; (R|E)DI ← (R|E)DI – 2; FI; ELSE IF (Doubleword move) THEN IF DF = 0 (R|E)SI ← (R|E)SI + 4; (R|E)DI ← (R|E)DI + 4; FI; ELSE (R|E)SI ← (R|E)SI – 4; (R|E)DI ← (R|E)DI – 4; FI; ELSE IF (Quadword move) THEN IF DF = 0 (R|E)SI ← (R|E)SI + 8; (R|E)DI ← (R|E)DI + 8; FI; ELSE (R|E)SI ← (R|E)SI – 8; (R|E)DI ← (R|E)DI – 8; FI; FI; Flags Affected None. Protected Mode Exceptions #GP(0) If the destination is located in a non-writable segment. If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String Vol. 2A 3-731 INSTRUCTION SET REFERENCE, A-M #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-732 Vol. 2A MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String INSTRUCTION SET REFERENCE, A-M MOVSD—Move Scalar Double-Precision Floating-Point Value Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 10 /r A V/V SSE2 Move scalar doubleprecision floating-point value from xmm2/m64 to xmm1 register. B V/V AVX Merge scalar doubleprecision floating-point value from xmm2 and xmm3 to xmm1 register. D V/V AVX Load scalar double-precision floating-point value from m64 to xmm1 register. C V/V SSE2 Move scalar doubleprecision floating-point value from xmm1 register to xmm2/m64. E V/V AVX Merge scalar doubleprecision floating-point value from xmm2 and xmm3 registers to xmm1. C V/V AVX Move scalar doubleprecision floating-point value from xmm1 register to m64. MOVSD xmm1, xmm2/m64 VEX.NDS.LIG.F2.0F.WIG 10 /r VMOVSD xmm1, xmm2, xmm3 VEX.LIG.F2.0F.WIG 10 /r VMOVSD xmm1, m64 F2 0F 11 /r MOVSD xmm2/m64, xmm1 VEX.NDS.LIG.F2.0F.WIG 11 /r VMOVSD xmm1, xmm2, xmm3 VEX.LIG.F2.0F.WIG 11 /r VMOVSD m64, xmm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA C ModRM:r/m (w) ModRM:reg (r) NA NA D ModRM:reg (w) ModRM:r/m (r) NA NA E ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA Description MOVSD moves a scalar double-precision floating-point value from the source operand (second operand) to the destination operand (first operand). The source and destination operands can be XMM registers or 64-bit memory locations. This instruc- MOVSD—Move Scalar Double-Precision Floating-Point Value Vol. 2A 3-733 INSTRUCTION SET REFERENCE, A-M tion can be used to move a double-precision floating-point value to and from the low quadword of an XMM register and a 64-bit memory location, or to move a doubleprecision floating-point value between the low quadwords of two XMM registers. The instruction cannot be used to transfer data between memory locations. For non-VEX encoded instruction syntax and when the source and destination operands are XMM registers, the high quadword of the destination operand remains unchanged. When the source operand is a memory location and destination operand is an XMM registers, the high quadword of the destination operand is cleared to all 0s. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). Note: For the “VMOVSD m64, xmm1” (memory store form) instruction version, VEX.vvvv is reserved and must be 1111b, otherwise instruction will #UD. Note: For the “VMOVSD xmm1, m64” (memory load form) instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD. VEX encoded instruction syntax supports two source operands and a destination operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source operand (the second operand). The low 128 bits of the destination operand stores the result of merging the low quadword of the second source operand with the quad word in bits 127:64 of the first source operand. The upper bits of the destination operand are cleared. Operation MOVSD (128-bit Legacy SSE version: MOVSD XMM1, XMM2) DEST[63:0] SRC[63:0] DEST[VLMAX-1:64] (Unmodified) MOVSD/VMOVSD (128-bit versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1) DEST[63:0] SRC[63:0] MOVSD (128-bit Legacy SSE version: MOVSD XMM1, m64) DEST[63:0] SRC[63:0] DEST[127:64] 0 DEST[VLMAX-1:128] (Unmodified) VMOVSD (VEX.NDS.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3) DEST[63:0] SRC2[63:0] DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3) DEST[63:0] SRC2[63:0] DEST[127:64] SRC1[127:64] 3-734 Vol. 2A MOVSD—Move Scalar Double-Precision Floating-Point Value INSTRUCTION SET REFERENCE, A-M DEST[VLMAX-1:128] 0 VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, m64) DEST[63:0] SRC[63:0] DEST[VLMAX-1:64] 0 Intel C/C++ Compiler Intrinsic Equivalent MOVSD __m128d _mm_load_sd (double *p) MOVSD void _mm_store_sd (double *p, __m128d a) MOVSD __m128d _mm_store_sd (__m128d a, __m128d b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally #UD If VEX.vvvv != 1111B. MOVSD—Move Scalar Double-Precision Floating-Point Value Vol. 2A 3-735 INSTRUCTION SET REFERENCE, A-M MOVSHDUP—Move Packed Single-FP High and Duplicate Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 16 /r A V/V SSE3 Move two single-precision floating-point values from the higher 32-bit operand of each qword in xmm2/m128 to xmm1 and duplicate each 32-bit operand to the lower 32-bits of each qword. A V/V AVX Move odd index singleprecision floating-point values from xmm2/mem and duplicate each element into xmm1. A V/V AVX Move odd index singleprecision floating-point values from ymm2/mem and duplicate each element into ymm1. MOVSHDUP xmm1, xmm2/m128 VEX.128.F3.0F.WIG 16 /r VMOVSHDUP xmm1, xmm2/m128 VEX.256.F3.0F.WIG 16 /r VMOVSHDUP ymm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description The linear address corresponds to the address of the least-significant byte of the referenced memory data. When a memory address is indicated, the 16 bytes of data at memory location m128 are loaded and the single-precision elements in positions 1 and 3 are duplicated. When the register-register form of this operation is used, the same operation is performed but with data coming from the 128-bit source register. See Figure 3-28. 3-736 Vol. 2A MOVSHDUP—Move Packed Single-FP High and Duplicate INSTRUCTION SET REFERENCE, A-M 0296+'83[PP[PPP >@ >@ [PP>@ [PP P>@ [PP>@ [PP P>@ >@ >@ >@ [PP>@ [PP P>@ >@ >@ [PP>@ [PP P>@ [PP P 5(68/7 [PP >@ 20 Figure 3-28. MOVSHDUP—Move Packed Single-FP High and Duplicate In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation MOVSHDUP (128-bit Legacy SSE version) DEST[31:0] SRC[63:32] DEST[63:32] SRC[63:32] DEST[95:64] SRC[127:96] DEST[127:96] SRC[127:96] DEST[VLMAX-1:128] (Unmodified) VMOVSHDUP (VEX.128 encoded version) DEST[31:0] SRC[63:32] DEST[63:32] SRC[63:32] DEST[95:64] SRC[127:96] DEST[127:96] SRC[127:96] MOVSHDUP—Move Packed Single-FP High and Duplicate Vol. 2A 3-737 INSTRUCTION SET REFERENCE, A-M DEST[VLMAX-1:128] 0 VMOVSHDUP (VEX.256 encoded version) DEST[31:0] SRC[63:32] DEST[63:32] SRC[63:32] DEST[95:64] SRC[127:96] DEST[127:96] SRC[127:96] DEST[159:128] SRC[191:160] DEST[191:160] SRC[191:160] DEST[223:192] SRC[255:224] DEST[255:224] SRC[255:224] Intel C/C++ Compiler Intrinsic Equivalent (V)MOVSHDUP __m128 _mm_movehdup_ps(__m128 a) VMOVSHDUP __m256 _mm256_movehdup_ps (__m256 a); Exceptions General protection exception if not aligned on 16-byte boundary, regardless of segment. Numeric Exceptions None Other Exceptions See Exceptions Type 2. 3-738 Vol. 2A MOVSHDUP—Move Packed Single-FP High and Duplicate INSTRUCTION SET REFERENCE, A-M MOVSLDUP—Move Packed Single-FP Low and Duplicate Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 12 /r A V/V SSE3 Move two single-precision floating-point values from the lower 32-bit operand of each qword in xmm2/m128 to xmm1 and duplicate each 32-bit operand to the higher 32-bits of each qword. A V/V AVX Move even index singleprecision floating-point values from xmm2/mem and duplicate each element into xmm1. A V/V AVX Move even index singleprecision floating-point values from ymm2/mem and duplicate each element into ymm1. MOVSLDUP xmm1, xmm2/m128 VEX.128.F3.0F.WIG 12 /r VMOVSLDUP xmm1, xmm2/m128 VEX.256.F3.0F.WIG 12 /r VMOVSLDUP ymm1, ymm2/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description The linear address corresponds to the address of the least-significant byte of the referenced memory data. When a memory address is indicated, the 16 bytes of data at memory location m128 are loaded and the single-precision elements in positions 0 and 2 are duplicated. When the register-register form of this operation is used, the same operation is performed but with data coming from the 128-bit source register. See Figure 3-29. MOVSLDUP—Move Packed Single-FP Low and Duplicate Vol. 2A 3-739 INSTRUCTION SET REFERENCE, A-M 0296/'83[PP[PPP >@ >@ [PP>@ [PP P>@ [PP>@ [PP P>@ >@ >@ >@ [PP>@ [PP P>@ >@ >@ [PP>@ [PP P>@ [PP P 5(68/7 [PP >@ 20 Figure 3-29. MOVSLDUP—Move Packed Single-FP Low and Duplicate In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation MOVSLDUP (128-bit Legacy SSE version) DEST[31:0] SRC[31:0] DEST[63:32] SRC[31:0] DEST[95:64] SRC[95:64] DEST[127:96] SRC[95:64] DEST[VLMAX-1:128] (Unmodified) VMOVSLDUP (VEX.128 encoded version) DEST[31:0] SRC[31:0] DEST[63:32] SRC[31:0] DEST[95:64] SRC[95:64] DEST[127:96] SRC[95:64] 3-740 Vol. 2A MOVSLDUP—Move Packed Single-FP Low and Duplicate INSTRUCTION SET REFERENCE, A-M DEST[VLMAX-1:128] 0 VMOVSLDUP (VEX.256 encoded version) DEST[31:0] SRC[31:0] DEST[63:32] SRC[31:0] DEST[95:64] SRC[95:64] DEST[127:96] SRC[95:64] DEST[159:128] SRC[159:128] DEST[191:160] SRC[159:128] DEST[223:192] SRC[223:192] DEST[255:224] SRC[223:192] Intel C/C++ Compiler Intrinsic Equivalent (V)MOVSLDUP __m128 _mm_moveldup_ps(__m128 a) VMOVSLDUP __m256 _mm256_moveldup_ps (__m256 a); Exceptions General protection exception if not aligned on 16-byte boundary, regardless of segment. Numeric Exceptions None. Other Exceptions See Exceptions Type 4; additionally #UD If VEX.vvvv != 1111B. MOVSLDUP—Move Packed Single-FP Low and Duplicate Vol. 2A 3-741 INSTRUCTION SET REFERENCE, A-M MOVSS—Move Scalar Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 10 /r A V/V SSE Move scalar single-precision floating-point value from xmm2/m32 to xmm1 register. B V/V AVX Merge scalar singleprecision floating-point value from xmm2 and xmm3 to xmm1 register. D V/V AVX Load scalar single-precision floating-point value from m32 to xmm1 register. C V/V SSE Move scalar single-precision floating-point value from xmm1 register to xmm2/m32. E V/V AVX Move scalar single-precision floating-point value from xmm2 and xmm3 to xmm1 register. C V/V AVX Move scalar single-precision floating-point value from xmm1 register to m32. MOVSS xmm1, xmm2/m32 VEX.NDS.LIG.F3.0F.WIG 10 /r VMOVSS xmm1, xmm2, xmm3 VEX.LIG.F3.0F.WIG 10 /r VMOVSS xmm1, m32 F3 0F 11 /r MOVSS xmm2/m32, xmm VEX.NDS.LIG.F3.0F.WIG 11 /r VMOVSS xmm1, xmm2, xmm3 VEX.LIG.F3.0F.WIG 11 /r VMOVSS m32, xmm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA C ModRM:r/m (w) ModRM:reg (r) NA NA D ModRM:reg (w) ModRM:r/m (r) NA NA E ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA Description Moves a scalar single-precision floating-point value from the source operand (second operand) to the destination operand (first operand). The source and destination operands can be XMM registers or 32-bit memory locations. This instruction can be used to move a single-precision floating-point value to and from the low doubleword 3-742 Vol. 2A MOVSS—Move Scalar Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M of an XMM register and a 32-bit memory location, or to move a single-precision floating-point value between the low doublewords of two XMM registers. The instruction cannot be used to transfer data between memory locations. For non-VEX encoded syntax and when the source and destination operands are XMM registers, the high doublewords of the destination operand remains unchanged. When the source operand is a memory location and destination operand is an XMM registers, the high doublewords of the destination operand is cleared to all 0s. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). VEX encoded instruction syntax supports two source operands and a destination operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source operand (the second operand). The low 128 bits of the destination operand stores the result of merging the low dword of the second source operand with three dwords in bits 127:32 of the first source operand. The upper bits of the destination operand are cleared. Note: For the “VMOVSS m32, xmm1” (memory store form) instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD. Note: For the “VMOVSS xmm1, m32” (memory load form) instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD. Operation MOVSS (Legacy SSE version when the source and destination operands are both XMM registers) DEST[31:0] SRC[31:0] DEST[VLMAX-1:32] (Unmodified) MOVSS/VMOVSS (when the source operand is an XMM register and the destination is memory) DEST[31:0] SRC[31:0] MOVSS (Legacy SSE version when the source operand is memory and the destination is an XMM register) DEST[31:0] SRC[31:0] DEST[127:32] 0 DEST[VLMAX-1:128] (Unmodified) VMOVSS (VEX.NDS.128.F3.0F 11 /r where the destination is an XMM register) DEST[31:0] SRC2[31:0] DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 VMOVSS (VEX.NDS.128.F3.0F 10 /r where the source and destination are XMM registers) MOVSS—Move Scalar Single-Precision Floating-Point Values Vol. 2A 3-743 INSTRUCTION SET REFERENCE, A-M DEST[31:0] SRC2[31:0] DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination is an XMM register) DEST[31:0] SRC[31:0] DEST[VLMAX-1:32] 0 Intel C/C++ Compiler Intrinsic Equivalent MOVSS __m128 _mm_load_ss(float * p) MOVSS void _mm_store_ss(float * p, __m128 a) MOVSS __m128 _mm_move_ss(__m128 a, __m128 b) SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 5; additionally #UD 3-744 Vol. 2A If VEX.vvvv != 1111B. MOVSS—Move Scalar Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M MOVSX/MOVSXD—Move with Sign-Extension Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F BE /r MOVSX r16, r/m8 A Valid Valid Move byte to word with sign-extension. 0F BE /r MOVSX r32, r/m8 A Valid Valid Move byte to doubleword with sign-extension. REX + 0F BE /r MOVSX r64, r/m8* A Valid N.E. Move byte to quadword with sign-extension. 0F BF /r MOVSX r32, r/m16 A Valid Valid Move word to doubleword, with sign-extension. REX.W + 0F BF /r MOVSX r64, r/m16 A Valid N.E. Move word to quadword with sign-extension. A Valid N.E. Move doubleword to quadword with signextension. REX.W** + 63 /r MOVSXD r64, r/m32 NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. ** The use of MOVSXD without REX.W in 64-bit mode is discouraged, Regular MOV should be used instead of using MOVSXD without REX.W. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Copies the contents of the source operand (register or memory location) to the destination operand (register) and sign extends the value to 16 or 32 bits (see Figure 7-6 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). The size of the converted value depends on the operand-size attribute. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← SignExtend(SRC); MOVSX/MOVSXD—Move with Sign-Extension Vol. 2A 3-745 INSTRUCTION SET REFERENCE, A-M Flags Affected None. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. 3-746 Vol. 2A MOVSX/MOVSXD—Move with Sign-Extension INSTRUCTION SET REFERENCE, A-M #UD If the LOCK prefix is used. MOVSX/MOVSXD—Move with Sign-Extension Vol. 2A 3-747 INSTRUCTION SET REFERENCE, A-M MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 10 /r A V/V SSE2 Move packed doubleprecision floating-point values from xmm2/m128 to xmm1. A V/V AVX Move unaligned packed double-precision floatingpoint from xmm2/mem to xmm1. A V/V AVX Move unaligned packed double-precision floatingpoint from ymm2/mem to ymm1. B V/V SSE2 Move packed doubleprecision floating-point values from xmm1 to xmm2/m128. B V/V AVX Move unaligned packed double-precision floatingpoint from xmm1 to xmm2/mem. B V/V AVX Move unaligned packed double-precision floatingpoint from ymm1 to ymm2/mem. MOVUPD xmm1, xmm2/m128 VEX.128.66.0F.WIG 10 /r VMOVUPD xmm1, xmm2/m128 VEX.256.66.0F.WIG 10 /r VMOVUPD ymm1, ymm2/m256 66 0F 11 /r MOVUPD xmm2/m128, xmm VEX.128.66.0F.WIG 11 /r VMOVUPD xmm2/m128, xmm1 VEX.256.66.0F.WIG 11 /r VMOVUPD ymm2/m256, ymm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description 128-bit versions: Moves a double quadword containing two packed double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit 3-748 Vol. 2A MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M memory location, store the contents of an XMM register into a 128-bit memory location, or move data between two XMM registers. 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte boundary without causing a general-protection exception (#GP) to be generated.1 To move double-precision floating-point values to and from memory locations that are known to be aligned on 16-byte boundaries, use the MOVAPD instruction. While executing in 16-bit addressing mode, a linear address for a 128-bit data access that overlaps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific processor implementation may or may not generate a generalprotection exception (#GP) in this situation, and the address that spans the end of the segment may or may not wrap around to the beginning of the segment. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.256 encoded version: Moves 256 bits of packed double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation MOVUPD (128-bit load and register-copy form Legacy SSE version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] (Unmodified) (V)MOVUPD (128-bit store form) DEST[127:0] SRC[127:0] 1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be generated (depending on processor implementation) when the operand is not aligned on an 8-byte boundary. MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values Vol. 2A 3-749 INSTRUCTION SET REFERENCE, A-M VMOVUPD (VEX.128 encoded version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] 0 VMOVUPD (VEX.256 encoded version) DEST[255:0] SRC[255:0] Intel C/C++ Compiler Intrinsic Equivalent MOVUPD __m128 _mm_loadu_pd(double * p) MOVUPD void _mm_storeu_pd(double *p, __m128 a) VMOVUPD __m256d _mm256_loadu_pd (__m256d * p); VMOVUPD _mm256_storeu_pd(_m256d *p, __m256d a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 4 Note treatment of #AC varies; additionally #UD 3-750 Vol. 2A If VEX.vvvv != 1111B. MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 10 /r A V/V SSE Move packed singleprecision floating-point values from xmm2/m128 to xmm1. A V/V AVX Move unaligned packed single-precision floatingpoint from xmm2/mem to xmm1. A V/V AVX Move unaligned packed single-precision floatingpoint from ymm2/mem to ymm1. B V/V SSE Move packed singleprecision floating-point values from xmm1 to xmm2/m128. B V/V AVX Move unaligned packed single-precision floatingpoint from xmm1 to xmm2/mem. B V/V AVX Move unaligned packed single-precision floatingpoint from ymm1 to ymm2/mem. MOVUPS xmm1, xmm2/m128 VEX.128.0F.WIG 10 /r VMOVUPS xmm1, xmm2/m128 VEX.256.0F.WIG 10 /r VMOVUPS ymm1, ymm2/m256 0F 11 /r MOVUPS xmm2/m128, xmm1 VEX.128.0F.WIG 11 /r VMOVUPS xmm2/m128, xmm1 VEX.256.0F.WIG 11 /r VMOVUPS ymm2/m256, ymm1 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA B ModRM:r/m (w) ModRM:reg (r) NA NA Description 128-bit versions: Moves a double quadword containing four packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, store the contents of an XMM register into a 128-bit memory location, or move data between two XMM registers. MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values Vol. 2A 3-751 INSTRUCTION SET REFERENCE, A-M 128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte boundary without causing a general-protection exception (#GP) to be generated.1 To move packed single-precision floating-point values to and from memory locations that are known to be aligned on 16-byte boundaries, use the MOVAPS instruction. While executing in 16-bit addressing mode, a linear address for a 128-bit data access that overlaps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific processor implementation may or may not generate a generalprotection exception (#GP) in this situation, and the address that spans the end of the segment may or may not wrap around to the beginning of the segment. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.256 encoded version: Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. Operation MOVUPS (128-bit load and register-copy form Legacy SSE version) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] (Unmodified) (V)MOVUPS (128-bit store form) DEST[127:0] SRC[127:0] VMOVUPS (VEX.128 encoded load-form) DEST[127:0] SRC[127:0] DEST[VLMAX-1:128] 0 VMOVUPS (VEX.256 encoded version) 1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be generated (depending on processor implementation) when the operand is not aligned on an 8-byte boundary. 3-752 Vol. 2A MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DEST[255:0] SRC[255:0] Intel C/C++ Compiler Intrinsic Equivalent MOVUPS __m128 _mm_loadu_ps(double * p) MOVUPS void _mm_storeu_ps(double *p, __m128 a) VMOVUPS __m256 _mm256_loadu_ps (__m256 * p); VMOVUPS _mm256_storeu_ps(_m256 *p, __m256 a); SIMD Floating-Point Exceptions None. Other Exceptions See Exceptions Type 4 Note treatment of #AC varies; additionally #UD If VEX.vvvv != 1111B. MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values Vol. 2A 3-753 INSTRUCTION SET REFERENCE, A-M MOVZX—Move with Zero-Extend Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F B6 /r MOVZX r16, r/m8 A Valid Valid Move byte to word with zero-extension. 0F B6 /r MOVZX r32, r/m8 A Valid Valid Move byte to doubleword, zero-extension. REX.W + 0F B6 /r MOVZX r64, r/m8* A Valid N.E. Move byte to quadword, zero-extension. 0F B7 /r MOVZX r32, r/m16 A Valid Valid Move word to doubleword, zero-extension. REX.W + 0F B7 /r MOVZX r64, r/m16 A Valid N.E. Move word to quadword, zero-extension. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if the REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (w) ModRM:r/m (r) NA NA Description Copies the contents of the source operand (register or memory location) to the destination operand (register) and zero extends the value. The size of the converted value depends on the operand-size attribute. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bit operands. See the summary chart at the beginning of this section for encoding data and limits. Operation DEST ← ZeroExtend(SRC); Flags Affected None. 3-754 Vol. 2A MOVZX—Move with Zero-Extend INSTRUCTION SET REFERENCE, A-M Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. MOVZX—Move with Zero-Extend Vol. 2A 3-755 INSTRUCTION SET REFERENCE, A-M MPSADBW — Compute Multiple Packed Sums of Absolute Difference Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 3A 42 /r ib A V/V SSE4_1 Sums absolute 8-bit integer difference of adjacent groups of 4 byte integers in xmm1 and xmm2/m128 and writes the results in xmm1. Starting offsets within xmm1 and xmm2/m128 are determined by imm8. B V/V AVX Sums absolute 8-bit integer difference of adjacent groups of 4 byte integers in xmm2 and xmm3/m128 and writes the results in xmm1. Starting offsets within xmm2 and xmm3/m128 are determined by imm8. MPSADBW xmm1, xmm2/m128, imm8 VEX.NDS.128.66.0F3A.WIG 42 /r ib VMPSADBW xmm1, xmm2, xmm3/m128, imm8 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description MPSADBW sums the absolute difference (SAD) of a pair of unsigned bytes for a group of 4 byte pairs, and produces 8 SAD results (one for each 4 byte-pairs) stored as 8 word integers in the destination operand (first operand). Each 4 byte pairs are selected from the source operand (first opeand) and the destination according to the bit fields specified in the immediate byte (third operand). The immediate byte provides two bit fields: SRC_OFFSET: the value of Imm8[1:0]*32 specifies the offset of the 4 sequential source bytes in the source operand. DEST_OFFSET: the value of Imm8[2]*32 specifies the offset of the first of 8 groups of 4 sequential destination bytes in the destination operand. The next four destination bytes starts at DEST_OFFSET + 8, etc. 3-756 Vol. 2A MPSADBW — Compute Multiple Packed Sums of Absolute Difference INSTRUCTION SET REFERENCE, A-M The SAD operation is repeated 8 times, each time using the same 4 source bytes but selecting the next group of 4 destination bytes starting at the next higher byte in the destination. Each 16-bit sum is written to destination. 128-bit Legacy SSE version: The first source and destination are the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an #UD exception. Operation MPSADBW (128-bit Legacy SSE version) SRC_OFFSET imm8[1:0]*32 DEST_OFFSET imm8[2]*32 DEST_BYTE0 DEST[DEST_OFFSET+7:DEST_OFFSET] DEST_BYTE1 DEST[DEST_OFFSET+15:DEST_OFFSET+8] DEST_BYTE2 DEST[DEST_OFFSET+23:DEST_OFFSET+16] DEST_BYTE3 DEST[DEST_OFFSET+31:DEST_OFFSET+24] DEST_BYTE4 DEST[DEST_OFFSET+39:DEST_OFFSET+32] DEST_BYTE5 DEST[DEST_OFFSET+47:DEST_OFFSET+40] DEST_BYTE6 DEST[DEST_OFFSET+55:DEST_OFFSET+48] DEST_BYTE7 DEST[DEST_OFFSET+63:DEST_OFFSET+56] DEST_BYTE8 DEST[DEST_OFFSET+71:DEST_OFFSET+64] DEST_BYTE9 DEST[DEST_OFFSET+79:DEST_OFFSET+72] DEST_BYTE10 DEST[DEST_OFFSET+87:DEST_OFFSET+80] SRC_BYTE0 SRC[SRC_OFFSET+7:SRC_OFFSET] SRC_BYTE1 SRC[SRC_OFFSET+15:SRC_OFFSET+8] SRC_BYTE2 SRC[SRC_OFFSET+23:SRC_OFFSET+16] SRC_BYTE3 SRC[SRC_OFFSET+31:SRC_OFFSET+24] TEMP0 ABS( DEST_BYTE0 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE1 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE2 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE3 - SRC_BYTE3) DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS( DEST_BYTE1 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE2 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE3 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE4 - SRC_BYTE3) DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3 MPSADBW — Compute Multiple Packed Sums of Absolute Difference Vol. 2A 3-757 INSTRUCTION SET REFERENCE, A-M TEMP0 ABS( DEST_BYTE2 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE3 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE4 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE5 - SRC_BYTE3) DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS( DEST_BYTE3 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE4 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE5 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE6 - SRC_BYTE3) DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS( DEST_BYTE4 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE5 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE6 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE7 - SRC_BYTE3) DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS( DEST_BYTE5 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE6 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE7 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE8 - SRC_BYTE3) DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS( DEST_BYTE6 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE7 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE8 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE9 - SRC_BYTE3) DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS( DEST_BYTE7 - SRC_BYTE0) TEMP1 ABS( DEST_BYTE8 - SRC_BYTE1) TEMP2 ABS( DEST_BYTE9 - SRC_BYTE2) TEMP3 ABS( DEST_BYTE10 - SRC_BYTE3) DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3 DEST[VLMAX-1:128] (Unmodified) VMPSADBW (VEX.128 encoded version) SRC2_OFFSET imm8[1:0]*32 SRC1_OFFSET imm8[2]*32 SRC1_BYTE0 SRC1[SRC1_OFFSET+7:SRC1_OFFSET] SRC1_BYTE1 SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8] 3-758 Vol. 2A MPSADBW — Compute Multiple Packed Sums of Absolute Difference INSTRUCTION SET REFERENCE, A-M SRC1_BYTE2 SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16] SRC1_BYTE3 SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24] SRC1_BYTE4 SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32] SRC1_BYTE5 SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40] SRC1_BYTE6 SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48] SRC1_BYTE7 SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56] SRC1_BYTE8 SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64] SRC1_BYTE9 SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72] SRC1_BYTE10 SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80] SRC2_BYTE0 SRC2[SRC2_OFFSET+7:SRC2_OFFSET] SRC2_BYTE1 SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8] SRC2_BYTE2 SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16] SRC2_BYTE3 SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24] TEMP0 ABS(SRC1_BYTE0 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE1 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE2 - SRC2_BYTE2) TEMP3 ABS(SRC1_BYTE3 - SRC2_BYTE3) DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS(SRC1_BYTE1 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE2 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE3 - SRC2_BYTE2) TEMP3 ABS(SRC1_BYTE4 - SRC2_BYTE3) DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS(SRC1_BYTE2 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE3 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE4 - SRC2_BYTE2) TEMP3 ABS(SRC1_BYTE5 - SRC2_BYTE3) DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS(SRC1_BYTE3 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE4 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE5 - SRC2_BYTE2) TEMP3 ABS(SRC1_BYTE6 - SRC2_BYTE3) DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS(SRC1_BYTE4 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE5 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE6 - SRC2_BYTE2) TEMP3 ABS(SRC1_BYTE7 - SRC2_BYTE3) DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS(SRC1_BYTE5 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE6 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE7 - SRC2_BYTE2) MPSADBW — Compute Multiple Packed Sums of Absolute Difference Vol. 2A 3-759 INSTRUCTION SET REFERENCE, A-M TEMP3 ABS(SRC1_BYTE8 - SRC2_BYTE3) DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS(SRC1_BYTE6 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE7 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE8 - SRC2_BYTE2) TEMP3 ABS(SRC1_BYTE9 - SRC2_BYTE3) DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3 TEMP0 ABS(SRC1_BYTE7 - SRC2_BYTE0) TEMP1 ABS(SRC1_BYTE8 - SRC2_BYTE1) TEMP2 ABS(SRC1_BYTE9 - SRC2_BYTE2) TEMP3 ABS(SRC1_BYTE10 - SRC2_BYTE3) DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3 DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MPSADBW __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask); Flags Affected None Other Exceptions See Exceptions Type 4; additionally #UD 3-760 Vol. 2A If VEX.L = 1. MPSADBW — Compute Multiple Packed Sums of Absolute Difference INSTRUCTION SET REFERENCE, A-M MUL—Unsigned Multiply Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode F6 /4 MUL r/m8 A Valid Valid Unsigned multiply (AX ← AL ∗ r/m8). REX + F6 /4 MUL r/m8* A Valid N.E. Unsigned multiply (AX ← AL ∗ r/m8). F7 /4 MUL r/m16 A Valid Valid Unsigned multiply (DX:AX ← AX ∗ r/m16). F7 /4 MUL r/m32 A Valid Valid Unsigned multiply (EDX:EAX ← EAX ∗ r/m32). REX.W + F7 /4 MUL r/m64 A Valid N.E. Unsigned multiply (RDX:RAX ← RAX ∗ r/m64. NOTES: * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:r/m (r) NA NA NA Description Performs an unsigned multiplication of the first operand (destination operand) and the second operand (source operand) and stores the result in the destination operand. The destination operand is an implied operand located in register AL, AX or EAX (depending on the size of the operand); the source operand is located in a general-purpose register or a memory location. The action of this instruction and the location of the result depends on the opcode and the operand size as shown in Table 3-66. The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending on the operand size), with the high-order bits of the product contained in register AH, DX, or EDX, respectively. If the high-order bits of the product are 0, the CF and OF flags are cleared; otherwise, the flags are set. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits. MUL—Unsigned Multiply Vol. 2A 3-761 INSTRUCTION SET REFERENCE, A-M Table 3-66. MUL Results Operand Size Byte Source 1 Source 2 Destination AL r/m8 AX Word AX r/m16 DX:AX Doubleword EAX r/m32 EDX:EAX Quadword RAX r/m64 RDX:RAX Operation IF (Byte operation) THEN AX ← AL ∗ SRC; ELSE (* Word or doubleword operation *) IF OperandSize = 16 THEN DX:AX ← AX ∗ SRC; ELSE IF OperandSize = 32 THEN EDX:EAX ← EAX ∗ SRC; FI; ELSE (* OperandSize = 64 *) RDX:RAX ← RAX ∗ SRC; FI; FI; Flags Affected The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they are set to 1. The SF, ZF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register contains a NULL segment selector. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. #UD If the LOCK prefix is used. 3-762 Vol. 2A MUL—Unsigned Multiply INSTRUCTION SET REFERENCE, A-M Real-Address Mode Exceptions #GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS If a memory operand effective address is outside the SS segment limit. #UD If the LOCK prefix is used. Virtual-8086 Mode Exceptions #GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. #SS(0) If a memory operand effective address is outside the SS segment limit. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made. #UD If the LOCK prefix is used. Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #SS(0) If a memory address referencing the SS segment is in a noncanonical form. #GP(0) If the memory address is in a non-canonical form. #PF(fault-code) If a page fault occurs. #AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3. MUL—Unsigned Multiply Vol. 2A 3-763 INSTRUCTION SET REFERENCE, A-M MULPD—Multiply Packed Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 66 0F 59 /r A V/V SSE2 Multiply packed doubleprecision floating-point values in xmm2/m128 by xmm1. B V/V AVX Multiply packed doubleprecision floating-point values from xmm3/mem to xmm2 and stores result in xmm1. B V/V AVX Multiply packed doubleprecision floating-point values from ymm3/mem to ymm2 and stores result in ymm1. MULPD xmm1, xmm2/m128 VEX.NDS.128.66.0F.WIG 59 /r VMULPD xmm1,xmm2, xmm3/m128 VEX.NDS.256.66.0F.WIG 59 /r VMULPD ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs a SIMD multiply of the two or four packed double-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the packed double-precision floating-point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the destination YMM register destination are zeroed. 3-764 Vol. 2A MULPD—Multiply Packed Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation MULPD (128-bit Legacy SSE version) DEST[63:0] DEST[63:0] * SRC[63:0] DEST[127:64] DEST[127:64] * SRC[127:64] DEST[VLMAX-1:128] (Unmodified) VMULPD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] * SRC2[63:0] DEST[127:64] SRC1[127:64] * SRC2[127:64] DEST[VLMAX-1:128] 0 VMULPD (VEX.256 encoded version) DEST[63:0] SRC1[63:0] * SRC2[63:0] DEST[127:64] SRC1[127:64] * SRC2[127:64] DEST[191:128] SRC1[191:128] * SRC2[191:128] DEST[255:192] SRC1[255:192] * SRC2[255:192] Intel C/C++ Compiler Intrinsic Equivalent MULPD __m128d _mm_mul_pd (m128d a, m128d b) VMULPD __m256d _mm256_mul_pd (__m256d a, __m256d b); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2 MULPD—Multiply Packed Double-Precision Floating-Point Values Vol. 2A 3-765 INSTRUCTION SET REFERENCE, A-M MULPS—Multiply Packed Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description 0F 59 /r A V/V SSE Multiply packed singleprecision floating-point values in xmm2/mem by xmm1. B V/V AVX Multiply packed singleprecision floating-point values from xmm3/mem to xmm2 and stores result in xmm1. B V/V AVX Multiply packed singleprecision floating-point values from ymm3/mem to ymm2 and stores result in ymm1. MULPS xmm1, xmm2/m128 VEX.NDS.128.0F.WIG 59 /r VMULPS xmm1,xmm2, xmm3/m128 VEX.NDS.256.0F.WIG 59 /r VMULPS ymm1, ymm2, ymm3/m256 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Performs a SIMD multiply of the four packed single-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the packed single-precision floating-point results in the destination operand. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floatingpoint operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified. VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the destination YMM register destination are zeroed. 3-766 Vol. 2A MULPS—Multiply Packed Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Operation MULPS (128-bit Legacy SSE version) DEST[31:0] SRC1[31:0] * SRC2[31:0] DEST[63:32] SRC1[63:32] * SRC2[63:32] DEST[95:64] SRC1[95:64] * SRC2[95:64] DEST[127:96] SRC1[127:96] * SRC2[127:96] DEST[VLMAX-1:128] (Unmodified) VMULPS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] * SRC2[31:0] DEST[63:32] SRC1[63:32] * SRC2[63:32] DEST[95:64] SRC1[95:64] * SRC2[95:64] DEST[127:96] SRC1[127:96] * SRC2[127:96] DEST[VLMAX-1:128] 0 VMULPS (VEX.256 encoded version) DEST[31:0] SRC1[31:0] * SRC2[31:0] DEST[63:32] SRC1[63:32] * SRC2[63:32] DEST[95:64] SRC1[95:64] * SRC2[95:64] DEST[127:96] SRC1[127:96] * SRC2[127:96] DEST[159:128] SRC1[159:128] * SRC2[159:128] DEST[191:160] SRC1[191:160] * SRC2[191:160] DEST[223:192] SRC1[223:192] * SRC2[223:192] DEST[255:224] SRC1[255:224] * SRC2[255:224]. Intel C/C++ Compiler Intrinsic Equivalent MULPS __m128 _mm_mul_ps(__m128 a, __m128 b) VMULPS __m256 _mm256_mul_ps (__m256 a, __m256 b); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 2 MULPS—Multiply Packed Single-Precision Floating-Point Values Vol. 2A 3-767 INSTRUCTION SET REFERENCE, A-M MULSD—Multiply Scalar Double-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F2 0F 59 /r A V/V SSE2 Multiply the low doubleprecision floating-point value in xmm2/mem64 by low double-precision floating-point value in xmm1. B V/V AVX Multiply the low doubleprecision floating-point value in xmm3/mem64 by low double precision floating-point value in xmm2. MULSD xmm1, xmm2/m64 VEX.NDS.LIG.F2.0F.WIG 59/r VMULSD xmm1,xmm2, xmm3/m64 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Multiplies the low double-precision floating-point value in the source operand (second operand) by the low double-precision floating-point value in the destination operand (first operand), and stores the double-precision floating-point result in the destination operand. The source operand can be an XMM register or a 64-bit memory location. The destination operand is an XMM register. The high quadword of the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar double-precision floating-point operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation 3-768 Vol. 2A MULSD—Multiply Scalar Double-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M MULSD (128-bit Legacy SSE version) DEST[63:0] DEST[63:0] * SRC[63:0] DEST[VLMAX-1:64] (Unmodified) VMULSD (VEX.128 encoded version) DEST[63:0] SRC1[63:0] * SRC2[63:0] DEST[127:64] SRC1[127:64] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MULSD __m128d _mm_mul_sd (m128d a, m128d b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 3 MULSD—Multiply Scalar Double-Precision Floating-Point Values Vol. 2A 3-769 INSTRUCTION SET REFERENCE, A-M MULSS—Multiply Scalar Single-Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32-bit CPUID Mode Feature Flag Description F3 0F 59 /r A V/V SSE Multiply the low singleprecision floating-point value in xmm2/mem by the low single-precision floating-point value in xmm1. B V/V AVX Multiply the low singleprecision floating-point value in xmm3/mem by the low single-precision floatingpoint value in xmm2. MULSS xmm1, xmm2/m32 VEX.NDS.LIG.F3.0F.WIG 59 /r VMULSS xmm1,xmm2, xmm3/m32 Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A ModRM:reg (r, w) ModRM:r/m (r) NA NA B ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA Description Multiplies the low single-precision floating-point value from the source operand (second operand) by the low single-precision floating-point value in the destination operand (first operand), and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-point operation. In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15). 128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. Operation MULSS (128-bit Legacy SSE version) 3-770 Vol. 2A MULSS—Multiply Scalar Single-Precision Floating-Point Values INSTRUCTION SET REFERENCE, A-M DEST[31:0] DEST[31:0] * SRC[31:0] DEST[VLMAX-1:32] (Unmodified) VMULSS (VEX.128 encoded version) DEST[31:0] SRC1[31:0] * SRC2[31:0] DEST[127:32] SRC1[127:32] DEST[VLMAX-1:128] 0 Intel C/C++ Compiler Intrinsic Equivalent MULSS __m128 _mm_mul_ss(__m128 a, __m128 b) SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal. Other Exceptions See Exceptions Type 3 MULSS—Multiply Scalar Single-Precision Floating-Point Values Vol. 2A 3-771 INSTRUCTION SET REFERENCE, A-M MWAIT—Monitor Wait Opcode Instruction Op/ En 64-Bit Mode Compat/ Description Leg Mode 0F 01 C9 MWAIT A Valid Valid A hint that allow the processor to stop instruction execution and enter an implementationdependent optimized state until occurrence of a class of events. Instruction Operand Encoding Op/En Operand 1 Operand 2 Operand 3 Operand 4 A NA NA NA NA Description MWAIT instruction provides hints to allow the processor to enter an implementationdependent optimized state. There are two principal targeted usages: address-range monitor and advanced power management. Both usages of MWAIT require the use of the MONITOR instruction. A CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability of MONITOR and MWAIT in the processor. When set, MWAIT may be executed only at privilege level 0 (use at any other privilege level results in an invalid-opcode exception). The operating system or system BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR; disabling MWAIT clears the CPUID feature flag and causes execution to generate an illegal opcode exception. This instruction’s operation is the same in non-64-bit modes and 64-bit mode. MWAIT for Address Range Monitoring For address-range monitoring, the MWAIT instruction operates with the MONITOR instruction. The two instructions allow the definition of an address at which to wait (MONITOR) and a implementation-dependent-optimized operation to commence at the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can enter an implementation-dependent-optimized state while waiting for an event or a store operation to the address range armed by MONITOR. ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such as the preferred optimized state the processor should enter. For Pentium 4 processors (CPUID signature family 15 and model 3), non-zero values for EAX and ECX are reserved. Later processors defined ECX=1 as a valid extension (see below). 3-772 Vol. 2A MWAIT—Monitor Wait INSTRUCTION SET REFERENCE, A-M The following cause the processor to exit the implementation-dependent-optimized state: a store to the address range armed by the MONITOR instruction, an NMI or SMI, a debug exception, a machine check exception, the BINIT# signal, the INIT# signal, and the RESET# signal. Other implementation-dependent events may also cause the processor to exit the implementation-dependent-optimized state. In addition, an external interrupt causes the processor to exit the implementationdependent-optimized state if either (1) the interrupt would be delivered to software (e.g., if HLT had been executed instead of MWAIT); or (2) ECX[0] = 1. Implementation-specific conditions may result in an interrupt causing the processor to exit the implementation-dependent-optimized state even if interrupts are masked and ECX[0] = 0. Following exit from the implementation-dependent-optimized state, control passes to the instruction following the MWAIT instruction. A pending interrupt that is not masked (including an NMI or an SMI) may be delivered before execution of that instruction. Unlike the HLT instruction, the MWAIT instruction does not support a restart at the MWAIT instruction following the handling of an SMI. If the preceding MONITOR instruction did not successfully arm an address range or if the MONITOR instruction has not been executed prior to executing MWAIT, then the processor will not enter the implementation-dependent-optimized state. Execution will resume at the instruction following the MWAIT. MWAIT for Power Management MWAIT accepts a hint and optional extension to the processor that it can enter a specified target C state while waiting for an event or a store operation to the address range armed by MONITOR. Support for MWAIT extensions for power management is indicated by CPUID.05H.ECX[0] reporting 1. EAX and ECX will be used to communicate the additional information to the MWAIT instruction, such as the kind of optimized state the processor should enter. ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such as the preferred optimized state the processor should enter. Implementation-specific conditions may cause a processor to ignore the hint and enter a different optimized state. Future processor implementations may implement several optimized “waiting” states and will select among those states based on the hint argument. Table 3-67 describes the meaning of ECX and EAX registers for MWAIT extensions. Table 3-67. MWAIT Extension Register (ECX) Bits Description 0 Treat masked interrupts as break events (e.g., if EFLAGS.IF=0). May be set only if CPUID.01H:ECX.MONITOR[bit 3] = 1. 31: 1 Reserved MWAIT—Monitor Wait Vol. 2A 3-773 INSTRUCTION SET REFERENCE, A-M Table 3-68. MWAIT Hints Register (EAX) Bits Description 3:0 Sub C-state within a C-state, indicated by bits [7:4] 7:4 Target C-state* Value of 0 means C1; 1 means C2 and so on Value of 01111B means C0 Note: Target C states for MWAIT extensions are processor-specific Cstates, not ACPI C-states Reserved 31: 8 Note that if MWAIT is used to enter any of the C-states that are numerically higher than C1, a store to the address range armed by the MONITOR instruction will cause the processor to exit MWAIT only if the store was originated by other processor agents. A store from non-processor agent might not cause the processor to exit MWAIT in such cases. For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Operation (* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX as an instruction extension MWAIT EAX, ECX *) { WHILE ( ("Monitor Hardware is in armed state")) { implementation_dependent_optimized_state(EAX, ECX); } Set the state of Monitor Hardware as triggered; } Intel C/C++ Compiler Intrinsic Equivalent MWAIT void _mm_mwait(unsigned extensions, unsigned hints) Example MONITOR/MWAIT instruction pair must be coded in the same loop because execution of the MWAIT instruction will trigger the monitor hardware. It is not a proper usage to execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without executing MWAIT has no adverse effects. Typically the MONITOR/MWAIT pair is used in a sequence, such as: EAX = Logical Address(Trigger) ECX = 0 (*Hints *) 3-774 Vol. 2A MWAIT—Monitor Wait INSTRUCTION SET REFERENCE, A-M EDX = 0 (* Hints *) IF ( !trigger_store_happened) { MONITOR EAX, ECX, EDX IF ( !trigger_store_happened ) { MWAIT EAX, ECX } } The above code sequence makes sure that a triggering store does not happen between the first check of the trigger and the execution of the monitor instruction. Without the second check that triggering store would go un-noticed. Typical usage of MONITOR and MWAIT would have the above code sequence within a loop. Numeric Exceptions None Protected Mode Exceptions #GP(0) If ECX[31:1] ≠ 0. #UD If CPUID.01H:ECX.MONITOR[bit 3] = 0. If ECX[0] = 1 and CPUID.05H:ECX[bit 3] = 0. If current privilege level is not 0. Real Address Mode Exceptions #GP If ECX[31:1] ≠ 0. #UD If CPUID.01H:ECX.MONITOR[bit 3] = 0. If ECX[0] = 1 and CPUID.05H:ECX[bit 3] = 0. Virtual 8086 Mode Exceptions #UD The MWAIT instruction is not recognized in virtual-8086 mode (even if CPUID.01H:ECX.MONITOR[bit 3] = 1). Compatibility Mode Exceptions Same exceptions as in protected mode. 64-Bit Mode Exceptions #GP(0) If RCX[63:1] ≠ 0. If RCX[0] = 1 and CPUID.05H:ECX[bit 3] = 0. #UD If the current privilege level is not 0. If CPUID.01H:ECX.MONITOR[bit 3] = 0. MWAIT—Monitor Wait Vol. 2A 3-775 INSTRUCTION SET REFERENCE, A-M 3-776 Vol. 2A MWAIT—Monitor Wait
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : Yes Encryption : Standard V4.4 (128-bit) User Access : Print, Modify, Copy, Annotate, Fill forms, Extract, Print high-res Author : Intel Corporation Create Date : 2010:12:28 15:59:25Z Modify Date : 2010:12:28 16:28:43-08:00 XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00 Format : application/pdf Title : Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A Creator : Intel Corporation Creator Tool : FrameMaker 7.1 Metadata Date : 2010:12:28 16:28:43-08:00 Producer : Acrobat Distiller 9.0.0 (Windows) Document ID : uuid:3c304e38-5da9-419c-9e0d-df432a2c4cbc Instance ID : uuid:65bc729a-4b88-4c73-a485-42d459b71e4e Page Mode : UseOutlines Page Count : 848EXIF Metadata provided by EXIF.tools