Quectel Wireless Solutions 201708EC21E LTE Module User Manual XMR201708EC21E Rev1

Quectel Wireless Solutions Company Limited LTE Module XMR201708EC21E Rev1

User Manual

    EC LTEM Rev.  Date:C21Module SEC21_Ha 2017-03HaSeries ardware_3-01 rdw_Design_war_V1.4 re DDeswsignwww.quecten l.com
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 1 / 94     Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:  Quectel Wireless Solutions Co., Ltd.   Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233 Tel: +86 21 5108 6236 Email:info@quectel.com  Or our local office.For more information, please visit:   http://www.quectel.com/support/salesupport.aspx   For technical support, or to report documentation errors, please visit:   http://www.quectel.com/support/techsupport.aspx Or email to: Support@quectel.com   GENERAL NOTES QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.     COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.    Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 2 / 94    About the Document  History  Revision  Date  Author  Description 1.0 2016-04-15 Yeoman CHEN Initial 1.1 2016-09-22 Yeoman CHEN/ Frank WANG/ Lyndon LIU 1.  Updated frequency bands in Table 1. 2.  Updated transmitting power, supported maximum baud rate of main UART, supported internet protocols, supported USB drivers of USB interface, and temperature range in Table 2. 3.  Updated timing of turning on module in Figure 12. 4.  Updated timing of turning off module in Figure 13. 5.  Updated timing of resetting module in Figure 16. 6.  Updated main UART supports baud rate in Chapter 3.11. 7.  Added notes for ADC interface in Chapter 3.13. 8.  Updated GNSS Performance in Table 21. 9.  Updated operating frequencies of module in Table 23. 10. Added current consumption in Chapter 6.4. 11. Updated RF output power in Chapter 6.5. 12. Added RF receiving sensitivity in Chapter 6.6. 1.2 2016-11-04 Lyndon LIU/ Michael ZHANG 1.  Added SGMII and WLAN interfaces in Table 2. 2.  Updated function diagram in Figure 1. 3.  Updated pin assignment (Top View) in Figure 2. 4.  Added description of SGMII and WLAN interfaces in Table 4. 5.  Added SGMII interface in Chapter 3.17. 6.  Added WLAN interface in Chapter 3.18. 7.  Added USB_BOOT interface in Chapter 3.19. 8.  Added reference design of RF layout in Chapter 5.1.4. 9.  Added current consumption of EC21-V in Chapter
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 3 / 94    6.4. 10. Added note about SIMO in Chapter 6.6. 1.3 2017-01-24 Lyndon LIU/ Rex WANG 1.  Updated frequency bands in Table 1. 2.  Updated function diagram in Figure 1. 3.  Updated pin assignment (top view) in Figure 2. 4.  Added BT interface in Chapter 3.18.2. 5.  Updated reference circuit of wireless connectivity interfaces with FC20 module in Figure 29. 6.  Updated GNSS performance in Table 24. 7.  Updated module operating frequencies in Table 26. 8.  Added EC21-AUV current consumption in Table 38. 9.  Updated EC21-A conducted RF receiving sensitivity of in Table 42. 10. Added EC21-J conducted RF receiving sensitivity in Table 48. 1.4 2017-03-01 Geely YANG Deleted the LTE band TDD B41 of EC21-CT
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 4 / 94    Contents About the Document ................................................................................................................................ 2 Contents .................................................................................................................................................... 4 Table Index ............................................................................................................................................... 6 Figure Index .............................................................................................................................................. 8 1 Introduction ..................................................................................................................................... 10 1.1. Safety Information ..................................................................................................................11 2 Product Concept ............................................................................................................................. 12 2.1. General Description .............................................................................................................. 12 2.2. Key Features ......................................................................................................................... 13 2.3. Functional Diagram ............................................................................................................... 15 2.4. Evaluation Board ................................................................................................................... 16 3 Application Interfaces ..................................................................................................................... 17 3.1. General Description .............................................................................................................. 17 3.2. Pin Assignment ..................................................................................................................... 18 3.3. Pin Description ...................................................................................................................... 19 3.4. Operating Modes .................................................................................................................. 28 3.5. Power Saving ........................................................................................................................ 28 3.5.1. Sleep Mode.................................................................................................................. 28 3.5.1.1. UART Application ............................................................................................... 28 3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 29 3.5.1.3. USB Application with USB Suspend/Resume and RI Function ..........................  30 3.5.1.4. USB Application without USB Suspend Function ............................................... 31 3.5.2. Airplane Mode .............................................................................................................. 32 3.6. Power Supply ........................................................................................................................ 32 3.6.1. Power Supply Pins ....................................................................................................... 32 3.6.2. Decrease Voltage Drop ................................................................................................  33 3.6.3. Reference Design for Power Supply ............................................................................ 34 3.6.4. Monitor the Power Supply ............................................................................................  35 3.7. Turn on and off Scenarios ..................................................................................................... 35 3.7.1. Turn on Module Using the PWRKEY ........................................................................... 35 3.7.2. Turn off Module ............................................................................................................  37 3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 37 3.7.2.2. Turn off Module Using AT Command ................................................................. 37 3.8. Reset the Module .................................................................................................................. 38 3.9. USIM Card Interface ............................................................................................................. 39 3.10. USB Interface ........................................................................................................................ 41 3.11. UART Interfaces .................................................................................................................... 43 3.12. PCM and I2C Interfaces ........................................................................................................ 45 3.13. ADC Function ........................................................................................................................ 48 3.14. Network Status Indication ..................................................................................................... 49
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 5 / 94    3.15. STATUS ................................................................................................................................ 50 3.16. Behavior of the RI ................................................................................................................. 51 3.17. SGMII Interface ..................................................................................................................... 51 3.18. Wireless Connectivity Interfaces ........................................................................................... 54 3.18.1. WLAN Interface ........................................................................................................... 56 3.18.2. BT Interface* ................................................................................................................  56 3.19. USB_BOOT Interface ............................................................................................................ 57 4 GNSS Receiver ................................................................................................................................ 58 4.1. General Description .............................................................................................................. 58 4.2. GNSS Performance .............................................................................................................. 58 4.3. Layout Guidelines ................................................................................................................. 59 5 Antenna Interfaces .......................................................................................................................... 60 5.1. Main/Rx-diversity Antenna Interface ..................................................................................... 60 5.1.1. Pin Definition ................................................................................................................ 60 5.1.2. Operating Frequency ................................................................................................... 60 5.1.3. Reference Design of RF Antenna Interface ................................................................. 61 5.1.4. Reference Design of RF Layout ................................................................................... 62 5.2. GNSS Antenna Interface ....................................................................................................... 64 5.3. Antenna Installation .............................................................................................................. 65 5.3.1. Antenna Requirement ..................................................................................................  65 5.3.2. Recommended RF Connector for Antenna Installation ................................................  66 6 Electrical, Reliability and Radio Characteristics .......................................................................... 68 6.1. Absolute Maximum Ratings .................................................................................................. 68 6.2. Power Supply Ratings ........................................................................................................... 68 6.3. Operating Temperature ......................................................................................................... 69 6.4. Current Consumption ............................................................................................................ 70 6.5. RF Output Power .................................................................................................................. 76 6.6. RF Receiving Sensitivity ....................................................................................................... 76 6.7. Electrostatic Discharge ......................................................................................................... 80 7 Mechanical Dimensions.................................................................................................................. 81 7.1. Mechanical Dimensions of the Module.................................................................................. 81 7.2. Recommended Footprint ....................................................................................................... 83 7.3. Design Effect Drawings of the Module .................................................................................. 84 8 Storage, Manufacturing and Packaging ........................................................................................ 85 8.1. Storage ................................................................................................................................. 85 8.2. Manufacturing and Soldering ................................................................................................ 86 8.3. Packaging ............................................................................................................................. 87 9 Appendix A References .................................................................................................................. 88 10 Appendix B GPRS Coding Schemes ............................................................................................. 92 11 Appendix C GPRS Multi-slot Classes ............................................................................................ 93 12 Appendix D EDGE Modulation and Coding Schemes .................................................................. 94
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 6 / 94    Table Index TABLE 1: FREQUENCY BANDS OF EC21 SERIES MODULE ........................................................................  12TABLE 2: KEY FEATURES OF EC21 MODULE ............................................................................................... 13TABLE 3: I/O PARAMETERS DEFINITION ....................................................................................................... 19TABLE 4: PIN DESCRIPTION ........................................................................................................................... 19TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................. 28TABLE 6: VBAT AND GND PINS ....................................................................................................................... 33TABLE 7: PWRKEY PIN DESCRIPTION .......................................................................................................... 35TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 38TABLE 9: PIN DEFINITION OF THE USIM CARD INTERFACE ...................................................................... 39TABLE 10: PIN DESCRIPTION OF USB INTERFACE ..................................................................................... 41TABLE 11: PIN DEFINITION OF THE MAIN UART INTERFACE .....................................................................  43TABLE 12: PIN DEFINITION OF THE DEBUG UART INTERFACE .................................................................  43TABLE 13: LOGIC LEVELS OF DIGITAL I/O .................................................................................................... 44TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ....................................................................... 46TABLE 15: PIN DEFINITION OF THE ADC ...................................................................................................... 48TABLE 16: CHARACTERISTIC OF THE ADC .................................................................................................. 48TABLE 17: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ...................... 49TABLE 18: WORKING STATE OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ................... 49TABLE 19: PIN DEFINITION OF STATUS ........................................................................................................ 50TABLE 20: BEHAVIOR OF THE RI ................................................................................................................... 51TABLE 21: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 52TABLE 22: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ................................................  54TABLE 23: PIN DEFINITION OF USB_BOOT INTERFACE ............................................................................. 57TABLE 24: GNSS PERFORMANCE ................................................................................................................. 58TABLE 25: PIN DEFINITION OF THE RF ANTENNA ....................................................................................... 60TABLE 26: MODULE OPERATING FREQUENCIES ........................................................................................ 60TABLE 27: PIN DEFINITION OF GNSS ANTENNA INTERFACE ..................................................................... 64TABLE 28: GNSS FREQUENCY ....................................................................................................................... 64TABLE 29: ANTENNA REQUIREMENTS .......................................................................................................... 65TABLE 30: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 68TABLE 31: POWER SUPPLY RATINGS ........................................................................................................... 68TABLE 32: OPERATING TEMPERATURE ........................................................................................................ 69TABLE 33: EC21-A CURRENT CONSUMPTION ............................................................................................. 70TABLE 34: EC21-AUT CURRENT CONSUMPTION ........................................................................................ 71TABLE 35: EC21-E CURRENT CONSUMPTION ............................................................................................. 72TABLE 36: EC21-KL CURRENT CONSUMPTION ........................................................................................... 73TABLE 37: EC21-V CURRENT CONSUMPTION ............................................................................................. 74TABLE 38: EC21-AUV CURRENT CONSUMPTION ........................................................................................ 74TABLE 39: GNSS CURRENT CONSUMPTION OF EC21 SERIES MODULE ................................................. 75TABLE 40: RF OUTPUT POWER ..................................................................................................................... 76TABLE 41: EC21-E CONDUCTED RF RECEIVING SENSITIVITY ..................................................................  76
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 7 / 94    TABLE 42: EC21-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 77TABLE 43: EC21-V CONDUCTED RF RECEIVING SENSITIVITY ..................................................................  77TABLE 44: EC21-AUT CONDUCTED RF RECEIVING SENSITIVITY ............................................................. 77TABLE 45: EC21-AUTL CONDUCTED RF RECEIVING SENSITIVITY ........................................................... 78TABLE 46: EC21-KL CONDUCTED RF RECEIVING SENSITIVITY ................................................................  78TABLE 47: EC21-CT CONDUCTED RF RECEIVING SENSITIVITY ................................................................ 78TABLE 48: EC21-J CONDUCTED RF RECEIVING SENSITIVITY................................................................... 79TABLE 49: EC21-AUV CONDUCTED RF RECEIVING SENSITIVITY .............................................................  79TABLE 50: ELECTROSTATIC DISCHARGE CHARACTERISTICS ................................................................. 80TABLE 51: RELATED DOCUMENTS ................................................................................................................ 88TABLE 52: TERMS AND ABBREVIATIONS ...................................................................................................... 88TABLE 53: DESCRIPTION OF DIFFERENT CODING SCHEMES .................................................................. 92TABLE 54: GPRS MULTI-SLOT CLASSES ...................................................................................................... 93TABLE 55: EDGE MODULATION AND CODING SCHEMES ...........................................................................  94
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 8 / 94    Figure Index FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 16FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 18FIGURE 3: SLEEP MODE APPLICATION VIA UART ....................................................................................... 29FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 30FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 31FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 31FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ......................................................  33FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY ............................................................................ 34FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 34FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................. 35FIGURE 11: TURN ON THE MODULE USING KEYSTROKE ..........................................................................  36FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 36FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 37FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 38FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 38FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 39FIGURE 17: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH AN 8-PIN USIM CARD CONNECTOR .................................................................................................................................................... 40FIGURE 18: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECTOR ........................................................................................................................................................................... 40FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 42FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 44FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 45FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 46FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 46FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 47FIGURE 25: REFERENCE CIRCUIT OF THE NETWORK INDICATOR .......................................................... 50FIGURE 26: REFERENCE CIRCUITS OF STATUS ......................................................................................... 50FIGURE 27: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 52FIGURE 28: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION ................. 53FIGURE 29: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE ........................................................................................................................................................................... 55FIGURE 30: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 57FIGURE 31: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................. 61FIGURE 32: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ...................................................................... 62FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB ..................................................  62FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GROUND) .......................................................................................................................................................... 63FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GROUND) .......................................................................................................................................................... 63FIGURE 36: REFERENCE CIRCUIT OF GNSS ANTENNA .............................................................................  64
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 9 / 94    FIGURE 37: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) ................................................ 66FIGURE 38: MECHANICALS OF UF.L-LP CONNECTORS ............................................................................. 66FIGURE 39: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ........................................................... 67FIGURE 40: MODULE TOP AND SIDE DIMENSIONS ..................................................................................... 81FIGURE 41: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 82FIGURE 42: RECOMMENDED FOOTPRINT (TOP VIEW) .............................................................................. 83FIGURE 43: TOP VIEW OF THE MODULE ...................................................................................................... 84FIGURE 44: BOTTOM VIEW OF THE MODULE .............................................................................................. 84FIGURE 45: REFLOW SOLDERING THERMAL PROFILE .............................................................................. 86FIGURE 46: TAPE AND REEL SPECIFICATIONS ........................................................................................... 87
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 10 / 94    1 Introduction  This document defines the EC21module and describes its air interface and hardware interface which are connected with your application.  This document can help you quickly understand module interface specifications, electrical andmechanical details, as well as other related information of EC21 module. Associated with application note and user guide, you can use EC21 module to design and set up mobile applications easily.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 11 / 94    1.1. Safety Information  The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC21 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, andincorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customer’s failure to comply with these precautions.   Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.  Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft.  Switch off your wireless device when in hospitals,clinics or other health care facilities. These requests are designed to prevent possible interference with sensitive medical equipment.    Cellular terminals or mobiles operatingover radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid USIM/SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.  Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.  In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres includefuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 12 / 94    2 Product Concept  2.1. General Description  EC21 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive diversity. It provides data connectivity on LTE-FDD, LTE-TDD,DC-HSPA+, HSPA+, HSDPA, HSUPA, WCDMA,EDGE andGPRSnetworks. It also provides GNSS1) and voice functionality2) for your specific applications.EC21 contains tenvariants:EC21-E, EC21-A, EC21-V, EC21-AUT, EC21-AU,EC21-AUV,EC21-AUTL, EC21-J, EC21-CT and EC21-KL. You can choose a dedicated type based on the region or operator. The following table shows the frequency bands of EC21 series module.  Table 1: Frequency Bands of EC21 Series Module  Modules2) LTE Bands  3G Bands  GSM  Rx- diversity  GNSS1) EC21-E  FDD:B1/B3/B5/B7/B8/B20  WCDMA:B1/B5/B8  900/1800 Y GPS,  GLONASS, BeiDou/ Compass, Galileo,QZSS EC21-A  FDD:B2/B4/B12  WCDMA:B2/B4/B5  N Y EC21-V  FDD:B4/B13 N N Y EC21-AUT  FDD:B1/B3/B5/B7/B28  WCDMA: B1/B5  N Y EC21-AU3) FDD: B1/B2/B3/B4/B5/B7/B8/ B28 TDD: B40 WCDMA: B1/B2/B5/B8 850/900/ 1800/1900 Y EC21-AUV  FDD: B1/B3/B5/B8/B28  B1/B5/B8  N  Y  N EC21-AUTL  FDD:B3/B7/B28 N N Y N EC21-J  FDD: B1/B3/B8/B18/B19/B26  N  N  Y  N EC21-CT  FDD:B1/B3/B5 N N N N EC21-KL  FDD:B1/B3/B5/B7/B8 N  N Y N
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 13 / 94     1.  1) GNSS function is optional. 2.  2) EC21 series module (EC21-E, EC21-A, EC21-V, EC21-AUT, EC21-AU,EC21-AUV, EC21-AUTL, EC21-J, EC21-CT and EC21-KL) includes Data-only and Telematics versions. Data-only version does not support voice function, while Telematics version supports it. 3.  3) B2 band on EC21-AU module does not support Rx-diversity. 4.  Y = supported (including LTE and WCDMA). N = Not supported.    With a compact profile of 32.0mm ×29.0mm ×2.4mm, EC21 can meet almost all requirements for M2M applications such as automotive, metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone,tablet PC, etc.  EC21 is an SMD type module which can be embedded into applications through its 144-pin pads, including 80LCC signal pads and 64 other pads.  2.2. Key Features  The following table describes the detailed features of EC21 module.    Table 2: Key Features of EC21 Module Features  Details Power Supply  Supply voltage: 3.3V~4.3VTypical supply voltage: 3.8V Transmitting Power Class 4 (33dBm±2dB) for GSM900 Class 1 (30dBm±2dB) for DCS1800 Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class 3 (22.5dBm -3/+1dB) for WCDMA bands Class 3 (22.5dBm -3/+1dB) for LTE-FDD bands Class 3 (22.5dBm -3/+1dB) for LTE-TDD bands LTE Features Support up to non-CA CAT1 Support 1.4 to 20MHz RF bandwidth SupportMIMO in DL direction FDD: Max 5Mbps (UL), 10Mbps (DL) TDD: Max 3.1Mbps(UL), 8.96Mbps(DL) WCDMA Features Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSKmodulation 3GPP R6 CAT6 HSUPA: Max 5.76Mbps (UL) NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 14 / 94    3GPP R8 CAT24 DC-HSPA+: Max 42Mbps (DL) GSMFeatures R99: CSD: 9.6kbps, 14.4kbps GPRS: Support GPRS multi-slot class 12 (12 by default) Coding scheme: CS-1, CS-2, CS-3 and CS-4 Maximum of four Rx time slots per frame EDGE: Support EDGE multi-slot class 12 (12 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Internet Protocol FeaturesSupport TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/MMS*/FTPS*/SSL*protocols Support PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) protocols which are usually used for PPP connections SMS Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default USIM Interface  Support USIM/SIM card: 1.8V, 3.0V Audio Features Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression PCM Interface Used for audio function with external codec Support 8-bit A-law*, μ-law*and 16-bit linear data formats Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization USB Interface Compliant with USB 2.0 specification (slave only);the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA output, software debugging, firmware upgradeand voice over USB* SupportUSB drivers for Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Window 10, Linux 2.6 or later, Android 4.0/4.2/4.4/5.0/5.1/6.0 UART Interface  Main UART: Used for AT command communication and data transmission
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 15 / 94    Baud rate reach up to 3000000bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART: Used for Linux console, log output 115200bps baud rate SGMII Interface  Support 10/100/1000Mbps Ethernet connectivity Wireless Connectivity Interfaces Support a low-power SDIO 3.0 interface for WLAN and UART/PCM interface for Bluetooth* Rx-diversity Support LTE/WCDMA Rx-diversity GNSS Features  Gen8CLite of Qualcomm Protocol: NMEA 0183 AT Commands  Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands Network Indication  Two pins including NET_MODE and NET_STATUS to indicate network connectivity status Antenna Interface  Including main antennainterface(ANT_MAIN), Rx-diversity antenna interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS) Physical Characteristics  Size: (32.0±0.15)×(29.0±0.15)×(2.4±0.2)mm Weight: approx. 4.9g Temperature Range    Operation temperature range: -35°C ~ +75°C1) Extended temperature range: -40°C ~ +85°C2) Firmware Upgrade  USB interfaceand DFOTA* RoHS  All hardware components are fully compliant with EU RoHS directive   1.  1) Within operating temperature range, the module is 3GPP compliant. 2.  2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operating temperature levels, the module will meet 3GPP specificationsagain. 3.  “*” means under development.    2.3. Functional Diagram  NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 16 / 94    The following figure shows a block diagram of EC21 and illustrates the major functional parts.     Power management  Baseband  DDR+NAND flash  Radio frequency   Peripheral interfaces BasebandPMICTransceiverNANDDDR2SDRAMPASwitchLNASwitchANT_MAIN ANT_DIVANT_GNSSVBAT_BBVBAT_RFAPTPWRKEYADCsVDD_EXT USB USIM PCM UARTI2CRESET_N19.2MXOSTATUSGPIOsSAWControlIQ ControlDuplexSAWTxPRx DRxSGMII WLAN BT Figure 1: Functional Diagram  2.4. Evaluation Board  In order to help youdevelop applications with EC21, Quectel supplies an evaluation board (EVB), USB data cable, earphone, antenna and other peripherals to control or test the module.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 17 / 94    3 Application Interfaces  3.1. General Description  EC21 is equipped with 80-pin SMT pads plus 64-pin ground pads and reserved pads that can beconnected to cellular application platform. Sub-interfaces included in these pads are described in detail in the following chapters:   Power supply  USIM interface  USB interface  UART interfaces  PCM interface  ADC interface  Status indication  SGMII interface   Wireless connectivity interfaces  USB_BOOT interface
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 18 / 94    3.2. Pin Assignment  The following figure shows the pin assignment of EC21 module.  Figure 2: Pin Assignment (Top View)   1.  1)means that these pins cannot be pulled up before startup. 2.  2) PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.   3.  Pads 119~126 are SGMII function pins. 4.  Pads 37~40, 118, 127 and 129~139 are wireless connectivity interfaces, among which pads 127 and 129~138 are WLAN function pins, and others are Bluetooth (BT) function pins. BT function is under development. 5.  Pads 24~27 are multiplexing pinsused for audio design on EC21 module and BT function on FC20 NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 19 / 94    module. 6.  Keep all RESERVEDpins and unused pins unconnected. 7.  GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84should not be designed in schematic and PCB decal. 8. “※” means these interface functions are only supported on Telematics version.   3.3. Pin Description  The following tables show the pin definition of EC21 module.  Table 3: I/O Parameters Definition Type  Description IO Bidirectional  DI Digital input DO Digital output PI Power input PO Power output AI Analog input AO Analog output OD Open drain  Table 4: Pin Description Power Supply   Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   VBAT_BB 59,60  PI Power supply for module baseband part Vmax=4.3V Vmin=3.3V Vnorm=3.8V It must be able to provide sufficient current up to 0.8A. VBAT_RF 57,58  PI Power supply for module RF part Vmax=4.3V Vmin=3.3V Vnorm=3.8V It must be able to provide sufficient current up to 1.8A in a burst transmission.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 20 / 94    VDD_EXT 7  PO Provide 1.8V for external circuit Vnorm=1.8V IOmax=50mA Power supply for external GPIO’s pull up circuits. GND 8,9,19,22,36,46,48,50~54,56,72, 85~112  Ground    Turn on/off Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   PWRKEY 21  DI Turnon/off the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V The output voltage is 0.8V because of the diode drop in the Qualcomm chipset. RESET_N  20  DI  Reset the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V  Status Indication Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   STATUS 61  OD Indicate the module operating status The drive current should be less than 0.9mA. Require external pull-up. If unused, keep it open. NET_MODE 5  DO Indicate the module network registration mode VOHmin=1.35V VOLmax=0.45V 1.8V power domain. Cannot be pulled up before startup. If unused, keep it open.NET_ STATUS  6 DO Indicate the module network activity status VOHmin=1.35V VOLmax=0.45V 1.8V power domain. If unused, keep it open.USB Interface Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   USB_VBUS 71  PI  USB detection  Vnorm=5.0V   USB_DP 69  IO USB differential data bus Compliant with USB 2.0 standard specification. Require differential impedance of 90ohm. USB_DM 70  IO USB differential data bus Compliant with USB 2.0 standard specification. Require differential impedance of 90ohm.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 21 / 94    USIM Interface Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   USIM_GND 10    Specified ground for USIM card    USIM_VDD 14  PO Power supply for USIM card For 1.8V USIM: Vmax=1.9V Vmin=1.7V  For 3.0V USIM: Vmax=3.05V Vmin=2.7V IOmax=50mA Either 1.8V or 3.0V is supported by the module automatically. USIM_DATA 15  IO  Data signal of USIM card For 1.8V USIM: VILmax=0.6V VIHmin=1.2V VOLmax=0.45V VOHmin=1.35V  For 3.0V USIM: VILmax=1.0V VIHmin=1.95V VOLmax=0.45V VOHmin=2.55V  USIM_CLK 16  DO Clock signal of USIM card For 1.8V USIM: VOLmax=0.45V VOHmin=1.35V  For 3.0V USIM: VOLmax=0.45V VOHmin=2.55V  USIM_RST 17  DO Reset signal of USIM card For 1.8V USIM: VOLmax=0.45V VOHmin=1.35V  For 3.0V USIM: VOLmax=0.45V VOHmin=2.55V  USIM_ PRESENCE  13 DI USIM card insertion detection VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 22 / 94    UART Interface Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   RI 62 DO Ring indicator VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open.DCD 63 DO Data carrier detection VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open.CTS  64  DO  Clear to send  VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open.RTS 65 DI Request to send VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open.DTR 66 DI Data terminal ready,sleep mode control VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open.TXD 67 DO Transmit data VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open.RXD 68 DI Receive data VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open.Debug UART Interface Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   DBG_TXD 12  DO Transmit data  VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open.DBG_RXD 11  DI Receive data VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open.ADC Interface Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   ADC0 45  AI General purpose analog to digital converter Voltage range: 0.3V to VBAT_BB  If unused, keep it open.ADC1 44  AI General purpose analog to digital converter Voltage range: 0.3V to VBAT_BB  If unused, keep it open.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 23 / 94    PCM Interface Pin Name    Pin No.  I/O  Description    DC Characteristics  Comment   PCM_IN  24  DI  PCM data input VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open.PCM_OUT  25  DO  PCM data output  VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open.PCM_SYNC 26  IO PCM data frame synchronization signal VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. In master mode, it is an output signal.   In slave mode, it is an input signal. If unused, keep it open.PCM_CLK 27  IO PCM clock VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain.   In master mode, it is an output signal.   In slave mode, it is an input signal. If unused, keep it open.I2C Interface Pin Name  Pin No.  I/O  Description    DC Characteristics  Comment   I2C_SCL 41  OD I2C serial clock. Used for external codec  External pull-up resistor is required. 1.8V only.   If unused, keep it open.I2C_SDA 42  OD I2C serial data. Used for external codec  External pull-up resistor is required. 1.8V only.   If unused, keep it open.SGMII Interface Pin Name  Pin No.  I/O  Description    DC Characteristics    Comment   EPHY_RST_N  119  DO  Ethernet PHY reset For 1.8V: VOLmax=0.45V VOHmin=1.4V  For 2.85V: VOLmax=0.35V VOHmin=2.14V 1.8V/2.85V power domain. If unused, keep it open.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 24 / 94    EPHY_INT_N 120  DI  Ethernet PHY interrupt VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. SGMII_ MDATA  121 IO SGMII MDIO (Management Data Input/Output) data For 1.8V: VOLmax=0.45V VOHmin=1.4V VILmax=0.58V VIHmin=1.27V  For 2.85V: VOLmax=0.35V VOHmin=2.14V VILmax=0.71V VIHmin=1.78V 1.8V/2.85V power domain. If unused, keep it open. SGMII_ MCLK  122 DO SGMII MDIO (Management Data Input/Output) clock For 1.8V: VOLmax=0.45V VOHmin=1.4V  For 2.85V: VOLmax=0.35V VOHmin=2.14V 1.8V/2.85V power domain. If unused, keep it open. USIM2_VDD 128  PO SGMII MDIO pull-up power source   Configurable power source.  1.8V/2.85V power domain. External pull-up for SGMII MDIO pins. If unused, keep it open. SGMII_TX_M 123  AO SGMII transmission - minus   If unused, keep it open. SGMII_TX_P 124  AO SGMII transmission - plus   If unused, keep it open. SGMII_RX_P 125  AI  SGMII receiving - plus   If unused, keep it open. SGMII_RX_M 126  AI  SGMII receiving -minus   If unused, keep it open. Wireless Connectivity Interfaces Pin Name  Pin No.  I/O  Description    DC Characteristics    Comment   SDC1_ DATA3  129  IO  SDIO data bus D3  VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 25 / 94    VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V open. SDC1_ DATA2  130  IO  SDIO data bus D2 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. SDC1_ DATA1  131  IO  SDIO data bus D1 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. SDC1_ DATA0  132  IO  SDIO data bus D1 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. SDC1_CLK 133  DO SDIO clock  VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. SDC1_CMD 134  DO SDIO command  VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. PM_ENABLE 127  DO External power control VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. WAKE_ON_ WIRELESS  135 DI Wake up the host (EC21 module) by FC20 module. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Active low. If unused, keep it open. WLAN_EN 136  DO WLAN function controlvia FC20 module VOLmax=0.45V VOHmin=1.35V 1.8V power domain. Active high. If unused, keep it open. COEX_UART_RX  137 DI LTE/WLAN coexistence signal VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 26 / 94    COEX_UART_TX  138 DO LTE/WLAN coexistence signal VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. WLAN_SLP_ CLK  118  DO  WLAN sleep clock    If unused, keep it open. BT_RTS* 37  DI BT UART request to send VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. BT_TXD* 38  DO BT UART transmit data VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. BT_RXD* 39  DI BT UART receive data VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. BT_CTS* 40  DO BT UART clear to send VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. BT_EN* 139 DO BTfunctioncontrolvia FC20 module VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. RF Interface Pin Name    Pin No.  I/O  Description    DC Characteristics    Comment   ANT_DIV 35  AI Diversity antenna pad  50ohm impedance  If unused, keep it open. ANT_MAIN  49  IO  Main antenna pad  50ohm impedance   ANT_GNSS  47  AI  GNSS antenna pad  50 ohm impedance  If unused, keep it open. GPIO Pins Pin Name  Pin No.  I/O  Description    DC Characteristics    Comment   WAKEUP_IN 1  DI  Sleep mode control VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain.   Cannot be pulled up before startup.   Low level wakes up the module.   If unused, keep it open. W_DISABLE# 4  DI  Airplane mode  VILmin=-0.3V 1.8V power domain.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 27 / 94    control VILmax=0.6V VIHmin=1.2V VIHmax=2.0V Pull-up by default. In low voltage level, module can enter into airplane mode. If unused, keep it open. AP_READY 2  DI Application processor sleep state detection VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. Other Interface Pins Pin Name    Pin No.  I/O  Description    DC Characteristics    Comment   USB_BOOT 115  DI Force the module to boot from USB port. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. RESERVED Pins Pin Name    Pin No.  I/O  Description    DC Characteristics    Comment   RESERVED 3, 18, 23, 28~34, 43, 55, 73~84, 113, 114, 116, 117, 140~144  Reserved   Keep these pins unconnected.   1.  “*” means under development. 2.  Pads 24~27 are multiplexing pins used for audio design on EC21 module and BT function on FC20 module.          NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 28 / 94    3.4. Operating Modes  The table below briefly summarizes the various operating modes referred in the following chapters.  Table 5: Overview of Operating Modes Mode  Details  Normal Operation Idle  Software is active. The module hasbeen registered onthe network, and it is ready to send and receive data. Talk/Data  Network connection is ongoing. In this mode, the power consumption is decided by network settingand data transfer rate. Minimum Functionality Mode AT+CFUN  command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and USIM card will be invalid. Airplane Mode AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid. Sleep Mode In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally. Power down Mode In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.  3.5. Power Saving 3.5.1. Sleep Mode EC21 is able to reduce its current consumption to a minimum value during the sleep mode. The following section describes power saving procedure of EC21 module.  3.5.1.1. UART Application If the host communicates with module via UART interface, the following preconditions can let the module enter into sleep mode.   Execute AT+QSCLK=1 command to enable sleep mode.   Drive DTR to high level.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 29 / 94    The following figure shows the connection between the module and the host.  Figure 3: Sleep Mode Application via UART    Driving thehost DTR to low level will wake up the module.     When EC21 has URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details about RI behavior.   AP_READY will detect the sleep state of the host (can be configured to high level or low level detection). Please refer to AT+QCFG=“apready”command for details.   AT+QCFG=“apready”commandis under development.    3.5.1.2. USB Application with USB Remote Wakeup Function If the host supports USB suspend/resume and remote wakeup functions, the following threepreconditionsmust be mettolet the module enter into sleep mode.   Execute AT+QSCLK=1command to enable sleep mode.   Ensure the DTR is held in high level or keep it open.   The host’s USB bus, which is connected with the module’s USB interface, enters into suspended state.        NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 30 / 94    The following figure shows the connection between the module and the host.  Figure 4: Sleep Mode Application withUSB Remote Wakeup    Sending data to EC21through USB will wake up the module.     When EC21has URC to report, the module will send remote wake-up signals via USB bus so as to wake up the host.  3.5.1.3.  USB Application with USB Suspend/Resume and RI Function If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host.    There are threepreconditions to let the module enter into the sleep mode.   Execute AT+QSCLK=1 command to enable sleep mode.   Ensure the DTR is held in high level or keep it open.   The host’s USB bus, which is connected with the module’s USB interface, enters into suspended state.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 31 / 94    The following figure shows the connection between the module and the host.  Figure 5: Sleep Mode Application with RI    Sending data to EC21through USB will wake up the module.     When EC21has URC to report, RI signal will wake up the host.    3.5.1.4. USB Application without USB Suspend Function If the host does not support USB suspend function, you should disconnect USB_VBUS with additional control circuit to let the module enter into sleep mode.   Execute AT+QSCLK=1command to enable sleep mode.   Ensure the DTR is held in high level or keep it open.  Disconnect USB_VBUS.  The following figure shows the connection between the module and the host.  Figure 6: Sleep Mode Application without Suspend Function
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 32 / 94    Switching on the power switch to supply power to USB_VBUS will wake up the module.   Please pay attention to the level match shown in dotted line between the module and thehost.Refer to document [1] for more details about EC21 power management application.  3.5.2. Airplane Mode When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways.  Hardware: The W_DISABLE# pin is pulled up by default;driving it to low level will let the module enter into airplane mode.  Software: AT+CFUNcommand provides the choice of the functionality level.   AT+CFUN=0: Minimum functionality mode;both USIM and RF functions are disabled.  AT+CFUN=1: Full functionality mode (by default).  AT+CFUN=4: Airplane mode. RF function is disabled.   1.  The W_DISABLE# control function is disabled in firmware by default. It can be enabled by AT+QCFG=“airplanecontrol” command. This commandis under development. 2.  The execution of AT+CFUN command will not affect GNSS function.  3.6. Power Supply 3.6.1.  Power Supply Pins EC21 provides four VBAT pins for connection with the external power supply. There are two separate voltage domains for VBAT.      Two VBAT_RF pins for module RF part.   Two VBAT_BB pins for module baseband part.  The following table shows the details of VBAT pins and ground pins. NOTES NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 33 / 94    Table 6: VBAT and GND Pins Pin Name    Pin No.  Description  Min.  Typ.  Max.  Unit VBAT_RF 57,58  Power supply for module RF part.  3.3 3.8 4.3 V VBAT_BB 59,60  Power supply for module baseband part.  3.3 3.8 4.3 V GND 8,9,19,22,36,46, 48,50~54,56, 72, 85~112 Ground - 0 - V  3.6.2.  Decrease Voltage Drop The power supply range of the module is from 3.3Vto4.3V. Please make sure that the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network.The voltage drop will be less in 3G and 4G networks.  Figure 7: Power Supply Limits during Burst Transmission  To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and amulti-layer ceramic chip (MLCC) capacitorarray should also be used to provide the low ESR. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; andthe width of VBAT_RF trace should be no less than 2mm.In principle, the longerthe VBAT trace is, the wider it will be.  Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. These capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is suggested that you should use a zener diode of which reverse zener voltage is 5.1V and dissipation power is more than 0.5W. The following figure shows the star structure of the power supply.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 34 / 94     Figure 8: Star Structure of the Power Supply  3.6.3.  Reference Design for Power Supply Power design for the module is very important, asthe performance of the module largely depends on the power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that you shoulduse an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as thepower supply.  The following figure shows a reference design for +5V input power source. The typical output of the power supply is about 3.8V and the maximum load current is 3A.    Figure 9: Reference Circuit of Power Supply   In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be cut off.  NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 35 / 94    3.6.4.  Monitor the Power Supply AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to document [2].   3.7. Turn on and off Scenarios 3.7.1.  Turn on Module Using the PWRKEY The following table shows the pin definition of PWRKEY.  Table 7: PWRKEY Pin Description Pin Name    Pin No.  Description  DC Characteristics Comment PWRKEY  21  Turn on/off the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.  When EC21 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 100ms. It is recommended to use an open drain/collector driver to control the PWRKEY.After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure.  Figure 10: Turn on the Module Using Driving Circuit  The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shownin the following figure.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 36 / 94     Figure 11: Turn on the Module Using Keystroke  The turn on scenario is illustrated in the following figure.  Figure 12: Timing of Turning on Module   Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.  NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 37 / 94    3.7.2.  Turn off Module The following procedures can be used to turn off the module:    Normal power down procedure: Turn off the module using the PWRKEY pin.   Normal power down procedure: Turn off the module using AT+QPOWD command.  3.7.2.1.  Turn off Module Using the PWRKEY Pin Driving the PWRKEY pin to a low level voltagefor at least 650ms, the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated inthe following figure.  Figure 13: Timing of Turning off Module  3.7.2.2.  Turn off Module Using AT Command It is also a safe way to use AT+QPOWDcommandto turn off the module, which is similar to turning off the module via PWRKEY pin.  Please refer todocument [2] for details about AT+QPOWD command.   In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be cut off.  NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 38 / 94    3.8. Reset the Module  The RESET_N pin can be used to reset the module.The module can be reset by driving RESET_N to a low level voltage for time between 150ms and 460ms.  Table 8: RESET_N Pin Description Pin Name    Pin No.  Description  DC Characteristics  Comment RESET_N  20  Reset the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V   The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N. Reset pulseRESET_N4.7K47KTBD Figure 14: Reference Circuit of RESET_N by Using Driving Circuit   Figure 15: Reference Circuit of RESET_N by Using Button
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 39 / 94    The reset scenario is illustrated inthe following figure.  Figure 16: Timing of Resetting Module   1.  Use RESET_N only when turning off the module by AT+QPOWD command and PWRKEY pin failed. 2.  Ensure that there is no large capacitance on PWRKEY and RESET_N pins.  3.9. USIM Card Interface  The USIM card interface circuitrymeets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and 3.0V USIM cards are supported.  Table 9: Pin Definition of the USIM Card Interface Pin Name    Pin No. I/O  Description  Comment USIM_VDD  14  PO  Power supply for USIM card  Either 1.8V or 3.0V is supported by the module automatically. USIM_DATA  15  IO  Data signal of USIM card   USIM_CLK  16  DO  Clock signal of USIM card   USIM_RST  17  DO  Reset signal of USIM card   USIM_ PRESENCE  13  DI  USIM card insertion detection   USIM_GND  10    Specified ground for USIM card    NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 40 / 94    EC21 supports USIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and high level detections, and is disabled by default. Please refer to document [2] about AT+QSIMDET command for details.  The following figure shows a reference design for USIM card interface with an 8-pin USIM card connector.  Figure 17: Reference Circuit of USIM Card Interface with an 8-Pin USIM Card Connector  If USIM card detection function is not needed, please keep USIM_PRESENCE unconnected. Areference circuit for USIM card interface with a 6-pin USIM card connector is illustrated inthe following figure.  Figure 18: Reference Circuit of USIM Card Interface with a6-Pin USIM Card Connector
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 41 / 94    In order to enhance the reliability and availability of the USIM card in your application, please follow the criteria below in USIM circuit design:    Keep layout of USIM card as close to the module as possible. Keep the trace length as less than 200mm as possible.   Keep USIM card signals away from RF and VBAT traces.   Assure the ground between the module and the USIM card connectorshort and wide. Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.     To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away fromeach other and shield them with surrounded ground.     In order to offer good ESD protection, it is recommended to add a TVSdiode array whose parasitic capacitance should not be more than 50pF. The 22ohmresistors should be added in series between the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD protection. The 33pFcapacitors are used for filtering interference of GSM900.Please note that the USIM peripheral circuit should be close to the USIM card connector.   The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion areapplied, and should be placed close to the USIM card connector.  3.10. USB Interface  EC21 contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps)modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB interface.   Table 10: Pin Description of USB Interface Pin Name    Pin No.  I/O  Description   Comment USB Signal Part USB_DP  69  IO  USB differential data bus (positive)  Require differential impedance of 90Ω USB_DM  70  IO  USB differential data bus (minus)  Require differential impedance of 90Ω USB_VBUS  71  PI  Used for detecting the USB connection  Typical 5.0V GND 72   Ground    For more details about the USB 2.0 specifications, please visit http://www.usb.org/home.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 42 / 94    The USB interface is recommended to be reserved for firmware upgrade in your design. The following figure shows areference circuit of USB interface.  Figure 19: Reference Circuit of USB Application  In order to ensurethe integrity of USB data line signal, components R1, R2, R3 and R4 must be placed close to the module, and alsothese resistors should be placed close to each other. The extra stubs of trace must be as short as possible.  In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply with the following principles:    It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90ohm.   Do not route signal traces under crystals, oscillators, magnetic devicesorRF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding onnot only upper and lower layers but also right and left sides.   Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF.   Keep the ESD protection components to the USB connector as close as possible.   1.  EC21 module can only be used as a slave device. 2.  “*” means under development.   NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 43 / 94    3.11. UART Interfaces  The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features.   The main UART interface supports 4800, 9600,19200,38400, 57600,115200,230400,460800,921600and 3000000bps baud rates, and the default is 115200bps. The interface is used for data transmission and AT command communication.   The debug UART interface supports 115200bpsbaud rate. It is used forLinux console and log output.    The following tables show the pin definition of the main UART interface.  Table 11: Pin Definition of the Main UART Interface Pin Name    Pin No.  I/O  Description   Comment RI 62 DO Ring indicator 1.8V power domain DCD 63 DO Data carrier detection CTS  64  DO  Clear to send RTS 65 DI Request to send DTR 66 DI Sleep mode control TXD 67 DO Transmit data RXD 68 DI Receive data  Table 12: Pin Definition of the Debug UART Interface Pin Name    Pin No.  I/O  Description   Comment DBG_TXD 12  DO  Transmit data 1.8V power domain DBG_RXD 11  DI  Receive data       The logic levels are described in the following table.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 44 / 94     Table 13:Logic Levels of Digital I/O Parameter  Min.  Max.  Unit VIL -0.3 0.6 V VIH 1.2 2.0 V VOL 0  0.45 V VOH 1.35 1.8 V  The module provides 1.8V UART interface. A level translator should be used if your application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instrumentis recommended. The following figure shows areference design.  Figure 20: Reference Circuit with Translator Chip  Please visithttp://www.ti.comfor more information.  Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to the design of solid line section, in terms of both module input and output circuit designs; but please pay attention to the direction of connection.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 45 / 94     Figure 21: Reference Circuit with Transistor Circuit   Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.  3.12. PCM and I2C Interfaces  EC21 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes:    Primary mode (short frame synchronization, works as both master and slave)   Auxiliary mode (long framesynchronization, works as master only)  In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge.The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports 128,256,512,1024 and2048kHz for different speech codecs.  In auxiliary mode, the data is also sampled on the falling edge of the PCM_CLK and transmitted on the rising edge.But the PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only.  EC21 supports 8-bit A-law* andμ-law*, and also 16-bit linear data formats. The following figures show theprimary mode’s timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well asthe auxiliary mode’s timing relationship with 8kHz PCM_SYNC and 128kHz PCM_CLK. NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 46 / 94     Figure 22: Primary Mode Timing  Figure 23: Auxiliary Mode Timing  The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design.  Table 14: Pin Definition of PCM and I2C Interfaces Pin Name    Pin No.  I/O  Description   Comment PCM_IN  24  DI  PCM data input  1.8V power domain PCM_OUT  25  DO  PCM data output  1.8V power domain PCM_SYNC  26  IO  PCM data frame sync signal  1.8V power domain
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 47 / 94    PCM_CLK  27  IO  PCM data bit clock  1.8V power domain I2C_SCL  41  OD  I2C serial clock  Require external pull-up to 1.8V I2C_SDA  42  OD  I2C serial data  Require external pull-up to 1.8V  Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048kHzPCM_CLK and 8kHz PCM_SYNC.Please refer to document [2] about AT+QDAIcommand for details.  The following figure shows areference design of PCM interface with external codec IC.  Figure 24: Reference Circuit of PCM Application with Audio Codec   1.  “*” means under development. 2.  It is recommended to reserve RC (R=22ohm, C=22pF) circuit on the PCM lines, especially for PCM_CLK. 3.  EC21 works as a master device pertaining to I2C interface.        NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 48 / 94    3.13. ADC Function  The module provides two analog-to-digital converters (ADC).AT+QADC=0 command can be used to read the voltage value on ADC0 pin. AT+QADC=1command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer todocument [2].  In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground. Table 15: Pin Definition of the ADC Pin Name  Pin No.  Description ADC0  45  General purpose analog to digital converter ADC1  44  General purpose analog to digital converter  The following table describes the characteristic of the ADC function.  Table 16: Characteristic of the ADC Parameter  Min.  Typ.  Max.  Unit ADC0 Voltage Range  0.3    VBAT_BB  V ADC1 Voltage Range  0.3    VBAT_BB  V ADC Resolution      15  bits   1.    ADC input voltage must not exceed VBAT_BB. 2.    It is prohibited to supply any voltage to ADC pins when VBAT is removed. 3.    It is recommended to use resistor divider circuit for ADC application.       NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 49 / 94    3.14. Network Status Indication  The network indication pins can be used to drive network status indicationLEDs. The module provides two pins which are NET_MODE and NET_STATUS. The following tables describe thepin definition and logic level changes in different network status.    Table 17: Pin Definition of Network ConnectionStatus/Activity Indicator Pin Name    Pin No.  I/O  Description   Comment NET_MODE1) 5  DO  Indicate the module’s network registrationstatus  1.8V power domain NET_STATUS 6  DO  Indicate the module’s network activity status   1) means that this pin cannot be pulled up before startup.    Table 18: Working State of Network Connection Status/Activity Indicator Pin Name  Logic Level Changes  Network Status NET_MODE Always High  Registered on LTE network Always Low  Others NET_STATUS Flicker slowly (200ms High/1800ms Low)  Network searching Flicker slowly (1800ms High/200ms Low)  Idle Flicker quickly (125ms High/125ms Low)  Data transfer is ongoing Always High  Voice calling  A reference circuit is shown in the following figure. NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 50 / 94     Figure 25: Reference Circuit of the Network Indicator  3.15. STATUS  The STATUS pin is an open drain output for indicating the module’s operation status. You can connect it to a GPIO of DTE with a pull up resistor, or as the LED indication circuit shown below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state.    Table 19: Pin Definition of STATUS Pin Name    Pin No.  I/O  Description   Comment STATUS  61  OD  Indicate the module’s operation status  Require external pull-up  The following figure shows different circuit designs of STATUS, and you can choose either one according to your application demands.  Figure 26: Reference Circuits of STATUS
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 51 / 94    3.16. Behavior of the RI  AT+QCFG=“risignaltype”,“physical” command can be usedto configure RI behavior.  No matter on which port URC is presented, URC will trigger the behavior of RI pin.   URC can be output from UART port, USB AT port and USB modem port by AT+QURCCFG command. The default port is USB AT port.  In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below.  Table 20: Behavior of the RI State  Response Idle  RI keeps in high level URC  RI outputs 120ms low pulse when new URC returns  The RI behavior can be changed by AT+QCFG=“urc/ri/ring”command.Please refer to document [2] for details.  3.17. SGMII Interface  EC21 includes an integrated Ethernet MAC with an SGMII interface and two management interfaces, key features of the SGMII interface are shown below:   IEEE802.3 compliance   Full duplex at 1000Mbps   Half/full duplex for 10/100Mbps   Support VLAN tagging   Support IEEE1588 and Precision Time Protocol (PTP)   Can be used to connect to external Ethernet PHY like AR8033, or to an external switch  Management interfaces support dual voltage 1.8V/2.85V  The following table shows the pin definition of SGMII interface.  NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 52 / 94    Table 21: Pin Definition of the SGMII Interface Pin Name    Pin No.  I/O  Description  Comment Control Signal Part EPHY_RST_N  119  DO  Ethernet PHY reset  1.8V/2.85V power domain EPHY_INT_N  120  DI  Ethernet PHY interrupt  1.8V power domain SGMII_MDATA 121  IO  SGMII MDIO (Management Data Input/Output) data  1.8V/2.85V power domain SGMII_MCLK 122  DO  SGMII MDIO (Management Data Input/Output) clock  1.8V/2.85V power domain USIM2_VDD 128  PO  SGMII MDIO pull-up power source Configurable power source.   1.8V/2.85V power domain. External pull-up power source for SGMII MDIO pins. SGMII Signal Part SGMII_TX_M 123  AO  SGMII transmission-minus  Connect with a 0.1uF capacitor, close to the PHY side. SGMII_TX_P 124  AO  SGMII transmission-plus  Connect with a 0.1uF capacitor, close to the PHY side. SGMII_RX_P 125  AI  SGMII receiving-plus  Connect with a 0.1uF capacitor, close to EC21 module. SGMII_RX_M 126  AI  SGMII receiving-minus  Connect with a 0.1uF capacitor, close to EC21 module.  The following figure shows the simplified block diagram for Ethernet application.   Module AR8033 EthernetTransformer RJ45SGMIIControlMDI Figure 27: Simplified Block Diagram for Ethernet Application  The following figure shows a reference design of SGMII interface with PHY AR8033 application.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 53 / 94     Figure 28: Reference Circuit of SGMII Interface with PHY AR8033 Application  In order to enhance the reliability and availability in your application, please follow the criteria below in the Ethernet PHY circuit design:    Keep SGMII data and control signals away from RF and VBAT trace.   Keep the maximum trace length less than 10inch and keep skew on the differential pairs less than 20mil.   The differential impedance of SGMII data trace is 100ohm±10%.     To minimize crosstalk, the distance between separate adjacent pairs that are on the same layer must be equal to or larger than 40mil.   For more information about SGMII application, please refer to document [5]and document[7].        NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 54 / 94    3.18. Wireless Connectivity Interfaces  EC21supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT.  The following table shows the pin definition of wireless connectivity interfaces.  Table 22: Pin Definition of Wireless Connectivity Interfaces Pin Name  Pin No.  I/O  Description   Comment WLAN Part SDC1_DATA3  129  IO  SDIO data bus D3  1.8V power domain SDC1_DATA2  130  IO  SDIO data bus D2  1.8V power domain SDC1_DATA1  131  IO  SDIO data bus D1  1.8V power domain SDC1_DATA0  132  IO  SDIO data bus D0  1.8V power domain SDC1_CLK  133  DO  SDIO clock  1.8V power domain SDC1_CMD  134  IO  SDIO command  1.8V power domain       WLAN_EN 136 DO WLAN function control via FC20 module. Active high.  1.8V power domain Coexistence and Control Part PM_ENABLE  127  DO  External power control  1.8V power domain WAKE_ON_ WIRELESS  135 DI Wake up the host (EC21 module) by FC20 module.  1.8V power domain COEX_UART_RX 137  DI  LTE/WLAN&BT coexistence signal  1.8V power domain COEX_UART_TX 138  DO  LTE/WLAN&BT coexistence signal  1.8V power domain WLAN_SLP_CLK  118  DO  WLAN sleep clock   BT Part* BT_RTS*  37  DI  BT UART request to send  1.8V power domain BT_TXD*  38  DO  BT UART transmit data  1.8V power domain BT_RXD*  39  DI  BT UART receive data  1.8V power domain
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 55 / 94    BT_CTS*  40  DO  BT UART clear to send  1.8V power domain PCM_IN1)  24  DI  PCM data input  1.8V power domain PCM_OUT1)  25  DO  PCM data output  1.8V power domain PCM_SYNC1)  26  IO  PCM data frame sync signal  1.8V power domain PCM_CLK1)  27  IO  PCM data bit clock  1.8V power domain BT_EN* 139 DO WLAN function control via FC20 module. Active high.  1.8V power domain   1.  “*” means under development. 2.  1) Pads 24~27 are multiplexing pins used for audio design on EC21 module and BT function on FC20 module.  The following figure shows a reference design of wireless connectivity interfaces with Quectel FC20 module.  Figure 29: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 56 / 94     1.  FC20 module can only be used as a slave device,   2.  When BT function is enabled on EC21 module, PCM_SYNC and PCM_CLK pins are only used to output signals. 3.  For more information about wireless connectivity interfaces, please refer to document [5].  3.18.1. WLAN Interface EC21 provides a low power SDIO 3.0 interface and control interface for WLAN design.  SDIO interface supports the following modes:    Single data rate (SDR) mode (up to 200MHz)   Double data rate (DDR) mode (up to 52MHz)  As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the SDIO 3.0 specification, please comply with the following principles:    It is important to route the SDIO signal traces with total grounding. The impedance of SDIOsignal trace is 50ohm (±10%).   Protect other sensitive signals/circuits (RF, analog signals, etc.) from SDIO corruption and protect SDIO signals from noisy signals (clocks, DCDCs, etc.).   It is recommended to keep matching lengthbetween CLK and DATA/CMD less than 1mm and total routing length less than 50mm.   Keep termination resistors within 15~24ohm on clock lines near the module and keep the route distance from the module clock pins to termination resistors less than 5mm.   Make sure the adjacent trace spacing is 2x line width and bus capacitance is less than 15pF.  3.18.2. BT Interface* EC21 supports a dedicated UART interface and a PCM interface for BTfunction application.  Further information about BT interface will be added in future version of this document.   “*” means under development.    NOTES NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 57 / 94    3.19. USB_BOOT Interface  EC21 provides a USB_BOOT pin. During development or factory production, USB_BOOT pin can force the module to boot from USB port for firmware upgrade.  Table 23: Pin Definition of USB_BOOT Interface Pin Name    Pin No.  I/O  Description   Comment USB_BOOT 115  DI  Force the module to boot from USB port 1.8V power domain. Active high. If unused, keep it open.  The following figure shows a reference circuit of USB_BOOT interface.  Figure 30: Reference Circuit of USB_BOOT Interface
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 58 / 94    4 GNSS Receiver  4.1. General Description  EC21 includes a fully integrated global navigation satellite system solution that supports Gen8C-Liteof Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).    EC21 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update ratevia USB interface by default.    By default, EC21 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to document [3].  4.2. GNSS Performance  The following table shows the GNSS performance of EC21.  Table 24: GNSS Performance Parameter  Description  Conditions  Typ.  Unit Sensitivity (GNSS) Cold start Autonomous -146 dBm Reacquisition Autonomous  -157 dBm Tracking Autonomous -157 dBm TTFF (GNSS) Cold start @open sky Autonomous 35 s XTRA enabled  18  s Warm start @open sky Autonomous 26 s XTRA enabled  2.2  s
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 59 / 94    Hot start @open sky Autonomous 2.5 s XTRA enabled  1.8  s Accuracy (GNSS)  CEP-50  Autonomous @open sky  <1.5 m   1.  Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes.   2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock. 3.  Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command.  4.3. Layout Guidelines  The following layout guidelines should be taken into account in your design.    Maximize the distance among GNSS antenna, main antenna and the Rx-diversity antenna.     Digital circuits such as USIM card, USB interface, camera module, display connector and SD card should be kept away from the antennas.   Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.   Keep 50ohm characteristic impedance forthe ANT_GNSS trace.  Please refer to Chapter 5 for GNSS antenna reference design and antenna consideration. NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 60 / 94    5 Antenna Interfaces  EC21 antenna interfaces include a main antennainterface,anRx-diversity antenna interface which is used toresist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The antenna interfaceshave an impedance of 50ohm.  5.1. Main/Rx-diversityAntenna Interface 5.1.1. Pin Definition The pin definition of main antenna and Rx-diversityantenna interfacesis shown below.  Table 25: Pin Definition of the RF Antenna Pin Name  Pin No.  I/O  Description  Comment ANT_MAIN  49  IO  Main antenna pad  50ohmimpedance ANT_DIV 35  AI Receive diversityantenna pad  50ohm impedance  5.1.2. Operating Frequency Table 26: Module Operating Frequencies 3GPP Band  Transmit  Receive  Unit B1 1920~1980 2110~2170 MHz B2 (1900)  1850~1910  1930~1990  MHz B3 (1800)  1710~1785  1805~1880  MHz B4 1710~1755 2110~2155 MHz B5 (850)  824~849  869~894  MHz B7 2500~2570 2620~2690 MHz B8 (900)  880~915  925~960  MHz
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 61 / 94    B12 699~716 729~746 MHz B13 777~787 746~756 MHz B18 815~830 860~875 MHz B19 830~845 875~890 MHz B20 832~862 791~821 MHz B26 814~849 859~894 MHz B28 703~748 758~803 MHz B40 2300~2400 2300~2400 MHz  5.1.3.  Reference Design of RF Antenna Interface Areference design of ANT_MAIN and ANT_DIVantenna pads is shown as below. It should reserve a π-type matching circuit for better RF performance. The capacitors are not mounted by default.  Figure 31: Reference Circuit of RF Antenna Interface   1.  Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the receiving sensitivity. 2. ANT_DIV function is enabledby default. 3. Place the π-type matching components (R1, C1, C2, R2, C3, C4) as close to the antenna as possible. NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 62 / 94    5.1.4.  Reference Design of RF Layout For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50 ohm. The impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures .   Figure 32: Microstrip Line Design on a 2-layer PCB   Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 63 / 94     Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)   Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)  In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:    Use impedance simulation tool to control the characteristic impedanceof RF tracesas 50ohm.   The GND pins adjacent to RF pins should not be hot welded, and should be fully connected to ground.   The distance between the RF pinsand the RFconnector should be as short as possible, and all the right angle traces should be changed to curved ones.     There should be clearance area under the signal pin of the antenna connector or solder joint.   The reference ground of RF traces should be complete. Meanwhile, adding some ground viasaround RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).  For more details about RF layout, please refer to document [6].
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 64 / 94    5.2. GNSS Antenna Interface  The following tables show the pin definition and frequency specification of GNSS antenna interface.  Table 27: Pin Definition of GNSS Antenna Interface Pin Name    Pin No.  I/O  Description   Comment ANT_GNSS 47  AI  GNSS antenna  50ohmimpedance  Table 28: GNSS Frequency Type  Frequency  Unit GPS/Galileo/QZSS 1575.42±1.023  MHz GLONASS 1597.5~1605.8  MHz BeiDou 1561.098±2.046  MHz  A reference design of GNSS antenna is shown as below.  Figure 36: Reference Circuit of GNSS Antenna   1.  An external LDO can be selected to supply power according to the active antenna requirement. 2.  If the module is designed with a passive antenna, then the VDD circuit is not needed. NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 65 / 94    5.3. Antenna Installation 5.3.1. Antenna Requirement The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.  Table 29: Antenna Requirements Type  Requirements GNSS Frequency range: 1561~1615MHz Polarization: RHCP or linear VSWR: <2 (Typ.) Passive antenna gain: >0dBi Active antenna noise figure: <1.5dB Active antenna gain: >-2dBi Active antenna embedded LNA gain: 20dB (Typ.) Active antenna total gain: >18dBi (Typ.) GSM/WCDMA/LTE VSWR: ≤2 Gain (dBi): 1   Max input power (W): 50   Input Impedance (ohm): 50   Polarization type: Vertical   Cable insertion loss: <1dB (GSM900, WCDMA B5/B8, LTE B5/B8/B12/B13/B18/B19/B20/B26/B28)  Cable insertion loss: <1.5dB   (GSM1800, WCDMA B1/B2/B4,LTE B1/B2/B3/B4) Cable insertion loss <2dB (LTE B7/B40)
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 66 / 94    5.3.2.  Recommended RF Connector for Antenna Installation If RF connector is used for antenna connection, it is recommended to use UF.L-R-SMT connector provided by HIROSE.    Figure 37: Dimensions of the UF.L-R-SMT Connector (Unit: mm)  U.FL-LP serial connectors listed in the following figure can be used to match the UF.L-R-SMT.  Figure 38:Mechanicalsof UF.L-LP Connectors
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 67 / 94    The following figure describes the space factor of mated connector.  Figure39:Space Factor of Mated Connector (Unit: mm)  For more details, please visit http://www.hirose.com.
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 68 / 94    6 Electrical, Reliability and RadioCharacteristics  6.1. Absolute Maximum Ratings  Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.  Table 30: Absolute Maximum Ratings Parameter  Min.  Max.  Unit VBAT_RF/VBAT_BB -0.3  4.7 V USB_VBUS -0.3 5.5 V Peak Current of VBAT_BB    0    0.8  A Peak Current of VBAT_RF  0  1.8  A Voltage at Digital Pins  -0.3  2.3  V Voltage at ADC0  0  VBAT_BB  V Voltage at ADC1  0  VBAT_BB  V  6.2. Power Supply Ratings  Table 31: Power Supply Ratings Parameter  Description  Conditions  Min.  Typ.  Max.  Unit VBAT  VBAT_BB and  Voltage must stay within the  3.3  3.8  4.3  V
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 69 / 94    VBAT_RF  min/max values, including voltage drop, ripple and spikes. Voltage drop during burst transmission Maximum power control level on GSM900     400 mV IVBAT Peak supply current (during transmissionslot) Maximum power control level on GSM900   1.8 2.0 A USB_VBUS USB detection    3.0  5.0  5.25  V  6.3. Operating Temperature  The operating temperature is listed in the following table.  Table 32: Operating Temperature Parameter  Min.  Typ.  Max.  Unit OperationTemperature Range1) -35  +25  +75  ºC ExtendedTemperature Range2) -40    +85  ºC   1.  1)Within operation temperature range, the module is 3GPP compliant. 2.  2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.       NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 70 / 94    6.4. Current Consumption  The values of current consumption are shown below.  Table 33: EC21-A Current Consumption Parameter  Description  Conditions  Typ.  Unit IVBAT OFF state    Power down  20  uA Sleep state AT+CFUN=0 (USB disconnected)  1.0 mA WCDMA PF=64 (USB disconnected)  2.8  mA WCDMA PF=128 (USB disconnected)  2.3  mA LTE-FDD PF=64 (USB disconnected)  2.2  mA LTE-FDD PF=128 (USB disconnected)  2.2  mA Idle state (GNSS OFF) WCDMA PF=64 (USB disconnected)  21.6  mA WCDMA PF=64 (USB connected)  31.6  mA LTE-FDDPF=64 (USB disconnected)  23.7  mA LTE-FDDPF=64 (USB connected)  36.5  mA WCDMA datatransfer(GNSS OFF) WCDMA B2 HSDPA @22.09dBm  542.0  mA WCDMA B2 HSUPA @22.28dBm  681.0  mA WCDMA B4 HSDPA @21.94dBm  550.0  mA WCDMA B4 HSUPA @21.81dBm  547.0  mA WCDMA B5 HSDPA @22.13dBm  429.0  mA WCDMA B5 HSUPA @22.48dBm  459.0  mA LTE datatransfer(GNSS OFF) LTE-FDD B2 @22.79dBm  709.0  mA LTE-FDD B4 @22.89dBm  710.0  mA LTE-FDD B12 @23.39dBm  679.0  mA WCDMA voice call  WCDMA B2 @23.67dBm  663.0  mA
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 71 / 94    WCDMA B4 @23.36dBm  594.0  mA WCDMA B5 @23.64dBm  522.0  mA  Table 34: EC21-AUT Current Consumption Parameter  Description  Conditions  Typ.  Unit IVBAT OFF state    Power down  20  uA Sleep state AT+CFUN=0 (USB disconnected)  0.99 mA WCDMA PF=64 (USB disconnected)  2.1  mA WCDMA PF=128 (USB disconnected)  1.7  mA LTE-FDD PF=64 (USB disconnected)  2.9  mA LTE-FDD PF=128 (USB disconnected)  2.4  mA Idle state WCDMA PF=64 (USB disconnected)  22.0  mA WCDMA PF=64 (USB connected)  32.0  mA LTE-FDDPF=64 (USB disconnected)  23.6  mA LTE-FDDPF=64 (USB connected)  33.6  mA WCDMA data (GNSS OFF) WCDMA B1 HSDPA@22.59dBm  589.0  mA WCDMA B1 HSUPA@22.29dBm  623.0  mA WCDMA B5 HSDPA@22.22dBm  511.0  mA WCDMA B5 HSUPA@21.64dBm  503.0  mA LTE datatransfer(GNSS OFF) LTE-FDD B1 @23.38dBm  813.0  mA LTE-FDD B3 @22.87dBm  840.0  mA LTE-FDD B5 @23.12dBm  613.0  mA LTE-FDD B7 @22.96dBm  761.0  mA LTE-FDD B28 @23.31dBm  650.0  mA WCDMA voice call WCDMA B1 @24.21dBm  687.0  mA WCDMA B5 @23.18dBm  535.0  mA
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 72 / 94    Table 35: EC21-E Current Consumption Parameter  Description  Conditions  Typ.  Unit IVBAT OFF state    Power down  TBD  uA Sleep state AT+CFUN=0 (USB disconnected)  TBD mA WCDMA PF=64 (USB disconnected)  TBD  mA WCDMA PF=128 (USB disconnected)  TBD  mA FDD-LTE PF=64 (USB disconnected)  TBD  mA FDD-LTE PF=128 (USB disconnected)  TBD  mA Idle state (GNSS OFF) WCDMA PF=64 (USB disconnected)  TBD  mA WCDMA PF=64 (USB connected)  TBD  mA LTE-FDD PF=64 (USB disconnected)  TBD  mA LTE-FDD PF=64 (USB connected)  TBD  mA GPRS datatransfer(GNSS OFF) GSM900 4DL/1UL @32.3dBm  220  mA GSM900 3DL/2UL @32.18dBm 387 mA GSM900 2DL/3UL @30.3dBm  467  mA GSM900 1DL/4UL @29.4dBm 555 mA DCS1800 4DL/1UL @29.6dBm  185  mA DCS1800 3DL/2UL @29.1dBm 305 mA DCS1800 2DL/3UL @28.8dBm  431  mA DCS1800 1DL/4UL @29.1dBm 540 mA EDGE datatransfer(GNSS OFF) GSM900 4DL/1UL @26dBm  148  mA GSM900 3DL/2UL @26dBm 245 mA GSM900 2DL/3UL @25dBm  338  mA GSM900 1DL/4UL @25dBm 432 mA DCS1800 4DL/1UL @26dBm  150  mA DCS1800 3DL/2UL @25dBm 243 mA DCS1800 2DL/3UL @25dBm  337  mA
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 73 / 94    DCS1800 1DL/4UL @25dBm 430 mA WCDMA datatransfer(GNSS OFF) WCDMA B1 HSDPA@22.5dBm 659 mA WCDMA B1 HSUPA@21.11dBm  545  mA WCDMA B5 HSDPA@23.5dBm 767 mA WCDMA B5 HSUPA@21.4dBm  537  mA WCDMA B8 HSDPA@22.41dBm 543 mA WCDMA B8 HSUPA@21.2dBm  445  mA LTE datatransfer(GNSS OFF) LTE-FDD B1 @23.45dBm 807 mA LTE-FDD B3 @23.4dBm 825 mA LTE-FDD B5 @23.4dBm 786 mA LTE-FDD B7 @23.86dBm 887 mA LTE-FDD B8 @23.5dBm 675 mA LTE-FDD B20 @23.57dBm 770 mA GSMvoice call GSM900 PCL=5 @32.8dBm  336  mA PCS1800 PCL=0 @29.3dBm  291  mA WCDMAvoice call WCDMA B1 @23.69dBm 683 mA WCDMA B5 @23.61dBm  741  mA WCDMA B8 @23.35dBm  564  mA  Table 36: EC21-KL Current Consumption Parameter  Description  Conditions  Typ.  Unit IVBAT OFF state    Power down  20  uA Sleep state AT+CFUN=0 (USB disconnected)  0.98 mA LTE-FDD PF=64 (USB disconnected)  2.5  mA LTE-FDD PF=128 (USB disconnected)  2.4  mA Idle state (GNSS OFF) LTE-FDD PF=64 (USB disconnected)  23.0  mA LTE-FDD PF=64 (USB connected)  34.0  mA
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 74 / 94    LTE datatransfer(GNSS OFF) LTE-FDD B1 @23.65dBm 765.0 mA LTE-FDD B3 @23.2dBm 825.0 mA LTE-FDD B5 @23.2dBm 598.0 mA LTE-FDD B7 @23.7dBm 762.0 mA LTE-FDD B8 @23.1dBm 569.0 mA  Table 37: EC21-V Current Consumption Parameter  Description  Conditions  Typ.  Unit IVBAT OFF state    Power down  20  uA Sleep state AT+CFUN=0 (USB disconnected)  1.0 mA LTE-FDD PF=64 (USB disconnected)  2.5  mA LTE-FDD PF=128 (USB disconnected)  2.0  mA Idle state (GNSS OFF) LTE-FDD PF=64 (USB disconnected)  22.0  mA LTE-FDD PF=64 (USB connected)  32.0  mA LTE datatransfer(GNSS OFF) LTE-FDD B4 @22.79dBm 752.0 mA LTE-FDD B13 @23.26dBm 534.0 mA  Table 38: EC21-AUV Current Consumption Parameter  Description  Conditions  Typ.  Unit IVBAT OFF state    Power down  20  uA Sleep state AT+CFUN=0 (USB disconnected)  1.0 mA WCDMA PF=64 (USB disconnected)  2.0  mA WCDMA PF=128 (USB disconnected)  1.6  mA LTE-FDD PF=64 (USB disconnected)  2.4  mA LTE-FDD PF=128 (USB disconnected)  1.9  mA Idle state (GNSS OFF) WCDMA PF=64 (USB disconnected)  24.0  mA WCDMA PF=64 (USB connected)  34.0  mA
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 75 / 94    LTE-FDD PF=64 (USB disconnected)  24.0  mA LTE-FDD PF=64 (USB connected)  34.0  mA WCDMA datatransfer(GNSS OFF) WCDMA B1 HSDPA@22.05dBm 586.0 mA WCDMA B1 HSUPA@22.29dBm  630.0  mA WCDMA B5 HSDPA@22.43dBm 576.0 mA WCDMA B5 HSUPA@22.43dBm  600.0  mA WCDMA B8 HSDPA@22.44dBm 577.0 mA WCDMA B8 HSUPA@21.78dBm  555.0  mA LTE datatransfer(GNSS OFF) LTE-FDD B1 @23.12dBm 721.0 mA LTE-FDD B3 @23.04dBm 734.0 mA LTE-FDD B5 @23.16dBm 669.0 mA LTE-FDD B8 @23.21dBm 698.0 mA LTE-FDD B28 @23.57dBm 790.0 mA WCDMA voice call WCDMA B1 @22.72dBm 640.0 mA WCDMA B5 @23.19dBm  638.0  mA WCDMA B8 @23.27dBm  626.0  mA  Table 39: GNSS Current Consumption of EC21 Series Module Parameter  Description  Conditions  Typ.  Unit IVBAT (GNSS) Searching (AT+CFUN=0)Cold start @Passive Antenna  58  mA Lost state @Passive Antenna  58  mA Tracking (AT+CFUN=0)Instrument Environment  33  mA OpenSky @Passive Antenna  35  mA OpenSky @Active Antenna  43  mA
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 76 / 94    6.5. RF Output Power  The following table shows the RF output power of EC21 module.  Table 40: RF Output Power Frequency   Max.  Min. GSM900 33dBm±2dB 5dBm±5dB DCS1800 30dBm±2dB 0dBm±5dB DCS1800 26dBm±3dB 0dBm±5dB WCDMA bands  22.5dBm+1/-3dB  <-50dBm LTE-FDD bands  22.5dBm+1/-3dB  <-44dBm LTE-TDD bands  22.5dBm+1/-3dB  <-44dBm   In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. Thedesign conforms to the GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1.  6.6. RF Receiving Sensitivity  The following tables show the conducted RF receiving sensitivity of EC21 series module.  Table 41: EC21-E Conducted RF Receiving Sensitivity Frequency  Primary  Diversity  SIMO1) 3GPP (SIMO) GSM900 -109.0dBm / / -102.0dBm DCS1800 -109.0dBm / / -102.0dbm WCDMA Band1 -110.5dBm / / -106.7dBm WCDMA Band5 -110.5dBm / / -104.7dBm WCDMA Band8 -110.5dBm / / -103.7dBm NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 77 / 94    LTE-FDD B1(10M)  -98.0dBm  -98.0dBm -101.5dBm -96.3dBm LTE-FDD B3(10M)  -96.5dBm  -98.5dBm -101.5dBm -93.3dBm LTE-FDD B5(10M)  -98.0dBm  -98.5dBm -101.0dBm -94.3dBm LTE-FDD B7(10M)  -97.0dBm  -94.5dBm -99.5dBm -94.3dBm LTE-FDD B8(10M)  -97.0dBm  -97.0dBm -101.0dBm -93.3dBm LTE-FDD B20(10M)  -97.5dBm  -99.0dBm -102.5dBm -93.3dBm  Table 42: EC21-A Conducted RF Receiving Sensitivity Frequency  Primary  Diversity  SIMO  3GPP (SIMO) WCDMA B2 -110.0dBm / / -104.7dBm WCDMA B4 -110.0dBm / / -106.7dBm WCDMA B5 -110.5dBm / / -104.7dBm LTE-FDD B2 (10M)  -98.0dBm  -98.0dBm -101.0dBm -94.3dBm LTE-FDD B4 (10M)  -97.5dBm  -99.0dBm -101.0dBm -96.3dBm LTE-FDD B12 (10M)  -96.5dBm  -98.0dBm -101.0dBm -93.3dBm  Table 43: EC21-V Conducted RF Receiving Sensitivity Frequency  Primary  Diversity  SIMO  3GPP (SIMO) LTE-FDD B4 (10M)  -97.5dBm  -99.0dBm -101.0dBm -96.3dBm LTE-FDD B13 (10M)  -95.0dBm  -97.0dBm -100.0dBm -93.3dBm  Table 44: EC21-AUT Conducted RF Receiving Sensitivity Frequency  Primary  Diversity  SIMO  3GPP (SIMO) WCDMA B1  -110.0dBm  /  /  -106.7dBm WCDMA B5  -110.5dBm  /  /  -104.7dBm
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 78 / 94    LTE-FDD B1(10M)  -98.5dBm    -98.0dBm  -101.0dBm  -96.3dBm LTE-FDD B3(10M)  -98.0dBm  -96.0dBm -100.0dBm -93.3dBm LTE-FDD B5(10M)  -98.0dBm  -99.0dBm  -102.5dBm     -94.3dBm LTE-FDD B7(10M)  -97.0dBm  -95.0dBm -98.5dBm -94.3dBm LTE-FDD B28(10M)  -97.0dBm  -99.0dBm    -102.0dBm     -94.8dBm  Table 45: EC21-AUTL Conducted RF Receiving Sensitivity Frequency  Primary  Diversity  SIMO  3GPP (SIMO) LTE-FDD B3(10M)  -98.0dBm  -96.0dBm -100.0dBm -93.3dBm LTE-FDD B7(10M)  -97.0dBm  -95.0dBm -98.5dBm -94.3dBm LTE-FDD B28(10M)  -97.0dBm  -99.0dBm    -102.0dBm     -94.8dBm  Table 46: EC21-KL Conducted RF Receiving Sensitivity Frequency  Primary  Diversity  SIMO  3GPP (SIMO) LTE-FDD B1(10M)  -98.0dBm  -99.5dBm -100.5dBm -96.3dBm LTE-FDD B3(10M)  -97.0dBm  -97.5dBm -99.5dBm -93.3dBm LTE-FDD B5(10M)  -98.0dBm  -99.5dBm -100.5dBm -94.3dBm LTE-FDD B7(10M)  -96.0dBm  -96.0dBm -98.5dBm -94.3dBm LTE-FDD B8(10M)  -97.0dBm  -99.0dBm -101.0dBm -93.3dBm  Table 47: EC21-CT Conducted RF Receiving Sensitivity Frequency  Primary  Diversity  SIMO  3GPP (SIMO) LTE-FDD B1(10M)  -98.0dBm  -99.5dBm -100.5dBm -96.3dBm LTE-FDD B3(10M)  -97.0dBm  -97.5dBm -99.5dBm -93.3dBm LTE-FDD B5* (10M)  TBD  TBD  TBD  TBD
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 79 / 94    Table 48: EC21-J Conducted RF Receiving Sensitivity  Table 49: EC21-AUV Conducted RF Receiving Sensitivity   1.  1) SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas at the receiver side, which can improve RX performance.   2.  “*” means under development.  Frequency  Primary  Diversity  SIMO  3GPP (SIMO) LTE-FDD B1 (10M)  -97.5dBm  -98.7dBm -100.2dBm -96.3dBm LTE-FDD B3 (10M)  -96.5dBm  -97.1dBm -100.5dBm -93.3dBm LTE-FDD B8 (10M)  -98.4dBm  -99.0dBm -101.2dBm -93.3dBm LTE-FDD B18 (10M)  -99.5dBm  -99.0dBm -101.7dBm -96.3dBm LTE-FDD B19 (10M)  -99.2dBm  -99.0dBm -101.4dBm -96.3dBm LTE-FDD B26 (10M)  -99.5dBm  -99.0dBm -101.5dBm -93.8dBm Frequency  Primary  Diversity  SIMO  3GPP (SIMO) WCDMA B1 -110.0dBm / / -106.7dBm WCDMA B5 -111.0dBm / / -104.7dBm WCDMA B8 -111.0dBm / / -103.7dBm LTE-FDD B1 (10M)  -97.2dBm  -97.2dBm -100.2dBm -96.3dBm LTE-FDD B3 (10M)  -98.2dBm  -98.7dBm -100.7dBm -93.3dBm LTE-FDD B5 (10M)  -99.2dBm  -98.7dBm -101.7dBm -94.3dBm LTE-FDD B8 (10M)  -97.7dBm  -97.2dBm -101.2dBm -93.3dBm LTE-FDD B28 (10M)  -97.0dBm  -98.2dBm -101.2dBm -94.8dBm NOTES
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 80 / 94    6.7. Electrostatic Discharge  The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.  The following table shows the module’s electrostatic discharge characteristics.  Table 50: Electrostatic Discharge Characteristics Tested Points  Contact Discharge  Air Discharge  Unit VBAT, GND  ±5  ±10  kV All Antenna Interfaces  ±4  ±8  kV Other Interfaces  ±0.5  ±1  kV
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 81 / 94    7 Mechanical Dimensions  This chapter describes the mechanical dimensions of the module.All dimensions are measured in mm.  7.1. Mechanical Dimensions of the Module  (32+/-0.15)(29+/-0.15)0.82.4+/-0.2 Figure40: Module Top and Side Dimensions
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 82 / 94    1.301.301.101.103.852.03.03.50.81.53.23.43.23.43.26.753.451.62.492.42.154.41.74.881.81.81.151.0529.01.903.51.932.03.352.84.80.825.962.0 Figure41: Module Bottom Dimensions (Bottom View)
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 83 / 94    7.2. Recommended Footprint  Keepout area4.804.804.804.807.8015.601.903.85 24.701.801.901.303.20 3.40 3.20 3.40 3.203.000.8032.03.402.501.001.800.50 0.502.80 0.500.503.403.453.002.001.101.102.002.003.50 Figure42: Recommended Footprint (Top View)   1.  The keepout area should not be designed. 2.  For easy maintenance of the module, please keep about 3mm between the module and other components in thehost PCB.    NOTES
      EC21_Hard   7.3. Des    Thesearedethat you get NOTE           dware_Desiign Effecesign effect t from Quect          ign        ct DrawinFigdrawings of tel.                     ngsof thFigure43: Tgure 44: BofEC21 modu            Confidente ModuleTop Viewof ottom View ule. For mor          tial / Release the Moduleof the Modre accurate         ECsed 84 / 94  e  ule pictures, pleLTE ModC21 Hardwease refer todule Seriesware Designo the modules n e
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 85 / 94    8 Storage, Manufacturing and Packaging  8.1. Storage  EC21 is stored in a vacuum-sealed bag. The storage restrictionsareshown as below.    1.  Shelf life in thevacuum-sealed bag: 12 months at <40ºC/90%RH.    2.  After the vacuum-sealed bagis opened, devices that will be subjected to reflow soldering or other high temperature processes must be:    Mounted within 72 hours at the factory environment of ≤30ºC/60%RH   Stored at <10%RH  3.  Devices require baking before mounting, if any circumstances below occurs:    When the ambient temperature is 23ºC±5ºC and the humidity indicator card shows the humidity is>10% before opening the vacuum-sealed bag.   Device mounting cannot be finished within 72 hours at factory conditions of ≤30ºC/60%RH.  4.  If baking is required, devices may be baked for 48 hours at 125ºC±5ºC.   As the plastic packagecannot be subjected to high temperature, it should be removed from devices before high temperature (125ºC) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033 for bakingprocedure.    NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 86 / 94    8.2. Manufacturing and Soldering  Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, thethickness of stencil for the module is recommended to be 0.18mm. For more details, please refer todocument [4].  It is suggested that the peak reflow temperature is from 235 to 245ºC (for SnAg3.0Cu0.5 alloy). The absolute maximum reflow temperature is 260ºC. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:  Figure 45: Reflow Soldering Thermal Profile   During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module label with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc.   NOTE
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 87 / 94    8.3. Packaging  EC21 is packaged in tape andreel carriers. One reel is 11.53m longand contains 250pcs modules. The figure below shows the packagingdetails, measured in mm. 30.3±0.1529.3±0.1530.3±0.1532.5±0.1533.5±0.150.35± 0.054.2±0.153.1±0.1532.5± 0.1533.5± 0.154.00±0.12.00±0.11.75±0.120.20±0.1544.00±0.344.00±0.11.50±0.1 1310044.5+0.20-0.0048.5 Figure 46: Tape and Reel Specifications
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 88 / 94    9 Appendix A References  Table 51: Related Documents SN  Document Name  Remark [1] Quectel_EC21_Power_Management_Application_Note EC21 Power Management Application Note [2]  Quectel_EC25&EC21_AT_Commands_Manual  EC25 and EC21 AT Commands Manual[3] Quectel_EC25&EC21_GNSS_AT_Commands_Manual EC25 and EC21GNSS AT Commands Manual [4] Quectel_Module_Secondary_SMT_User_Guide  Module Secondary SMT User Guide [5]  Quectel_EC21_Reference_Design  EC21 Reference Design [6] Quectel_RF_Layout_Application_Note  RF Layout Application Note [7] Quectel_SGMII_Design_Application_Note  SGMII Design Application Note  Table 52: Terms and Abbreviations Abbreviation  Description AMR Adaptive Multi-rate bps  Bits Per Second CHAP   Challenge Handshake Authentication Protocol CS   Coding Scheme CSD    Circuit Switched Data CTS   Clear To Send DC-HSPA+  Dual-carrier High Speed Packet Access DFOTA  Delta Firmware Upgrade Over The Air
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 89 / 94    DL Downlink DTR   Data Terminal Ready DTX   Discontinuous Transmission EFR  Enhanced Full Rate ESD   Electrostatic Discharge FDD  Frequency Division Duplex FR Full Rate GLONASS  GLObalnayaNAvigatsionnayaSputnikovayaSistema, the Russian Global Navigation Satellite System GMSK  Gaussian Minimum Shift Keying GNSS  Global Navigation Satellite System GPS  Global Positioning System GSM  Global System for Mobile Communications HR Half Rate HSPA  High Speed Packet Access HSDPA  High Speed Downlink Packet Access HSUPA  High Speed Uplink Packet Access I/O   Input/Output Inorm Normal Current LED    Light Emitting Diode LNA Low Noise Amplifier LTE Long Term Evolution MIMO  Multiple Input Multiple Output MO   Mobile Originated MS    Mobile Station (GSM engine) MT   Mobile Terminated
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 90 / 94    PAP   Password Authentication Protocol PCB    Printed Circuit Board PDU    Protocol Data Unit PPP   Point-to-Point Protocol QAM Quadrature Amplitude Modulation QPSK Quadrature Phase Shift Keying RF   Radio Frequency RHCP  Right Hand Circularly Polarized Rx   Receive SGMII  Serial Gigabit Media IndependentInterface SIM    Subscriber Identification Module SIMO  Single Input Multiple Output SMS    Short Message Service TDD  Time Division Duplexing TDMA    Time Division Multiple Access TD-SCDMA Time Division-Synchronous Code Division Multiple Access TX   Transmitting Direction UL Uplink UMTS Universal Mobile Telecommunications System URC    Unsolicited Result Code USIM  Universal Subscriber Identity Module Vmax  Maximum Voltage Value   Vnorm  Normal Voltage Value Vmin  Minimum Voltage Value VIHmax  Maximum Input High Level Voltage Value
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 91 / 94    VIHmin  Minimum Input High Level Voltage Value VILmax  Maximum Input Low Level Voltage Value VILmin  Minimum Input Low Level Voltage Value VImax  Absolute Maximum Input Voltage Value VImin Absolute Minimum Input Voltage Value VOHmax  Maximum Output High Level Voltage Value VOHmin  Minimum Output High Level Voltage Value VOLmax  Maximum Output Low Level Voltage Value VOLmin  Minimum Output Low Level Voltage Value VSWR  Voltage Standing Wave Ratio WCDMA  Wideband Code Division Multiple Access WLAN  Wireless Local Area Network
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 92 / 94    10 Appendix B GPRS Coding Schemes  Table 53: Description of Different Coding Schemes   Scheme   CS-1 CS-2 CS-3 CS-4 Code Rate   1/2 2/3 3/4 1 USF   3 3 3 3 Pre-coded USF   3   6  6  12 Radio Block excl.USF and BCS 181   268  312  428 BCS 40 16 16 16 Tail 4   4  4  - Coded Bits  456 588 676 456 Punctured Bits  0 132 220 - Data Rate Kb/s 9.05   13.4  15.6  21.4
LTE Module Series                                                                 EC21 Hardware Design  EC21_Hardware_Design                   Confidential / Released 93 / 94    11 Appendix C GPRS Multi-slot Classes  Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.    The description of different multi-slot classes is shown in the following table.  Table 54: GPRS Multi-slot Classes Multislot Class  Downlink Slots  Uplink Slots  Active Slots 1 1  1  2 2 2  1  3 3 2  2  3 4 3  1  4 5 2  2  4 6 3  2  4 7 3  3  4 8 4  1  5 9 3  2  5 10 4  2  5 11 4  3  5 12 4  4  5
        12 Table 55: ECoding SchCS-1: CS-2: CS-3: CS-4: MCS-1 MCS-2 MCS-3 MCS-4 MCS-5 MCS-6 MCS-7 MCS-8 MCS-9                EC21_Har AppCodEDGE Moduheme ModGMGMGMGMGMGMGMGM8-PS8-PS8-PS8-PS8-PS          rdware_Despendixding Sulation and dulation SK SK SK SK SK SK SK SK SK SK SK SK SK           sign       x D ESchemCoding SchCoding / / / / C B A C B A B A A                       EDGEmes hemes Family 192822455             ConfideE Mod1 Timeslot9.05kbps 13.4kbps 15.6kbps 21.4kbps 8.80kbps 11.2kbps 14.8kbps 17.6kbps 22.4kbps 29.6kbps 44.8kbps 54.4kbps 59.2kbps         ECential / Reledulati2 Tim18.1k26.8k31.2k42.8k17.6022.4k29.6k35.2k44.8k59.2k89.6k108.8118.4LTE MoC21 Hardwased94 /94 onanmeslot kbps kbps kbps kbps 0kbps kbps kbps kbps kbps kbps kbps 8kbps 4kbps odule Siresware Designnd 4 Timeslot36.2kbps 53.6kbps 62.4kbps 85.6kbps 35.20kbps44.8kbps 59.2kbps 70.4kbps 89.6kbps 118.4kbps179.2kbps217.6kbps236.8kbpss n

Navigation menu