Quectel Wireless Solutions 201708EC21E LTE Module User Manual XMR201708EC21E Rev1

Quectel Wireless Solutions Company Limited LTE Module XMR201708EC21E Rev1

User Manual

Download: Quectel Wireless Solutions 201708EC21E LTE Module User Manual XMR201708EC21E  Rev1
Mirror Download [FCC.gov]Quectel Wireless Solutions 201708EC21E LTE Module User Manual XMR201708EC21E  Rev1
Document ID3519741
Application IDGq2gWPKRhQWZQXQStgsgsw==
Document DescriptionUser Manual
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeUser Manual
Display FormatAdobe Acrobat PDF - pdf
Filesize228.51kB (2856387 bits)
Date Submitted2017-08-21 00:00:00
Date Available2017-08-21 00:00:00
Creation Date2017-08-18 09:31:48
Producing SoftwareAcrobat Distiller 9.0.0 (Windows)
Document Lastmod2017-08-18 09:31:48
Document TitleMicrosoft Word - XMR201708EC21E_User Manual Rev1
Document CreatorPScript5.dll Version 5.2.2
Document Author: haojinhua

EC
C21Hardw
warre Des
sign
LTEM
Module Series
Rev. EC21_Ha
ardware_
_Design_
_V1.4
3-01
Date: 2017-03
www.quectel.com
LTE Module Series
EC21 Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233
Tel: +86 21 5108 6236
Email:info@quectel.com
Or our local office.For more information, please visit:
http://www.quectel.com/support/salesupport.aspx
For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx
Or email to: Support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS
DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT
PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS
ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL
OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.
EC21_Hardware_Design
Confidential / Released 1 / 94
LTE Module Series
EC21 Hardware Design
About the Document
History
Revision
Date
Author
Description
1.0
2016-04-15
Yeoman CHEN
Initial
Yeoman CHEN/
Frank WANG/
Lyndon LIU
1. Updated frequency bands in Table 1.
2. Updated transmitting power, supported maximum
baud rate of main UART, supported internet
protocols, supported USB drivers of USB interface,
and temperature range in Table 2.
3. Updated timing of turning on module in Figure 12.
4. Updated timing of turning off module in Figure 13.
5. Updated timing of resetting module in Figure 16.
6. Updated main UART supports baud rate in Chapter
3.11.
7. Added notes for ADC interface in Chapter 3.13.
8. Updated GNSS Performance in Table 21.
9. Updated operating frequencies of module in Table
23.
10. Added current consumption in Chapter 6.4.
11. Updated RF output power in Chapter 6.5.
12. Added RF receiving sensitivity in Chapter 6.6.
1.1
2016-09-22
1.
2.
3.
4.
1.2
2016-11-04
Lyndon LIU/
Michael ZHANG
5.
6.
7.
8.
9.
EC21_Hardware_Design
Added SGMII and WLAN interfaces in Table 2.
Updated function diagram in Figure 1.
Updated pin assignment (Top View) in Figure 2.
Added description of SGMII and WLAN interfaces in
Table 4.
Added SGMII interface in Chapter 3.17.
Added WLAN interface in Chapter 3.18.
Added USB_BOOT interface in Chapter 3.19.
Added reference design of RF layout in Chapter
5.1.4.
Added current consumption of EC21-V in Chapter
Confidential / Released 2 / 94
LTE Module Series
EC21 Hardware Design
6.4.
10. Added note about SIMO in Chapter 6.6.
1.
2.
3.
4.
5.
1.3
2017-01-24
Lyndon LIU/
Rex WANG
6.
7.
8.
9.
10.
1.4
2017-03-01
EC21_Hardware_Design
Geely YANG
Updated frequency bands in Table 1.
Updated function diagram in Figure 1.
Updated pin assignment (top view) in Figure 2.
Added BT interface in Chapter 3.18.2.
Updated reference circuit of wireless connectivity
interfaces with FC20 module in Figure 29.
Updated GNSS performance in Table 24.
Updated module operating frequencies in Table 26.
Added EC21-AUV current consumption in Table 38.
Updated EC21-A conducted RF receiving sensitivity
of in Table 42.
Added EC21-J conducted RF receiving sensitivity in
Table 48.
Deleted the LTE band TDD B41 of EC21-CT
Confidential / Released 3 / 94
LTE Module Series
EC21 Hardware Design
Contents
About the Document ................................................................................................................................ 2
Contents .................................................................................................................................................... 4
Table Index ............................................................................................................................................... 6
Figure Index .............................................................................................................................................. 8
Introduction ..................................................................................................................................... 10
1.1.
Safety Information ..................................................................................................................11
Product Concept ............................................................................................................................. 12
2.1.
General Description .............................................................................................................. 12
2.2.
Key Features ......................................................................................................................... 13
2.3.
Functional Diagram ............................................................................................................... 15
2.4.
Evaluation Board ................................................................................................................... 16
Application Interfaces ..................................................................................................................... 17
3.1.
General Description .............................................................................................................. 17
3.2.
Pin Assignment ..................................................................................................................... 18
3.3.
Pin Description ...................................................................................................................... 19
3.4.
Operating Modes .................................................................................................................. 28
3.5.
Power Saving ........................................................................................................................ 28
3.5.1.
Sleep Mode.................................................................................................................. 28
3.5.1.1. UART Application ............................................................................................... 28
3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 29
3.5.1.3. USB Application with USB Suspend/Resume and RI Function .......................... 30
3.5.1.4. USB Application without USB Suspend Function............................................... 31
3.5.2.
Airplane Mode.............................................................................................................. 32
3.6.
Power Supply ........................................................................................................................ 32
3.6.1.
Power Supply Pins....................................................................................................... 32
3.6.2.
Decrease Voltage Drop ................................................................................................ 33
3.6.3.
Reference Design for Power Supply ............................................................................ 34
3.6.4.
Monitor the Power Supply ............................................................................................ 35
3.7.
Turn on and off Scenarios ..................................................................................................... 35
3.7.1.
Turn on Module Using the PWRKEY ........................................................................... 35
3.7.2.
Turn off Module ............................................................................................................ 37
3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 37
3.7.2.2. Turn off Module Using AT Command ................................................................. 37
3.8.
Reset the Module .................................................................................................................. 38
3.9.
USIM Card Interface ............................................................................................................. 39
3.10. USB Interface ........................................................................................................................ 41
3.11. UART Interfaces.................................................................................................................... 43
3.12. PCM and I2C Interfaces ........................................................................................................ 45
3.13. ADC Function ........................................................................................................................ 48
3.14. Network Status Indication ..................................................................................................... 49
EC21_Hardware_Design
Confidential / Released 4 / 94
LTE Module Series
EC21 Hardware Design
3.15. STATUS ................................................................................................................................ 50
3.16. Behavior of the RI ................................................................................................................. 51
3.17. SGMII Interface ..................................................................................................................... 51
3.18. Wireless Connectivity Interfaces ........................................................................................... 54
3.18.1. WLAN Interface ........................................................................................................... 56
3.18.2. BT Interface* ................................................................................................................ 56
3.19. USB_BOOT Interface............................................................................................................ 57
GNSS Receiver ................................................................................................................................ 58
4.1.
General Description .............................................................................................................. 58
4.2.
GNSS Performance .............................................................................................................. 58
4.3.
Layout Guidelines ................................................................................................................. 59
Antenna Interfaces .......................................................................................................................... 60
5.1.
Main/Rx-diversity Antenna Interface ..................................................................................... 60
5.1.1.
Pin Definition................................................................................................................ 60
5.1.2.
Operating Frequency ................................................................................................... 60
5.1.3.
Reference Design of RF Antenna Interface ................................................................. 61
5.1.4.
Reference Design of RF Layout................................................................................... 62
5.2.
GNSS Antenna Interface ....................................................................................................... 64
5.3.
Antenna Installation .............................................................................................................. 65
5.3.1.
Antenna Requirement .................................................................................................. 65
5.3.2.
Recommended RF Connector for Antenna Installation ................................................ 66
Electrical, Reliability and Radio Characteristics .......................................................................... 68
6.1.
Absolute Maximum Ratings .................................................................................................. 68
6.2.
Power Supply Ratings ........................................................................................................... 68
6.3.
Operating Temperature ......................................................................................................... 69
6.4.
Current Consumption ............................................................................................................ 70
6.5.
RF Output Power .................................................................................................................. 76
6.6.
RF Receiving Sensitivity ....................................................................................................... 76
6.7.
Electrostatic Discharge ......................................................................................................... 80
Mechanical Dimensions.................................................................................................................. 81
7.1.
Mechanical Dimensions of the Module.................................................................................. 81
7.2.
Recommended Footprint....................................................................................................... 83
7.3.
Design Effect Drawings of the Module .................................................................................. 84
Storage, Manufacturing and Packaging ........................................................................................ 85
8.1.
Storage ................................................................................................................................. 85
8.2.
Manufacturing and Soldering ................................................................................................ 86
8.3.
Packaging ............................................................................................................................. 87
10
11
12
Appendix A References .................................................................................................................. 88
Appendix B GPRS Coding Schemes ............................................................................................. 92
Appendix C GPRS Multi-slot Classes ............................................................................................ 93
Appendix D EDGE Modulation and Coding Schemes .................................................................. 94
EC21_Hardware_Design
Confidential / Released 5 / 94
LTE Module Series
EC21 Hardware Design
Table Index
TABLE 1: FREQUENCY BANDS OF EC21 SERIES MODULE........................................................................ 12
TABLE 2: KEY FEATURES OF EC21 MODULE ............................................................................................... 13
TABLE 3: I/O PARAMETERS DEFINITION ....................................................................................................... 19
TABLE 4: PIN DESCRIPTION ........................................................................................................................... 19
TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................. 28
TABLE 6: VBAT AND GND PINS....................................................................................................................... 33
TABLE 7: PWRKEY PIN DESCRIPTION .......................................................................................................... 35
TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 38
TABLE 9: PIN DEFINITION OF THE USIM CARD INTERFACE ...................................................................... 39
TABLE 10: PIN DESCRIPTION OF USB INTERFACE ..................................................................................... 41
TABLE 11: PIN DEFINITION OF THE MAIN UART INTERFACE ..................................................................... 43
TABLE 12: PIN DEFINITION OF THE DEBUG UART INTERFACE ................................................................. 43
TABLE 13: LOGIC LEVELS OF DIGITAL I/O .................................................................................................... 44
TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ....................................................................... 46
TABLE 15: PIN DEFINITION OF THE ADC ...................................................................................................... 48
TABLE 16: CHARACTERISTIC OF THE ADC .................................................................................................. 48
TABLE 17: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR...................... 49
TABLE 18: WORKING STATE OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ................... 49
TABLE 19: PIN DEFINITION OF STATUS ........................................................................................................ 50
TABLE 20: BEHAVIOR OF THE RI ................................................................................................................... 51
TABLE 21: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 52
TABLE 22: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ................................................ 54
TABLE 23: PIN DEFINITION OF USB_BOOT INTERFACE ............................................................................. 57
TABLE 24: GNSS PERFORMANCE ................................................................................................................. 58
TABLE 25: PIN DEFINITION OF THE RF ANTENNA ....................................................................................... 60
TABLE 26: MODULE OPERATING FREQUENCIES ........................................................................................ 60
TABLE 27: PIN DEFINITION OF GNSS ANTENNA INTERFACE..................................................................... 64
TABLE 28: GNSS FREQUENCY ....................................................................................................................... 64
TABLE 29: ANTENNA REQUIREMENTS.......................................................................................................... 65
TABLE 30: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 68
TABLE 31: POWER SUPPLY RATINGS ........................................................................................................... 68
TABLE 32: OPERATING TEMPERATURE........................................................................................................ 69
TABLE 33: EC21-A CURRENT CONSUMPTION ............................................................................................. 70
TABLE 34: EC21-AUT CURRENT CONSUMPTION ........................................................................................ 71
TABLE 35: EC21-E CURRENT CONSUMPTION ............................................................................................. 72
TABLE 36: EC21-KL CURRENT CONSUMPTION ........................................................................................... 73
TABLE 37: EC21-V CURRENT CONSUMPTION ............................................................................................. 74
TABLE 38: EC21-AUV CURRENT CONSUMPTION ........................................................................................ 74
TABLE 39: GNSS CURRENT CONSUMPTION OF EC21 SERIES MODULE ................................................. 75
TABLE 40: RF OUTPUT POWER ..................................................................................................................... 76
TABLE 41: EC21-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 76
EC21_Hardware_Design
Confidential / Released 6 / 94
LTE Module Series
EC21 Hardware Design
TABLE 42: EC21-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 77
TABLE 43: EC21-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 77
TABLE 44: EC21-AUT CONDUCTED RF RECEIVING SENSITIVITY ............................................................. 77
TABLE 45: EC21-AUTL CONDUCTED RF RECEIVING SENSITIVITY ........................................................... 78
TABLE 46: EC21-KL CONDUCTED RF RECEIVING SENSITIVITY ................................................................ 78
TABLE 47: EC21-CT CONDUCTED RF RECEIVING SENSITIVITY................................................................ 78
TABLE 48: EC21-J CONDUCTED RF RECEIVING SENSITIVITY................................................................... 79
TABLE 49: EC21-AUV CONDUCTED RF RECEIVING SENSITIVITY ............................................................. 79
TABLE 50: ELECTROSTATIC DISCHARGE CHARACTERISTICS ................................................................. 80
TABLE 51: RELATED DOCUMENTS ................................................................................................................ 88
TABLE 52: TERMS AND ABBREVIATIONS ...................................................................................................... 88
TABLE 53: DESCRIPTION OF DIFFERENT CODING SCHEMES .................................................................. 92
TABLE 54: GPRS MULTI-SLOT CLASSES ...................................................................................................... 93
TABLE 55: EDGE MODULATION AND CODING SCHEMES ........................................................................... 94
EC21_Hardware_Design
Confidential / Released 7 / 94
LTE Module Series
EC21 Hardware Design
Figure Index
FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 16
FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 18
FIGURE 3: SLEEP MODE APPLICATION VIA UART ....................................................................................... 29
FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 30
FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 31
FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 31
FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ...................................................... 33
FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY............................................................................ 34
FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 34
FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................. 35
FIGURE 11: TURN ON THE MODULE USING KEYSTROKE .......................................................................... 36
FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 36
FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 37
FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 38
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 38
FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 39
FIGURE 17: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH AN 8-PIN USIM CARD
CONNECTOR .................................................................................................................................................... 40
FIGURE 18: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECTOR
........................................................................................................................................................................... 40
FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 42
FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 44
FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 45
FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 46
FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 46
FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 47
FIGURE 25: REFERENCE CIRCUIT OF THE NETWORK INDICATOR .......................................................... 50
FIGURE 26: REFERENCE CIRCUITS OF STATUS ......................................................................................... 50
FIGURE 27: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 52
FIGURE 28: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION................. 53
FIGURE 29: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE
........................................................................................................................................................................... 55
FIGURE 30: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 57
FIGURE 31: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................. 61
FIGURE 32: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ...................................................................... 62
FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB .................................................. 62
FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE
GROUND) .......................................................................................................................................................... 63
FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE
GROUND) .......................................................................................................................................................... 63
FIGURE 36: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 64
EC21_Hardware_Design
Confidential / Released 8 / 94
LTE Module Series
EC21 Hardware Design
FIGURE 37: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) ................................................ 66
FIGURE 38: MECHANICALS OF UF.L-LP CONNECTORS ............................................................................. 66
FIGURE 39: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ........................................................... 67
FIGURE 40: MODULE TOP AND SIDE DIMENSIONS..................................................................................... 81
FIGURE 41: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 82
FIGURE 42: RECOMMENDED FOOTPRINT (TOP VIEW) .............................................................................. 83
FIGURE 43: TOP VIEW OF THE MODULE ...................................................................................................... 84
FIGURE 44: BOTTOM VIEW OF THE MODULE .............................................................................................. 84
FIGURE 45: REFLOW SOLDERING THERMAL PROFILE .............................................................................. 86
FIGURE 46: TAPE AND REEL SPECIFICATIONS ........................................................................................... 87
EC21_Hardware_Design
Confidential / Released 9 / 94
LTE Module Series
EC21 Hardware Design
Introduction
This document defines the EC21module and describes its air interface and hardware interface which are
connected with your application.
This document can help you quickly understand module interface specifications, electrical andmechanical
details, as well as other related information of EC21 module. Associated with application note and user
guide, you can use EC21 module to design and set up mobile applications easily.
EC21_Hardware_Design
Confidential / Released 10 / 94
LTE Module Series
EC21 Hardware Design
1.1. Safety Information
The following safety precautions must be observed during all phases of the operation, such as usage,
service or repair of any cellular terminal or mobile incorporating EC21 module. Manufacturers of the cellular
terminal should send the following safety information to users and operating personnel, andincorporate
these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the
customer’s failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a handsfree kit) causes
distraction and can lead to an accident. You must comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is
switched off. The operation of wireless appliances in an aircraft is forbidden, so as
to prevent interference with communication systems. Consult the airline staff about
the use of wireless devices on boarding the aircraft, if your device offers an
Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals,clinics or other health care
facilities. These requests are designed to prevent possible interference with
sensitive medical equipment.
Cellular terminals or mobiles operatingover radio frequency signal and cellular
network cannot be guaranteed to connect in all conditions, for example no mobile
fee or with an invalid USIM/SIM card. While you are in this condition and need
emergent help, please remember using emergency call. In order to make or
receive a call, the cellular terminal or mobile must be switched on and in a service
area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON,
it receives and transmits radio frequency energy. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres includefuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
EC21_Hardware_Design
Confidential / Released 11 / 94
LTE Module Series
EC21 Hardware Design
Product Concept
2.1. General Description
EC21 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive
diversity. It provides data connectivity on LTE-FDD, LTE-TDD,DC-HSPA+, HSPA+, HSDPA, HSUPA,
WCDMA,EDGE andGPRSnetworks. It also provides GNSS1) and voice functionality2) for your specific
applications.EC21
contains
tenvariants:EC21-E,
EC21-A,
EC21-V,
EC21-AUT,
EC21-AU,EC21-AUV,EC21-AUTL, EC21-J, EC21-CT and EC21-KL. You can choose a dedicated type
based on the region or operator. The following table shows the frequency bands of EC21 series module.
Table 1: Frequency Bands of EC21 Series Module
Modules2)
LTE Bands
3G Bands
GSM
Rxdiversity
EC21-E
FDD:B1/B3/B5/B7/B8/B20
WCDMA:B1/B
5/B8
900/1800
EC21-A
FDD:B2/B4/B12
WCDMA:B2/B
4/B5
EC21-V
FDD:B4/B13
EC21-AUT
FDD:B1/B3/B5/B7/B28
WCDMA:
B1/B5
EC21-AU
FDD: B1/B2/B3/B4/B5/B7/B8/
B28
TDD: B40
WCDMA:
B1/B2/B5/B8
850/900/
1800/1900
EC21-AUV
FDD: B1/B3/B5/B8/B28
B1/B5/B8
EC21-AUTL
FDD:B3/B7/B28
EC21-J
FDD: B1/B3/B8/B18/B19/B26
EC21-CT
FDD:B1/B3/B5
EC21-KL
FDD:B1/B3/B5/B7/B8
3)
EC21_Hardware_Design
Confidential / Released 12 / 94
GNSS1)
GPS,
GLONASS,
BeiDou/
Compass,
Galileo,QZS
LTE Module Series
EC21 Hardware Design
NOTES
1.
2.
3.
4.
1)
2)
GNSS function is optional.
EC21 series module (EC21-E, EC21-A, EC21-V, EC21-AUT, EC21-AU,EC21-AUV, EC21-AUTL,
EC21-J, EC21-CT and EC21-KL) includes Data-only and Telematics versions. Data-only version
does not support voice function, while Telematics version supports it.
3)
B2 band on EC21-AU module does not support Rx-diversity.
Y = supported (including LTE and WCDMA). N = Not supported.
With a compact profile of 32.0mm ×29.0mm ×2.4mm, EC21 can meet almost all requirements for M2M
applications such as automotive, metering, tracking system, security, router, wireless POS, mobile
computing device, PDA phone,tablet PC, etc.
EC21 is an SMD type module which can be embedded into applications through its 144-pin pads,
including 80LCC signal pads and 64 other pads.
2.2. Key Features
The following table describes the detailed features of EC21 module.
Table 2: Key Features of EC21 Module
Features
Details
Power Supply
Supply voltage: 3.3V~4.3VTypical supply voltage: 3.8V
Transmitting Power
Class 4 (33dBm±2dB) for GSM900
Class 1 (30dBm±2dB) for DCS1800
Class E2 (27dBm±3dB) for GSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class 3 (22.5dBm -3/+1dB) for WCDMA bands
Class 3 (22.5dBm -3/+1dB) for LTE-FDD bands
Class 3 (22.5dBm -3/+1dB) for LTE-TDD bands
LTE Features
Support up to non-CA CAT1
Support 1.4 to 20MHz RF bandwidth
SupportMIMO in DL direction
FDD: Max 5Mbps (UL), 10Mbps (DL)
TDD: Max 3.1Mbps(UL), 8.96Mbps(DL)
WCDMA Features
Support 3GPP R8 DC-HSPA+
Support 16-QAM, 64-QAM and QPSKmodulation
3GPP R6 CAT6 HSUPA: Max 5.76Mbps (UL)
EC21_Hardware_Design
Confidential / Released 13 / 94
LTE Module Series
EC21 Hardware Design
3GPP R8 CAT24 DC-HSPA+: Max 42Mbps (DL)
R99:
CSD: 9.6kbps, 14.4kbps
GSMFeatures
GPRS:
Support GPRS multi-slot class 12 (12 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Maximum of four Rx time slots per frame
EDGE:
Support EDGE multi-slot class 12 (12 by default)
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4 and MCS 1-9
Uplink coding schemes: CS 1-4 and MCS 1-9
Internet Protocol Features
Support
TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/MMS*/FTPS*/
SSL*protocols
Support PAP (Password Authentication Protocol) and CHAP (Challenge
Handshake Authentication Protocol) protocols which are usually used for
PPP connections
SMS
Text and PDU mode
Point to point MO and MT
SMS cell broadcast
SMS storage: ME by default
USIM Interface
Support USIM/SIM card: 1.8V, 3.0V
Audio Features
Support one digital audio interface: PCM interface
GSM: HR/FR/EFR/AMR/AMR-WB
WCDMA: AMR/AMR-WB
LTE: AMR/AMR-WB
Support echo cancellation and noise suppression
PCM Interface
Used for audio function with external codec
Support 8-bit A-law*, μ-law*and 16-bit linear data formats
Support long frame synchronization and short frame synchronization
Support master and slave modes, but must be the master in long frame
synchronization
USB Interface
UART Interface
EC21_Hardware_Design
Compliant with USB 2.0 specification (slave only);the data transfer rate can
reach up to 480Mbps
Used for AT command communication, data transmission, GNSS NMEA
output, software debugging, firmware upgradeand voice over USB*
SupportUSB drivers for Windows XP, Windows Vista, Windows 7, Windows
8/8.1, Window 10, Linux 2.6 or later, Android 4.0/4.2/4.4/5.0/5.1/6.0
Main UART:
Used for AT command communication and data transmission
Confidential / Released 14 / 94
LTE Module Series
EC21 Hardware Design
Baud rate reach up to 3000000bps, 115200bps by default
Support RTS and CTS hardware flow control
Debug UART:
Used for Linux console, log output
115200bps baud rate
SGMII Interface
Support 10/100/1000Mbps Ethernet connectivity
Wireless Connectivity
Interfaces
Support a low-power SDIO 3.0 interface for WLAN and UART/PCM
interface for Bluetooth*
Rx-diversity
Support LTE/WCDMA Rx-diversity
GNSS Features
Gen8CLite of Qualcomm
Protocol: NMEA 0183
AT Commands
Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT
commands
Network Indication
Two pins including NET_MODE and NET_STATUS to indicate network
connectivity status
Antenna Interface
Including main antennainterface(ANT_MAIN), Rx-diversity
interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS)
Physical Characteristics
Size: (32.0±0.15)×(29.0±0.15)×(2.4±0.2)mm
Weight: approx. 4.9g
Temperature Range
Operation temperature range: -35°C ~ +75°C1)
Extended temperature range: -40°C ~ +85°C2)
Firmware Upgrade
USB interfaceand DFOTA*
RoHS
All hardware components are fully compliant with EU RoHS directive
antenna
NOTES
1.
2.
3.
1)
Within operating temperature range, the module is 3GPP compliant.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like Pout might reduce in their value and exceed the specified tolerances. When the temperature
returns to normal operating temperature levels, the module will meet 3GPP specificationsagain.
“*” means under development.
2)
2.3. Functional Diagram
EC21_Hardware_Design
Confidential / Released 15 / 94
LTE Module Series
EC21 Hardware Design
The following figure shows a block diagram of EC21 and illustrates the major functional parts.





Power management
Baseband
DDR+NAND flash
Radio frequency
Peripheral interfaces
ANT_MAIN
ANT_GNSS
ANT_DIV
Switch
SAW
Switch
Duplex
LNA
SAW
VBAT_RF
APT
PA
PRx
DRx
Tx
NAND
DDR2
SDRAM
Transceiver
IQ
VBAT_BB
PMIC
Control
Control
PWRKEY
Baseband
RESET_N
ADCs
19.2M
XO
STATUS
VDD_EXT
USB USIM PCM SGMII WLAN
I2C
UART GPIOs
BT
Figure 1: Functional Diagram
2.4. Evaluation Board
In order to help youdevelop applications with EC21, Quectel supplies an evaluation board (EVB), USB
data cable, earphone, antenna and other peripherals to control or test the module.
EC21_Hardware_Design
Confidential / Released 16 / 94
LTE Module Series
EC21 Hardware Design
Application Interfaces
3.1. General Description
EC21 is equipped with 80-pin SMT pads plus 64-pin ground pads and reserved pads that can
beconnected to cellular application platform. Sub-interfaces included in these pads are described in detail
in the following chapters:










Power supply
USIM interface
USB interface
UART interfaces
PCM interface
ADC interface
Status indication
SGMII interface
Wireless connectivity interfaces
USB_BOOT interface
EC21_Hardware_Design
Confidential / Released 17 / 94
LTE Module Series
EC21 Hardware Design
3.2. Pin Assignment
The following figure shows the pin assignment of EC21 module.
Figure 2: Pin Assignment (Top View)
NOTES
1.
2.
3.
4.
5.
1)
means that these pins cannot be pulled up before startup.
PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
Pads 119~126 are SGMII function pins.
Pads 37~40, 118, 127 and 129~139 are wireless connectivity interfaces, among which pads 127 and
129~138 are WLAN function pins, and others are Bluetooth (BT) function pins. BT function is under
development.
Pads 24~27 are multiplexing pinsused for audio design on EC21 module and BT function on FC20
2)
EC21_Hardware_Design
Confidential / Released 18 / 94
LTE Module Series
EC21 Hardware Design
6.
7.
8.
module.
Keep all RESERVEDpins and unused pins unconnected.
GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84should
not be designed in schematic and PCB decal.
※
“ ” means these interface functions are only supported on Telematics version.
3.3. Pin Description
The following tables show the pin definition of EC21 module.
Table 3: I/O Parameters Definition
Type
Description
IO
Bidirectional
DI
Digital input
DO
Digital output
PI
Power input
PO
Power output
AI
Analog input
AO
Analog output
OD
Open drain
Table 4: Pin Description
Power Supply
Pin Name
VBAT_BB
VBAT_RF
Pin No.
59,60
57,58
EC21_Hardware_Design
I/O
Description
DC Characteristics
Comment
PI
Power supply for
module baseband
part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
It must be able to provide
sufficient current up to
0.8A.
Power supply for
module RF part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
It must be able to provide
sufficient current up to
1.8A in a burst
transmission.
PI
Confidential / Released 19 / 94
LTE Module Series
EC21 Hardware Design
VDD_EXT
PO
GND
8,9,19,22,3
6,46,48,50
~54,56,72,
85~112
Provide 1.8V for
external circuit
Vnorm=1.8V
IOmax=50mA
Power supply for
external GPIO’s pull up
circuits.
Ground
Turn on/off
Pin Name
Description
DC Characteristics
Comment
Turnon/off the
module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
The output voltage is
0.8V because of the
diode drop in the
Qualcomm chipset.
DI
Reset the module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
I/O
Description
DC Characteristics
Comment
OD
Indicate the module
operating status
The drive current
should be less than
0.9mA.
Require external
pull-up. If unused,
keep it open.
DO
Indicate the module
network registration
mode
VOHmin=1.35V
VOLmax=0.45V
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it open.
DO
Indicate the module
network activity
status
VOHmin=1.35V
VOLmax=0.45V
1.8V power domain.
If unused, keep it open.
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
USB_VBUS
71
PI
USB detection
Vnorm=5.0V
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90ohm.
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90ohm.
PWRKEY
RESET_N
Pin No.
21
20
I/O
DI
Status Indication
Pin Name
STATUS
NET_MODE
NET_
STATUS
Pin No.
61
USB Interface
USB_DP
69
IO
USB differential data
bus
USB_DM
70
IO
USB differential data
bus
EC21_Hardware_Design
Confidential / Released 20 / 94
LTE Module Series
EC21 Hardware Design
USIM Interface
Pin Name
Pin No.
USIM_GND
10
I/O
Description
DC Characteristics
Specified ground for
USIM card
For 1.8V USIM:
Vmax=1.9V
Vmin=1.7V
USIM_VDD
USIM_DATA
USIM_CLK
USIM_RST
USIM_
PRESENCE
14
15
16
17
13
EC21_Hardware_Design
Comment
PO
IO
DO
DO
DI
Power supply for
USIM card
Data signal of USIM
card
Clock signal of USIM
card
Reset signal of
USIM card
USIM card insertion
detection
For 3.0V USIM:
Vmax=3.05V
Vmin=2.7V
IOmax=50mA
Either 1.8V or 3.0V is
supported by the
module automatically.
For 1.8V USIM:
VILmax=0.6V
VIHmin=1.2V
VOLmax=0.45V
VOHmin=1.35V
For 3.0V USIM:
VILmax=1.0V
VIHmin=1.95V
VOLmax=0.45V
VOHmin=2.55V
For 1.8V USIM:
VOLmax=0.45V
VOHmin=1.35V
For 3.0V USIM:
VOLmax=0.45V
VOHmin=2.55V
For 1.8V USIM:
VOLmax=0.45V
VOHmin=1.35V
For 3.0V USIM:
VOLmax=0.45V
VOHmin=2.55V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
Confidential / Released 21 / 94
1.8V power domain.
If unused, keep it open.
LTE Module Series
EC21 Hardware Design
UART Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
RI
62
DO
Ring indicator
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it open.
DCD
63
DO
Data carrier
detection
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it open.
CTS
64
DO
Clear to send
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it open.
Request to send
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it open.
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
Pull-up by default. Low
level wakes up the
module.
If unused, keep it open.
RTS
65
DI
DTR
66
DI
Data terminal
ready,sleep mode
control
TXD
67
DO
Transmit data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it open.
DI
Receive data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it open.
RXD
68
Debug UART Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
DBG_TXD
12
DO
Transmit data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it open.
1.8V power domain.
If unused, keep it open.
DBG_RXD
11
DI
Receive data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
Pin No.
I/O
Description
DC Characteristics
Comment
AI
General purpose
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
If unused, keep it open.
AI
General purpose
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
If unused, keep it open.
ADC Interface
Pin Name
ADC0
ADC1
45
44
EC21_Hardware_Design
Confidential / Released 22 / 94
LTE Module Series
EC21 Hardware Design
PCM Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
1.8V power domain.
If unused, keep it open.
PCM_IN
24
DI
PCM data input
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
PCM_OUT
25
DO
PCM data output
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it open.
PCM data frame
synchronization
signal
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
In master mode, it is an
output signal.
In slave mode, it is an
input signal.
If unused, keep it open.
1.8V power domain.
In master mode, it is an
output signal.
In slave mode, it is an
input signal.
If unused, keep it open.
Comment
PCM_SYNC
PCM_CLK
26
IO
27
IO
PCM clock
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
Pin No.
I/O
Description
DC Characteristics
OD
I2C serial clock.
Used for external
codec
External pull-up
resistor is required.
1.8V only.
If unused, keep it open.
OD
I2C serial data.
Used for external
codec
External pull-up
resistor is required.
1.8V only.
If unused, keep it open.
I2C Interface
Pin Name
I2C_SCL
I2C_SDA
41
42
SGMII Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
EPHY_RST_N 119
DO
Ethernet PHY reset
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
EC21_Hardware_Design
Confidential / Released 23 / 94
Comment
1.8V/2.85V power
domain.
If unused, keep it
open.
LTE Module Series
EC21 Hardware Design
EPHY_INT_N
SGMII_
MDATA
SGMII_
MCLK
120
121
122
DI
IO
DO
Ethernet PHY
interrupt
SGMII MDIO
(Management Data
Input/Output) data
SGMII MDIO
(Management Data
Input/Output) clock
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
VILmax=0.58V
VIHmin=1.27V
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
VILmax=0.71V
VIHmin=1.78V
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
1.8V power domain.
If unused, keep it
open.
1.8V/2.85V power
domain.
If unused, keep it
open.
1.8V/2.85V power
domain.
If unused, keep it
open.
USIM2_VDD
128
PO
SGMII MDIO pull-up
power source
Configurable power
source.
1.8V/2.85V power
domain.
External pull-up for
SGMII MDIO pins.
If unused, keep it
open.
SGMII_TX_M
123
AO
SGMII transmission
- minus
If unused, keep it
open.
SGMII_TX_P
124
AO
SGMII transmission
- plus
If unused, keep it
open.
SGMII_RX_P
125
AI
SGMII receiving
- plus
If unused, keep it
open.
SGMII_RX_M
126
AI
SGMII receiving
-minus
If unused, keep it
open.
Wireless Connectivity Interfaces
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
SDC1_
DATA3
129
IO
SDIO data bus D3
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
EC21_Hardware_Design
Confidential / Released 24 / 94
LTE Module Series
EC21 Hardware Design
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
SDC1_
DATA2
SDC1_
DATA1
SDC1_
DATA0
SDC1_CLK
SDC1_CMD
PM_ENABLE
WAKE_ON_
WIRELESS
WLAN_EN
130
131
132
133
134
127
135
136
COEX_UART_
137
RX
EC21_Hardware_Design
open.
SDIO data bus D2
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
SDIO data bus D1
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
SDIO data bus D1
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
SDIO clock
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DO
SDIO command
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DO
External power
control
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DI
Wake up the host
(EC21 module) by
FC20 module.
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
Active low.
If unused, keep it
open.
DO
WLAN function
controlvia FC20
module
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
Active high.
If unused, keep it
open.
LTE/WLAN
coexistence signal
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
IO
IO
IO
DO
DI
Confidential / Released 25 / 94
LTE Module Series
EC21 Hardware Design
COEX_UART_
138
TX
DO
LTE/WLAN
coexistence signal
WLAN_SLP_
CLK
DO
WLAN sleep clock
118
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
If unused, keep it
open.
DI
BT UART request to
send
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
DO
BT UART transmit
data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DI
BT UART
data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
DO
BT UART clear to
send
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
139
DO
BTfunctioncontrolvia
FC20 module
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
ANT_DIV
35
AI
Diversity antenna
pad
50ohm impedance
If unused, keep it
open.
ANT_MAIN
49
IO
Main antenna pad
50ohm impedance
ANT_GNSS
47
AI
GNSS antenna pad
50 ohm impedance
If unused, keep it
open.
Pin No.
I/O
Description
DC Characteristics
Comment
1.8V power domain.
Cannot be pulled up
before startup.
Low level wakes up
the module.
If unused, keep it
open.
1.8V power domain.
BT_RTS*
BT_TXD*
BT_RXD*
BT_CTS*
BT_EN*
37
38
39
40
receive
RF Interface
GPIO Pins
Pin Name
WAKEUP_IN
DI
Sleep mode control
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
W_DISABLE#
DI
Airplane mode
VILmin=-0.3V
EC21_Hardware_Design
Confidential / Released 26 / 94
LTE Module Series
EC21 Hardware Design
control
AP_READY
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
Pull-up by default.
In low voltage level,
module can enter into
airplane mode.
If unused, keep it
open.
DI
Application
processor sleep
state detection
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
DI
Force the module to
boot from USB port.
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
Other Interface Pins
Pin Name
USB_BOOT
Pin No.
115
RESERVED Pins
Pin Name
RESERVED
Pin No.
3, 18, 23,
28~34,
43, 55,
73~84,
113, 114,
116, 117,
140~144
Keep these pins
unconnected.
Reserved
NOTES
1.
2.
“*” means under development.
Pads 24~27 are multiplexing pins used for audio design on EC21 module and BT function on FC20
module.
EC21_Hardware_Design
Confidential / Released 27 / 94
LTE Module Series
EC21 Hardware Design
3.4. Operating Modes
The table below briefly summarizes the various operating modes referred in the following chapters.
Table 5: Overview of Operating Modes
Mode
Normal
Operation
Details
Idle
Software is active. The module hasbeen registered onthe network, and
it is ready to send and receive data.
Talk/Data
Network connection is ongoing. In this mode, the power consumption is
decided by network settingand data transfer rate.
Minimum
Functionality
Mode
AT+CFUN command can set the module to a minimum functionality mode without
removing the power supply. In this case, both RF function and USIM card will be invalid.
Airplane
Mode
AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In this
case, RF function will be invalid.
Sleep Mode
In this mode, the current consumption of the module will be reduced to the minimal level.
During this mode, the module can still receive paging message, SMS, voice call and
TCP/UDP data from the network normally.
Power down
Mode
In this mode, the power management unit shuts down the power supply. Software is not
active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF
and VBAT_BB) remains applied.
3.5. Power Saving
3.5.1. Sleep Mode
EC21 is able to reduce its current consumption to a minimum value during the sleep mode. The following
section describes power saving procedure of EC21 module.
3.5.1.1. UART Application
If the host communicates with module via UART interface, the following preconditions can let the module
enter into sleep mode.


Execute AT+QSCLK=1 command to enable sleep mode.
Drive DTR to high level.
EC21_Hardware_Design
Confidential / Released 28 / 94
LTE Module Series
EC21 Hardware Design
The following figure shows the connection between the module and the host.
Figure 3: Sleep Mode Application via UART



Driving thehost DTR to low level will wake up the module.
When EC21 has URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details
about RI behavior.
AP_READY will detect the sleep state of the host (can be configured to high level or low level
detection). Please refer to AT+QCFG=“apready”command for details.
NOTE
AT+QCFG=“apready”commandis under development.
3.5.1.2. USB Application with USB Remote Wakeup Function
If the host supports USB suspend/resume and remote wakeup
threepreconditionsmust be mettolet the module enter into sleep mode.



functions,
the
following
Execute AT+QSCLK=1command to enable sleep mode.
Ensure the DTR is held in high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
EC21_Hardware_Design
Confidential / Released 29 / 94
LTE Module Series
EC21 Hardware Design
The following figure shows the connection between the module and the host.
Figure 4: Sleep Mode Application withUSB Remote Wakeup


Sending data to EC21through USB will wake up the module.
When EC21has URC to report, the module will send remote wake-up signals via USB bus so as to
wake up the host.
3.5.1.3. USB Application with USB Suspend/Resume and RI Function
If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is
needed to wake up the host.
There are threepreconditions to let the module enter into the sleep mode.



Execute AT+QSCLK=1 command to enable sleep mode.
Ensure the DTR is held in high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
EC21_Hardware_Design
Confidential / Released 30 / 94
LTE Module Series
EC21 Hardware Design
The following figure shows the connection between the module and the host.
Figure 5: Sleep Mode Application with RI


Sending data to EC21through USB will wake up the module.
When EC21has URC to report, RI signal will wake up the host.
3.5.1.4. USB Application without USB Suspend Function
If the host does not support USB suspend function, you should disconnect USB_VBUS with additional
control circuit to let the module enter into sleep mode.



Execute AT+QSCLK=1command to enable sleep mode.
Ensure the DTR is held in high level or keep it open.
Disconnect USB_VBUS.
The following figure shows the connection between the module and the host.
Figure 6: Sleep Mode Application without Suspend Function
EC21_Hardware_Design
Confidential / Released 31 / 94
LTE Module Series
EC21 Hardware Design
Switching on the power switch to supply power to USB_VBUS will wake up the module.
NOTE
Please pay attention to the level match shown in dotted line between the module and thehost.Refer to
document [1] for more details about EC21 power management application.
3.5.2. Airplane Mode
When the module enters into airplane mode, the RF function does not work, and all AT commands
correlative with RF function will be inaccessible. This mode can be set via the following ways.
Hardware:
The W_DISABLE# pin is pulled up by default;driving it to low level will let the module enter into airplane
mode.
Software:
AT+CFUNcommand provides the choice of the functionality level.
 AT+CFUN=0: Minimum functionality mode;both USIM and RF functions are disabled.
 AT+CFUN=1: Full functionality mode (by default).
 AT+CFUN=4: Airplane mode. RF function is disabled.
NOTES
1.
The W_DISABLE# control function is disabled in firmware by default. It can be enabled by
2.
AT+QCFG=“airplanecontrol” command. This commandis under development.
The execution of AT+CFUN command will not affect GNSS function.
3.6. Power Supply
3.6.1. Power Supply Pins
EC21 provides four VBAT pins for connection with the external power supply. There are two separate
voltage domains for VBAT.


Two VBAT_RF pins for module RF part.
Two VBAT_BB pins for module baseband part.
The following table shows the details of VBAT pins and ground pins.
EC21_Hardware_Design
Confidential / Released 32 / 94
LTE Module Series
EC21 Hardware Design
Table 6: VBAT and GND Pins
Pin Name
Pin No.
Description
Min.
Typ.
Max.
Unit
VBAT_RF
57,58
Power supply for module RF
part.
3.3
3.8
4.3
VBAT_BB
59,60
Power supply for module
baseband part.
3.3
3.8
4.3
GND
8,9,19,22,36,46
, 48,50~54,56,
72, 85~112
Ground
3.6.2. Decrease Voltage Drop
The power supply range of the module is from 3.3Vto4.3V. Please make sure that the input voltage will
never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G
network.The voltage drop will be less in 3G and 4G networks.
Figure 7: Power Supply Limits during Burst Transmission
To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and
amulti-layer ceramic chip (MLCC) capacitorarray should also be used to provide the low ESR. The main
power supply from an external application has to be a single voltage source and can be expanded to two
sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; andthe width of
VBAT_RF trace should be no less than 2mm.In principle, the longerthe VBAT trace is, the wider it will be.
Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. These
capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is
suggested that you should use a zener diode of which reverse zener voltage is 5.1V and dissipation
power is more than 0.5W. The following figure shows the star structure of the power supply.
EC21_Hardware_Design
Confidential / Released 33 / 94
LTE Module Series
EC21 Hardware Design
Figure 8: Star Structure of the Power Supply
3.6.3. Reference Design for Power Supply
Power design for the module is very important, asthe performance of the module largely depends on the
power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage
drop between the input and output is not too high, it is suggested that you shoulduse an LDO to supply
power for the module. If there is a big voltage difference between the input source and the desired output
(VBAT), a buck converter is preferred to be used as thepower supply.
The following figure shows a reference design for +5V input power source. The typical output of the power
supply is about 3.8V and the maximum load current is 3A.
Figure 9: Reference Circuit of Power Supply
NOTE
In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be
cut off.
EC21_Hardware_Design
Confidential / Released 34 / 94
LTE Module Series
EC21 Hardware Design
3.6.4. Monitor the Power Supply
AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to
document [2].
3.7. Turn on and off Scenarios
3.7.1. Turn on Module Using the PWRKEY
The following table shows the pin definition of PWRKEY.
Table 7: PWRKEY Pin Description
Pin Name
PWRKEY
Pin No.
21
Description
DC Characteristics
Comment
Turn on/off the module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
The output voltage is 0.8V
because of the diode drop in
the Qualcomm chipset.
When EC21 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a
low level for at least 100ms. It is recommended to use an open drain/collector driver to control the
PWRKEY.After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be
released. A simple reference circuit is illustrated in the following figure.
Figure 10: Turn on the Module Using Driving Circuit
The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic
strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the
button for ESD protection. A reference circuit is shownin the following figure.
EC21_Hardware_Design
Confidential / Released 35 / 94
LTE Module Series
EC21 Hardware Design
Figure 11: Turn on the Module Using Keystroke
The turn on scenario is illustrated in the following figure.
Figure 12: Timing of Turning on Module
NOTE
Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no
less than 30ms.
EC21_Hardware_Design
Confidential / Released 36 / 94
LTE Module Series
EC21 Hardware Design
3.7.2. Turn off Module
The following procedures can be used to turn off the module:

Normal power down procedure: Turn off the module using the PWRKEY pin.

Normal power down procedure: Turn off the module using AT+QPOWD command.
3.7.2.1. Turn off Module Using the PWRKEY Pin
Driving the PWRKEY pin to a low level voltagefor at least 650ms, the module will execute power-down
procedure after the PWRKEY is released. The power-down scenario is illustrated inthe following figure.
Figure 13: Timing of Turning off Module
3.7.2.2. Turn off Module Using AT Command
It is also a safe way to use AT+QPOWDcommandto turn off the module, which is similar to turning off the
module via PWRKEY pin.
Please refer todocument [2] for details about AT+QPOWD command.
NOTE
In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be
cut off.
EC21_Hardware_Design
Confidential / Released 37 / 94
LTE Module Series
EC21 Hardware Design
3.8. Reset the Module
The RESET_N pin can be used to reset the module.The module can be reset by driving RESET_N to a
low level voltage for time between 150ms and 460ms.
Table 8: RESET_N Pin Description
Pin Name
RESET_N
Pin No.
20
Description
DC Characteristics
Reset the module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
Comment
The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button
can be used to control the RESET_N.
RESET_N
TBD
4.7K
Reset pulse
47K
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit
Figure 15: Reference Circuit of RESET_N by Using Button
EC21_Hardware_Design
Confidential / Released 38 / 94
LTE Module Series
EC21 Hardware Design
The reset scenario is illustrated inthe following figure.
Figure 16: Timing of Resetting Module
NOTES
1.
2.
Use RESET_N only when turning off the module by AT+QPOWD command and PWRKEY pin failed.
Ensure that there is no large capacitance on PWRKEY and RESET_N pins.
3.9. USIM Card Interface
The USIM card interface circuitrymeets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and
3.0V USIM cards are supported.
Table 9: Pin Definition of the USIM Card Interface
Pin Name
Pin No.
I/O
Description
Comment
Either 1.8V or 3.0V is supported
by the module automatically.
USIM_VDD
14
PO
Power supply for USIM card
USIM_DATA
15
IO
Data signal of USIM card
USIM_CLK
16
DO
Clock signal of USIM card
USIM_RST
17
DO
Reset signal of USIM card
USIM_
PRESENCE
13
DI
USIM card insertion detection
USIM_GND
10
EC21_Hardware_Design
Specified ground for USIM card
Confidential / Released 39 / 94
LTE Module Series
EC21 Hardware Design
EC21 supports USIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and
high level detections, and is disabled by default. Please refer to document [2] about AT+QSIMDET
command for details.
The following figure shows a reference design for USIM card interface with an 8-pin USIM card connector.
Figure 17: Reference Circuit of USIM Card Interface with an 8-Pin USIM Card Connector
If USIM card detection function is not needed, please keep USIM_PRESENCE unconnected. Areference
circuit for USIM card interface with a 6-pin USIM card connector is illustrated inthe following figure.
Figure 18: Reference Circuit of USIM Card Interface with a6-Pin USIM Card Connector
EC21_Hardware_Design
Confidential / Released 40 / 94
LTE Module Series
EC21 Hardware Design
In order to enhance the reliability and availability of the USIM card in your application, please follow the
criteria below in USIM circuit design:






Keep layout of USIM card as close to the module as possible. Keep the trace length as less than
200mm as possible.
Keep USIM card signals away from RF and VBAT traces.
Assure the ground between the module and the USIM card connectorshort and wide. Keep the trace
width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away fromeach other and
shield them with surrounded ground.
In order to offer good ESD protection, it is recommended to add a TVSdiode array whose parasitic
capacitance should not be more than 50pF. The 22ohmresistors should be added in series between
the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD
protection. The 33pFcapacitors are used for filtering interference of GSM900.Please note that the
USIM peripheral circuit should be close to the USIM card connector.
The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
and sensitive occasion areapplied, and should be placed close to the USIM card connector.
3.10. USB Interface
EC21 contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0
specification and supports high-speed (480Mbps) and full-speed (12Mbps)modes. The USB interface is
used for AT command communication, data transmission, GNSS NMEA sentences output, software
debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB
interface.
Table 10: Pin Description of USB Interface
Pin Name
Pin No.
I/O
Description
Comment
USB Signal Part
USB_DP
69
IO
USB differential data bus (positive)
Require differential
impedance of 90Ω
USB_DM
70
IO
USB differential data bus (minus)
Require differential
impedance of 90Ω
USB_VBUS
71
PI
Used for detecting the USB connection
Typical 5.0V
GND
72
Ground
For more details about the USB 2.0 specifications, please visit http://www.usb.org/home.
EC21_Hardware_Design
Confidential / Released 41 / 94
LTE Module Series
EC21 Hardware Design
The USB interface is recommended to be reserved for firmware upgrade in your design. The following
figure shows areference circuit of USB interface.
Figure 19: Reference Circuit of USB Application
In order to ensurethe integrity of USB data line signal, components R1, R2, R3 and R4 must be placed
close to the module, and alsothese resistors should be placed close to each other. The extra stubs of
trace must be as short as possible.
In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply
with the following principles:




It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90ohm.
Do not route signal traces under crystals, oscillators, magnetic devicesorRF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding onnot only upper
and lower layers but also right and left sides.
Pay attention to the influence of junction capacitance of ESD protection components on USB data
lines. Typically, the capacitance value should be less than 2pF.
Keep the ESD protection components to the USB connector as close as possible.
NOTES
1.
2.
EC21 module can only be used as a slave device.
“*” means under development.
EC21_Hardware_Design
Confidential / Released 42 / 94
LTE Module Series
EC21 Hardware Design
3.11. UART Interfaces
The module provides two UART interfaces: the main UART interface and the debug UART interface. The
following shows their features.


The
main
UART
interface
supports
4800,
9600,19200,38400,
57600,115200,230400,460800,921600and 3000000bps baud rates, and the default is 115200bps.
The interface is used for data transmission and AT command communication.
The debug UART interface supports 115200bpsbaud rate. It is used forLinux console and log output.
The following tables show the pin definition of the main UART interface.
Table 11: Pin Definition of the Main UART Interface
Pin Name
Pin No.
I/O
Description
RI
62
DO
Ring indicator
DCD
63
DO
Data carrier detection
CTS
64
DO
Clear to send
RTS
65
DI
Request to send
DTR
66
DI
Sleep mode control
TXD
67
DO
Transmit data
RXD
68
DI
Receive data
Comment
1.8V power domain
Table 12: Pin Definition of the Debug UART Interface
Pin Name
Pin No.
I/O
Description
DBG_TXD
12
DO
Transmit data
DBG_RXD
11
DI
Receive data
Comment
1.8V power domain
The logic levels are described in the following table.
EC21_Hardware_Design
Confidential / Released 43 / 94
LTE Module Series
EC21 Hardware Design
Table 13:Logic Levels of Digital I/O
Parameter
Min.
Max.
Unit
VIL
-0.3
0.6
VIH
1.2
2.0
VOL
0.45
VOH
1.35
1.8
The module provides 1.8V UART interface. A level translator should be used if your application is
equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instrumentis
recommended. The following figure shows areference design.
Figure 20: Reference Circuit with Translator Chip
Please visithttp://www.ti.comfor more information.
Another example with transistor translation circuit is shown as below. The circuit design of dotted line
section can refer to the design of solid line section, in terms of both module input and output circuit
designs; but please pay attention to the direction of connection.
EC21_Hardware_Design
Confidential / Released 44 / 94
LTE Module Series
EC21 Hardware Design
Figure 21: Reference Circuit with Transistor Circuit
NOTE
Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
3.12. PCM and I2C Interfaces
EC21 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the
following modes:


Primary mode (short frame synchronization, works as both master and slave)
Auxiliary mode (long framesynchronization, works as master only)
In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge.The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports
128,256,512,1024 and2048kHz for different speech codecs.
In auxiliary mode, the data is also sampled on the falling edge of the PCM_CLK and transmitted on the
rising edge.But the PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates
with a 128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only.
EC21 supports 8-bit A-law* andμ-law*, and also 16-bit linear data formats. The following figures show
theprimary mode’s timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well asthe
auxiliary mode’s timing relationship with 8kHz PCM_SYNC and 128kHz PCM_CLK.
EC21_Hardware_Design
Confidential / Released 45 / 94
LTE Module Series
EC21 Hardware Design
Figure 22: Primary Mode Timing
Figure 23: Auxiliary Mode Timing
The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio
codec design.
Table 14: Pin Definition of PCM and I2C Interfaces
Pin Name
Pin No.
I/O
Description
Comment
PCM_IN
24
DI
PCM data input
1.8V power domain
PCM_OUT
25
DO
PCM data output
1.8V power domain
PCM_SYNC
26
IO
PCM data frame sync signal
1.8V power domain
EC21_Hardware_Design
Confidential / Released 46 / 94
LTE Module Series
EC21 Hardware Design
PCM_CLK
27
IO
PCM data bit clock
1.8V power domain
I2C_SCL
41
OD
I2C serial clock
Require external pull-up to 1.8V
I2C_SDA
42
OD
I2C serial data
Require external pull-up to 1.8V
Clock and mode can be configured by AT command, and the default configuration is master mode using
short frame synchronization format with 2048kHzPCM_CLK and 8kHz PCM_SYNC.Please refer to
document [2] about AT+QDAIcommand for details.
The following figure shows areference design of PCM interface with external codec IC.
Figure 24: Reference Circuit of PCM Application with Audio Codec
NOTES
1.
2.
3.
“*” means under development.
It is recommended to reserve RC (R=22ohm, C=22pF) circuit on the PCM lines, especially for
PCM_CLK.
EC21 works as a master device pertaining to I2C interface.
EC21_Hardware_Design
Confidential / Released 47 / 94
LTE Module Series
EC21 Hardware Design
3.13. ADC Function
The module provides two analog-to-digital converters (ADC).AT+QADC=0 command can be used to read
the voltage value on ADC0 pin. AT+QADC=1command can be used to read the voltage value on ADC1
pin. For more details about these AT commands, please refer todocument [2].
In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.
Table 15: Pin Definition of the ADC
Pin Name
Pin No.
Description
ADC0
45
General purpose analog to digital converter
ADC1
44
General purpose analog to digital converter
The following table describes the characteristic of the ADC function.
Table 16: Characteristic of the ADC
Parameter
Min.
ADC0 Voltage Range
ADC1 Voltage Range
ADC Resolution
Typ.
Max.
Unit
0.3
VBAT_BB
0.3
VBAT_BB
15
bits
NOTES
1.
2.
3.
ADC input voltage must not exceed VBAT_BB.
It is prohibited to supply any voltage to ADC pins when VBAT is removed.
It is recommended to use resistor divider circuit for ADC application.
EC21_Hardware_Design
Confidential / Released 48 / 94
LTE Module Series
EC21 Hardware Design
3.14. Network Status Indication
The network indication pins can be used to drive network status indicationLEDs. The module provides two
pins which are NET_MODE and NET_STATUS. The following tables describe thepin definition and logic
level changes in different network status.
Table 17: Pin Definition of Network ConnectionStatus/Activity Indicator
Pin Name
Pin No.
I/O
Description
NET_MODE1)
DO
Indicate the module’s network
registrationstatus
DO
Indicate the module’s network activity
status
NET_STATUS
Comment
1.8V power domain
NOTE
1)
means that this pin cannot be pulled up before startup.
Table 18: Working State of Network Connection Status/Activity Indicator
Pin Name
Logic Level Changes
Network Status
Always High
Registered on LTE network
Always Low
Others
Flicker slowly (200ms High/1800ms Low)
Network searching
Flicker slowly (1800ms High/200ms Low)
Idle
Flicker quickly (125ms High/125ms Low)
Data transfer is ongoing
Always High
Voice calling
NET_MODE
NET_STATUS
A reference circuit is shown in the following figure.
EC21_Hardware_Design
Confidential / Released 49 / 94
LTE Module Series
EC21 Hardware Design
Figure 25: Reference Circuit of the Network Indicator
3.15. STATUS
The STATUS pin is an open drain output for indicating the module’s operation status. You can connect it
to a GPIO of DTE with a pull up resistor, or as the LED indication circuit shown below. When the module is
turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present
high-impedance state.
Table 19: Pin Definition of STATUS
Pin Name
STATUS
Pin No.
61
I/O
Description
Comment
OD
Indicate the module’s operation status
Require external pull-up
The following figure shows different circuit designs of STATUS, and you can choose either one according
to your application demands.
Figure 26: Reference Circuits of STATUS
EC21_Hardware_Design
Confidential / Released 50 / 94
LTE Module Series
EC21 Hardware Design
3.16. Behavior of the RI
AT+QCFG=“risignaltype”,“physical” command can be usedto configure RI behavior.
No matter on which port URC is presented, URC will trigger the behavior of RI pin.
NOTE
URC can be output from UART port, USB AT port and USB modem port by AT+QURCCFG command.
The default port is USB AT port.
In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below.
Table 20: Behavior of the RI
State
Response
Idle
RI keeps in high level
URC
RI outputs 120ms low pulse when new URC returns
The RI behavior can be changed by AT+QCFG=“urc/ri/ring”command.Please refer to document [2] for
details.
3.17. SGMII Interface
EC21 includes an integrated Ethernet MAC with an SGMII interface and two management interfaces, key
features of the SGMII interface are shown below:







IEEE802.3 compliance
Full duplex at 1000Mbps
Half/full duplex for 10/100Mbps
Support VLAN tagging
Support IEEE1588 and Precision Time Protocol (PTP)
Can be used to connect to external Ethernet PHY like AR8033, or to an external switch
Management interfaces support dual voltage 1.8V/2.85V
The following table shows the pin definition of SGMII interface.
EC21_Hardware_Design
Confidential / Released 51 / 94
LTE Module Series
EC21 Hardware Design
Table 21: Pin Definition of the SGMII Interface
Pin Name
Pin No.
I/O
Description
Comment
EPHY_RST_N 119
DO
Ethernet PHY reset
1.8V/2.85V power domain
EPHY_INT_N
120
DI
Ethernet PHY interrupt
1.8V power domain
SGMII_MDATA 121
IO
SGMII MDIO (Management Data
Input/Output) data
1.8V/2.85V power domain
SGMII_MCLK
DO
SGMII MDIO (Management Data
Input/Output) clock
1.8V/2.85V power domain
PO
SGMII MDIO pull-up power
source
Configurable power source.
1.8V/2.85V power domain.
External pull-up power source for
SGMII MDIO pins.
SGMII_TX_M 123
AO
SGMII transmission-minus
Connect with a 0.1uF capacitor,
close to the PHY side.
SGMII_TX_P 124
AO
SGMII transmission-plus
Connect with a 0.1uF capacitor,
close to the PHY side.
SGMII_RX_P 125
AI
SGMII receiving-plus
Connect with a 0.1uF capacitor,
close to EC21 module.
SGMII_RX_M 126
AI
SGMII receiving-minus
Connect with a 0.1uF capacitor,
close to EC21 module.
Control Signal Part
USIM2_VDD
122
128
SGMII Signal Part
The following figure shows the simplified block diagram for Ethernet application.
SGMII
Module
AR8033
MDI
Ethernet
Transformer
RJ45
Control
Figure 27: Simplified Block Diagram for Ethernet Application
The following figure shows a reference design of SGMII interface with PHY AR8033 application.
EC21_Hardware_Design
Confidential / Released 52 / 94
LTE Module Series
EC21 Hardware Design
Figure 28: Reference Circuit of SGMII Interface with PHY AR8033 Application
In order to enhance the reliability and availability in your application, please follow the criteria below in the
Ethernet PHY circuit design:




Keep SGMII data and control signals away from RF and VBAT trace.
Keep the maximum trace length less than 10inch and keep skew on the differential pairs less than
20mil.
The differential impedance of SGMII data trace is 100ohm±10%.
To minimize crosstalk, the distance between separate adjacent pairs that are on the same layer must
be equal to or larger than 40mil.
NOTE
For more information about SGMII application, please refer to document [5]and document[7].
EC21_Hardware_Design
Confidential / Released 53 / 94
LTE Module Series
EC21 Hardware Design
3.18. Wireless Connectivity Interfaces
EC21supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT.
The following table shows the pin definition of wireless connectivity interfaces.
Table 22: Pin Definition of Wireless Connectivity Interfaces
Pin Name
Pin No.
I/O
Description
Comment
SDC1_DATA3
129
IO
SDIO data bus D3
1.8V power domain
SDC1_DATA2
130
IO
SDIO data bus D2
1.8V power domain
SDC1_DATA1
131
IO
SDIO data bus D1
1.8V power domain
SDC1_DATA0
132
IO
SDIO data bus D0
1.8V power domain
SDC1_CLK
133
DO
SDIO clock
1.8V power domain
SDC1_CMD
134
IO
SDIO command
1.8V power domain
WLAN_EN
136
DO
WLAN function control via
FC20 module. Active high.
1.8V power domain
WLAN Part
Coexistence and Control Part
PM_ENABLE
127
DO
External power control
1.8V power domain
WAKE_ON_
WIRELESS
135
DI
Wake up the host (EC21 module)
by FC20 module.
1.8V power domain
COEX_UART_RX 137
DI
LTE/WLAN&BT coexistence signal
1.8V power domain
COEX_UART_TX 138
DO
LTE/WLAN&BT coexistence signal
1.8V power domain
WLAN_SLP_CLK 118
DO
WLAN sleep clock
BT Part*
BT_RTS*
37
DI
BT UART request to send
1.8V power domain
BT_TXD*
38
DO
BT UART transmit data
1.8V power domain
BT_RXD*
39
DI
BT UART receive data
1.8V power domain
EC21_Hardware_Design
Confidential / Released 54 / 94
LTE Module Series
EC21 Hardware Design
BT_CTS*
40
DO
BT UART clear to send
1.8V power domain
PCM_IN1)
24
DI
PCM data input
1.8V power domain
PCM_OUT1)
25
DO
PCM data output
1.8V power domain
PCM_SYNC1)
26
IO
PCM data frame sync signal
1.8V power domain
PCM_CLK1)
27
IO
PCM data bit clock
1.8V power domain
BT_EN*
139
DO
WLAN function control via FC20
module. Active high.
1.8V power domain
NOTES
1. “*” means under development.
2. 1) Pads 24~27 are multiplexing pins used for audio design on EC21 module and BT function on FC20
module.
The following figure shows a reference design of wireless connectivity interfaces with Quectel FC20
module.
Figure 29: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module
EC21_Hardware_Design
Confidential / Released 55 / 94
LTE Module Series
EC21 Hardware Design
NOTES
1.
2.
3.
FC20 module can only be used as a slave device,
When BT function is enabled on EC21 module, PCM_SYNC and PCM_CLK pins are only used to
output signals.
For more information about wireless connectivity interfaces, please refer to document [5].
3.18.1. WLAN Interface
EC21 provides a low power SDIO 3.0 interface and control interface for WLAN design.
SDIO interface supports the following modes:


Single data rate (SDR) mode (up to 200MHz)
Double data rate (DDR) mode (up to 52MHz)
As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the
SDIO 3.0 specification, please comply with the following principles:





It is important to route the SDIO signal traces with total grounding. The impedance of SDIOsignal
trace is 50ohm (±10%).
Protect other sensitive signals/circuits (RF, analog signals, etc.) from SDIO corruption and protect
SDIO signals from noisy signals (clocks, DCDCs, etc.).
It is recommended to keep matching lengthbetween CLK and DATA/CMD less than 1mm and total
routing length less than 50mm.
Keep termination resistors within 15~24ohm on clock lines near the module and keep the route
distance from the module clock pins to termination resistors less than 5mm.
Make sure the adjacent trace spacing is 2x line width and bus capacitance is less than 15pF.
3.18.2. BT Interface*
EC21 supports a dedicated UART interface and a PCM interface for BTfunction application.
Further information about BT interface will be added in future version of this document.
NOTE
“*” means under development.
EC21_Hardware_Design
Confidential / Released 56 / 94
LTE Module Series
EC21 Hardware Design
3.19. USB_BOOT Interface
EC21 provides a USB_BOOT pin. During development or factory production, USB_BOOT pin can force
the module to boot from USB port for firmware upgrade.
Table 23: Pin Definition of USB_BOOT Interface
Pin Name
USB_BOOT
Pin No.
115
I/O
Description
Comment
DI
Force the module to boot from USB
port
1.8V power domain.
Active high.
If unused, keep it open.
The following figure shows a reference circuit of USB_BOOT interface.
Figure 30: Reference Circuit of USB_BOOT Interface
EC21_Hardware_Design
Confidential / Released 57 / 94
LTE Module Series
EC21 Hardware Design
GNSS Receiver
4.1. General Description
EC21 includes a fully integrated global navigation satellite system solution that supports Gen8C-Liteof
Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).
EC21 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update ratevia
USB interface by default.
By default, EC21 GNSS engine is switched off. It has to be switched on via AT command. For more
details about GNSS engine technology and configurations, please refer to document [3].
4.2. GNSS Performance
The following table shows the GNSS performance of EC21.
Table 24: GNSS Performance
Parameter
Sensitivity
(GNSS)
TTFF
(GNSS)
Description
Conditions
Typ.
Unit
Cold start
Autonomous
-146
dBm
Reacquisition
Autonomous
-157
dBm
Tracking
Autonomous
-157
dBm
Autonomous
35
XTRA enabled
18
Autonomous
26
XTRA enabled
2.2
Cold start
@open sky
Warm start
@open sky
EC21_Hardware_Design
Confidential / Released 58 / 94
LTE Module Series
EC21 Hardware Design
Hot start
@open sky
Accuracy
(GNSS)
CEP-50
Autonomous
2.5
XTRA enabled
1.8
Autonomous
@open sky
<1.5
NOTES
1.
2.
3.
Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep
on positioning for 3 minutes.
Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can
fix position again within 3 minutes after loss of lock.
Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes
position within 3 minutes after executing cold start command.
4.3. Layout Guidelines
The following layout guidelines should be taken into account in your design.




Maximize the distance among GNSS antenna, main antenna and the Rx-diversity antenna.
Digital circuits such as USIM card, USB interface, camera module, display connector and SD card
should be kept away from the antennas.
Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar
isolation and protection.
Keep 50ohm characteristic impedance forthe ANT_GNSS trace.
Please refer to Chapter 5 for GNSS antenna reference design and antenna consideration.
EC21_Hardware_Design
Confidential / Released 59 / 94
LTE Module Series
EC21 Hardware Design
Antenna Interfaces
EC21 antenna interfaces include a main antennainterface,anRx-diversity antenna interface which is used
toresist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna
interface. The antenna interfaceshave an impedance of 50ohm.
5.1. Main/Rx-diversityAntenna Interface
5.1.1. Pin Definition
The pin definition of main antenna and Rx-diversityantenna interfacesis shown below.
Table 25: Pin Definition of the RF Antenna
Pin Name
Pin No.
I/O
Description
Comment
ANT_MAIN
49
IO
Main antenna pad
50ohmimpedance
ANT_DIV
35
AI
Receive diversityantenna pad
50ohm impedance
5.1.2. Operating Frequency
Table 26: Module Operating Frequencies
3GPP Band
Transmit
Receive
Unit
B1
1920~1980
2110~2170
MHz
B2 (1900)
1850~1910
1930~1990
MHz
B3 (1800)
1710~1785
1805~1880
MHz
B4
1710~1755
2110~2155
MHz
B5 (850)
824~849
869~894
MHz
B7
2500~2570
2620~2690
MHz
B8 (900)
880~915
925~960
MHz
EC21_Hardware_Design
Confidential / Released 60 / 94
LTE Module Series
EC21 Hardware Design
B12
699~716
729~746
MHz
B13
777~787
746~756
MHz
B18
815~830
860~875
MHz
B19
830~845
875~890
MHz
B20
832~862
791~821
MHz
B26
814~849
859~894
MHz
B28
703~748
758~803
MHz
B40
2300~2400
2300~2400
MHz
5.1.3. Reference Design of RF Antenna Interface
Areference design of ANT_MAIN and ANT_DIVantenna pads is shown as below. It should reserve a
π-type matching circuit for better RF performance. The capacitors are not mounted by default.
Figure 31: Reference Circuit of RF Antenna Interface
NOTES
1.
2.
3.
Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the
receiving sensitivity.
ANT_DIV function is enabledby default.
Place the π-type matching components (R1, C1, C2, R2, C3, C4) as close to the antenna as
possible.
EC21_Hardware_Design
Confidential / Released 61 / 94
LTE Module Series
EC21 Hardware Design
5.1.4. Reference Design of RF Layout
For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50 ohm. The
impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant,
the distance between signal layer and reference ground (H), and the clearance between RF trace and
ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic
impedance control. The following are reference designs of microstrip line or coplanar waveguide line with
different PCB structures
Figure 32: Microstrip Line Design on a 2-layer PCB
Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB
EC21_Hardware_Design
Confidential / Released 62 / 94
LTE Module Series
EC21 Hardware Design
Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)
Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)
In order to ensure RF performance and reliability, the following principles should be complied with in RF
layout design:





Use impedance simulation tool to control the characteristic impedanceof RF tracesas 50ohm.
The GND pins adjacent to RF pins should not be hot welded, and should be fully connected to
ground.
The distance between the RF pinsand the RFconnector should be as short as possible, and all the
right angle traces should be changed to curved ones.
There should be clearance area under the signal pin of the antenna connector or solder joint.
The reference ground of RF traces should be complete. Meanwhile, adding some ground viasaround
RF traces and the reference ground could help to improve RF performance. The distance between
the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).
For more details about RF layout, please refer to document [6].
EC21_Hardware_Design
Confidential / Released 63 / 94
LTE Module Series
EC21 Hardware Design
5.2. GNSS Antenna Interface
The following tables show the pin definition and frequency specification of GNSS antenna interface.
Table 27: Pin Definition of GNSS Antenna Interface
Pin Name
Pin No.
I/O
Description
Comment
ANT_GNSS
47
AI
GNSS antenna
50ohmimpedance
Table 28: GNSS Frequency
Type
Frequency
Unit
GPS/Galileo/QZSS
1575.42±1.023
MHz
GLONASS
1597.5~1605.8
MHz
BeiDou
1561.098±2.046
MHz
A reference design of GNSS antenna is shown as below.
Figure 36: Reference Circuit of GNSS Antenna
NOTES
1.
2.
An external LDO can be selected to supply power according to the active antenna requirement.
If the module is designed with a passive antenna, then the VDD circuit is not needed.
EC21_Hardware_Design
Confidential / Released 64 / 94
LTE Module Series
EC21 Hardware Design
5.3. Antenna Installation
5.3.1. Antenna Requirement
The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.
Table 29: Antenna Requirements
Type
Requirements
GNSS
Frequency range: 1561~1615MHz
Polarization: RHCP or linear
VSWR: <2 (Typ.)
Passive antenna gain: >0dBi
Active antenna noise figure: <1.5dB
Active antenna gain: >-2dBi
Active antenna embedded LNA gain: 20dB (Typ.)
Active antenna total gain: >18dBi (Typ.)
GSM/WCDMA/LTE
VSWR: ≤2
Gain (dBi): 1
Max input power (W): 50
Input Impedance (ohm): 50
Polarization type: Vertical
Cable insertion loss: <1dB
(GSM900, WCDMA B5/B8,
LTE B5/B8/B12/B13/B18/B19/B20/B26/B28)
Cable insertion loss: <1.5dB
(GSM1800, WCDMA B1/B2/B4,LTE B1/B2/B3/B4)
Cable insertion loss <2dB
(LTE B7/B40)
EC21_Hardware_Design
Confidential / Released 65 / 94
LTE Module Series
EC21 Hardware Design
5.3.2. Recommended RF Connector for Antenna Installation
If RF connector is used for antenna connection, it is recommended to use UF.L-R-SMT connector
provided by HIROSE.
Figure 37: Dimensions of the UF.L-R-SMT Connector (Unit: mm)
U.FL-LP serial connectors listed in the following figure can be used to match the UF.L-R-SMT.
Figure 38:Mechanicalsof UF.L-LP Connectors
EC21_Hardware_Design
Confidential / Released 66 / 94
LTE Module Series
EC21 Hardware Design
The following figure describes the space factor of mated connector.
Figure39:Space Factor of Mated Connector (Unit: mm)
For more details, please visit http://www.hirose.com.
EC21_Hardware_Design
Confidential / Released 67 / 94
LTE Module Series
EC21 Hardware Design
Electrical, Reliability and
RadioCharacteristics
6.1. Absolute Maximum Ratings
Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are
listed in the following table.
Table 30: Absolute Maximum Ratings
Parameter
Min.
Max.
Unit
VBAT_RF/VBAT_BB
-0.3
4.7
USB_VBUS
-0.3
5.5
Peak Current of VBAT_BB
0.8
Peak Current of VBAT_RF
1.8
Voltage at Digital Pins
-0.3
2.3
Voltage at ADC0
VBAT_BB
Voltage at ADC1
VBAT_BB
6.2. Power Supply Ratings
Table 31: Power Supply Ratings
Parameter
Description
Conditions
Min.
Typ.
Max.
Unit
VBAT
VBAT_BB and
Voltage must stay within the
3.3
3.8
4.3
EC21_Hardware_Design
Confidential / Released 68 / 94
LTE Module Series
EC21 Hardware Design
VBAT_RF
min/max values, including
voltage drop, ripple and
spikes.
Voltage drop during
burst transmission
Maximum power control
level on GSM900
IVBAT
Peak supply current
(during
transmissionslot)
Maximum power control
level on GSM900
USB_VBUS
USB detection
3.0
400
mV
1.8
2.0
5.0
5.25
6.3. Operating Temperature
The operating temperature is listed in the following table.
Table 32: Operating Temperature
Parameter
Min.
Typ.
Max.
Unit
OperationTemperature Range1)
-35
+25
+75
ºC
ExtendedTemperature Range2)
-40
+85
ºC
NOTES
1.
2.
1)
Within operation temperature range, the module is 3GPP compliant.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like Pout might reduce in their value and exceed the specified tolerances. When the temperature
returns to the normal operating temperature levels, the module will meet 3GPP specifications again.
2)
EC21_Hardware_Design
Confidential / Released 69 / 94
LTE Module Series
EC21 Hardware Design
6.4. Current Consumption
The values of current consumption are shown below.
Table 33: EC21-A Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
20
uA
AT+CFUN=0 (USB disconnected)
1.0
mA
WCDMA PF=64 (USB disconnected)
2.8
mA
WCDMA PF=128 (USB disconnected)
2.3
mA
LTE-FDD PF=64 (USB disconnected)
2.2
mA
LTE-FDD PF=128 (USB disconnected)
2.2
mA
WCDMA PF=64 (USB disconnected)
21.6
mA
WCDMA PF=64 (USB connected)
31.6
mA
LTE-FDDPF=64 (USB disconnected)
23.7
mA
LTE-FDDPF=64 (USB connected)
36.5
mA
WCDMA B2 HSDPA @22.09dBm
542.0
mA
WCDMA B2 HSUPA @22.28dBm
681.0
mA
WCDMA B4 HSDPA @21.94dBm
550.0
mA
WCDMA B4 HSUPA @21.81dBm
547.0
mA
WCDMA B5 HSDPA @22.13dBm
429.0
mA
WCDMA B5 HSUPA @22.48dBm
459.0
mA
LTE-FDD B2 @22.79dBm
709.0
mA
LTE-FDD B4 @22.89dBm
710.0
mA
LTE-FDD B12 @23.39dBm
679.0
mA
WCDMA B2 @23.67dBm
663.0
mA
Sleep state
Idle state
(GNSS OFF)
IVBAT
WCDMA
datatransfer(GNSS
OFF)
LTE
datatransfer(GNSS
OFF)
WCDMA voice call
EC21_Hardware_Design
Confidential / Released 70 / 94
LTE Module Series
EC21 Hardware Design
WCDMA B4 @23.36dBm
594.0
mA
WCDMA B5 @23.64dBm
522.0
mA
Table 34: EC21-AUT Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
20
uA
AT+CFUN=0 (USB disconnected)
0.99
mA
WCDMA PF=64 (USB disconnected)
2.1
mA
WCDMA PF=128 (USB disconnected)
1.7
mA
LTE-FDD PF=64 (USB disconnected)
2.9
mA
LTE-FDD PF=128 (USB disconnected)
2.4
mA
WCDMA PF=64 (USB disconnected)
22.0
mA
WCDMA PF=64 (USB connected)
32.0
mA
LTE-FDDPF=64 (USB disconnected)
23.6
mA
LTE-FDDPF=64 (USB connected)
33.6
mA
WCDMA B1 HSDPA@22.59dBm
589.0
mA
WCDMA B1 HSUPA@22.29dBm
623.0
mA
WCDMA B5 HSDPA@22.22dBm
511.0
mA
WCDMA B5 HSUPA@21.64dBm
503.0
mA
LTE-FDD B1 @23.38dBm
813.0
mA
LTE-FDD B3 @22.87dBm
840.0
mA
LTE-FDD B5 @23.12dBm
613.0
mA
LTE-FDD B7 @22.96dBm
761.0
mA
LTE-FDD B28 @23.31dBm
650.0
mA
WCDMA B1 @24.21dBm
687.0
mA
WCDMA B5 @23.18dBm
535.0
mA
Sleep state
Idle state
IVBAT
WCDMA data
(GNSS OFF)
LTE
datatransfer(GNSS
OFF)
WCDMA voice call
EC21_Hardware_Design
Confidential / Released 71 / 94
LTE Module Series
EC21 Hardware Design
Table 35: EC21-E Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
TBD
uA
AT+CFUN=0 (USB disconnected)
TBD
mA
WCDMA PF=64 (USB disconnected)
TBD
mA
WCDMA PF=128 (USB disconnected)
TBD
mA
FDD-LTE PF=64 (USB disconnected)
TBD
mA
FDD-LTE PF=128 (USB disconnected)
TBD
mA
WCDMA PF=64 (USB disconnected)
TBD
mA
WCDMA PF=64 (USB connected)
TBD
mA
LTE-FDD PF=64 (USB disconnected)
TBD
mA
LTE-FDD PF=64 (USB connected)
TBD
mA
GSM900 4DL/1UL @32.3dBm
220
mA
GSM900 3DL/2UL @32.18dBm
387
mA
GSM900 2DL/3UL @30.3dBm
467
mA
GSM900 1DL/4UL @29.4dBm
555
mA
DCS1800 4DL/1UL @29.6dBm
185
mA
DCS1800 3DL/2UL @29.1dBm
305
mA
DCS1800 2DL/3UL @28.8dBm
431
mA
DCS1800 1DL/4UL @29.1dBm
540
mA
GSM900 4DL/1UL @26dBm
148
mA
GSM900 3DL/2UL @26dBm
245
mA
GSM900 2DL/3UL @25dBm
338
mA
GSM900 1DL/4UL @25dBm
432
mA
DCS1800 4DL/1UL @26dBm
150
mA
DCS1800 3DL/2UL @25dBm
243
mA
DCS1800 2DL/3UL @25dBm
337
mA
Sleep state
Idle state
(GNSS OFF)
IVBAT
GPRS
datatransfer(GNSS
OFF)
EDGE
datatransfer(GNSS
OFF)
EC21_Hardware_Design
Confidential / Released 72 / 94
LTE Module Series
EC21 Hardware Design
WCDMA
datatransfer(GNSS
OFF)
LTE
datatransfer(GNSS
OFF)
DCS1800 1DL/4UL @25dBm
430
mA
WCDMA B1 HSDPA@22.5dBm
659
mA
WCDMA B1 HSUPA@21.11dBm
545
mA
WCDMA B5 HSDPA@23.5dBm
767
mA
WCDMA B5 HSUPA@21.4dBm
537
mA
WCDMA B8 HSDPA@22.41dBm
543
mA
WCDMA B8 HSUPA@21.2dBm
445
mA
LTE-FDD B1 @23.45dBm
807
mA
LTE-FDD B3 @23.4dBm
825
mA
LTE-FDD B5 @23.4dBm
786
mA
LTE-FDD B7 @23.86dBm
887
mA
LTE-FDD B8 @23.5dBm
675
mA
LTE-FDD B20 @23.57dBm
770
mA
GSM900 PCL=5 @32.8dBm
336
mA
PCS1800 PCL=0 @29.3dBm
291
mA
WCDMA B1 @23.69dBm
683
mA
WCDMA B5 @23.61dBm
741
mA
WCDMA B8 @23.35dBm
564
mA
GSMvoice call
WCDMAvoice call
Table 36: EC21-KL Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
20
uA
AT+CFUN=0 (USB disconnected)
0.98
mA
LTE-FDD PF=64 (USB disconnected)
2.5
mA
LTE-FDD PF=128 (USB disconnected)
2.4
mA
LTE-FDD PF=64 (USB disconnected)
23.0
mA
LTE-FDD PF=64 (USB connected)
34.0
mA
Sleep state
IVBAT
Idle state
(GNSS OFF)
EC21_Hardware_Design
Confidential / Released 73 / 94
LTE Module Series
EC21 Hardware Design
LTE
datatransfer(GNSS
OFF)
LTE-FDD B1 @23.65dBm
765.0
mA
LTE-FDD B3 @23.2dBm
825.0
mA
LTE-FDD B5 @23.2dBm
598.0
mA
LTE-FDD B7 @23.7dBm
762.0
mA
LTE-FDD B8 @23.1dBm
569.0
mA
Table 37: EC21-V Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
20
uA
AT+CFUN=0 (USB disconnected)
1.0
mA
LTE-FDD PF=64 (USB disconnected)
2.5
mA
LTE-FDD PF=128 (USB disconnected)
2.0
mA
Idle state
(GNSS OFF)
LTE-FDD PF=64 (USB disconnected)
22.0
mA
LTE-FDD PF=64 (USB connected)
32.0
mA
LTE
datatransfer(GNSS
OFF)
LTE-FDD B4 @22.79dBm
752.0
mA
LTE-FDD B13 @23.26dBm
534.0
mA
Sleep state
IVBAT
Table 38: EC21-AUV Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
20
uA
AT+CFUN=0 (USB disconnected)
1.0
mA
WCDMA PF=64 (USB disconnected)
2.0
mA
WCDMA PF=128 (USB disconnected)
1.6
mA
LTE-FDD PF=64 (USB disconnected)
2.4
mA
LTE-FDD PF=128 (USB disconnected)
1.9
mA
WCDMA PF=64 (USB disconnected)
24.0
mA
WCDMA PF=64 (USB connected)
34.0
mA
Sleep state
IVBAT
Idle state
(GNSS OFF)
EC21_Hardware_Design
Confidential / Released 74 / 94
LTE Module Series
EC21 Hardware Design
WCDMA
datatransfer(GNSS
OFF)
LTE
datatransfer(GNSS
OFF)
WCDMA voice call
LTE-FDD PF=64 (USB disconnected)
24.0
mA
LTE-FDD PF=64 (USB connected)
34.0
mA
WCDMA B1 HSDPA@22.05dBm
586.0
mA
WCDMA B1 HSUPA@22.29dBm
630.0
mA
WCDMA B5 HSDPA@22.43dBm
576.0
mA
WCDMA B5 HSUPA@22.43dBm
600.0
mA
WCDMA B8 HSDPA@22.44dBm
577.0
mA
WCDMA B8 HSUPA@21.78dBm
555.0
mA
LTE-FDD B1 @23.12dBm
721.0
mA
LTE-FDD B3 @23.04dBm
734.0
mA
LTE-FDD B5 @23.16dBm
669.0
mA
LTE-FDD B8 @23.21dBm
698.0
mA
LTE-FDD B28 @23.57dBm
790.0
mA
WCDMA B1 @22.72dBm
640.0
mA
WCDMA B5 @23.19dBm
638.0
mA
WCDMA B8 @23.27dBm
626.0
mA
Table 39: GNSS Current Consumption of EC21 Series Module
Parameter
IVBAT
(GNSS)
Description
Conditions
Typ.
Unit
Searching
(AT+CFUN=0)
Cold start @Passive Antenna
58
mA
Lost state @Passive Antenna
58
mA
Instrument Environment
33
mA
OpenSky @Passive Antenna
35
mA
OpenSky @Active Antenna
43
mA
Tracking
(AT+CFUN=0)
EC21_Hardware_Design
Confidential / Released 75 / 94
LTE Module Series
EC21 Hardware Design
6.5. RF Output Power
The following table shows the RF output power of EC21 module.
Table 40: RF Output Power
Frequency
Max.
Min.
GSM900
33dBm±2dB
5dBm±5dB
DCS1800
30dBm±2dB
0dBm±5dB
DCS1800
26dBm±3dB
0dBm±5dB
WCDMA bands
22.5dBm+1/-3dB
<-50dBm
LTE-FDD bands
22.5dBm+1/-3dB
<-44dBm
LTE-TDD bands
22.5dBm+1/-3dB
<-44dBm
NOTE
In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. Thedesign conforms to the
GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1.
6.6. RF Receiving Sensitivity
The following tables show the conducted RF receiving sensitivity of EC21 series module.
Table 41: EC21-E Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
GSM900
-109.0dBm
-102.0dBm
DCS1800
-109.0dBm
-102.0dbm
WCDMA Band1
-110.5dBm
-106.7dBm
WCDMA Band5
-110.5dBm
-104.7dBm
WCDMA Band8
-110.5dBm
-103.7dBm
EC21_Hardware_Design
Confidential / Released 76 / 94
LTE Module Series
EC21 Hardware Design
LTE-FDD B1(10M)
-98.0dBm
-98.0dBm
-101.5dBm
-96.3dBm
LTE-FDD B3(10M)
-96.5dBm
-98.5dBm
-101.5dBm
-93.3dBm
LTE-FDD B5(10M)
-98.0dBm
-98.5dBm
-101.0dBm
-94.3dBm
LTE-FDD B7(10M)
-97.0dBm
-94.5dBm
-99.5dBm
-94.3dBm
LTE-FDD B8(10M)
-97.0dBm
-97.0dBm
-101.0dBm
-93.3dBm
LTE-FDD B20(10M)
-97.5dBm
-99.0dBm
-102.5dBm
-93.3dBm
Table 42: EC21-A Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
WCDMA B2
-110.0dBm
-104.7dBm
WCDMA B4
-110.0dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
LTE-FDD B2 (10M)
-98.0dBm
-98.0dBm
-101.0dBm
-94.3dBm
LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B12 (10M)
-96.5dBm
-98.0dBm
-101.0dBm
-93.3dBm
Table 43: EC21-V Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B13 (10M)
-95.0dBm
-97.0dBm
-100.0dBm
-93.3dBm
Table 44: EC21-AUT Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
WCDMA B1
-110.0dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
EC21_Hardware_Design
Confidential / Released 77 / 94
LTE Module Series
EC21 Hardware Design
LTE-FDD B1(10M)
-98.5dBm
-98.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B3(10M)
-98.0dBm
-96.0dBm
-100.0dBm
-93.3dBm
LTE-FDD B5(10M)
-98.0dBm
-99.0dBm
-102.5dBm
-94.3dBm
LTE-FDD B7(10M)
-97.0dBm
-95.0dBm
-98.5dBm
-94.3dBm
LTE-FDD B28(10M)
-97.0dBm
-99.0dBm
-102.0dBm
-94.8dBm
Table 45: EC21-AUTL Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
LTE-FDD B3(10M)
-98.0dBm
-96.0dBm
-100.0dBm
-93.3dBm
LTE-FDD B7(10M)
-97.0dBm
-95.0dBm
-98.5dBm
-94.3dBm
LTE-FDD B28(10M)
-97.0dBm
-99.0dBm
-102.0dBm
-94.8dBm
Table 46: EC21-KL Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
LTE-FDD B1(10M)
-98.0dBm
-99.5dBm
-100.5dBm
-96.3dBm
LTE-FDD B3(10M)
-97.0dBm
-97.5dBm
-99.5dBm
-93.3dBm
LTE-FDD B5(10M)
-98.0dBm
-99.5dBm
-100.5dBm
-94.3dBm
LTE-FDD B7(10M)
-96.0dBm
-96.0dBm
-98.5dBm
-94.3dBm
LTE-FDD B8(10M)
-97.0dBm
-99.0dBm
-101.0dBm
-93.3dBm
Table 47: EC21-CT Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
LTE-FDD B1(10M)
-98.0dBm
-99.5dBm
-100.5dBm
-96.3dBm
LTE-FDD B3(10M)
-97.0dBm
-97.5dBm
-99.5dBm
-93.3dBm
LTE-FDD B5* (10M)
TBD
TBD
TBD
TBD
EC21_Hardware_Design
Confidential / Released 78 / 94
LTE Module Series
EC21 Hardware Design
Table 48: EC21-J Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
LTE-FDD B1 (10M)
-97.5dBm
-98.7dBm
-100.2dBm
-96.3dBm
LTE-FDD B3 (10M)
-96.5dBm
-97.1dBm
-100.5dBm
-93.3dBm
LTE-FDD B8 (10M)
-98.4dBm
-99.0dBm
-101.2dBm
-93.3dBm
LTE-FDD B18 (10M)
-99.5dBm
-99.0dBm
-101.7dBm
-96.3dBm
LTE-FDD B19 (10M)
-99.2dBm
-99.0dBm
-101.4dBm
-96.3dBm
LTE-FDD B26 (10M)
-99.5dBm
-99.0dBm
-101.5dBm
-93.8dBm
Table 49: EC21-AUV Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
WCDMA B1
-110.0dBm
-106.7dBm
WCDMA B5
-111.0dBm
-104.7dBm
WCDMA B8
-111.0dBm
-103.7dBm
LTE-FDD B1 (10M)
-97.2dBm
-97.2dBm
-100.2dBm
-96.3dBm
LTE-FDD B3 (10M)
-98.2dBm
-98.7dBm
-100.7dBm
-93.3dBm
LTE-FDD B5 (10M)
-99.2dBm
-98.7dBm
-101.7dBm
-94.3dBm
LTE-FDD B8 (10M)
-97.7dBm
-97.2dBm
-101.2dBm
-93.3dBm
LTE-FDD B28 (10M)
-97.0dBm
-98.2dBm
-101.2dBm
-94.8dBm
NOTES
1.
2.
1)
SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two
antennas at the receiver side, which can improve RX performance.
“*” means under development.
EC21_Hardware_Design
Confidential / Released 79 / 94
LTE Module Series
EC21 Hardware Design
6.7. Electrostatic Discharge
The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject
to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and
packaging procedures must be applied throughout the processing, handling and operation of any
application that incorporates the module.
The following table shows the module’s electrostatic discharge characteristics.
Table 50: Electrostatic Discharge Characteristics
Tested Points
Contact Discharge
Air Discharge
Unit
VBAT, GND
±5
±10
kV
All Antenna Interfaces
±4
±8
kV
Other Interfaces
±0.5
±1
kV
EC21_Hardware_Design
Confidential / Released 80 / 94
LTE Module Series
EC21 Hardware Design
Mechanical Dimensions
This chapter describes the mechanical dimensions of the module.All dimensions are measured in mm.
7.1. Mechanical Dimensions of the Module
2.4+/-0.2
(29+/-0.15)
(32+/-0.15)
0.8
Figure40: Module Top and Side Dimensions
EC21_Hardware_Design
Confidential / Released 81 / 94
LTE Module Series
EC21 Hardware Design
32.0
1.30
3.85
3.5
1.90
3.35
5.96
1.30
2.0
2.0
0.82
3.0
1.15
2.15
1.8
2.8
29.0
1.8
4.88
1.05
1.10
1.6
4.8
6.75
1.10
1.7
2.49
1.9
2.4
3.45
3.2
3.4
3.2
3.4
0.8
3.2
3.5
4.4
1.5
Figure41: Module Bottom Dimensions (Bottom View)
EC21_Hardware_Design
Confidential / Released 82 / 94
LTE Module Series
EC21 Hardware Design
7.2. Recommended Footprint
24.70
1.80
1.10
3.00
2.00
2.00
1.10
7.80
1.90
3.45
3.40
3.85
2.00
4.80
1.80
3.00
0.50
2.80
0.50
4.80
0.50
4.80
Keepout area
15.60
0.50
3.50
1.90
3.20
1.30
3.40
3.20
3.40
3.20
32.0
3.40
4.80
0.80
2.50
1.00
Figure42: Recommended Footprint (Top View)
NOTES
1.
2.
The keepout area should not be designed.
For easy maintenance of the module, please keep about 3mm between the module and other
components in thehost PCB.
EC21_Hardware_Design
Confidential / Released 83 / 94
LTE Mod
dule Series
EC
C21 Hardw
ware Design
7.3. Design Effec
ct Drawin
ngsof the Module
Figure43: Top
Viewof the Module
Fig
gure 44: Bo
ottom View of the Module
NOTE
Thesearede
esign effect drawings off EC21 modu
ule. For morre accurate pictures, ple
ease refer to
o the module
that you gett from Quecttel.
EC21_Hard
dware_Desiign
Confidenttial / Releas
sed 84 / 94
LTE Module Series
EC21 Hardware Design
Storage, Manufacturing and
Packaging
8.1. Storage
EC21 is stored in a vacuum-sealed bag. The storage restrictionsareshown as below.
1. Shelf life in thevacuum-sealed bag: 12 months at <40ºC/90%RH.
2. After the vacuum-sealed bagis opened, devices that will be subjected to reflow soldering or other high
temperature processes must be:


Mounted within 72 hours at the factory environment of ≤30ºC/60%RH
Stored at <10%RH
3. Devices require baking before mounting, if any circumstances below occurs:


When the ambient temperature is 23ºC±5ºC and the humidity indicator card shows the humidity
is>10% before opening the vacuum-sealed bag.
Device mounting cannot be finished within 72 hours at factory conditions of ≤30ºC/60%RH.
4. If baking is required, devices may be baked for 48 hours at 125ºC±5ºC.
NOTE
As the plastic packagecannot be subjected to high temperature, it should be removed from devices before
high temperature (125ºC) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033
for bakingprocedure.
EC21_Hardware_Design
Confidential / Released 85 / 94
LTE Module Series
EC21 Hardware Design
8.2. Manufacturing and Soldering
Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the
stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted
properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality,
thethickness of stencil for the module is recommended to be 0.18mm. For more details, please refer
todocument [4].
It is suggested that the peak reflow temperature is from 235 to 245ºC (for SnAg3.0Cu0.5 alloy). The
absolute maximum reflow temperature is 260ºC. To avoid damage to the module caused by repeated
heating, it is suggested that the module should be mounted after reflow soldering for the other side of
PCB has been completed. Recommended reflow soldering thermal profile is shown below:
Figure 45: Reflow Soldering Thermal Profile
NOTE
During manufacturing and soldering, or any other processes that may contact the module directly, NEVER
wipe the module label with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol,
trichloroethylene, etc.
EC21_Hardware_Design
Confidential / Released 86 / 94
LTE Module Series
EC21 Hardware Design
8.3. Packaging
.1
±0
50
30.3± 0.15
0.35± 0.05
29.3± 0.15
44.00± 0.3
20.20± 0.15
44.00± 0.1
2.00± 0.1
4.00± 0.1
30.3± 0.15
1.75± 0.1
EC21 is packaged in tape andreel carriers. One reel is 11.53m longand contains 250pcs modules. The
figure below shows the packagingdetails, measured in mm.
4.2± 0.15
3.1± 0.15
32.5± 0.15
33.5± 0.15
32.5± 0.15
33.5± 0.15
48.5
13
100
44.5+0.20
-0.00
Figure 46: Tape and Reel Specifications
EC21_Hardware_Design
Confidential / Released 87 / 94
LTE Module Series
EC21 Hardware Design
Appendix A References
Table 51: Related Documents
SN
Document Name
Remark
[1]
Quectel_EC21_Power_Management_Application_Note
EC21 Power Management Application
Note
[2]
Quectel_EC25&EC21_AT_Commands_Manual
EC25 and EC21 AT Commands Manual
[3]
Quectel_EC25&EC21_GNSS_AT_Commands_Manual
EC25 and EC21GNSS AT Commands
Manual
[4]
Quectel_Module_Secondary_SMT_User_Guide
Module Secondary SMT User Guide
[5]
Quectel_EC21_Reference_Design
EC21 Reference Design
[6]
Quectel_RF_Layout_Application_Note
RF Layout Application Note
[7]
Quectel_SGMII_Design_Application_Note
SGMII Design Application Note
Table 52: Terms and Abbreviations
Abbreviation
Description
AMR
Adaptive Multi-rate
bps
Bits Per Second
CHAP
Challenge Handshake Authentication Protocol
CS
Coding Scheme
CSD
Circuit Switched Data
CTS
Clear To Send
DC-HSPA+
Dual-carrier High Speed Packet Access
DFOTA
Delta Firmware Upgrade Over The Air
EC21_Hardware_Design
Confidential / Released 88 / 94
LTE Module Series
EC21 Hardware Design
DL
Downlink
DTR
Data Terminal Ready
DTX
Discontinuous Transmission
EFR
Enhanced Full Rate
ESD
Electrostatic Discharge
FDD
Frequency Division Duplex
FR
Full Rate
GLONASS
GLObalnayaNAvigatsionnayaSputnikovayaSistema, the Russian Global
Navigation Satellite System
GMSK
Gaussian Minimum Shift Keying
GNSS
Global Navigation Satellite System
GPS
Global Positioning System
GSM
Global System for Mobile Communications
HR
Half Rate
HSPA
High Speed Packet Access
HSDPA
High Speed Downlink Packet Access
HSUPA
High Speed Uplink Packet Access
I/O
Input/Output
Inorm
Normal Current
LED
Light Emitting Diode
LNA
Low Noise Amplifier
LTE
Long Term Evolution
MIMO
Multiple Input Multiple Output
MO
Mobile Originated
MS
Mobile Station (GSM engine)
MT
Mobile Terminated
EC21_Hardware_Design
Confidential / Released 89 / 94
LTE Module Series
EC21 Hardware Design
PAP
Password Authentication Protocol
PCB
Printed Circuit Board
PDU
Protocol Data Unit
PPP
Point-to-Point Protocol
QAM
Quadrature Amplitude Modulation
QPSK
Quadrature Phase Shift Keying
RF
Radio Frequency
RHCP
Right Hand Circularly Polarized
Rx
Receive
SGMII
Serial Gigabit Media IndependentInterface
SIM
Subscriber Identification Module
SIMO
Single Input Multiple Output
SMS
Short Message Service
TDD
Time Division Duplexing
TDMA
Time Division Multiple Access
TD-SCDMA
Time Division-Synchronous Code Division Multiple Access
TX
Transmitting Direction
UL
Uplink
UMTS
Universal Mobile Telecommunications System
URC
Unsolicited Result Code
USIM
Universal Subscriber Identity Module
Vmax
Maximum Voltage Value
Vnorm
Normal Voltage Value
Vmin
Minimum Voltage Value
VIHmax
Maximum Input High Level Voltage Value
EC21_Hardware_Design
Confidential / Released 90 / 94
LTE Module Series
EC21 Hardware Design
VIHmin
Minimum Input High Level Voltage Value
VILmax
Maximum Input Low Level Voltage Value
VILmin
Minimum Input Low Level Voltage Value
VImax
Absolute Maximum Input Voltage Value
VImin
Absolute Minimum Input Voltage Value
VOHmax
Maximum Output High Level Voltage Value
VOHmin
Minimum Output High Level Voltage Value
VOLmax
Maximum Output Low Level Voltage Value
VOLmin
Minimum Output Low Level Voltage Value
VSWR
Voltage Standing Wave Ratio
WCDMA
Wideband Code Division Multiple Access
WLAN
Wireless Local Area Network
EC21_Hardware_Design
Confidential / Released 91 / 94
LTE Module Series
EC21 Hardware Design
10 Appendix B GPRS Coding Schemes
Table 53: Description of Different Coding Schemes
Scheme
CS-1
CS-2
CS-3
CS-4
Code Rate
1/2
2/3
3/4
USF
Pre-coded USF
12
Radio Block excl.USF and BCS
181
268
312
428
BCS
40
16
16
16
Tail
Coded Bits
456
588
676
456
Punctured Bits
132
220
Data Rate Kb/s
9.05
13.4
15.6
21.4
EC21_Hardware_Design
Confidential / Released 92 / 94
LTE Module Series
EC21 Hardware Design
11 Appendix C GPRS Multi-slot Classes
Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot
classes are product dependent, and determine the maximum achievable data rates in both the uplink and
downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots,
while the second number indicates the amount of uplink timeslots. The active slots determine the total
number of slots the GPRS device can use simultaneously for both uplink and downlink communications.
The description of different multi-slot classes is shown in the following table.
Table 54: GPRS Multi-slot Classes
Multislot Class
Downlink Slots
Uplink Slots
Active Slots
10
11
12
EC21_Hardware_Design
Confidential / Released 93 / 94
LTE Mo
odule Sires
EC
C21 Hardw
ware Design
12 Apppendixx D EDGE
E E Mod
dulationan
nd
Cod
ding Schem
mes
Modu
ulation and Coding Sch
hemes
Table 55: EDGE
Coding Sch
heme
Mod
dulation
Coding Family
1 Timeslot
2 Tim
meslot
4 Timeslot
CS-1:
GMSK
9.05kbps
18.1kkbps
36.2kbps
CS-2:
GMSK
13.4kbps
26.8kkbps
53.6kbps
CS-3:
GMSK
15.6kbps
31.2kkbps
62.4kbps
CS-4:
GMSK
21.4kbps
42.8kkbps
85.6kbps
MCS-1
GMSK
8.80kbps
17.60
0kbps
35.20kbps
MCS-2
GMSK
11.2kbps
22.4kkbps
44.8kbps
MCS-3
GMSK
14.8kbps
29.6kkbps
59.2kbps
MCS-4
GMSK
17.6kbps
35.2kkbps
70.4kbps
MCS-5
8-PS
SK
22.4kbps
44.8kkbps
89.6kbps
MCS-6
8-PS
SK
29.6kbps
59.2kkbps
118.4kbps
MCS-7
8-PS
SK
44.8kbps
89.6kkbps
179.2kbps
MCS-8
8-PS
SK
54.4kbps
108.8
8kbps
217.6kbps
MCS-9
8-PS
SK
59.2kbps
118.4
4kbps
236.8kbps
EC21_Harrdware_Des
sign
Confide
ential / Released94 /94

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : Yes
Author                          : haojinhua
Create Date                     : 2017:08:18 09:31:48+08:00
Modify Date                     : 2017:08:18 09:31:48+08:00
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00
Format                          : application/pdf
Creator                         : haojinhua
Title                           : Microsoft Word - XMR201708EC21E_User Manual Rev1
Creator Tool                    : PScript5.dll Version 5.2.2
Producer                        : Acrobat Distiller 9.0.0 (Windows)
Document ID                     : uuid:75a47ff7-e58e-440d-8447-523fa2a46ec3
Instance ID                     : uuid:eede3d83-0f1a-4aa6-a89a-03af10532377
Page Count                      : 95
EXIF Metadata provided by EXIF.tools
FCC ID Filing: XMR201708EC21E

Navigation menu