Quectel Wireless Solutions 201805EC25AU LTE Module User Manual

Quectel Wireless Solutions Company Limited LTE Module Users Manual

Contents

Users Manual

Download: Quectel Wireless Solutions 201805EC25AU LTE Module User Manual
Mirror Download [FCC.gov]Quectel Wireless Solutions 201805EC25AU LTE Module User Manual
Document ID3839081
Application IDQNM+zpUbzScmGrcZ8j40aA==
Document DescriptionUsers Manual
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeUser Manual
Display FormatAdobe Acrobat PDF - pdf
Filesize323.51kB (4043819 bits)
Date Submitted2018-05-04 00:00:00
Date Available2018-05-04 00:00:00
Creation Date2018-05-04 12:43:02
Producing SoftwareAcrobat Distiller 9.0.0 (Windows)
Document Lastmod2018-05-04 14:49:49
Document TitleMicrosoft Word - Quectel_EC25_Hardware_Design_V1.5.doc
Document CreatorPScript5.dll Version 5.2.2
Document Author: haojinhua

EC25 Hardware Design
LTE Module Series
Rev. EC25_Hardware_Design_V1.5
Date: 2018-04-20
Status: Released
www.quectel.com
LTE Module Series
EC25 Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China
Tel: +86 21 5108 6236
Email: info@quectel.com
Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm
For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm
Or Email to: support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION
AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE
FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF
DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR
REGISTRATION OF A UTILITY MODEL OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.
EC25_Hardware_Design
1 / 112
LTE Module Series
EC25 Hardware Design
About the Document
History
Revision
Date
Author
Description
1.0
2016-04-01
Woody WU
Initial
1.
2.
1.1
2016-09-22
Lyndon LIU/
Frank WANG
Updated EC25 series frequency bands in Table 1.
Updated transmitting power, supported maximum
baud rate of main UART/internal protocols/USB
drivers of USB interface, firmware upgrade and
temperature range in Table 2.
3. Updated timing of turning on module in Figure 12.
4. Updated timing of turning off module in Figure 13.
5. Updated timing of resetting module in Figure 16.
6. Updated supported baud rates of main UART in
Chapter 3.11.
7. Added notes for ADC interface in Chapter 3.13.
8. Updated GNSS performance in Table 21.
9. Updated operating frequencies of module in Table 23.
10. Added current consumption in Chapter 6.4.
11. Updated RF output power in Chapter 6.5.
12. Added RF receiving sensitivity in Chapter 6.6.
1.
2.
3.
4.
1.2
2016-11-04
Lyndon LIU/
Michael ZHANG
1.3
2017-01-24
Lyndon LIU/
Frank WANG
EC25_Hardware_Design
5.
6.
7.
8.
9.
Added SGMII and WLAN interfaces in Table 2.
Updated function diagram in Figure 1.
Updated pin assignment (Top View) in Figure 2.
Added description of SGMII and WLAN interfaces in
Table 4.
Added SGMII interface in Chapter 3.17.
Added WLAN interface in Chapter 3.18.
Added USB_BOOT interface in Chapter 3.19.
Added reference design of RF layout in Chapter 5.1.4.
Added note about SIMO in Chapter 6.6.
1.
2.
Updated function diagram in Figure 1.
Updated pin assignment (top view) in Figure 2.
2 / 112
LTE Module Series
EC25 Hardware Design
3.
4.
5.
6.
7.
8.
1.
2.
3.
4.
5.
6.
7.
1.4
2018-03-05
AnniceZHANG/
Lyndon LIU/
Frank WANG
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
1.5
2018-04-20
Kinsey ZHANG
1.
2.
3.
4.
EC25_Hardware_Design
Added BT interface in Chapter 3.18.2.
Updated GNSS performance in Table 24.
Updated reference circuit of wireless connectivity
interfaces with FC20 module in Figure 29.
Updated current consumption of EC25-E module in
Table 33.
Updated EC25-A conducted RF receiving sensitivity
in Table 38.
AddedEC25-J conducted RF receiving sensitivity in
Table 40.
Updated functional diagram in Figure 1.
Updated frequency bands in Table 1.
Updated LTE, UMTS and GSM features in Table 2.
Updated description of pin 40/136/137/138.
Updated PWRKEY pulled down time to 500ms in
Chapter 3.7.1 and reference circuit in Figure 10.
Updated reference circuit of (U)SIM interface in
Figure 17&18.
Updated reference circuit of USB interface in Figure
19.
Updated PCM mode in Chapter 3.12.
Added SD card interface in Chapter 3.13.
Updated USB_BOOT reference circuit in Chapter
3.20.
Updated module operating frequencies in Table 26.
Updated antenna requirements in Table 30.
Updated EC25 series module current consumption in
Chapter 6.4.
Updated EC25 series module conducted RF receiving
sensitivity in Chapter 6.6.
Added thermal consideration description in Chapter
6.8.
Added dimension tolerance information in Chapter 7.
Added storage temperature range in Table 2 and
Chapter 6.3.
Updated RF output power in Table 41.
Updated GPRS multi-slot classes in Table 53.
Updated storage information in Chapter 8.1.
Added information of EC25-AF in Table 1.
Updated module operating frequencies in Table 27.
Added current consumption of EC25-AF module in
Table 40.
Changed GNSS current consumption of EC25 series
module into Table 41.
3 / 112
LTE Module Series
EC25 Hardware Design
5.
EC25_Hardware_Design
Added EC25-AF conducted RF receiving sensitivity in
Table 50.
4 / 112
LTE Module Series
EC25 Hardware Design
Contents
About the Document ................................................................................................................................ 2
Contents .................................................................................................................................................... 5
Table Index ............................................................................................................................................... 8
Figure Index ............................................................................................................................................ 10
Introduction ..................................................................................................................................... 12
1.1.
Safety Information ................................................................................................................. 13
1.2.
FCC Statement ..................................................................................................................... 14
Product Concept ............................................................................................................................. 16
2.1.
General Description .............................................................................................................. 16
2.2.
Key Features ......................................................................................................................... 17
2.3.
Functional Diagram ............................................................................................................... 20
2.4.
Evaluation Board ................................................................................................................... 21
Application Interfaces ..................................................................................................................... 22
3.1.
General Description .............................................................................................................. 22
3.2.
Pin Assignment ..................................................................................................................... 23
3.3.
Pin Description ...................................................................................................................... 24
3.4.
Operating Modes .................................................................................................................. 36
3.5.
Power Saving ........................................................................................................................ 36
3.5.1.
Sleep Mode.................................................................................................................. 36
3.5.1.1. UART Application .............................................................................................. 36
3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 37
3.5.1.3. USB Application with USB Suspend/Resume and RI Function.......................... 38
3.5.1.4. USB Application without USB Suspend Function .............................................. 39
3.5.2.
Airplane Mode.............................................................................................................. 39
3.6.
Power Supply ........................................................................................................................ 40
3.6.1.
Power Supply Pins....................................................................................................... 40
3.6.2.
Decrease Voltage Drop ............................................................................................... 41
3.6.3.
Reference Design for Power Supply ............................................................................ 42
3.6.4.
Monitor the Power Supply ............................................................................................ 42
3.7.
Turn on and off Scenarios ..................................................................................................... 42
3.7.1.
Turn on Module Using the PWRKEY ........................................................................... 42
3.7.2.
Turn off Module............................................................................................................ 44
3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 44
3.7.2.2. Turn off Module Using AT Command ................................................................ 45
3.8.
Reset the Module .................................................................................................................. 45
3.9.
(U)SIM Interface .................................................................................................................... 47
3.10. USB Interface ........................................................................................................................ 49
3.11. UART Interfaces ................................................................................................................... 51
EC25_Hardware_Design
5 / 112
LTE Module Series
EC25 Hardware Design
3.12. PCM and I2C Interfaces ........................................................................................................ 53
3.13. SD Card Interface ................................................................................................................. 56
3.14. ADC Interfaces ...................................................................................................................... 58
3.15. Network Status Indication ..................................................................................................... 59
3.16. STATUS ................................................................................................................................ 60
3.17. Behaviors of RI ..................................................................................................................... 61
3.18. SGMII Interface ..................................................................................................................... 62
3.19. Wireless Connectivity Interfaces ........................................................................................... 64
3.19.1. WLAN Interface ........................................................................................................... 66
3.19.2. BT Interface* ................................................................................................................ 66
3.20. USB_BOOT Interface............................................................................................................ 66
GNSS Receiver ................................................................................................................................ 68
4.1.
General Description .............................................................................................................. 68
4.2.
GNSS Performance .............................................................................................................. 68
4.3.
Layout Guidelines ................................................................................................................. 69
Antenna Interfaces .......................................................................................................................... 70
5.1.
Main/Rx-diversity Antenna Interfaces.................................................................................... 70
5.1.1.
Pin Definition................................................................................................................ 70
5.1.2.
Operating Frequency ................................................................................................... 70
5.1.3.
Reference Design of RF Antenna Interface ................................................................. 72
5.1.4.
Reference Design of RF Layout................................................................................... 72
5.2.
GNSS Antenna Interface....................................................................................................... 74
5.3.
Antenna Installation .............................................................................................................. 76
5.3.1.
Antenna Requirement .................................................................................................. 76
5.3.2.
Recommended RF Connector for Antenna Installation ................................................ 77
Electrical, Reliability and Radio Characteristics .......................................................................... 79
6.1.
Absolute Maximum Ratings .................................................................................................. 79
6.2.
Power Supply Ratings ........................................................................................................... 80
6.3.
Operation and Storage Temperatures .................................................................................. 80
6.4.
Current Consumption ............................................................................................................ 81
6.5.
RF Output Power .................................................................................................................. 92
6.6.
RF Receiving Sensitivity ....................................................................................................... 93
6.7.
Electrostatic Discharge ......................................................................................................... 97
6.8.
Thermal Consideration .......................................................................................................... 97
Mechanical Dimensions................................................................................................................ 100
7.1.
Mechanical Dimensions of the the Module.......................................................................... 100
7.2.
Recommended Footprint..................................................................................................... 102
7.3.
Design Effect Drawings of the Module ................................................................................ 103
Storage, Manufacturing and Packaging ...................................................................................... 104
8.1.
Storage ............................................................................................................................... 104
8.2.
Manufacturing and Soldering .............................................................................................. 105
8.3.
Packaging ........................................................................................................................... 106
EC25_Hardware_Design
6 / 112
LTE Module Series
EC25 Hardware Design
Appendix A References ................................................................................................................ 107
10 Appendix B GPRS Coding Schemes ........................................................................................... 111
11 Appendix C GPRS Multi-slot Classes .......................................................................................... 112
12 Appendix D EDGE Modulationand Coding Schemes ................................................................. 114
EC25_Hardware_Design
7 / 112
LTE Module Series
EC25 Hardware Design
Table Index
TABLE 1: FREQUENCY BANDS OF EC25 SERIES MODULE ....................................................................... 16
TABLE 2: KEY FEATURES OF EC25 MODULE .............................................................................................. 17
TABLE 3: I/O PARAMETERS DEFINITION ...................................................................................................... 24
TABLE 4: PIN DESCRIPTION ........................................................................................................................... 24
TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................ 36
TABLE 6: VBAT AND GND PINS ...................................................................................................................... 40
TABLE 7: PIN DEFINITION OF PWRKEY ........................................................................................................ 43
TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 45
TABLE 9: PIN DEFINITION OF THE (U)SIM INTERFACE............................................................................... 47
TABLE 10: PIN DESCRIPTION OF USB INTERFACE..................................................................................... 49
TABLE 11: PIN DEFINITION OF MAIN UART INTERFACE ............................................................................ 51
TABLE 12: PIN DEFINITION OF DEBUG UART INTERFACE......................................................................... 51
TABLE 13: LOGIC LEVELS OF DIGITAL I/O ................................................................................................... 52
TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ...................................................................... 54
TABLE 15: PIN DEFINITION OF SD CARD INTERFACE ................................................................................ 56
TABLE 16: PIN DEFINITION OF ADC INTERFACES ...................................................................................... 58
TABLE 17: CHARACTERISTIC OF ADC .......................................................................................................... 58
TABLE 18: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR .................... 59
TABLE 19: WORKING STATE OF THE NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ......... 59
TABLE 20: PIN DEFINITION OF STATUS ....................................................................................................... 60
TABLE 21: BEHAVIOR OF RI ........................................................................................................................... 61
TABLE 22: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 62
TABLE 23: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ............................................... 64
TABLE 24: PIN DEFINITION OF USB_BOOT INTERFACE............................................................................. 67
TABLE 25: GNSS PERFORMANCE ................................................................................................................. 68
TABLE 26: PIN DEFINITION OF RF ANTENNA............................................................................................... 70
TABLE 27: MODULE OPERATING FREQUENCIES ....................................................................................... 70
TABLE 28: PIN DEFINITION OF GNSS ANTENNA INTERFACE .................................................................... 74
TABLE 29: GNSS FREQUENCY ...................................................................................................................... 75
TABLE 30: ANTENNA REQUIREMENTS ......................................................................................................... 76
TABLE 31: ABSOLUTE MAXIMUM RATINGS ................................................................................................. 79
TABLE 32: THE MODULE POWER SUPPLY RATINGS.................................................................................. 80
TABLE 33: OPERATION AND STORAGE TEMPERATURES ......................................................................... 80
TABLE 34: EC25-E CURRENT CONSUMPTION ............................................................................................. 81
TABLE 35: EC25-A CURRENT CONSUMPTION ............................................................................................. 83
TABLE 36: EC25-V CURRENT CONSUMPTION ............................................................................................. 84
TABLE 37: EC25-J CURRENT CONSUMPTION ............................................................................................. 85
TABLE 38: EC25-AU CURRENT CONSUMPTION .......................................................................................... 86
TABLE 39: EC25-AUT CURRENT CONSUMPTION ........................................................................................ 89
TABLE 40: EC25-AF CURRENT CONSUMPTION ........................................................................................... 90
TABLE 41: GNSS CURRENT CONSUMPTION OF EC25 SERIES MODULE ................................................ 92
EC25_Hardware_Design
8 / 112
LTE Module Series
EC25 Hardware Design
TABLE 42: RF OUTPUT POWER ..................................................................................................................... 92
TABLE 43: EC25-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 93
TABLE 44: EC25-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 93
TABLE 45: EC25-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 94
TABLE 46: EC25-J CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 94
TABLE 47: EC25-AU CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 95
TABLE 48: EC25-AUT CONDUCTED RF RECEIVING SENSITIVITY ............................................................. 95
TABLE 49: EC25-AUTL CONDUCTED RF RECEIVING SENSITIVITY ........................................................... 96
TABLE 50: EC25-AF CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 96
TABLE 51: ELECTROSTATICS DISCHARGE CHARACTERISTICS .............................................................. 97
TABLE 52: RELATED DOCUMENTS ............................................................................................................. 107
TABLE 53: TERMS AND ABBREVIATIONS ................................................................................................... 107
TABLE 54: DESCRIPTION OF DIFFERENT CODING SCHEMES ................................................................ 111
TABLE 55: GPRS MULTI-SLOT CLASSES .................................................................................................... 112
TABLE 56: EDGE MODULATION AND CODING SCHEMES ........................................................................ 114
EC25_Hardware_Design
9 / 112
LTE Module Series
EC25 Hardware Design
Figure Index
FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 20
FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 23
FIGURE 3: SLEEP MODE APPLICATION VIA UART ...................................................................................... 37
FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 38
FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 38
FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION................................................ 39
FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ..................................................... 41
FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY ........................................................................... 41
FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 42
FIGURE 10: TURN ON THE MODULE BY USING DRIVING CIRCUIT ........................................................... 43
FIGURE 11: TURN ON THE MODULE BY USING BUTTON ........................................................................... 43
FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 44
FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 45
FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 46
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 46
FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 46
FIGURE 17: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
................................................................................................................................................................... 48
FIGURE 18: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR 48
FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 50
FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 52
FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 53
FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 54
FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 54
FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC ................................... 55
FIGURE 25: REFERENCE CIRCUIT OF SD CARD ......................................................................................... 57
FIGURE 26: REFERENCE CIRCUIT OF THE NETWORK INDICATOR ......................................................... 60
FIGURE 27: REFERENCE CIRCUITS OF STATUS ........................................................................................ 61
FIGURE 28: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 63
FIGURE 29: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION................ 63
FIGURE 30: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE
................................................................................................................................................................... 65
FIGURE 31: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 67
FIGURE 32: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................ 72
FIGURE 33: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ..................................................................... 73
FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB ................................................. 73
FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE
GROUND) .................................................................................................................................................. 73
FIGURE 36: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE
GROUND) .................................................................................................................................................. 74
FIGURE 37: REFERENCE CIRCUIT OF GNSS ANTENNA............................................................................. 75
EC25_Hardware_Design
10 / 112
LTE Module Series
EC25 Hardware Design
FIGURE 38: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM) ............................................... 77
FIGURE 39: MECHANICALS OF U.FL-LP CONNECTORS ............................................................................. 77
FIGURE 40: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) .......................................................... 78
FIGURE 41: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE)................. 98
FIGURE 42: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BACKSIDE OF CUSTOMERS’ PCB)
................................................................................................................................................................... 98
FIGURE 43: MODULE TOP AND SIDE DIMENSIONS .................................................................................. 100
FIGURE 44: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ............................................................... 101
FIGURE 45: RECOMMENDED FOOTPRINT (TOP VIEW) ............................................................................ 102
FIGURE 46: TOP VIEW OF THE MODULE .................................................................................................... 103
FIGURE 47: BOTTOM VIEW OF THE MODULE............................................................................................ 103
FIGURE 48: REFLOW SOLDERING THERMAL PROFILE............................................................................ 105
FIGURE 49: TAPE AND REEL SPECIFICATIONS ........................................................................................ 106
EC25_Hardware_Design
11 / 112
LTE Module Series
EC25 Hardware Design
Introduction
This document defines the EC25 module and describes its air interface and hardware interface which are
connected with customers’ applications.
This document can help customers quickly understand module interface specifications, electrical and
mechanical details, as well as other related information of EC25 module. Associated with application note
and user guide, customers can use EC25 module to design and set up mobile applications easily.
EC25_Hardware_Design
12 / 112
LTE Module Series
EC25 Hardware Design
1.1. Safety Information
The following safety precautions must be observed during all phases of the operation, such as usage,
service or repair of any cellular terminal or mobile incorporating EC25 module. Manufacturers of the cellular
terminal should send the following safety information to users and operating personnel, and incorporate
these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the
customers’ failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a hands free kit) causes
distraction and can lead to an accident. You must comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is
switched off. The operation of wireless appliances in an aircraft is forbidden, so as
to prevent interference with communication systems. Consult the airline staff about
the use of wireless devices on boarding the aircraft, if your device offers an
Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals,clinics or other health care
facilities. These requests are designed to prevent possible interference with
sensitive medical equipment.
Cellular terminals or mobiles operating over radio frequency signal and cellular
network cannot be guaranteed to connect in all conditions, for example no mobile
fee or with an invalid (U)SIM card. While you are in this condition and need
emergent help, please remember using emergency call. In order to make or
receive a call, the cellular terminal or mobile must be switched on and in a service
area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON,
it receives and transmits radio frequency energy. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres include fuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
EC25_Hardware_Design
13 / 112
LTE Module Series
EC25 Hardware Design
1.2. FCC Statement
According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile
device.
And the following conditions must be met:
1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna
installation and operating configurations of this transmitter, including any applicable source-based timeaveraging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements
of 2.1091.
2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user’s body
and must not transmit simultaneously with any other antenna or transmitter.
3.A label with the following statements must be attached to the host end product: This device contains FCC
ID: XMR201805EC25AU.
4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF
radiation, maximum antenna gain (including cable loss) must not exceed 4dBi
5. This module must not transmit simultaneously with any other antenna or transmitter
6. The host end product must include a user manual that clearly defines operating requirements and
conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.
For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is
required to satisfy the SAR requirements of FCC Part 2.1093
If the device is used for other equipment that separate approval is required for all other operating
configurations, including portable configurations with respect to 2.1093 and different antenna
configurations.
For this device, OEM integrators must be provided with labeling instructions of finished products. Please
refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:
A certified modular has the option to use a permanently affixed label, or an electronic label. For a
permanently affixed label, the module must be labelled withan FCC ID - Section 2.926 (see 2.2 Certification
(labelling requirements) above). The OEM manual must provide clear instructions explaining to the OEM
the labelling requirements,options and OEM user manual instructions that are required (see next
paragraph).
For a host using a certified modular with a standard fixed label, if (1) the module’s FCC ID is notvisible when
installed in the host, or (2) if the host is marketed so that end users do not havestraightforward commonly
used methods for access to remove the module so that the FCC ID ofthe module is visible; then an
additional permanent label referring to the enclosed module:“Contains Transmitter Module FCC
ID:XMR201805EC25AU” or “Contains FCC ID: XMR201805EC25AU” mustbe used. The host OEM user
manual must also contain clear instructions on how end users can find and/or access the module and the
FCC ID.
The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for
unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.
The user’s manual or instruction manual for an intentional or unintentional radiator shall caution the user
that changes or modifications not expressly approved by the party responsible for compliance could void
the user's authority to operate the equipment. In cases where the manual is provided only in a form other
than paper, such as on a computer disk or over the Internet, the information required by this section may be
EC25_Hardware_Design
14 / 112
LTE Module Series
EC25 Hardware Design
included in the manual in that alternative form, provided the user can reasonably be expected to have the
capability to access information in that form.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.
Changes or modifications not expressly approved by the manufacturer could void the user’s authority to
operate the equipment.
To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring
compliance with the module(s) installed and fully operational. For example, if a host was previously
authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter
certified module and a module is added, the host manufacturer is responsible for ensuring that the after the
module is installed and operational the host continues to be compliant with the Part 15B unintentional
radiator requirements.
EC25_Hardware_Design
15 / 112
LTE Module Series
EC25 Hardware Design
Product Concept
2.1. General Description
EC25 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive
diversity. It provides data connectivity on LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA,
WCDMA, EDGE and GPRS networks. It also provides GNSS1) and voice functionality2) for customers’
specific application. EC25 contains seven variants: EC25-E, EC25-A, EC25-V, EC25-J, EC25-AU,
EC25-AUT, EC25-AF and EC25-AUTL. Customers can choose a dedicated type based on the region or
operator. The following table shows the frequency bands of EC25 series module.
Table 1: Frequency Bands of EC25 Series Module
Modules2)
LTE Bands
WCDMA
Bands
GSM Bands
Rxdiversity
EC25-E
FDD: B1/B3/B5/B7/B8/B20
TDD: B38/B40/B41
B1/B5/B8
900/1800MHz
EC25-A
FDD: B2/B4/B12
B2/B4/B5
EC25-V
FDD: B4/B13
EC25-J
FDD: B1/B3/B8/B18/B19/
B26
TDD: B41
B1/B6/B8/B19
EC25-AU
FDD: B1/B2/B3/B4/B5/B7/
B8/B28
TDD: B40
B1/B2/B5/B8
850/900/
1800/1900MHz
EC25-AUT
FDD: B1/B3//B5/B7/B28
B1/B5
EC25-AF
FDD: B2/B4//B5/B12/B13/
B14/B66/B71
B2/B4/B5
EC25-AUTL
FDD: B3/B7/B28
3)
EC25_Hardware_Design
GNSS1)
GPS,
GLONASS,
BeiDou/
Compass,
Galileo,
QZSS
16 / 112
LTE Module Series
EC25 Hardware Design
NOTES
1.
2.
3.
4.
1)
2)
GNSS function is optional.
EC25
series
module
(EC25-E/EC25-A/EC25-V/EC25-J/EC25-AU/EC25-AUT/EC25-AF/
EC25-AUTL) contains Telematics version and Data-only version. Telematics version supports
voice and data functions, while Data-only version only supports data function.
3)
B2 band on EC25-AU module does not support Rx-diversity.
Y = Supported. N = Not supported.
With a compact profile of 29.0mm × 32.0mm × 2.4mm, EC25 can meet almost all requirements for M2M
applications such as automotive, metering, tracking system, security, router, wireless POS, mobile
computing device, PDA phone, tablet PC, etc.
EC25 is an SMD type module which can be embedded into applications through its 144-pin pads,
including 80 LCC signal pads and 64 LGA pads.
2.2. Key Features
The following table describes the detailed features of EC25 module.
Table 2: Key Features of EC25 Module
Feature
Details
Power Supply
Supply voltage: 3.3V~4.3V
Typical supply voltage: 3.8V
Transmitting Power
Class 4 (33dBm±2dB) for GSM850
Class 4 (33dBm±2dB) for EGSM900
Class 1 (30dBm±2dB) for DCS1800
Class 1 (30dBm±2dB) for PCS1900
Class E2 (27dBm±3dB) for GSM850 8-PSK
Class E2 (27dBm±3dB) for EGSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class E2 (26dBm±3dB) for PCS1900 8-PSK
Class 3 (24dBm+1/-3dB) for WCDMA bands
Class 3 (23dBm±2dB) for LTE-FDD bands
Class 3 (23dBm±2dB) for LTE-TDD bands
LTE Features
Support up to non-CA Cat 4 FDD and TDD
Support 1.4MHz~20MHz RF bandwidth
Support MIMO in DL direction
LTE-FDD: Max 150Mbps (DL)/50Mbps (UL)
EC25_Hardware_Design
17 / 112
LTE Module Series
EC25 Hardware Design
LTE-TDD: Max 130Mbps (DL)/30Mbps (UL)
UMTS Features
Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA
Support QPSK, 16-QAM and 64-QAM modulation
DC-HSDPA: Max 42Mbps (DL)
HSUPA: Max 5.76Mbps (UL)
WCDMA: Max 384Kbps (DL)/384Kbps (UL)
GPRS:
Support GPRS multi-slot class 33 (33 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Max 107Kbps (DL)/85.6Kbps (UL)
GSM Features
EDGE:
Support EDGE multi-slot class 33 (33 by default)
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4 and MCS 1-9
Uplink coding schemes: CS 1-4 and MCS 1-9
Max 296Kbps (DL)/236.8Kbps (UL)
Internet Protocol Features
Support
TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/CMUX*/HTTPS*/SMTP*/
MMS*/FTPS*/SMTPS*/SSL*/FILE* protocols
Support PAP (Password Authentication Protocol) and CHAP (Challenge
Handshake Authentication Protocol) protocols which are usually used for
PPP connections
SMS
Text and PDU mode
Point to point MO and MT
SMS cell broadcast
SMS storage: ME by default
(U)SIM Interface
Support USIM/SIM card: 1.8V, 3.0V
Audio Features
Support one digital audio interface: PCM interface
GSM: HR/FR/EFR/AMR/AMR-WB
WCDMA: AMR/AMR-WB
LTE: AMR/AMR-WB
Support echo cancellation and noise suppression
PCM Interface
Used for audio function with external codec
Support 16-bit linear data format
Support long frame synchronization and short frame synchronization
Support master and slave modes, but must be the master in long frame
synchronization
USB Interface
Compliant with USB 2.0 specification (slave only); the data transfer rate can
reach up to 480Mbps
Used for AT command communication, data transmission, GNSS NMEA
output, software debugging, firmware upgrade and voice over USB*
EC25_Hardware_Design
18 / 112
LTE Module Series
EC25 Hardware Design
UART Interface
Support USB serial drivers for: Windows 7/8/8.1/10,
Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x
Main UART:
Used for AT command communication and data transmission
Baud rates reach up to 921600bps, 115200bps by default
Support RTS and CTS hardware flow control
Debug UART:
Used for Linux console and log output
115200bps baud rate
SD Card Interface
Support SD 3.0 protocol
SGMII Interface
Support 10M/100M/1000M Ethernet work mode
Support maximum 150Mbps (DL)/50Mbps (UL) for 4G network
Wireless Connectivity
Interfaces
Support a low-power SDIO 3.0 interface for WLAN and UART/PCM
interface for Bluetooth*
Rx-diversity
Support LTE/WCDMA Rx-diversity
GNSS Features
Gen8C Lite of Qualcomm
Protocol: NMEA 0183
AT Commands
Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT
commands
Network Indication
Two pins including NET_MODE and NET_STATUS to indicate network
connectivity status
Antenna Interfaces
Including main antenna interface (ANT_MAIN), Rx-diversity antenna
interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS)
Physical Characteristics
Size: (29.0±0.15)mm × (32.0±0.15)mm × (2.4±0.2)mm
Weight: approx. 4.9g
Temperature Range
Operation temperature range: -35°C ~ +75°C1)
Extended temperature range: -40°C ~ +85°C2)
Storage temperature range: -40°C~ +90°C
Firmware Upgrade
USB interface and DFOTA*
RoHS
All hardware components are fully compliant with EU RoHS directive
NOTES
1.
2.
1)
Within operation temperature range, the module is 3GPP compliant.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like
Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to
the normal operating temperature levels, the module will meet 3GPP specifications again.
3. “*” means under development.
2)
EC25_Hardware_Design
19 / 112
LTE Module Series
EC25 Hardware Design
2.3. Functional Diagram
The following figure shows a block diagram of EC25 and illustrates the major functional parts.





Power management
Baseband
DDR+NAND flash
Radio frequency
Peripheral interfaces
Figure 1: Functional Diagram
NOTE
“*” means under development.
EC25_Hardware_Design
20 / 112
LTE Module Series
EC25 Hardware Design
2.4. Evaluation Board
In order to help customers develop applications with EC25, Quectel supplies an evaluation board (EVB),
USB to RS-232 converter cable, earphone, antenna and other peripherals to control or test the module.
EC25_Hardware_Design
21 / 112
LTE Module Series
EC25 Hardware Design
Application Interfaces
3.1. General Description
EC25 is equipped with 80 LCC pads plus 64 LGA pads that can be connected to cellular application
platform. Sub-interfaces included in these pads are described in detail in the following chapters:











Power supply
(U)SIM interface
USB interface
UART interfaces
PCM and I2C interfaces
SD card interface
ADC interfaces
Status indication
SGMII interface
Wireless connectivity interfaces
USB_BOOT interface
EC25_Hardware_Design
22 / 112
LTE Module Series
EC25 Hardware Design
3.2. Pin Assignment
The following figure shows the pin assignment of EC25 module.
Figure 2: Pin Assignment (Top View)
NOTES
1.
2.
1)
3.
4.
3)
5.
2)
means that these pins cannot be pulled up before startup.
PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
means these interface functions are only supported on Telematics version.
Pads 37~40, 118, 127 and 129~139 are used for wireless connectivity interfaces, among which pads
118, 127 and 129~138 are WLAN function pins, and the rest are Bluetooth (BT) function pins. BT
function is under development.
Pads 119~126 and 128 are used for SGMII interface.
EC25_Hardware_Design
23 / 112
LTE Module Series
EC25 Hardware Design
6.
7.
8.
9.
Pads 24~27 are multiplexing pins used for audio design on the EC25 module and BT function on the
BT module.
Keep all RESERVED pins and unused pins unconnected.
GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84
should not be designed in schematic and PCB decal, and these pins should be served as a keep out
area.
“*” means under development.
3.3. Pin Description
The following tables show the pin definition of EC25 modules.
Table 3: I/O Parameters Definition
Type
Description
IO
Bidirectional
DI
Digital input
DO
Digital output
PI
Power input
PO
Power output
AI
Analog input
AO
Analog output
OD
Open drain
Table 4: Pin Description
Power Supply
Pin Name
VBAT_BB
Pin No.
59, 60
EC25_Hardware_Design
I/O
Description
DC Characteristics
Comment
PI
Power supply for
module’s baseband
part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
It must be able to
provide sufficient
current up to 0.8A.
24 / 112
LTE Module Series
EC25 Hardware Design
VBAT_RF
57, 58
VDD_EXT
GND
8, 9, 19,
22, 36, 46,
48, 50~54,
56, 72,
85~112
PI
Power supply for
module’s RF part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
PO
Provide 1.8V for
external circuit
Vnorm=1.8V
IOmax=50mA
It must be able to
provide sufficient
current up to 1.8A in a
burst transmission.
Power supply for
external GPIO’s pull-up
circuits.
Ground
Turn on/off
Pin Name
Description
DC Characteristics
Comment
Turn on/off the
module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
The output voltage is
0.8V because of the
diode drop in the
Qualcomm chipset.
DI
Reset the module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
OD
Indicate the module
operating status
The drive current
should be less than
0.9mA.
An external pull-up
resistor is required. If
unused, keep it open.
DO
Indicate the module
network registration
mode
VOHmin=1.35V
VOLmax=0.45V
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
open.
DO
Indicate the module
network activity
status
VOHmin=1.35V
VOLmax=0.45V
1.8V power domain.
If unused, keep it
open.
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
USB_VBUS
71
PI
USB detection
Vmax=5.25V
Vmin=3.0V
Vnorm=5.0V
Typical: 5.0V
If unused, keep it
open.
PWRKEY
RESET_N
Pin No.
21
20
I/O
DI
Status Indication
Pin Name
STATUS
NET_MODE
NET_
STATUS
Pin No.
61
USB Interface
EC25_Hardware_Design
25 / 112
LTE Module Series
EC25 Hardware Design
USB_DP
USB_DM
69
70
USB differential data
bus (+)
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90Ω.
If unused, keep it
open.
IO
USB differential data
bus (-)
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90Ω.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
IO
(U)SIM Interface
Pin Name
Pin No.
USIM_GND
10
USIM_
PRESENCE
13
Specified ground for
(U)SIM card
DI
(U)SIM card
insertion detection
For 1.8V(U)SIM:
Vmax=1.9V
Vmin=1.7V
USIM_VDD
14
PO
Power supply for
(U)SIM card
For 3.0V(U)SIM:
Vmax=3.05V
Vmin=2.7V
Either 1.8V or 3.0V is
supported by the
module automatically.
IOmax=50mA
USIM_DATA
USIM_CLK
15
16
EC25_Hardware_Design
IO
DO
Data signal of
(U)SIM card
Clock signal of
(U)SIM card
For 1.8V (U)SIM:
VILmax=0.6V
VIHmin=1.2V
VOLmax=0.45V
VOHmin=1.35V
For 3.0V (U)SIM:
VILmax=1.0V
VIHmin=1.95V
VOLmax=0.45V
VOHmin=2.55V
For 1.8V (U)SIM:
VOLmax=0.45V
VOHmin=1.35V
For 3.0V (U)SIM:
VOLmax=0.45V
VOHmin=2.55V
26 / 112
LTE Module Series
EC25 Hardware Design
USIM_RST
17
DO
Reset signal of
(U)SIM card
For 1.8V (U)SIM:
VOLmax=0.45V
VOHmin=1.35V
For 3.0V (U)SIM:
VOLmax=0.45V
VOHmin=2.55V
Main UART Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
RI
62
DO
Ring indicator
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DO
Data carrier
detection
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Clear to send
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Request to send
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
Pulled up by default.
Low level wakes up
the module.
If unused, keep it
open.
DCD
CTS
RTS
63
64
65
DO
DI
DTR
66
DI
Data terminal ready,
sleep mode control
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
TXD
67
DO
Transmit data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DI
Receive data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
RXD
68
Debug UART Interface
Pin Name
Pin No.
DBG_TXD
12
DO
Transmit data
VOLmax=0.45V
VOHmin=1.35V
DBG_RXD
11
DI
Receive data
VILmin=-0.3V
EC25_Hardware_Design
27 / 112
LTE Module Series
EC25 Hardware Design
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
If unused, keep it
open.
ADC Interface
Pin Name
ADC0
ADC1
Pin No.
I/O
Description
DC Characteristics
Comment
AI
General purpose
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
If unused, keep it
open.
44
AI
General purpose
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
If unused, keep it
open.
Pin No.
I/O
Description
DC Characteristics
Comment
PCM data input
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
PCM data output
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
PCM data frame
synchronization
signal
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
Comment
45
PCM Interface
Pin Name
PCM_IN
PCM_OUT
PCM_SYNC
PCM_CLK
24
25
26
DI
DO
IO
27
IO
PCM clock
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
Pin No.
I/O
Description
DC Characteristics
I2C Interface
Pin Name
I2C_SCL
41
EC25_Hardware_Design
OD
I2C serial clock Used
for external codec.
External pull-up
resistor is required.
1.8V only. If unused,
keep it open.
28 / 112
LTE Module Series
EC25 Hardware Design
I2C_SDA
42
OD
I2C serial dataUsed
for external codec.
I/O
Description
External pull-up
resistor is required.
1.8V only. If unused,
keep it open.
SD Card Interface
Pin Name
SDC2_
DATA3
SDC2_
DATA2
SDC2_
DATA1
Pin No.
28
29
30
EC25_Hardware_Design
IO
IO
IO
SD card SDIO bus
DATA3
SD card SDIO bus
DATA2
SD card SDIO bus
DATA1
DC Characteristics
1.8V signaling:
VOLmax=0.45V
VOHmin=1.4V
VILmin=-0.3V
VILmax=0.58V
VIHmin=1.27V
VIHmax=2.0V
3.0V signaling:
VOLmax=0.38V
VOHmin=2.01V
VILmin=-0.3V
VILmax=0.76V
VIHmin=1.72V
VIHmax=3.34V
1.8V signaling:
VOLmax=0.45V
VOHmin=1.4V
VILmin=-0.3V
VILmax=0.58V
VIHmin=1.27V
VIHmax=2.0V
3.0V signaling:
VOLmax=0.38V
VOHmin=2.01V
VILmin=-0.3V
VILmax=0.76V
VIHmin=1.72V
VIHmax=3.34V
1.8V signaling:
VOLmax=0.45V
VOHmin=1.4V
VILmin=-0.3V
VILmax=0.58V
VIHmin=1.27V
Comment
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
29 / 112
LTE Module Series
EC25 Hardware Design
VIHmax=2.0V
3.0V signaling:
VOLmax=0.38V
VOHmin=2.01V
VILmin=-0.3V
VILmax=0.76V
VIHmin=1.72V
VIHmax=3.34V
SDC2_
DATA0
SDC2_CLK
SDC2_CMD
31
32
33
IO
DO
IO
SD card SDIO bus
DATA0
SD card SDIO bus
clock
SD card SDIO bus
command
1.8V signaling:
VOLmax=0.45V
VOHmin=1.4V
VILmin=-0.3V
VILmax=0.58V
VIHmin=1.27V
VIHmax=2.0V
3.0V signaling:
VOLmax=0.38V
VOHmin=2.01V
VILmin=-0.3V
VILmax=0.76V
VIHmin=1.72V
VIHmax=3.34V
1.8V signaling:
VOLmax=0.45V
VOHmin=1.4V
3.0V signaling:
VOLmax=0.38V
VOHmin=2.01V
1.8V signaling:
VOLmax=0.45V
VOHmin=1.4V
VILmin=-0.3V
VILmax=0.58V
VIHmin=1.27V
VIHmax=2.0V
3.0V signaling:
VOLmax=0.38V
VOHmin=2.01V
VILmin=-0.3V
EC25_Hardware_Design
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
30 / 112
LTE Module Series
EC25 Hardware Design
VILmax=0.76V
VIHmin=1.72V
VIHmax=3.34V
SD_INS_
DET
VDD_SDIO
23
34
DI
SD card insertion
detect
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
PO
SD card SDIO bus
pull-up power
IOmax=50mA
1.8V/2.85V
configurable. Cannot
be used for SD card
power. If unused,
keep it open.
I/O
Description
DC Characteristics
Comment
SGMII Interface
Pin Name
Pin No.
EPHY_RST_
119
EPHY_INT_N 120
SGMII_
MDATA
SGMII_
MCLK
121
122
EC25_Hardware_Design
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
DO
Ethernet PHY reset
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
DI
IO
DO
Ethernet PHY
interrupt
SGMII MDIO
(Management Data
Input/Output) data
SGMII MDIO
(Management Data
Input/Output) clock
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
VILmax=0.58V
VIHmin=1.27V
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
VILmax=0.71V
VIHmin=1.78V
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
1.8V/2.85V power
domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V/2.85V power
domain.
If unused, keep it
open.
1.8V/2.85V power
domain.
If unused, keep it
open.
31 / 112
LTE Module Series
EC25 Hardware Design
USIM2_VDD
128
SGMII_TX_M 123
SGMII_TX_P 124
SGMII_RX_P 125
SGMII_RX_M 126
PO
AO
AO
AI
AI
SGMII MDIO pull-up
power source
Configurable power
source.
1.8V/2.85V power
domain.
External pull-up for
SGMII MDIO pins.
If unused, keep it
open.
SGMII transmission
- minus
Connect with a 0.1uF
capacitor, close to the
PHY side.
If unused, keep it
open.
SGMII transmission
- plus
Connect with a 0.1uF
capacitor, close to the
PHY side.
If unused, keep it
open.
SGMII receiving
- plus
Connect with a 0.1uF
capacitor, close to
EC25 module.
If unused, keep it
open.
SGMII receiving
-minus
Connect with a 0.1uF
capacitor, close to
EC25 module.
If unused, keep it
open.
Wireless Connectivity Interfaces
Pin Name
SDC1_
DATA3
SDC1_
DATA2
Pin No.
129
130
EC25_Hardware_Design
I/O
IO
IO
Description
DC Characteristics
Comment
WLAN SDIO data
bus D3
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
WLAN SDIO data
bus D2
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
32 / 112
LTE Module Series
EC25 Hardware Design
SDC1_
DATA1
SDC1_
DATA0
SDC1_CLK
SDC1_CMD
131
132
133
134
PM_ENABLE 127
WAKE_ON_
WIRELESS
WLAN_EN
135
136
COEX_UART
137
_RX
WLAN SDIO data
bus D1
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
IO
WLAN SDIO data
bus D0
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
DO
WLAN SDIO bus
clock
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DO
WLAN SDIO bus
command
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DO
External power
control
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DI
Wake up the host
(EC25 module) by
FC20 module
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
Active low.
If unused, keep it
open.
WLAN function
control via FC20
module
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
Active high.
Cannot be pulled up
before startup.
If unused, keep it
open.
LTE/WLAN&BT
coexistence signal
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
open.
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
open.
IO
DO
DI
COEX_UART
138
_TX
DO
LTE/WLAN&BT
coexistence signal
WLAN_SLP_
118
CLK
DO
WLAN sleep clock
EC25_Hardware_Design
If unused, keep it
open.
33 / 112
LTE Module Series
EC25 Hardware Design
BT_RTS*
BT_TXD*
BT_RXD*
BT_CTS*
BT_EN*
37
38
39
DI
BT UART request to
send
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
DO
BT UART transmit
data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
BT UART receive
data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
DI
1.8V power domain.
If unused, keep it
open.
DO
BT UART clear to
send
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
open.
139
DO
BT function control
via the BT module
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Pin No.
I/O
Description
DC Characteristics
Comment
50Ω impedance
If unused, keep it
open.
40
RF Interface
Pin Name
ANT_DIV
35
AI
Diversity antenna
pad
ANT_MAIN
49
IO
Main antenna pad
50Ω impedance
AI
GNSS antenna pad
50Ω impedance
If unused, keep it
open.
I/O
Description
ANT_GNSS
47
GPIO Pins
Pin Name
Pin No.
DC Characteristics
Comment
1.8V power domain.
Cannot be pulled up
before startup.
Low level wakes up
the module.
If unused, keep it
open.
1.8V power domain.
Pull-up by default.
At low voltage level,
WAKEUP_IN
DI
Sleep mode control
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
W_DISABLE#
DI
Airplane mode
control
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
EC25_Hardware_Design
34 / 112
LTE Module Series
EC25 Hardware Design
VIHmax=2.0V
AP_READY
module can enter into
airplane mode.
If unused, keep it
open.
DI
Application
processor sleep
state detection
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
DI
Force the module to
enter into
emergency
download mode
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
Cannot be pulled up
before startup.
It is recommended to
reserve test point.
I/O
Description
DC Characteristics
Comment
USB_BOOT Interface
Pin Name
USB_BOOT
Pin No.
115
RESERVED Pins
Pin Name
Pin No.
RESERVED
3, 18, 43,
55, 73~84,
113, 114,
116, 117,
140-144.
Reserved
Keep these pins
unconnected.
NOTES
1. “*” means under development.
2. Pads 24~27 are multiplexing pins used for audio design on the EC25 module and BT function on the
BT module.
EC25_Hardware_Design
35 / 112
LTE Module Series
EC25 Hardware Design
3.4. Operating Modes
The table below briefly summarizes the various operating modes referred in the following chapters.
Table 5: Overview of Operating Modes
Mode
Normal
Operation
Details
Idle
Software is active. The module has registered on the network, and it is
ready to send and receive data.
Talk/Data
Network connection is ongoing. In this mode, the power consumption is
decided by network setting and data transfer rate.
Minimum
Functionality
Mode
AT+CFUN command can set the module to a minimum functionality mode without
removing the power supply. In this case, both RF function and (U)SIM card will be
invalid.
Airplane Mode
AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In
this case, RF function will be invalid.
Sleep Mode
In this mode, the current consumption of the module will be reduced to the minimal
level. During this mode, the module can still receive paging message, SMS, voice
call and TCP/UDP data from the network normally.
Power Down
Mode
In this mode, the power management unit shuts down the power supply. Software is
not active. The serial interface is not accessible. Operating voltage (connected to
VBAT_RF and VBAT_BB) remains applied.
3.5. Power Saving
3.5.1. Sleep Mode
EC25 is able to reduce its current consumption to a minimum value during the sleep mode. The following
section describes power saving procedures of EC25 module.
3.5.1.1. UART Application
If the host communicates with module via UART interface, the following preconditions can let the module
enter into sleep mode.


Execute AT+QSCLK=1 command to enable sleep mode.
Drive DTR to high level.
EC25_Hardware_Design
36 / 112
LTE Module Series
EC25 Hardware Design
The following figure shows the connection between the module and the host.
Figure 3: Sleep Mode Application via UART



Driving the host DTR to low level will wake up the module.
When EC25 has a URC to report, RI signal will wake up the host. Please refer to Chapter 3.17 for
details about RI behaviors.
AP_READY will detect the sleep state of the host (can be configured to high level or low level
detection). Please refer to AT+QCFG="apready"* command for details.
NOTE
“*” means under development.
3.5.1.2. USB Application with USB Remote Wakeup Function
If the host supports USB suspend/resume and remote wakeup function, the following three preconditions
must be met to let the module enter into the sleep mode.



Execute AT+QSCLK=1 command to enable sleep mode.
Ensure the DTR is held at high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
EC25_Hardware_Design
37 / 112
LTE Module Series
EC25 Hardware Design
The following figure shows the connection between the module and the host.
Figure 4: Sleep Mode Application with USB Remote Wakeup


Sending data to EC25 through USB will wake up the module.
When EC25 has a URC to report, the module will send remote wake-up signals via USB bus so as to
wake up the host.
3.5.1.3. USB Application with USB Suspend/Resume and RI Function
If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is
needed to wake up the host.
There are three preconditions to let the module enter into the sleep mode.



Execute AT+QSCLK=1 command to enable the sleep mode.
Ensure the DTR is held at high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
The following figure shows the connection between the module and the host.
Figure 5: Sleep Mode Application with RI
EC25_Hardware_Design
38 / 112
LTE Module Series
EC25 Hardware Design


Sending data to EC25 through USB will wake up the module.
When EC25 has a URC to report, RI signal will wake up the host.
3.5.1.4. USB Application without USB Suspend Function
If the host does not support USB suspend function, USB_VBUS should be disconnected via an additional
control circuit to let the module enter into sleep mode.



Execute AT+QSCLK=1 command to enable sleep mode.
Ensure the DTR is held at high level or keep it open.
Disconnect USB_VBUS.
The following figure shows the connection between the module and the host.
Figure 6: Sleep Mode Application without Suspend Function
Switching on the power switch to supply power to USB_VBUS will wake up the module.
NOTE
Please pay attention to the level match shown in dotted line between the module and the host. For more
details about EC25 power management application, please refer to document [1].
3.5.2. Airplane Mode
When the module enters into airplane mode, the RF function does not work, and all AT commands
correlative with RF function will be inaccessible. This mode can be set via the following ways.
EC25_Hardware_Design
39 / 112
LTE Module Series
EC25 Hardware Design
Hardware:
The W_DISABLE# pin is pulled up by default; driving it to low level will let the module enter into airplane
mode.
Software:
AT+CFUN command provides the choice of the functionality level through setting  into 0, 1 or 4.
 AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
 AT+CFUN=1: Full functionality mode (by default).
 AT+CFUN=4: Airplane mode. RF function is disabled.
NOTES
1.
The W_DISABLE# control function is disabled in firmware by default. It can be enabled by
2.
AT+QCFG="airplanecontrol" command, and this command is under development.
The execution of AT+CFUN command will not affect GNSS function.
3.6. Power Supply
3.6.1. Power Supply Pins
EC25 provides four VBAT pins to connect with the external power supply, and there are two separate
voltage domains for VBAT.


Two VBAT_RF pins for module’s RF part
Two VBAT_BB pins for module’s baseband part
The following table shows the details of VBAT pins and ground pins.
Table 6: VBAT and GND Pins
Pin Name
Pin No.
Description
Min.
Typ.
Max.
Unit
VBAT_RF
57, 58
Power supply for module’s RF
part
3.3
3.8
4.3
VBAT_BB
59, 60
Power supply for module’s
baseband part
3.3
3.8
4.3
GND
8, 9, 19, 22, 36,
46, 48, 50~54,
56, 72, 85~112
Ground
EC25_Hardware_Design
40 / 112
LTE Module Series
EC25 Hardware Design
3.6.2. Decrease Voltage Drop
The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will
never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G
network. The voltage drop will be less in 3G and 4G networks.
Figure 7: Power Supply Limits during Burst Transmission
To decrease voltage drop, a bypass capacitor of about 100µF with low ESR (ESR=0.7Ω) should be used,
and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It
is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array,
and place these capacitors close to VBAT_BB/VBAT_RF pins. The main power supply from an external
application has to be a single voltage source and can be expanded to two sub paths with star structure.
The width of VBAT_BB trace should be no less than 1mm; and the width of VBAT_RF trace should be no
less than 2mm. In principle, the longer the VBAT trace is, the wider it will be.
In addition, in order to get a stable power source, it is suggested that a zener diode whose reverse zener
voltage is 5.1V and dissipation power is more than 0.5W should be used. The following figure shows the
star structure of the power supply.
Figure 8: Star Structure of the Power Supply
EC25_Hardware_Design
41 / 112
LTE Module Series
EC25 Hardware Design
3.6.3. Reference Design for Power Supply
Power design for the module is very important, as the performance of the module largely depends on the
power source. The power supply should be able to provide sufficient current up to 2A at least. If the
voltage drop between the input and output is not too high, it is suggested that an LDO should be used to
supply power for the module. If there is a big voltage difference between the input source and the desired
output (VBAT), a buck converter is preferred to be used as the power supply.
The following figure shows a reference design for +5V input power source. The typical output of the power
supplyis about 3.8V and the maximum load current is 3A.
Figure 9: Reference Circuit of Power Supply
NOTE
In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, then the power supply
can be cut off.
3.6.4. Monitor the Power Supply
AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to
document [2].
3.7. Turn on and off Scenarios
3.7.1. Turn on Module Using the PWRKEY
The following table shows the pin definition of PWRKEY.
EC25_Hardware_Design
42 / 112
LTE Module Series
EC25 Hardware Design
Table 7: Pin Definition of PWRKEY
Pin Name
PWRKEY
Pin No.
21
I/O
Description
Comment
DI
Turn on/off the module
The output voltage is 0.8V because of
the diode drop in the Qualcomm chipset.
When EC25 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a
low level for at least 500ms. It is recommended to use an open drain/collector driver to control the
PWRKEY. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be
released. A simple reference circuit is illustrated in the following figure.
PWRKEY
≥ 500ms
4.7K
10nF
Turn on pulse
47K
Figure 10: Turn on the Module by Using Driving Circuit
The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic
strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the
button for ESD protection. A reference circuit is shown in the following figure.
Figure 11: Turn on the Module by Using Button
EC25_Hardware_Design
43 / 112
LTE Module Series
EC25 Hardware Design
The turn on scenario is illustrated in the following figure.
Figure 12: Timing of Turning on Module
NOTE
Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them should
be no no less than 30ms.
3.7.2. Turn off Module
The following procedures can be used to turn off the module:

Normal power down procedure: Turn off the module using the PWRKEY pin.

Normal power down procedure: Turn off the module using AT+QPOWD command.
3.7.2.1. Turn off Module Using the PWRKEY Pin
Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down
procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure.
EC25_Hardware_Design
44 / 112
LTE Module Series
EC25 Hardware Design
Figure 13: Timing of Turning off Module
3.7.2.2. Turn off Module Using AT Command
It is also a safe way to use AT+QPOWD command to turn off the module, which is similar to turning off the
module via PWRKEY pin.
Please refer to document [2] for details about AT+QPOWD command.
NOTES
1. Inorder to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shut down by PWRKEY or AT command, then the power
supply can be cut off.
2. When turn off module with AT command, please keep PWRKEY at high level after the execution of
power-off command. Otherwise the module will be turned on again after successfully turn-off.
3.8. Reset the Module
The RESET_N pin can be used to reset the module. The module can be reset by driving RESET_N to a
low level voltage for time between 150ms and 460ms.
Table 8: RESET_N Pin Description
Pin Name
Pin No.
I/O
Description
Comment
RESET_N
20
DI
Reset the module
1.8V power domain
EC25_Hardware_Design
45 / 112
LTE Module Series
EC25 Hardware Design
The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button
can be used to control the RESET_N.
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit
Figure 15: Reference Circuit of RESET_N by Using Button
The reset scenario is illustrated inthe following figure.
Figure 16: Timing of Resetting Module
EC25_Hardware_Design
46 / 112
LTE Module Series
EC25 Hardware Design
NOTES
1.
2.
Use RESET_N only when turning off the module by AT+QPOWD command and PWRKEY pin failed.
Ensure that there is no large capacitance on PWRKEY and RESET_N pins.
3.9. (U)SIM Interface
The(U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards
are supported.
Table 9: Pin Definition of the (U)SIM Interface
Pin Name
Pin No.
I/O
Description
Comment
Either 1.8V or 3.0V is supported
by the module automatically.
USIM_VDD
14
PO
Power supply for (U)SIM card
USIM_DATA
15
IO
Data signal of (U)SIM card
USIM_CLK
16
DO
Clock signal of (U)SIM card
USIM_RST
17
DO
Reset signal of (U)SIM card
USIM_
PRESENCE
13
DI
(U)SIM card insertion detection
USIM_GND
10
Specified ground for (U)SIM card
EC25 supports (U)SIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and
high level detections, and it is disabled by default. Please refer to document [2] for more details about
AT+QSIMDET command.
EC25_Hardware_Design
47 / 112
LTE Module Series
EC25 Hardware Design
The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.
Figure 17: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector
If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected. A
reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following
figure.
Figure 18: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector
In order to enhance the reliability and availability of the (U)SIM card in customers’ applications, please
follow the criteria below in (U)SIM circuit design:
EC25_Hardware_Design
48 / 112
LTE Module Series
EC25 Hardware Design






Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length
as less than 200mm as possible.
Keep (U)SIM card signals away from RF and VBAT traces.
Assure the ground between the module and the (U)SIM card connector short and wide. Keep the
trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1uF, and place it as
close to (U)SIM card connector as possible. If the ground is complete on customers’ PCB,
USIM_GND can be connected to PCB ground directly.
To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and
shield them with surrounded ground.
In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic
capacitance should not be more than 15pF. The 0Ω resistors should be added in series between the
module and the (U)SIM card to facilitate debugging. The 33pF capacitors are used for filtering
interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the
(U)SIM card connector.
The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
and sensitive occasion are applied, and it should be placed close to the (U)SIM card connector.
3.10. USB Interface
EC25 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0
specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is
used for AT command communication, data transmission, GNSS NMEA sentences output, software
debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB
interface.
Table 10: Pin Description of USB Interface
Pin Name
Pin No.
I/O
Description
Comment
USB_DP
69
IO
USB differential data bus (+)
Require differential
impedance of 90Ω
USB_DM
70
IO
USB differential data bus (-)
Require differential
impedance of 90Ω
USB_VBUS
71
PI
USB connection detection
Typical 5.0V
GND
72
Ground
For more details about the USB 2.0 specifications, please visit http://www.usb.org/home.
EC25_Hardware_Design
49 / 112
LTE Module Series
EC25 Hardware Design
The USB interface is recommended to be reserved for firmware upgrade in customers’ designs. The
following figure shows a reference circuit of USB interface.
Figure 19: Reference Circuit of USB Application
A common mode choke L1 is recommended to be added in series between the module and customer’s
MCU in order to suppress EMI spurious transmission. Meanwhile, the 0Ω resistors (R3 and R4) should be
added in series between the module and the test points so as to facilitate debugging, and the resistors are
not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components
must be placed close to the module, and also these resistors should be placed close to each other. The
extra stubs of trace must be as short as possible.
The following principles should be complied with when design the USB interface, so as to meet USB 2.0
specification.




It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90Ω.
Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding on not only upper
and lower layers but also right and left sides.
Pay attention to the influence of junction capacitance of ESD protection components on USB data
lines. Typically, the capacitance value should be less than 2pF.
Keep the ESD protection components to the USB connector as close as possible.
NOTES
1.
2.
EC25 module can only be used as a slave device.
“*” means under development.
EC25_Hardware_Design
50 / 112
LTE Module Series
EC25 Hardware Design
3.11. UART Interfaces
The module provides two UART interfaces: the main UART interface and the debug UART interface. The
following shows their features.


The main UART interface supports 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps,
230400bps, 460800bps and 921600bps baud rates, and the default is 115200bps. This interface is
used for data transmission and AT command communication.
The debug UART interface supports 115200bps baud rate. It is used for Linux console and log
output.
The following tables show the pin definition of the UART interfaces.
Table 11: Pin Definition of Main UART Interface
Pin Name
Pin No.
I/O
Description
RI
62
DO
Ring indicator
DCD
63
DO
Data carrier detection
CTS
64
DO
Clear to send
RTS
65
DI
Request to send
DTR
66
DI
Data terminal ready
TXD
67
DO
Transmit data
RXD
68
DI
Receive data
Comment
1.8V power domain
Table 12: Pin Definition of Debug UART Interface
Pin Name
Pin No.
I/O
Description
DBG_TXD
12
DO
Transmit data
Comment
1.8V power domain
DBG_RXD
11
EC25_Hardware_Design
DI
Receive data
51 / 112
LTE Module Series
EC25 Hardware Design
The logic levels are described in the following table.
Table 13: Logic Levels of Digital I/O
Parameter
Min.
Max.
Unit
VIL
-0.3
0.6
VIH
1.2
2.0
VOL
0.45
VOH
1.35
1.8
The module provides 1.8V UART interface. A level translator should be used if customers’ application is
equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instruments
is recommended. The following figure shows a reference design.
Figure 20: Reference Circuit with Translator Chip
Please visit http://www.ti.com for more information.
Another example with transistor translation circuit is shown as below. The circuit design of dotted line
section can refer to the design of solid line section, in terms of both module’s input and output circuit
designs, but please pay attention to the direction of connection.
EC25_Hardware_Design
52 / 112
LTE Module Series
EC25 Hardware Design
Figure 21: Reference Circuit with Transistor Circuit
NOTE
Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
3.12. PCM and I2C Interfaces
EC25 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the
following modes and one I2C interface:


Primary mode (short frame synchronization, works as both master and slave)
Auxiliary mode (long frame synchronization, works as master only)
In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports
256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz
PCM_CLK at 16kHz PCM_SYNC.
In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a
256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC.
EC25 supports 16-bit linear data format. The following figures show the primary mode’s timing
relationship with 8KHz PCM_SYNC and 2048KHz PCM_CLK, as well as the auxiliary mode’s timing
relationship with 8KHz PCM_SYNC and 256KHz PCM_CLK.
EC25_Hardware_Design
53 / 112
LTE Module Series
EC25 Hardware Design
Figure 22: Primary Mode Timing
Figure 23: Auxiliary Mode Timing
The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio
codec design.
Table 14: Pin Definition of PCM and I2C Interfaces
Pin Name
Pin No.
I/O
Description
Comment
PCM_IN
24
DI
PCM data input
1.8V power domain
EC25_Hardware_Design
54 / 112
LTE Module Series
EC25 Hardware Design
PCM_OUT
25
DO
PCM data output
1.8V power domain
PCM_SYNC
26
IO
PCM data frame
synchronization signal
1.8V power domain
PCM_CLK
27
IO
PCM data bit clock
1.8V power domain
I2C_SCL
41
OD
I2C serial clock
Require external pull-up to 1.8V
I2C_SDA
42
OD
I2C serial data
Require external pull-up to 1.8V
Clock and mode can be configured by AT command, and the default configuration is master mode using
short frame synchronization format with 2048KHz PCM_CLK and 8KHz PCM_SYNC. Please refer to
document [2] for more details about AT+QDAI command.
The following figure shows a reference design of PCM interface with external codec IC.
Figure 24: Reference Circuit of PCM Application with Audio Codec
NOTES
1.
2.
It is recommended to reserve an RC (R=22Ω, C=22pF) circuits on the PCM lines, especially for
PCM_CLK.
EC25 works as a master device pertaining to I2C interface.
EC25_Hardware_Design
55 / 112
LTE Module Series
EC25 Hardware Design
3.13. SD Card Interface
EC25 supports SDIO 3.0 interface for SD card.
The following table shows the pin definition of SD card interface.
Table 15: Pin Definition of SD Card Interface
Pin Name
SDC2_DATA3
SDC2_DATA2
SDC2_DATA1
SDC2_DATA0
Pin No.
28
29
30
31
I/O
IO
IO
IO
IO
Description
Comment
SD card SDIO bus DATA3
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SD card SDIO bus DATA2
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SD card SDIO bus DATA1
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SD card SDIO bus DATA0
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SDC2_CLK
32
DO
SD card SDIO bus clock
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SDC2_CMD
33
IO
SD card SDIO bus command
SDIO signal level can be
selected according to SD
EC25_Hardware_Design
56 / 112
LTE Module Series
EC25 Hardware Design
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
VDD_SDIO
34
PO
SD card SDIO bus pull up power
1.8V/2.85V configurable.
Cannot be used for SD
card power. If unused,
keep it open.
SD_INS_DET
23
DI
SD card insertion detection
1.8V power domain.
If unused, keep it open.
The following figure shows a reference design of SD card.
Figure 25: Reference Circuit of SD card
In SD card interface design, in order to ensure good communication performance with SD card, the
following design principles should be complied with:





SD_INS_DET must be connected.
The voltage range of SD card power supply VDD_3V is 2.7V~3.6V and a sufficient current up to 0.8A
should be provided. As the maximum output current of VDD_SDIO is 50mA which can only be used
for SDIO pull-up resistors, an externally power supply is needed for SD card.
To avoid jitter of bus, resistors R7~R11 are needed to pull up the SDIO to VDD_SDIO. Value of these
resistors is among 10KΩ~100KΩ and the recommended value is 100KΩ. VDD_SDIO should be used
as the pull-up power.
In order to adjust signal quality, it is recommended to add 0Ω resistors R1~R6 in series between the
module and the SD card. The bypass capacitors C1~C6 are reserved and not mounted by default. All
resistors and bypass capacitors should be placed close to the module.
In order to offer good ESD protection, it is recommended to add a TVS diode on SD card pins near
the SD card connector with junction capacitance less than 15pF.
EC25_Hardware_Design
57 / 112
LTE Module Series
EC25 Hardware Design




Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals,
etc., as well as noisy signals such as clock signals, DCDC signals, etc.
It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace
is 50Ω (±10%).
Make sure the adjacent trace spacing is two times of the trace width and the load capacitance of
SDIO bus should be less than 15pF.
It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm
and the total routing length less than 50mm. The total trace length inside the module is 27mm, so the
exterior total trace length should be less than 23mm.
3.14. ADC Interfaces
The module provides two analog-to-digital converter (ADC) interfaces. AT+QADC=0 command can be
used to read the voltage value on ADC0 pin. AT+QADC=1 command can be used to read the voltage
value on ADC1 pin. For more details about these AT commands, please refer to document [2].
In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.
Table 16: Pin Definition of ADC Interfaces
Pin Name
Pin No.
Description
ADC0
45
General purpose analog to digital converter
ADC1
44
General purpose analog to digital converter
The following table describes the characteristic of ADC function.
Table 17: Characteristic of ADC
Parameter
Min.
ADC0 Voltage Range
ADC1 Voltage Range
ADC Resolution
EC25_Hardware_Design
Typ.
Max.
Unit
0.3
VBAT_BB
0.3
VBAT_BB
15
Bits
58 / 112
LTE Module Series
EC25 Hardware Design
NOTES
1.
2.
3.
ADC input voltage must not exceed VBAT_BB.
It is prohibited to supply any voltage to ADC pins when VBAT is removed.
It is recommended to use a resistor divider circuit for ADC application.
3.15. Network Status Indication
The network indication pins can be used to drive network status indication LEDs. The module provides
two pins which are NET_MODE and NET_STATUS. The following tables describe the pin definition and
logic level changes in different network status.
Table 18: Pin Definition of Network Connection Status/Activity Indicator
Pin Name
Pin No.
I/O
Description
Comment
1.8V power domain
Cannot be pulled up
before startup
1.8V power domain
NET_MODE
DO
Indicate the module network
registration mode.
NET_STATUS
DO
Indicate the module network activity
status.
Table 19: Working State of the Network Connection Status/Activity Indicator
Pin Name
Logic Level Changes
Network Status
Always High
Registered on LTE network
Always Low
Others
Flicker slowly (200ms High/1800ms Low)
Network searching
Flicker slowly (1800ms High/200ms Low)
Idle
Flicker quickly (125ms High/125ms Low)
Data transfer is ongoing
Always High
Voice calling
NET_MODE
NET_STATUS
EC25_Hardware_Design
59 / 112
LTE Module Series
EC25 Hardware Design
A reference circuit is shown in the following figure.
Figure 26: Reference Circuit of the Network Indicator
3.16. STATUS
The STATUS pin is an open drain output for indicating the module’s operation status. It can be connected
to a GPIO of DTE with a pull-up resistor, or as LED indication circuit as below. When the module is turned
on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance
state.
Table 20: Pin Definition of STATUS
Pin Name
STATUS
Pin No.
61
I/O
OD
Description
Comment
Indicate the module’s operation status
An external pull-up resistor
is required.
If unused, keep it open.
The following figure shows different circuit designs of STATUS, and customers can choose either one
according to customers’ application demands.
EC25_Hardware_Design
60 / 112
LTE Module Series
EC25 Hardware Design
Figure 27: Reference Circuits of STATUS
3.17. Behaviors of RI
AT+QCFG="risignaltype","physical" command can be used to configure RI behavior.
No matter on which port URC is presented, URC will trigger the behavior of RI pin.
NOTE
URC can be outputted from UART port, USB AT port and USB modem port through configuration via
AT+QURCCFG command. The default port is USB AT port.
In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below.
Table 21: Behavior of RI
State
Response
Idle
RI keeps at high level
URC
RI outputs 120ms low pulse when a new URC returns
The RI behavior can be changed by AT+QCFG="urc/ri/ring" command. Please refer to document [2]
for details.
EC25_Hardware_Design
61 / 112
LTE Module Series
EC25 Hardware Design
3.18. SGMII Interface
EC25 includes an integrated Ethernet MAC with an SGMII interface and two management interfaces, key
features of the SGMII interface are shown below:







IEEE802.3 compliance
Support 10M/100M/1000M Ethernet work mode
Support maximum 150Mbps (DL)/50Mbps (UL) for 4G network
Support VLAN tagging
Support IEEE1588 and Precision Time Protocol (PTP)
Can be used to connect to external Ethernet PHY like AR8033, or to an external switch
Management interfaces support dual voltage 1.8V/2.85V
The following table shows the pin definition of SGMII interface.
Table 22: Pin Definition of the SGMII Interface
Pin Name
Pin No.
I/O
Description
Comment
EPHY_RST_N 119
DO
Ethernet PHY reset
1.8V/2.85V power domain
EPHY_INT_N
120
DI
Ethernet PHY interrupt
1.8V power domain
SGMII_MDATA 121
IO
SGMII MDIO (Management Data
Input/Output) data
1.8V/2.85V power domain
SGMII_MCLK
DO
SGMII MDIO (Management Data
Input/Output) clock
1.8V/2.85V power domain
PO
SGMII MDIO pull-up power source
Configurable power source.
1.8V/2.85V power domain.
External pull-up power source for
SGMII MDIO pins.
SGMII_TX_M 123
AO
SGMII transmission-minus
Connect with a 0.1uF capacitor,
close to the PHY side.
SGMII_TX_P 124
AO
SGMII transmission-plus
Connect with a 0.1uF capacitor,
close to the PHY side.
SGMII_RX_P 125
AI
SGMII receiving-plus
Connect with a 0.1uF capacitor,
close to EC25 module.
SGMII_RX_M 126
AI
SGMII receiving-minus
Connect with a 0.1uF capacitor,
close to EC25 module.
Control Signal Part
USIM2_VDD
122
128
SGMII Signal Part
EC25_Hardware_Design
62 / 112
LTE Module Series
EC25 Hardware Design
The following figure shows the simplified block diagram for Ethernet application.
Figure 28: Simplified Block Diagram for Ethernet Application
The following figure shows a reference design of SGMII interface with PHY AR8033 application.
Figure 29: Reference Circuit of SGMII Interface with PHY AR8033 Application
In order to enhance the reliability and availability in customers’ applications, please follow the criteria
below in the Ethernet PHY circuit design:




Keep SGMII data and control signals away from other sensitive circuits/signals such as RF circuits,
analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc.
Keep the maximum trace length less than 10-inch and keep skew on the differential pairs less than
20mil.
The differential impedance of SGMII data trace is 100Ω±10%, and the reference ground of the area
should be complete.
Make sure the trace spacing between SGMII RX and TX is at least 3 times of the trace width, and the
same to the adjacent signal traces.
EC25_Hardware_Design
63 / 112
LTE Module Series
EC25 Hardware Design
3.19. Wireless Connectivity Interfaces
EC25 supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT.
The following table shows the pin definition of wireless connectivity interfaces.
Table 23: Pin Definition of Wireless Connectivity Interfaces
Pin Name
Pin No.
I/O
Description
Comment
SDC1_DATA3
129
IO
WLAN SDIO data bus D3
1.8V power domain
SDC1_DATA2
130
IO
WLAN SDIO data bus D2
1.8V power domain
SDC1_DATA1
131
IO
WLAN SDIO data bus D1
1.8V power domain
SDC1_DATA0
132
IO
WLAN SDIO data bus D0
1.8V power domain
SDC1_CLK
133
DO
WLAN SDIO bus clock
1.8V power domain
SDC1_CMD
134
IO
WLAN SDIO bus command
1.8V power domain
WLAN function control via FC20
module.
1.8V power domain.
Active high.
Cannot be pulled up
before startup.
WLAN Part
WLAN_EN
136
DO
Coexistence and Control Part
PM_ENABLE
127
DO
External power control
1.8V power domain
Active high.
WAKE_ON_
WIRELESS
135
DI
Wake up the host (EC25 module) by
FC20 module
1.8V power domain
LTE/WLAN&BT coexistence signal
1.8V power domain.
Cannot be pulled up
before startup.
1.8V power domain.
Cannot be pulled up
before startup.
COEX_UART_RX 137
DI
COEX_UART_TX 138
DO
LTE/WLAN&BT coexistence signal
WLAN_SLP_CLK
118
DO
WLAN sleep clock
BT_RTS*
37
DI
BT UART request to send
1.8V power domain
BT_TXD*
38
DO
BT UART transmit data
1.8V power domain
BT Part*
EC25_Hardware_Design
64 / 112
LTE Module Series
EC25 Hardware Design
BT_RXD*
39
DI
BT UART receive data
1.8V power domain
BT_CTS*
40
DO
BT UART clear to send
1.8V power domain.
Cannot be pulled up
before startup.
PCM_IN1)
24
DI
PCM data input
1.8V power domain
PCM_OUT1)
25
DO
PCM data output
1.8V power domain
PCM_SYNC1)
26
IO
PCM data frame synchronization
signal
1.8V power domain
PCM_CLK1)
27
IO
PCM data bit clock
1.8V power domain
BT_EN*
139
DO
BT function control via BT module.
1.8V power domain
Active high.
The following figure shows a reference design of wireless connectivity interfaces with Quectel FC20
module.
Module
FC20 Module
PM_ENAB LE
DCDC/LDO
VDD_3V3
POWER
VDD_EXT
WLAN
SDC1_DATA3
SDIO_D3
SDC1_DATA2
SDIO_D2
SDC1_DATA1
SDIO_D1
SDC1_DATA0
SDIO_D0
SDC1_CLK
SDIO_CLK
SDC1_CMD
SDIO_CMD
WLAN_EN
WLAN_EN
WLAN_SL P_CLK
32K HZ_IN
WAKE_ ON_WIRELE SS
COEX
VIO
WAKE_ ON_WIRELE SS
COEX_ UA RT_RX
LTE_UART_TXD
COEX_ UA RT_TX
LTE_UART_RXD
Figure 30: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module
NOTES
1.
2.
3.
FC20 module can only be used as a slave device.
When BT function is enabled on EC25 module, PCM_SYNC and PCM_CLK pins are only used to
output signals.
For more information about wireless connectivity interfaces, please refer to document [5].
EC25_Hardware_Design
65 / 112
LTE Module Series
EC25 Hardware Design
4.
5.
“*” means under development.
1)
Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on BT
module.
3.19.1. WLAN Interface
EC25 provides a low power SDIO 3.0 interface and control interface for WLAN design.
SDIO interface supports the SDR mode (up to 50MHz).
As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the
SDIO 3.0 specification, please comply with the following principles:






It is important to route the SDIO signal traces with total grounding. The impedance of SDIO signal
trace is 50Ω±10%.
Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals,
etc., as well as noisy signals such as clock signals, DCDC signals, etc.
It is recommended to keep matching length between CLK andDATA/CMD less than 1mm and total
routing length less than 50mm.
Keep termination resistors within 15Ω~24Ω on clock lines near the module and keep the route
distance from the module clock pins to termination resistors less than 5mm.
Make sure the adjacent trace spacing is 2 times of the trace width and bus capacitance is less than
15pF.
3.19.2. BT Interface*
EC25 supports a dedicated UART interface and a PCM interface for BT application.
Further information about BT interface will be added in future version of this document.
NOTE
“*” means under development.
3.20. USB_BOOT Interface
EC25 provides a USB_BOOT pin. Developers can pull up USB_BOOT to VDD_EXT before powering on
the module, thus the module will enter into emergency download mode when powered on. In this mode,
the module supports firmware upgrade over USB interface.
EC25_Hardware_Design
66 / 112
LTE Module Series
EC25 Hardware Design
Table 24: Pin Definition of USB_BOOT Interface
Pin Name
USB_BOOT
Pin No.
I/O
115
DI
Description
Comment
Force the module enter into
emergency download mode
1.8V power domain.
Active high.
It is recommended to
reserve test point.
The following figure shows a reference circuit of USB_BOOT interface.
Module
VDD_EXT
Test point
USB_BOOT
4.7K
Close to test point
TVS
Figure 31: Reference Circuit of USB_BOOT Interface
EC25_Hardware_Design
67 / 112
LTE Module Series
EC25 Hardware Design
GNSS Receiver
4.1. General Description
EC25 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of
Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).
EC25 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via
USB interface by default.
By default, EC25 GNSS engine is switched off. It has to be switched on via AT command. For more
details about GNSS engine technology and configurations, please refer to document [3].
4.2. GNSS Performance
The following table shows GNSS performance of EC25.
Table 25: GNSS Performance
Parameter
Sensitivity
(GNSS)
TTFF
(GNSS)
Description
Conditions
Typ.
Unit
Cold start
Autonomous
-146
dBm
Reacquisition
Autonomous
-157
dBm
Tracking
Autonomous
-157
dBm
Autonomous
35
XTRA enabled
18
Autonomous
26
XTRA enabled
2.2
Cold start
@open sky
Warm start
@open sky
EC25_Hardware_Design
68 / 112
LTE Module Series
EC25 Hardware Design
Hot start
@open sky
Accuracy
(GNSS)
CEP-50
Autonomous
2.5
XTRA enabled
1.8
Autonomous
@open sky
<1.5
NOTES
1.
2.
3.
Tracking sensitivity: the lowest GNSSsignal value at the antenna port on which the module can keep
on positioning for 3 minutes.
Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can
fix position again within 3 minutes after loss of lock.
Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes
position within 3 minutes after executing cold start command.
4.3. Layout Guidelines
The following layout guidelines should be taken into account in customers’ designs.




Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be
kept away from the antennas.
Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar
isolation and protection.
Keep 50Ω characteristic impedance for the ANT_GNSS trace.
Please refer to Chapter 5 for GNSS antenna reference design and antenna installation information.
EC25_Hardware_Design
69 / 112
LTE Module Series
EC25 Hardware Design
Antenna Interfaces
EC25 antenna interfaces include a main antenna interface, an Rx-diversity antenna interface which is
used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS
antenna interface. The impedance of the antenna port is 50Ω.
5.1. Main/Rx-diversity Antenna Interfaces
5.1.1. Pin Definition
The pin definition of main antenna and Rx-diversityantenna interfaces is shown below.
Table 26: Pin Definition of RF Antenna
Pin Name
Pin No.
I/O
Description
Comment
ANT_MAIN
49
IO
Main antenna pad
50Ω impedance
Receive diversity antenna pad
50Ω impedance
If unused, keep it
open.
ANT_DIV
35
AI
5.1.2. Operating Frequency
Table 27: Module Operating Frequencies
3GPP Band
Transmit
Receive
Unit
GSM850
824~849
869~894
MHz
EGSM900
880~915
925~960
MHz
DCS1800
1710~1785
1805~1880
MHz
PCS1900
1850~1910
1930~1990
MHz
WCDMA B1
1920~1980
2110~2170
MHz
EC25_Hardware_Design
70 / 112
LTE Module Series
EC25 Hardware Design
WCDMA B2
1850~1910
1930~1990
MHz
WCDMA B4
1710~1755
2110~2155
MHz
WCDMA B5
824~849
869~894
MHz
WCDMA B6
830~840
875~885
MHz
WCDMA B8
880~915
925~960
MHz
WCDMA B19
830~845
875~890
MHz
LTE FDD B1
1920~1980
2110~2170
MHz
LTE FDD B2
1850~1910
1930~1990
MHz
LTE FDD B3
1710~1785
1805~1880
MHz
LTE FDD B4
1710~1755
2110~2155
MHz
LTE FDD B5
824~849
869~894
MHz
LTE FDD B7
2500~2570
2620~2690
MHz
LTE FDD B8
880~915
925~960
MHz
LTE FDD B12
699~716
729~746
MHz
LTE FDD B13
777~787
746~756
MHZ
LTE FDD B14
788~798
758~768
MHZ
LTE FDD B18
815~830
860~875
MHz
LTE FDD B19
830~845
875~890
MHz
LTE FDD B20
832~862
791~821
MHz
LTE FDD B28
703~748
758~803
MHz
LTE TDD B38
2570~2620
2570~2620
MHz
LTE TDD B40
2300~2400
2300~2400
MHz
LTE TDD B41
2555~2655
2555~2655
MHz
LTE TDD B66
1710~1780
2100~2200
MHz
LTE TDD B71
663~698
617~652
MHz
EC25_Hardware_Design
71 / 112
LTE Module Series
EC25 Hardware Design
5.1.3. Reference Design of RF Antenna Interface
Areference design of ANT_MAIN and ANT_DIV antenna pads is shown as below. A π-type matching
circuit should be reserved for better RF performance. The capacitors are not mounted by default.
Figure 32: Reference Circuit of RF Antenna Interface
NOTES
1.
2.
3.
Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the
receiving sensitivity.
ANT_DIV function is enabled by default.
Place the π-type matching components (R1&C1&C2, R2&C3&C4) as close to the antenna as
possible.
5.1.4. Reference Design of RF Layout
For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50Ω. The
impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant,
the distance between signal layer and reference ground (H), and the clearance between RF trace and
ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic
impedance control. The following are reference designs of microstrip line or coplanar waveguide line with
different PCB structures
EC25_Hardware_Design
72 / 112
LTE Module Series
EC25 Hardware Design
Figure 33: Microstrip Line Design on a 2-layer PCB
Figure 34: Coplanar Waveguide Line Design on a 2-layer PCB
Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)
EC25_Hardware_Design
73 / 112
LTE Module Series
EC25 Hardware Design
Figure 36: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)
In order to ensure RF performance and reliability, the following principles should be complied with in RF
layout design:





Please use an impedance simulation tool to control the characteristic impedance of RF traces as
50Ω.
The GND pins adjacent to RF pins should not be designed as thermal relief pads, and they should be
fully connected to ground.
The distance between the RF pins and the RF connector should be as short as possible, and all the
right angle traces should be changed to curved ones.
There should be clearance area under the signal pin of the antenna connector or solder joint.
The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around
RF traces and the reference ground could help to improve RF performance. The distance between
the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).
For more details about RF layout, please refer to document [6].
5.2. GNSS Antenna Interface
The following tables show pin definition and frequency specification of GNSS antenna interface.
Table 28: Pin Definition of GNSS Antenna Interface
Pin Name
Pin No.
I/O
Description
Comment
ANT_GNSS
47
AI
GNSS antenna
50Ω impedance
If unused, keep it open.
EC25_Hardware_Design
74 / 112
LTE Module Series
EC25 Hardware Design
Table 29: GNSS Frequency
Type
Frequency
Unit
GPS/Galileo/QZSS
1575.42±1.023
MHz
GLONASS
1597.5~1605.8
MHz
BeiDou
1561.098±2.046
MHz
A reference design of GNSS antenna is shown as below.
Figure 37: Reference Circuit of GNSS Antenna
NOTES
1.
2.
An external LDO can be selected to supply power according to the active antenna requirement.
If the module is designed with a passive antenna, then the VDD circuit is not needed.
EC25_Hardware_Design
75 / 112
LTE Module Series
EC25 Hardware Design
5.3. Antenna Installation
5.3.1. Antenna Requirement
The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.
Table 30: Antenna Requirements
Type
Requirements
GNSS1)
Frequency range: 1561MHz~1615MHz
Polarization: RHCP or linear
VSWR: < 2 (Typ.)
Passive antenna gain: > 0dBi
Active antenna noise figure: < 1.5dB
Active antenna gain: > 0dBi
Active antenna embedded LNA gain: < 17 dB
GSM/WCDMA/LTE
VSWR: ≤ 2
Efficiency: > 30%
Max Input Power: 50W
Input Impedance: 50Ω
Cable Insertion Loss: < 1dB
(GSM850, GSM 900, WCDMA B5/B6/B8/B19,
LTE-FDD B5/B8/B12/B13/B14/B18/B19/B20/B26/B28/B71)
Cable Insertion Loss: < 1.5dB
(DCS1800, PCS1900, WCDMA B1/B2/B4,
LTE-FDD B1/B2/B3/B4/B66)
Cable Insertion loss: < 2dB
(LTE-FDD B7, LTE-TDD B38/B40/B41)
NOTE
1)
It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of
active antenna may generate harmonics which will affect the GNSS performance.
EC25_Hardware_Design
76 / 112
LTE Module Series
EC25 Hardware Design
5.3.2. Recommended RF Connector for Antenna Installation
If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector
provided by Hirose.
Figure 38: Dimensions of the U.FL-R-SMT Connector (Unit: mm)
U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.
Figure 39: Mechanicals of U.FL-LP Connectors
EC25_Hardware_Design
77 / 112
LTE Module Series
EC25 Hardware Design
The following figure describes the space factor of mated connector.
Figure 40: Space Factor of Mated Connector (Unit: mm)
For more details, please visit http://hirose.com.
EC25_Hardware_Design
78 / 112
LTE Module Series
EC25 Hardware Design
Electrical, Reliability and Radio
Characteristics
6.1. Absolute Maximum Ratings
Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are
listed in the following table.
Table 31: Absolute Maximum Ratings
Parameter
Min.
Max.
Unit
VBAT_RF/VBAT_BB
-0.3
4.7
USB_VBUS
-0.3
5.5
Peak Current of VBAT_BB
0.8
Peak Current of VBAT_RF
1.8
Voltage at Digital Pins
-0.3
2.3
Voltage at ADC0
VBAT_BB
Voltage at ADC1
VBAT_BB
EC25_Hardware_Design
79 / 112
LTE Module Series
EC25 Hardware Design
6.2. Power Supply Ratings
Table 32: The Module Power Supply Ratings
Parameter
Description
Conditions
Min.
Typ.
Max.
Unit
VBAT_BB and
VBAT_RF
The actual input voltages
must stay between the
minimum and maximum
values.
3.3
3.8
4.3
Voltage drop during
burst transmission
Maximum power control
level on EGSM900.
400
mV
IVBAT
Peak supply current
(during transmission
slot)
Maximum power control
level on EGSM900.
1.8
2.0
USB_VBUS
USB detection
5.0
5.25
VBAT
3.0
6.3. Operation and Storage Temperatures
The operation and storage temperatures are listed in the following table.
Table 33: Operation and Storage Temperatures
Parameter
Min.
Typ.
Max.
Unit
OperationTemperature Range1)
-35
+25
+75
ºC
Extended Operation Range2)
-40
+85
ºC
Storage Temperature Range
-40
+90
ºC
NOTES
1.
2.
1)
Within operation temperature range, the module is 3GPP compliant.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like Pout might reduce in their value and exceed the specified tolerances. When the temperature
2)
EC25_Hardware_Design
80 / 112
LTE Module Series
EC25 Hardware Design
returns to the normal operating temperature levels, the module will meet 3GPP specifications again.
6.4. Current Consumption
The values of current consumption are shown below.
Table 34: EC25-E Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
11
uA
AT+CFUN=0 (USB disconnected)
1.16
mA
GSM DRX=2 (USB disconnected)
2.74
mA
GSM DRX=9 (USB disconnected)
2.0
mA
WCDMA PF=64 (USB disconnected)
2.15
mA
WCDMA PF=128 (USB disconnected)
1.67
mA
LTE-FDD PF=64 (USB disconnected)
2.60
mA
LTE-FDD PF=128 (USB disconnected)
1.90
mA
LTE-TDD PF=64 (USB disconnected)
2.79
mA
LTE-TDD PF=128 (USB disconnected)
2.00
mA
GSM DRX=5 (USB disconnected)
19.5
mA
GSM DRX=5 (USB connected)
29.5
mA
WCDMA PF=64 (USB disconnected)
21.0
mA
WCDMA PF=64 (USB connected)
31.0
mA
LTE-FDD PF=64 (USB disconnected)
20.7
mA
LTE-FDD PF=64 (USB connected)
30.8
mA
LTE-TDD PF=64 (USB disconnected)
20.8
mA
Sleep state
IVBAT
Idle state
EC25_Hardware_Design
81 / 112
LTE Module Series
EC25 Hardware Design
GPRS data
transfer
(GNSS OFF)
EDGE data
transfer
(GNSS OFF)
WCDMA
datatransfer
(GNSS OFF)
LTE datatransfer
(GNSS OFF)
EC25_Hardware_Design
LTE-TDD PF=64 (USB connected)
32.0
mA
EGSM900 4DL/1UL @33.22dBm
271.0
mA
EGSM900 3DL/2UL @33.0dBm
464.0
mA
EGSM900 2DL/3UL @30.86dBm
524.0
mA
EGSM900 1DL/4UL @29.58dBm
600
mA
DCS1800 4DL/1UL @29.92dBm
192.0
mA
DCS1800 3DL/2UL @29.84dBm
311.0
mA
DCS1800 2DL/3UL @29.67dBm
424.0
mA
DCS1800 1DL/4UL @29.48dBm
539.0
mA
EGSM900 4DL/1UL PCL=8 @27.40dBm
174.0
mA
EGSM900 3DL/2UL PCL=8 @27.24dBm
281.0
mA
EGSM900 2DL/3UL PCL=8 @27.11dBm
379.0
mA
EGSM900 1DL/4UL PCL=8 @26.99dBm
480.0
mA
DCS1800 4DL/1UL PCL=2 @25.82dBm
159.0
mA
DCS1800 3DL/2UL PCL=2 @25.85dBm
251.0
mA
DCS1800 2DL/3UL PCL=2 @25.68dBm
340.0
mA
DCS1800 1DL/4UL PCL=2 @25.57dBm
433.0
mA
WCDMA B1 HSDPA @22.47dBm
613.0
mA
WCDMA B1 HSUPA @22.44dBm
609.0
mA
WCDMA B5 HSDPA @23.07dBm
671.0
mA
WCDMA B5 HSUPA @23.07dBm
669.0
mA
WCDMA B8 HSDPA @22.67dBm
561.0
mA
WCDMA B8 HSUPA @22.39dBm
557.0
mA
LTE-FDD B1 @23.27dBm
754.0
mA
LTE-FDD B3 @23.54dBm
774.0
mA
82 / 112
LTE Module Series
EC25 Hardware Design
LTE datatransfer
(GNSS OFF)
GSM
voice call
WCDMA voice
call
LTE-FDD B5 @22.83dBm
762.0
mA
LTE-FDD B7 @23.37dBm
842.0
mA
LTE-FDD B8 @23.48dBm
720.0
mA
LTE-FDD B20 @22.75dBm
714.0
mA
LTE-TDD B38 @23.05dBm
481.0
mA
LTE-TDD B40 @23.17dBm
431.8
mA
LTE-TDD B41 @23.02dBm
480.0
mA
EGSM900 PCL=5 @33.08dBm
264.0
mA
DCS1800 PCL=0 @29.75dBm
190.0
mA
WCDMA B1 @23.22dBm
680.0
mA
WCDMA B5 @23.18dBm
677.0
mA
WCDMA B8 @23.54dBm
618.0
mA
Table 35: EC25-A Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
10
uA
AT+CFUN=0 (USB disconnected)
1.1
mA
WCDMA PF=64 (USB disconnected)
1.8
mA
WCDMA PF=128 (USB disconnected)
1.5
mA
LTE-FDD PF=64 (USB disconnected)
2.2
mA
LTE-FDD PF=128 (USB disconnected)
1.6
mA
WCDMA PF=64 (USB disconnected)
21.0
mA
WCDMA PF=64 (USB connected)
31.0
mA
LTE-FDD PF=64 (USB disconnected)
21.0
mA
LTE-FDD PF=64 (USB connected)
31.0
mA
Sleep state
IVBAT
Idle state
EC25_Hardware_Design
83 / 112
LTE Module Series
EC25 Hardware Design
WCDMA
datatransfer
(GNSS OFF)
LTE datatransfer
(GNSS OFF)
WCDMA voice
call
WCDMA B2 HSDPA @21.9dBm
591.0
mA
WCDMA B2 HSUPA @21.62dBm
606.0
mA
WCDMA B4 HSDPA @22.02dBm
524.0
mA
WCDMA B4 HSUPA @21.67dBm
540.0
mA
WCDMA B5 HSDPA @22.71dBm
490.0
mA
WCDMA B5 HSUPA @22.58dBm
520.0
mA
LTE-FDD B2 @22.93dBm
715.0
mA
LTE-FDD B4 @22.96dBm
738.0
mA
LTE-FDD B12 @23.35dBm
663.0
mA
WCDMA B2 @22.93dBm
646.0
mA
WCDMA B4 @23dBm
572.0
mA
WCDMA B5 @23.78dBm
549.0
mA
Table 36: EC25-V Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
10
uA
AT+CFUN=0 (USB disconnected)
0.85
mA
LTE-FDD PF=64 (USB disconnected)
2.0
mA
LTE-FDD PF=128 (USB disconnected)
1.5
mA
LTE-FDD PF=64 (USB disconnected)
20.0
mA
LTE-FDD PF=64 (USB connected)
31.0
mA
WCDMA B2 HSUPA @21.62dBm
606.0
mA
WCDMA B4 HSDPA @22.02dBm
524.0
mA
WCDMA B4 HSUPA @21.67dBm
540.0
mA
WCDMA B5 HSDPA @22.71dBm
490.0
mA
Sleep state
IVBAT
Idle state
EC25_Hardware_Design
84 / 112
LTE Module Series
EC25 Hardware Design
LTE
datatransfer
(GNSS OFF)
WCDMA B5 HSUPA @22.58dBm
520.0
mA
LTE-FDD B4 @23.14dBm
770.0
mA
LTE-FDD B13 @23.48dBm
531.0
mA
Table 37: EC25-J Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
10
uA
AT+CFUN=0 (USB disconnected)
1.1
mA
WCDMA PF=64 (USB disconnected)
1.9
mA
WCDMA PF=128 (USB disconnected)
1.5
mA
LTE-FDD PF=64 (USB disconnected)
2.5
mA
LTE-FDD PF=128 (USB disconnected)
1.8
mA
LTE-TDD PF=64 (USB disconnected)
2.6
mA
LTE-TDD PF=128 (USB disconnected)
1.9
mA
WCDMA PF=64 (USB disconnected)
21.0
mA
WCDMA PF=64 (USB connected)
31.0
mA
LTE-FDD PF=64 (USB disconnected)
21.0
mA
LTE-FDD PF=64 (USB connected)
32.0
mA
LTE-TDD PF=64 (USB disconnected)
21.0
mA
LTE-TDD PF=64 (USB connected)
32.0
mA
WCDMA B1 HSDPA @22.32dBm
550.0
mA
WCDMA B1 HSUPA @22.64dBm
516.0
mA
WCDMA B6 HSDPA @22.02dBm
524.0
mA
WCDMA B6 HSUPA @22.33dBm
521.0
mA
WCDMA B19 HSDPA @22.67dBm
517.0
mA
Sleep state
IVBAT
Idle state
WCDMA
datatransfer
(GNSS OFF)
EC25_Hardware_Design
85 / 112
LTE Module Series
EC25 Hardware Design
LTE
datatransfer
(GNSS OFF)
WCDMA voice
call
WCDMA B19 HSUPA @22.33dBm
522.0
mA
LTE-FDD B1 @23.16dBm
685.0
mA
LTE-FDD B3 @23.22dBm
766.0
mA
LTE-FDD B8 @23.22dBm
641.0
mA
LTE-FDD B18 @23.35dBm
661.0
mA
LTE-FDD B19 @23.16dBm
677.0
mA
LTE-FDD B26 @22.87dBm
690.0
mA
LTE-TDD B41 @22.42dBm
439.0
mA
WCDMA B1 @22.33dBm
605.0
mA
WCDMA B6 @23.28dBm
549.0
mA
WCDMA B19 @23.28dBm
549.0
mA
Table 38: EC25-AU Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
11
uA
AT+CFUN=0
1.3
mA
AT+CFUN=0 (USB disconnected)
1.46
mA
GSM850 DRX=5 (USB disconnected)
1.8
mA
EGSM900 DRX=5 (USB disconnected)
2.0
mA
DCS1800 DRX=5 (USB disconnected)
1.9
mA
PCS1900 DRX=5 (USB disconnected)
1.9
mA
WCDMA PF=64 (USB disconnected)
2.0
mA
WCDMA PF=128 (USB disconnected)
1.6
mA
LTE-FDD PF=64 (USB disconnected)
2.2
mA
LTE-FDD PF=128 (USB disconnected)
1.6
mA
IVBAT
Sleep state
EC25_Hardware_Design
86 / 112
LTE Module Series
EC25 Hardware Design
LTE-TDD PF=64 (USB disconnected)
2.3
mA
LTE-TDD PF=128 (USB disconnected)
1.6
mA
EGSM900 DRX=5 (USB disconnected)
22.0
mA
EGSM900 DRX=5 (USB connected)
34.0
mA
WCDMA PF=64 (USB disconnected)
22.0
mA
WCDMA PF=64 (USB connected)
33.0
mA
LTE-FDD PF=64 (USB disconnected)
24.0
mA
LTE-FDD PF=64 (USB connected)
35.0
mA
LTE-TDD PF=64 (USB disconnected)
24.0
Ma
LTE-TDD PF=64 (USB connected)
35.0
mA
GSM850 1UL/4DL @32.53dBm
232.0
mA
GSM850 2UL/3DL @32.34dBm
384.0
mA
GSM850 3UL/2DL @30.28dBm
441.0
mA
GSM850 4UL/1DL @29.09dBm
511.0
mA
EGSM900 1UL/4DL @32.34dBm
241.0
mA
EGSM900 2UL/3DL @32.19dBm
397.0
mA
EGSM900 3UL/2DL @30.17dBm
459.0
mA
EGSM900 4UL/1DL @28.96dBm
533.0
mA
DCS1800 1UL/4DL @29.71dBm
183.0
mA
DCS1800 2UL/3DL @29.62dBm
289.0
mA
DCS1800 3UL/2DL @29.49dBm
392.0
mA
DCS1800 4UL/1DL @29.32dBm
495.0
mA
PCS1900 1UL/4DL @29.61dBm
174.0
mA
PCS1900 1UL/4DL @29.48dBm
273.0
mA
PCS1900 1UL/4DL @29.32dBm
367.0
mA
Idle state
GPRS data
transfer
(GNSS OFF)
EC25_Hardware_Design
87 / 112
LTE Module Series
EC25 Hardware Design
EDGE data
transfer
(GNSS OFF)
WCDMA data
(GNSS OFF)
EC25_Hardware_Design
PCS1900 1UL/4DL @29.19dBm
465.0
mA
GSM850 1UL/4DL @27.09dBm
154.0
mA
GSM850 2UL/3DL @26.94dBm
245.0
mA
GSM850 3UL/2DL @26.64dBm
328.0
mA
GSM850 4UL/1DL @26.53dBm
416.0
mA
EGSM900 1UL/4DL @26.64dBm
157.0
mA
EGSM900 2UL/3DL @26.95dBm
251.0
mA
EGSM900 3UL/2DL @26.57dBm
340.0
mA
EGSM900 4UL/1DL @26.39dBm
431.0
mA
DCS18001 UL/4DL @26.03dBm
152.0
mA
DCS1800 2UL/3DL @25.62dBm
240.0
mA
DCS1800 3UL/2DL @25.42dBm
325.0
mA
DCS1800 4UL/1DL @25.21dBm
415.0
mA
PCS1900 1UL/4DL @25.65dBm
148.0
mA
PCS1900 1UL/4DL @25.63dBm
232.0
mA
PCS1900 1UL/4DL @25.54dBm
313.0
mA
PCS1900 1UL/4DL @25.26dBm
401.0
mA
WCDMA B1 HSDPA @22.34dBm
625.0
mA
WCDMA B1 HSUPA @21.75dBm
617.0
mA
WCDMA B2 HSDPA @22.51dBm
610.0
mA
WCDMA B2 HSUPA @22. 14dBm
594.0
mA
WCDMA B5 HSDPA @22.98dBm
576.0
mA
WCDMA B5 HSUPA @22.89dBm
589.0
mA
WCDMA B8 HSDPA @22.31dBm
556.0
mA
WCDMA B8 HSUPA @22.11dBm
572.0
mA
88 / 112
LTE Module Series
EC25 Hardware Design
LTE
datatransfer
(GNSS OFF)
GSM voice
call
WCDMA
voice call
LTE-FDD B1 @23.28dBm
817.0
mA
LTE-FDD B2 @23.34dBm
803.0
mA
LTE-FDD B3 @23.2dBm
785.0
mA
LTE-FDD B4 @22.9dBm
774.0
mA
LTE-FDD B5 @23.45dBm
687.0
mA
LTE-FDD B7 @22.84dBm
843.0
mA
LTE-FDD B8 @22.92dBm
689.0
mA
LTE-FDD B28 @23.23dBm
804.0
mA
LTE-TDD B40 @23.3dBm
429.0
mA
GSM850 PCL5 @32.66dBm
228.0
mA
EGSM900 PCL5 @32.59dBm
235.0
mA
DCS1800 PCL0 @29.72dBm
178.0
mA
PCS1900 PCL0 @29.82dBm
170.0
mA
WCDMA B1 @23.27dBm
687.0
mA
WCDMA B2 @23.38dBm
668.0
mA
WCDMA B5 @23.38dBm
592.0
mA
WCDMA B8 @23.32dBm
595.0
mA
Table 39: EC25-AUT Current Consumption
Parameter
IVBAT
Description
Conditions
Typ.
Unit
OFF state
Power down
10
uA
AT+CFUN=0 (USB disconnected)
1.0
mA
WCDMA PF=64 (USB disconnected)
1.9
mA
WCDMA PF=128 (USB disconnected)
1.5
mA
LTE-FDD PF=64 (USB disconnected)
2.3
mA
LTE-FDD PF=128 (USB disconnected)
1.9
mA
Sleep state
EC25_Hardware_Design
89 / 112
LTE Module Series
EC25 Hardware Design
WCDMA PF=64 (USB disconnected)
23.0
mA
WCDMA PF=64 (USB connected)
33.0
mA
LTE-FDD PF=64 (USB disconnected)
17.0
mA
LTE-FDD PF=64 (USB connected)
29.0
mA
LTE-TDD PF=64 (USB disconnected)
21.0
mA
LTE-TDD PF=64 (USB connected)
32.0
mA
WCDMA B1 HSDPA @22.24dBm
500.0
mA
WCDMA B1 HSUPA @22.05dBm
499.0
mA
WCDMA B5 HSDPA @22.39dBm
418.0
mA
WCDMA B5 HSUPA @22dBm
486.0
mA
LTE-FDD B1 @23.28dBm
707.0
mA
LTE-FDD B3 @23.36dBm
782.0
mA
LTE-FDD B5 @23.32dBm
588.0
mA
LTE-FDD B7 @23.08dBm
692.0
mA
LTE-FDD B28-A @23.37dBm
752.0
mA
LTE-FDD B28-B @23.48dBm
770.0
mA
WCDMA B1 @23.22dBm
546.0
mA
WCDMA B5 @23.01dBm
511.0
mA
Idle state
IVBAT
WCDMA
datatransfer
(GNSS OFF)
LTE
datatransfer
(GNSS OFF)
WCDMA voice
call
Table 40: EC25-AF Current Consumption
Parameter
IVBAT
Description
Conditions
Typ.
Unit
OFF state
Power down
10
uA
AT+CFUN=0 (USB disconnected)
1.0
mA
WCDMA PF=64 (USB disconnected)
1.8
mA
WCDMA PF=128 (USB disconnected)
1.4
mA
Sleep state
EC25_Hardware_Design
90 / 112
LTE Module Series
EC25 Hardware Design
LTE-FDD PF=64 (USB disconnected)
2.2
mA
LTE-FDD PF=128 (USB disconnected)
1.8
mA
WCDMA PF=64 (USB disconnected)
23.3
mA
WCDMA PF=64 (USB connected)
33.4
mA
LTE-FDD PF=64 (USB disconnected)
17.6
mA
LTE-FDD PF=64 (USB connected)
29.4
mA
WCDMA B2 HSDPA @22.36dBm
509.0
mA
WCDMA B2 HSUPA @22.27dBm
511.0
mA
WCDMA B4 HSDPA @22.22dBm
521.0
mA
WCDMA B4 HSUPA @22.31dBm
518.0
mA
WCDMA B5 HSDPA @22.39dBm
496.0
mA
WCDMA B5 HSUPA @22dBm
502.0
mA
LTE-FDD B2 @23.2dBm
600.0
mA
LTE-FDD B4 @23.85dBm
634.0
mA
LTE-FDD B5 @23.0dBm
600.0
mA
LTE-FDD B12 @23.08dBm
692.0
mA
LTE-FDD B13 @23.1dBm
660.0
mA
LTE-FDD B14 @23.5dBm
676.0
mA
LTE-FDD B66 @22.9dBm
662.0
mA
LTE-FDD B71 @22.88dBm
600.0
mA
WCDMA B2 @23.24dBm
570.0
mA
WCDMA B4 @23.2dBm
581.0
mA
WCDMA B5 @23.4dBm
500.0
mA
Idle state
IVBAT
WCDMA
datatransfer
(GNSS OFF)
LTE
datatransfer
(GNSS OFF)
WCDMA voice
call
EC25_Hardware_Design
91 / 112
LTE Module Series
EC25 Hardware Design
Table 41: GNSS Current Consumption of EC25 Series Module
Parameter
Description
Searching
(AT+CFUN=0)
IVBAT
(GNSS)
Tracking
(AT+CFUN=0)
Conditions
Typ.
Unit
Cold start @Passive Antenna
54.0
mA
Lost state @Passive Antenna
53.9
mA
Instrument Environment
30.5
mA
Open Sky @Passive Antenna
33.2
mA
Open Sky @Active Antenna
40.8
mA
6.5. RF Output Power
The following table shows the RF output power of EC25 module.
Table 42: RF Output Power
Frequency
Max.
Min.
GSM850/EGSM900
33dBm±2dB
5dBm±5dB
DCS1800/PCS1900
30dBm±2dB
0dBm±5dB
GSM850/EGSM900 (8-PSK)
27dBm±3dB
5dBm±5dB
DCS1800/PCS1900 (8-PSK)
26dBm±3dB
0dBm±5dB
WCDMA bands
24dBm+1/-3dB
<-49dBm
LTE-FDD bands
23dBm±2dB
<-39dBm
LTE-TDD bands
23dBm±2dB
<-39dBm
NOTE
In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. The design conforms to the
GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1.
EC25_Hardware_Design
92 / 112
LTE Module Series
EC25 Hardware Design
6.6. RF Receiving Sensitivity
The following tables show conducted RF receiving sensitivity of EC25 series module.
Table 43: EC25-E Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
EGSM900
-109.0dBm
-102.0dBm
DCS1800
-109.0dBm
-102.0dbm
WCDMA B1
-110.5dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
WCDMA B8
-110.5dBm
-103.7dBm
LTE-FDD B1 (10M)
-98.0dBm
-98.0dBm
-101.5dBm
-96.3dBm
LTE-FDD B3 (10M)
-96.5dBm
-98.5dBm
-101.5dBm
-93.3dBm
LTE-FDD B5 (10M)
-98.0dBm
-98.5dBm
-101.0dBm
-94.3dBm
LTE-FDD B7 (10M)
-97.0dBm
-94.5dBm
-99.5dBm
-94.3dBm
LTE-FDD B8 (10M)
-97.0dBm
-97.0dBm
-101.0dBm
-93.3dBm
LTE-FDD B20 (10M)
-97.5dBm
-99.0dBm
-102.5dBm
-93.3dBm
LTE-TDD B38 (10M)
-96.7dBm
-97.0dBm
-100.0dBm
-96.3dBm
LTE-TDD B40 (10M)
-96.3dBm
-98.0dBm
-101.0dBm
-96.3dBm
LTE-TDD B41 (10M)
-95.2dBm
-95.7dBm
-99.0dBm
-94.3dBm
Table 44: EC25-A Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
WCDMA B2
-110.0dBm
-104.7dBm
WCDMA B4
-110.0dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
EC25_Hardware_Design
93 / 112
LTE Module Series
EC25 Hardware Design
LTE-FDD B2 (10M)
-98.0dBm
-98.0dBm
-101.0dBm
-94.3dBm
LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B12 (10M)
-96.5dBm
-98.0dBm
-101.0dBm
-93.3dBm
Table 45: EC25-V Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B13 (10M)
-95.0dBm
-97.0dBm
-100.0dBm
-93.3dBm
Table 46: EC25-J Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
WCDMA B1
-110.0dBm
-106.7dBm
WCDMA B6
-110.5dBm
-106.7dBm
WCDMA B8
-110.5dBm
-103.7dBm
WCDMA B19
-110.5dBm
-106.7dBm
LTE-FDD B1 (10M)
-97.5dBm
-98.7dBm
-100.2dBm
-96.3dBm
LTE-FDD B3 (10M)
-96.5dBm
-97.1dBm
-100.5dBm
-93.3dBm
LTE-FDD B8 (10M)
-98.4dBm
-99.0dBm
-101.2dBm
-93.3dBm
LTE-FDD B18 (10M)
-99.5dBm
-99.0dBm
-101.7dBm
-96.3dBm
LTE-FDD B19 (10M)
-99.2dBm
-99.0dBm
-101.4dBm
-96.3dBm
LTE-FDD B26 (10M)
-99.5dBm
-99.0dBm
-101.5dBm
-93.8dBm
LTE-TDD B41 (10M)
-95.0dBm
-95.7dBm
-99.0dBm
-94.3dBm
EC25_Hardware_Design
94 / 112
LTE Module Series
EC25 Hardware Design
Table 47: EC25-AU Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
GSM850
-109.0dBm
-102.0dBm
EGSM900
-109.0dBm
-102.0dBm
DCS1800
-109.0dBm
-102.0dBm
PCS1900
-109.0dBm
-102.0dBm
WCDMA B1
-110.0dBm
-106.7dBm
WCDMA B2
-110.0dBm
-104.7dBm
WCDMA B5
-111.0dBm
-104.7dBm
WCDMA B8
-111.0dBm
-103.7dBm
LTE-FDD B1 (10M)
-97.2dBm
-97.5dBm
-100.2dBm
-96.3dBm
LTE-FDD B2 (10M)
-98.2dBm
-94.3dBm
LTE-FDD B3 (10M)
-98.7dBm
-98.6dBm
-102.2dBm
-93.3dBm
LTE-FDD B4 (10M)
-97.7dBm
-97.4dBm
-100.2dBm
-96.3dBm
LTE-FDD B5 (10M)
-98.0dBm
-98.2dBm
-101.0dBm
-94.3dBm
LTE-FDD B7 (10M)
-97.7dBm
-97.7dBm
-101.2dBm
-94.3dBm
LTE-FDD B8 (10M)
-99.2dBm
-98.2dBm
-102.2dBm
-93.3dBm
LTE-FDD B28 (10M)
-98.6dBm
-98.7dBm
-102.0dBm
-94.8dBm
LTE-TDD B40 (10M)
-97.2dBm
-98.4dBm
-101.2dBm
-96.3dBm
Table 48: EC25-AUT Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
WCDMA B1
-110.0dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
LTE-FDD B1 (10M)
-98.5dBm
-98.0dBm
-101.0dBm
-96.3dBm
EC25_Hardware_Design
95 / 112
LTE Module Series
EC25 Hardware Design
LTE-FDD B3 (10M)
-98.0dBm
-96.0dBm
-100.0dBm
-93.3dBm
LTE-FDD B5 (10M)
-98.0dBm
-99.0dBm
-102.5dBm
-94.3dBm
LTE-FDD B7 (10M)
-97.0dBm
-95.0dBm
-98.5dBm
-94.3dBm
LTE-FDD B28 (10M)
-97.0dBm
-99.0dBm
-102.0dBm
-94.8dBm
Table 49: EC25-AUTL Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
LTE-FDD B3 (10M)
-98.0dBm
-96.0dBm
-100.0dBm
-93.3dBm
LTE-FDD B7 (10M)
-97.0dBm
-95.0dBm
-98.5dBm
-94.3dBm
LTE-FDD B28 (10M)
-97.0dBm
-99.0dBm
-102.0dBm
-94.8dBm
Table 50: EC25-AF Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
WCDMA B2
-109.5dBm
-111dbm
-113dbm
-104.7dBm
WCDMA B4
-108dBm
-111dbm
-111.5dbm
-106.7dBm
WCDMA B5
-110.5dBm
-111.5dbm
-114dbm
-104.7dBm
LTE-FDD B2 (10M)
-98.2dBm
-99.1dBm
-101.7dBm
-94.3dBm
LTE-FDD B4 (10M)
-97.3dBm
-98.6dBm
-101.1dBm
-96.3dBm
LTE-FDD B5 (10M)
-99dBm
-100.3dBm
-101.3dBm
-94.3Bm
LTE-FDD B12 (10M)
-99dBm
-99.2dBm
-102.1dBm
-93.3dBm
LTE-FDD B13 (10M)
-98.1dBm
-98.4dBm
-100.2dBm
-93.3dBm
LTE-FDD B14 (10M)
-97.9dBm
-98.6dBm
-99.5dBm
-93.3dBm
LTE-FDD B66 (10M)
-96.7dBm
-98.1dBm
-99.4dBm
-96.5dBm
LTE-FDD B71 (10M)
-99.2dBm
-99.4dBm
-101.5dBm
-94.2dBm
EC25_Hardware_Design
96 / 112
LTE Module Series
EC25 Hardware Design
NOTE
1)
SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two
antennas at the receiver side, which can improve RX performance.
6.7. Electrostatic Discharge
The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject
to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and
packaging procedures must be applied throughout the processing, handling and operation of any
application that incorporates the module.
The following table shows the module electrostatics discharge characteristics.
Table 51: Electrostatics Discharge Characteristics
Tested Points
Contact Discharge
Air Discharge
Unit
VBAT, GND
±5
±10
kV
All Antenna Interfaces
±4
±8
kV
Other Interfaces
±0.5
±1
kV
6.8. Thermal Consideration
In order to achieve better performance of the module, it is recommended to comply with the following
principles for thermal consideration:





On customers’ PCB design, please keep placement of the module away from heating sources,
especially high power components such as ARM processor, audio power amplifier, power supply,
etc.
Do not place components on the opposite side of the PCB area where the module is mounted, in
order to facilitate adding of heatsink when necessary.
Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as
to ensure better heat dissipation performance.
The reference ground of the area where the module is mounted should be complete, and add ground
vias as many as possible for better heat dissipation.
Make sure the ground pads of the module and PCB are fully connected.
EC25_Hardware_Design
97 / 112
LTE Module Series
EC25 Hardware Design


According to customers’ application demands, the heatsink can be mounted on the top of the module,
or the opposite side of the PCB area where the module is mounted, or both of them.
The heatsink should be designed with as many fins as possible to increase heat dissipation area.
Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and
module/PCB.
The following shows two kinds of heatsink designs for reference and customers can choose one or both
of them according to their application structure.
Figure 41: Referenced Heatsink Design (Heatsink at the Top of the Module)
Figure 42: Referenced Heatsink Design (Heatsink at the Backside of Customers’ PCB)
EC25_Hardware_Design
98 / 112
LTE Module Series
EC25 Hardware Design
NOTE
The module offers the best performance when the internal BB chip stays below 105°C. When the
maximum temperature of the BB chip reaches or exceeds 105°C, the module works normal but provides
reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip
temperature reaches or exceeds 115°C, the module will disconnect from the network, and it will recover to
network connected state after the maximum temperature falls below 115°C. Therefore, the thermal design
should be maximally optimized to make sure the maximum BB chip temperature always maintains below
105°C. Customers can execute AT+QTEMP command and get the maximum BB chip temperature from
the first returned value.
EC25_Hardware_Design
99 / 112
LTE Module Series
EC25 Hardware Design
Mechanical Dimensions
This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm.
The tolerances for dimensions without tolerance values are ±0.05mm.
7.1. Mechanical Dimensions of the the Module
2.4±0.2
29.0±0.15
32.0±0.15
0.8
Figure 43: Module Top and Side Dimensions
EC25_Hardware_Design
100 / 112
LTE Module Series
EC25 Hardware Design
Figure 44: Module Bottom Dimensions (Bottom View)
EC25_Hardware_Design
101 / 112
LTE Module Series
EC25 Hardware Design
7.2. Recommended Footprint
Figure 45: Recommended Footprint (Top View)
NOTES
1.
2.
The keepout area should not be designed.
For easy maintenance of the module, please keep about 3mm between the module and other
components in thehost PCB.
EC25_Hardware_Design
102 / 112
LTE Module Series
EC25 Hardware Design
7.3. Design Effect Drawings of the Module
Figure 46: Top View of the Module
Figure 47: Bottom View of the Module
NOTE
These are design effect drawings of EC25 module. For more accurate pictures, please refer to the
module that you get from Quectel.
EC25_Hardware_Design
103 / 112
LTE Module Series
EC25 Hardware Design
Storage, Manufacturing and
Packaging
8.1. Storage
EC25 is stored in a vacuum-sealed bag. It is rated at MSL 3, and its storage restrictions are listed below.
1. Shelf life in vacuum-sealed bag: 12 months at <40ºC/90%RH.
2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other
high temperature processes must be:


Mounted within 168 hours at the factory environment of ≤30ºC/60%RH.
Stored at <10% RH.
3. Devices require bake before mounting, if any circumstances below occurs:


When the ambient temperature is 23ºC±5ºC and the humidity indicator card shows the humidity
is >10% before opening the vacuum-sealed bag.
Device mounting cannot be finished within 168 hours at factory conditions of ≤30ºC/60%RH.
4. If baking is required, devices may be baked for 8 hours at 120ºC±5ºC.
NOTE
As the plastic packagecannot be subjected to high temperature, it should be removed from devices before
high temperature (120ºC) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033
for baking procedure.
EC25_Hardware_Design
104 / 112
LTE Module Series
EC25 Hardware Design
8.2. Manufacturing and Soldering
Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the
stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted
properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality,
thethickness of stencil for the module is recommended to be 0.20mm. For more details, please refer to
document [4].
It is suggested that the peak reflow temperature is 235ºC~245ºC (for SnAg3.0Cu0.5 alloy). The absolute
maximum reflow temperature is 260ºC. To avoid damage to the module caused by repeated heating, it is
suggested that the module should be mounted after reflow soldering for the other side of PCB has been
completed. Recommended reflow soldering thermal profile is shown below:
Figure 48: Reflow Soldering Thermal Profile
EC25_Hardware_Design
105 / 112
LTE Module Series
EC25 Hardware Design
8.3. Packaging
.1
±0
1.
30.3± 0.15
0.35± 0.05
29.3± 0.15
44.00± 0.3
20.20± 0.15
44.00± 0.1
2.00± 0.1
4.00± 0.1
30.3± 0.15
1.75± 0.1
EC25 is packaged in tap andreel carriers. One reel is 11.88m long and contains 250pcs modules. The
figure below shows the package details, measured in mm.
4.2± 0.15
3.1± 0.15
32.5± 0.15
33.5± 0.15
32.5± 0.15
33.5± 0.15
48.5
13
100
44.5+0.20
-0.00
Figure 49: Tape and Reel Specifications
EC25_Hardware_Design
106 / 112
LTE Module Series
EC25 Hardware Design
Appendix A References
Table 52: Related Documents
SN
Document Name
Remark
[1]
Quectel_EC2x&EG9x&EM05_Power_Management_
Application_Note
Power management application notefor
EC25, EC21, EC20 R2.0, EC20 R2.1,
EG95, EG91 and EM05 modules
[2]
Quectel_EC25&EC21_AT_Commands_Manual
EC25 and EC21 AT commands manual
[3]
Quectel_EC25&EC21_GNSS_AT_Commands_
Manual
EC25 and EC21 GNSS AT commands
manual
[4]
Quectel_Module_Secondary_SMT_User_Guide
Module secondary SMT user guide
[5]
Quectel_EC25_Reference_Design
EC25 reference design
[6]
Quectel_RF_Layout_Application_Note
RF layout application note
Table 53: Terms and Abbreviations
Abbreviation
Description
AMR
Adaptive Multi-rate
bps
Bits Per Second
CHAP
Challenge Handshake Authentication Protocol
CS
Coding Scheme
CSD
Circuit Switched Data
CTS
Clear To Send
DC-HSPA+
Dual-carrier High Speed Packet Access
DFOTA
Delta Firmware Upgrade Over The Air
EC25_Hardware_Design
107 / 112
LTE Module Series
EC25 Hardware Design
DL
Downlink
DTR
Data Terminal Ready
DTX
Discontinuous Transmission
EFR
Enhanced Full Rate
ESD
Electrostatic Discharge
FDD
Frequency Division Duplex
FR
Full Rate
GLONASS
GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global
Navigation Satellite System
GMSK
Gaussian Minimum Shift Keying
GNSS
Global Navigation Satellite System
GPS
Global Positioning System
GSM
Global System for Mobile Communications
HR
Half Rate
HSPA
High Speed Packet Access
HSDPA
High Speed Downlink Packet Access
HSUPA
High Speed Uplink Packet Access
I/O
Input/Output
Inorm
Normal Current
LED
Light Emitting Diode
LNA
Low Noise Amplifier
LTE
Long Term Evolution
MIMO
Multiple Input Multiple Output
MO
Mobile Originated
MS
Mobile Station (GSM engine)
MT
Mobile Terminated
EC25_Hardware_Design
108 / 112
LTE Module Series
EC25 Hardware Design
PAP
Password Authentication Protocol
PCB
Printed Circuit Board
PDU
Protocol Data Unit
PPP
Point-to-Point Protocol
QAM
Quadrature Amplitude Modulation
QPSK
Quadrature Phase Shift Keying
RF
Radio Frequency
RHCP
Right Hand Circularly Polarized
Rx
Receive
SIM
Subscriber Identification Module
SIMO
Single Input Multiple Output
SMS
Short Message Service
TDD
Time Division Duplexing
TDMA
Time Division Multiple Access
TD-SCDMA
Time Division-Synchronous Code Division Multiple Access
TX
Transmitting Direction
UL
Uplink
UMTS
Universal Mobile Telecommunications System
URC
Unsolicited Result Code
USIM
Universal Subscriber Identity Module
Vmax
Maximum Voltage Value
Vnorm
Normal Voltage Value
Vmin
Minimum Voltage Value
VIHmax
Maximum Input High Level Voltage Value
VIHmin
Minimum Input High Level Voltage Value
EC25_Hardware_Design
109 / 112
LTE Module Series
EC25 Hardware Design
VILmax
Maximum Input Low Level Voltage Value
VILmin
Minimum Input Low Level Voltage Value
VImax
Absolute Maximum Input Voltage Value
VImin
Absolute Minimum Input Voltage Value
VOHmax
Maximum Output High Level Voltage Value
VOHmin
Minimum Output High Level Voltage Value
VOLmax
Maximum Output Low Level Voltage Value
VOLmin
Minimum Output Low Level Voltage Value
VSWR
Voltage Standing Wave Ratio
WCDMA
Wideband Code Division Multiple Access
WLAN
Wireless Local Area Network
EC25_Hardware_Design
110 / 112
LTE Module Series
EC25 Hardware Design
10 Appendix B GPRS Coding Schemes
Table 54: Description of Different Coding Schemes
Scheme
CS-1
CS-2
CS-3
CS-4
Code Rate
1/2
2/3
3/4
USF
Pre-coded USF
12
Radio Block excl.USF and BCS
181
268
312
428
BCS
40
16
16
16
Tail
Coded Bits
456
588
676
456
Punctured Bits
132
220
Data Rate Kb/s
9.05
13.4
15.6
21.4
EC25_Hardware_Design
111 / 112
LTE Module Series
EC25 Hardware Design
11 Appendix C GPRS Multi-slot Classes
Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot
classes are product dependent, and determine the maximum achievable data rates in both the uplink and
downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots,
while the second number indicates the amount of uplink timeslots. The active slots determine the total
number of slots the GPRS device can use simultaneously for both uplink and downlink communications.
The description of different multi-slot classes is shown in the following table.
Table 55: GPRS Multi-slot Classes
Multislot Class
Downlink Slots
Uplink Slots
Active Slots
10
11
12
13
NA
14
NA
EC25_Hardware_Design
112 / 112
LTE Module Series
EC25 Hardware Design
15
NA
16
NA
17
NA
18
NA
19
NA
20
NA
21
NA
22
NA
23
NA
24
NA
25
NA
26
NA
27
NA
28
NA
29
NA
30
31
32
33
EC25_Hardware_Design
113 / 112
LTE Module Sires
EC25Hardware Design
12
Appendix D EDGE Modulationand
Coding Schemes
Table 56: EDGE Modulation and Coding Schemes
Coding Scheme
Modulation
Coding Family
1 Timeslot
2 Timeslot
4 Timeslot
CS-1:
GMSK
9.05kbps
18.1kbps
36.2kbps
CS-2:
GMSK
13.4kbps
26.8kbps
53.6kbps
CS-3:
GMSK
15.6kbps
31.2kbps
62.4kbps
CS-4:
GMSK
21.4kbps
42.8kbps
85.6kbps
MCS-1
GMSK
8.80kbps
17.60kbps
35.20kbps
MCS-2
GMSK
11.2kbps
22.4kbps
44.8kbps
MCS-3
GMSK
14.8kbps
29.6kbps
59.2kbps
MCS-4
GMSK
17.6kbps
35.2kbps
70.4kbps
MCS-5
8-PSK
22.4kbps
44.8kbps
89.6kbps
MCS-6
8-PSK
29.6kbps
59.2kbps
118.4kbps
MCS-7
8-PSK
44.8kbps
89.6kbps
179.2kbps
MCS-8
8-PSK
54.4kbps
108.8kbps
217.6kbps
MCS-9
8-PSK
59.2kbps
118.4kbps
236.8kbps
EC25_Hardware_Design
114 / 114
EC25 Mini PCIe
Hardware Design
LTE Module Series
Rev. EC25_Mini_PCIe_Hardware_Design_V1.1
Date: 2017-01-24
www.quectel.com
LTE Module Series
EC25 Mini PCIe Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233
Tel: +86 21 5108 6236
Email: info@quectel.com
Or our local office. For more information, please visit:
http://www.quectel.com/support/salesupport.aspx
For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx
Or email to: Support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS
DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT
PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS
ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL
OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
1 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
About the Document
History
Revision
Date
Author
Description
1.0
2016-06-07
Mountain ZHOU/
Frank WANG
Initial
Lyndon LIU/
Frank WANG
1. Deleted description of EC25-AUT Mini PCIe
in Table 1.
2. Added description of EC25-AU and EC25-J
Mini PCIe in Table 1.
3. Updated key features of EC25 Mini PCIe in
Table 2.
4. Added current consumption in Chapter 4.7.
5. Updated conducted RF receiving sensitivity
of EC25-A Mini PCIe in Table 17.
6. Added conducted RF receiving sensitivity of
EC25-J Mini PCIe in Table 18.
1.1
2017-01-24
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
2 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Contents
About the Document ................................................................................................................................ 2
Contents .................................................................................................................................................... 3
Table Index ............................................................................................................................................... 5
Figure Index .............................................................................................................................................. 6
Introduction ....................................................................................................................................... 7
1.1.
Safety Information ................................................................................................................... 8
1.2.
FCC Statement ....................................................................................................................... 9
Product Concept ............................................................................................................................. 11
2.1.
General Description ...............................................................................................................11
2.2.
Description of Product Series ................................................................................................ 12
2.3.
Key Features ......................................................................................................................... 13
2.4.
Functional Diagram ............................................................................................................... 15
Application Interface ....................................................................................................................... 16
3.1.
General Description .............................................................................................................. 16
3.2.
EC25 Mini PCIe Interface...................................................................................................... 16
3.2.1.
Definition of Interface ................................................................................................... 16
3.2.2.
Pin Assignment ............................................................................................................ 19
3.3.
Power Supply ........................................................................................................................ 20
3.4.
USIM Card Interface ............................................................................................................. 21
3.5.
USB Interface ........................................................................................................................ 22
3.6.
UART Interface ..................................................................................................................... 23
3.7.
PCM and I2C Interfaces ........................................................................................................ 24
3.8.
Control Signals ...................................................................................................................... 26
3.8.1.
RI Signal ...................................................................................................................... 27
3.8.2.
DTR Signal .................................................................................................................. 27
3.8.3.
W_DISABLE# Signal ................................................................................................... 27
3.8.4.
PERST# Signal ............................................................................................................ 27
3.8.5.
LED_WWAN# Signal ................................................................................................... 28
3.8.6.
WAKE# Signal ............................................................................................................. 29
3.9.
Antenna Interfaces ................................................................................................................ 29
Electrical and Radio Characteristics ............................................................................................. 31
4.1.
General Description .............................................................................................................. 31
4.2.
Power Supply Requirements ................................................................................................. 31
4.3.
I/O Requirements .................................................................................................................. 32
4.4.
RF Characteristics ................................................................................................................ 32
4.5.
GNSS Receiver ..................................................................................................................... 34
4.6.
ESD Characteristics .............................................................................................................. 35
4.7.
Current Consumption ............................................................................................................ 35
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
3 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Dimensions and Packaging............................................................................................................ 40
5.1.
General Description .............................................................................................................. 40
5.2.
Mechanical Dimensions of EC25 Mini PCIe .......................................................................... 40
5.3.
Standard Dimensions of Mini PCI Express............................................................................ 41
5.4.
Packaging Specification ........................................................................................................ 42
Appendix References ..................................................................................................................... 43
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
4 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Table Index
TABLE 1: DESCRIPTION OF EC25 MINI PCIE ................................................................................................ 12
TABLE 2: KEY FEATURES OF EC25 MINI PCIE ............................................................................................. 13
TABLE 3: DEFINITION OF I/O PARAMETERS................................................................................................. 16
TABLE 4: DESCRIPTION OF PINS .................................................................................................................. 17
TABLE 5: DEFINITION OF VCC_3V3 AND GND PINS .................................................................................... 20
TABLE 6: USIM PIN DEFINITION ..................................................................................................................... 21
TABLE 7: PIN DEFINITION OF USB INTERFACE ........................................................................................... 22
TABLE 8: PIN DEFINITION OF THE UART INTERFACE ................................................................................. 23
TABLE 9: PIN DEFINITION OF PCM AND I2C INTERFACES ......................................................................... 24
TABLE 10: PIN DEFINITION OF CONTROL SIGNALS .................................................................................... 26
TABLE 11: RADIO OPERATIONAL STATES..................................................................................................... 27
TABLE 12: INDICATIONS OF NETWORK STATUS ......................................................................................... 28
TABLE 13: ANTENNA REQUIREMENTS.......................................................................................................... 29
TABLE 14: POWER SUPPLY REQUIREMENTS .............................................................................................. 31
TABLE 15: I/O REQUIREMENTS ...................................................................................................................... 32
TABLE 16: EC25 MINI PCIE CONDUCTED RF OUTPUT POWER ................................................................. 32
TABLE 17: EC25-A MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 33
TABLE 18: EC25-J MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 33
TABLE 19: EC25-E MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 34
TABLE 20: EC25-V MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 34
TABLE 21: ESD CHARACTERISTICS OF EC25 MINI PCIE ............................................................................ 35
TABLE 22: CURRENT CONSUMPTION OF EC25-A MINI PCIE ..................................................................... 35
TABLE 23: CURRENT CONSUMPTION OF EC25-E MINI PCIE ..................................................................... 36
TABLE 24: CURRENT CONSUMPTION OF EC25-V MINI PCIE ..................................................................... 39
TABLE 25: GNSS CURRENT CONSUMPTION OF EC25 MINI PCIE SERIES MODULE............................... 39
TABLE 26: RELATED DOCUMENTS ................................................................................................................ 43
TABLE 27: TERMS AND ABBREVIATIONS ...................................................................................................... 43
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
5 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Figure Index
FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 15
FIGURE 2: PIN ASSIGNMENT ......................................................................................................................... 19
FIGURE 3: REFERENCE DESIGN OF POWER SUPPLY ............................................................................... 20
FIGURE 4: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECTOR
........................................................................................................................................................................... 21
FIGURE 5: REFERENCE CIRCUIT OF USB INTERFACE .............................................................................. 22
FIGURE 6: TIMING IN PRIMARY MODE .......................................................................................................... 25
FIGURE 7: TIMING IN AUXILIARY MODE ....................................................................................................... 25
FIGURE 8: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC ...................................... 26
FIGURE 9: RI BEHAVIOR ................................................................................................................................. 27
FIGURE 10: TIMING OF RESETTING MODULE ............................................................................................. 28
FIGURE 11: LED_WWAN# SIGNAL REFERENCE CIRCUIT DIAGRAM......................................................... 28
FIGURE 12: WAKE# BEHAVIOR ...................................................................................................................... 29
FIGURE 13: DIMENSIONS OF THE RF CONNECTOR (UNIT: MM) ............................................................... 30
FIGURE 14: MECHANICALS OF U.FL-LP CONNECTORS ............................................................................. 30
FIGURE 15: MECHANICAL DIMENSIONS OF EC25 MINI PCIE (UNIT: MM) ................................................. 40
FIGURE 16: STANDARD DIMENSIONS OF MINI PCI EXPRESS (UNIT: MM) ............................................... 41
FIGURE 17: DIMENSIONS OF THE MINI PCI EXPRESS CONNECTOR (MOLEX 679100002, UNIT: MM).. 42
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
6 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Introduction
This document defines EC25 Mini PCIe module, and describes its hardware interfaces which are
connected with your application as well as its air interfaces.
This document can help you to quickly understand the interface specifications, electrical and mechanical
details as well as other related information of EC25 Mini PCIe module. To facilitate its application in
different fields, relevant reference design documents are also provided. Associated with application note
and user guide of EC25 Mini PCIe module, you can use the module to design and set up mobile
applications easily.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
7 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
1.1. Safety Information
The following safety precautions must be observed during all phases of the operation, such as usage,
service or repair of any cellular terminal or mobile incorporating EC25 Mini PCIe module. Manufacturers
of the cellular terminal should send the following safety information to users and operating personnel, and
incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no
liability for customers’ failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a handsfree kit) causes
distraction and can lead to an accident. You must comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is
switched off. The operation of wireless appliances in an aircraft is forbidden, so as
to prevent interference with communication systems. Consult the airline staff about
the use of wireless devices on boarding the aircraft, if your device offers an
Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals, clinics or other health care
facilities. These requests are desinged to prevent possible interference with
sensitive medical equipment.
Cellular terminals or mobiles operating over radio frequency signal and cellular
network cannot be guaranteed to connect in all conditions, for example no mobile
fee or with an invalid USIM/SIM card. While you are in this condition and need
emergent help, please remember using emergency call. In order to make or
receive a call, the cellular terminal or mobile must be switched on and in a service
area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON,
it receives and transmits radio frequency energy. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres include fuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
8 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
1.2. FCC Statement
According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile
device.
And the following conditions must be met:
1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna
installation and operating configurations of this transmitter, including any applicable source-based timeaveraging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of
2.1091.
2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user’s body
and must not transmit simultaneously with any other antenna or transmitter.
3.A label with the following statements must be attached to the host end product: This device contains FCC
ID: XMR201805EC25AU.
4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF
radiation, maximum antenna gain (including cable loss) must not exceed 4dBi
5. This module must not transmit simultaneously with any other antenna or transmitter
6. The host end product must include a user manual that clearly defines operating requirements and
conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.
For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is
required to satisfy the SAR requirements of FCC Part 2.1093
If the device is used for other equipment that separate approval is required for all other operating
configurations, including portable configurations with respect to 2.1093 and different antenna
configurations.
For this device, OEM integrators must be provided with labeling instructions of finished products. Please
refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:
A certified modular has the option to use a permanently affixed label, or an electronic label. For a
permanently affixed label, the module must be labelled withan FCC ID - Section 2.926 (see 2.2 Certification
(labelling requirements) above). The OEM manual must provide clear instructions explaining to the OEM
the labelling requirements,options and OEM user manual instructions that are required (see next
paragraph).
For a host using a certified modular with a standard fixed label, if (1) the module’s FCC ID is notvisible when
installed in the host, or (2) if the host is marketed so that end users do not havestraightforward commonly
used methods for access to remove the module so that the FCC ID ofthe module is visible; then an
additional permanent label referring to the enclosed module:“Contains Transmitter Module FCC
ID:XMR201805EC25AU” or “Contains FCC ID: XMR201805EC25AU” mustbe used. The host OEM user
manual must also contain clear instructions on how end users can find and/or access the module and the
FCC ID.
The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for
unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.
The user’s manual or instruction manual for an intentional or unintentional radiator shall caution the user
that changes or modifications not expressly approved by the party responsible for compliance could void
the user's authority to operate the equipment. In cases where the manual is provided only in a form other
than paper, such as on a computer disk or over the Internet, the information required by this section may be
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
9 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
included in the manual in that alternative form, provided the user can reasonably be expected to have the
capability to access information in that form.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.
Changes or modifications not expressly approved by the manufacturer could void the user’s authority to
operate the equipment.
To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring
compliance with the module(s) installed and fully operational. For example, if a host was previously
authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter
certified module and a module is added, the host manufacturer is responsible for ensuring that the after the
module is installed and operational the host continues to be compliant with the Part 15B unintentional
radiator requirements.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
10 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Product Concept
2.1. General Description
EC25 Mini PCIe module provides data connectivity on LTE-FDD, LTE-TDD, WCDMA and GSM networks
with PCI Express Mini Card 1.2 standard interface. It supports embedded operating systems such as
WinCE, Linux, Android, etc., and also provides audio, high-speed data transmission and GNSS
functionalities for your applications.
EC25 Mini PCIe module can be applied in the following fields:







PDA and Laptop Computer
Remote Monitor System
Vehicle System
Wireless POS System
Intelligent Meter Reading System
Wireless Router and Switch
Other Wireless Terminal Devices
This chapter generally introduces the following aspects of EC25 Mini PCIe module:



Product Series
Key Features
Functional Diagram
NOTE
EC25 Mini PCIe contains Telematics version and Data-only version. Telematics version supports voice
and data functions, while Data-only version only supports data function.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
11 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
2.2. Description of Product Series
The following table shows the product series of EC25 Mini PCIe module.
Table 1: Description of EC25 Mini PCIe
Product Series
Description
EC25-A Mini PCIe
Support WCDMA: B2/B4/B5
Support LTE-FDD: B2/B4/B12
Support LTE/WCDMA receive diversity
Support GNSS1)
Support digital audio2)
EC25-AU Mini PCIe3)
Support GSM: 850/900/1800/1900MHz
Support WCDMA: B1/B2/B5/B8
Support LTE-FDD: B1/B2/B3/B4/B5/B7/B8/B28
Support LTE-TDD: B40
Support LTE/WCDMA receive diversity3)
Support GNSS1)
Support digital audio2)
EC25-J Mini PCIe
Support WCDMA: B1/B6/B8/B19
Support LTE-FDD: B1/B3/B8/B18/B19/B26
Support LTE-TDD: B41
Support LTE/WCDMA receive diversity
Support GNSS1)
Support digital audio2)
EC25-E Mini PCIe
Support GSM: 900/1800MHz
Support WCDMA: B1/B5/B8
Support LTE-FDD: B1/B3/B5/B7/B8/B20
Support LTE-TDD: B38/B40/B41
Support LTE/WCDMA receive diversity
Support GNSS1)
Support digital audio2)
EC25-V Mini PCIe
Support LTE-FDD: B4/B13
Support LTE receive diversity
Support GNSS1)
Support digital audio2)
NOTES
1.
1)
GNSS function is optional.
2.
2)
Digital audio (PCM) function is only supported in Telematics version.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
12 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
3.
3)
B2 band on EC25-AU Mini PCIe module does not support receive diversity.
2.3. Key Features
The following table describes the detailed features of EC25 Mini PCIe module.
Table 2: Key Features of EC25 Mini PCIe
Feature
Details
Function Interface
PCI Express Mini Card 1.2 Standard Interface
Power Supply
Supply voltage: 3.0~3.6V
Typical supply voltage: 3.3V
Transmitting Power
Class 4 (33dBm±2dB) for GSM850
Class 4 (33dBm±2dB) for GSM900
Class 1 (30dBm±2dB) for DCS1800
Class 1 (30dBm±2dB) for PCS1900
Class E2 (27dBm±3dB) for GSM850 8-PSK
Class E2 (27dBm±3dB) for GSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class E2 (26dBm±3dB) for PCS1900 8-PSK
Class 3 (24dBm+1/-3dB) for WCDMA bands
Class 3 (23dBm±2dB) for LTE-FDD bands
Class 3 (23dBm±2dB) for LTE-TDD bands
LTE Features
Support up to non-CA Cat 4
Support 1.4 to 20MHz RF bandwidth
Support MIMO in DL direction
FDD: Max 50Mbps (UL), 150Mbps (DL)
TDD: Max 35Mbps (UL), 130Mbps (DL)
WCDMA Features
Support 3GPP R8 DC-HSPA+
Support 16-QAM, 64-QAM and QPSK modulation
3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL)
3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL)
R99:
CSD: 9.6kbps, 14.4kbps
GSM Features
GPRS:
Support GPRS multi-slot class 12 (12 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Maximum of four Rx time slots per frame
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
13 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
EDGE:
Support EDGE multi-slot class 12 (12 by default)
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4, MCS 1-9
Uplink coding schemes: CS 1-4, MCS 1-9
Internet Protocol Features
Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/
MMS*/FTPS*/SMTPS*/SSL* protocols
Support the protocols PAP (Password Authentication Protocol) and CHAP
(Challenge Handshake Authentication Protocol) usually used for PPP
connections
SMS
Text and PDU mode
Point to point MO and MT
SMS cell broadcast
SMS storage: ME by default
USIM Interface
Support USIM/SIM card: 1.8V, 3.0V
UART Interface
Baud rate can reach up to 230400bps, 115200bps by default
Used for AT command communication
Audio Feature
Support one digital audio interface: PCM interface
GSM: HR/FR/EFR/AMR/AMR-WB
WCDMA: AMR/AMR-WB
LTE: AMR/AMR-WB
Support echo cancellation and noise suppression
PCM Interface
Support 8-bit A-law*, μ-law* and 16-bit linear data formats
Support long frame synchronization and short frame synchronization
Support master and slave mode, but must be the master in long frame
synchronization
USB Interface
Compliant with USB 2.0 specification (slave only); the data transfer rate
can reach up to 480Mbps
Used for AT command communication, data transmission, firmware
upgrade, software debugging, GNSS NMEA output and voice over USB*
USB Driver: Windows XP, Windows Vista, Windows 7, Windows 8/8.1,
Windows 10, Linux 2.6 or later, Android 4.0/4.2/4.4/5.0/5.1/6.0
Antenna Interface
Include main antenna, diversity antenna and GNSS antenna
Rx-diversity
Support LTE/WCDMA Rx-diversity
GNSS Features
Gen8C Lite of Qualcomm
Protocol: NMEA 0183
AT Commands
Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT
commands
Physical Characteristics
Size: (51.0±0.1) × (30.0±0.1) × (4.9±0.2 mm)
Weight: approx. 9.8g
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
14 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Temperature Range
Operation temperature range: -35°C ~ +75°C1)
Extended temperature range: -40°C ~ +80°C2)
Firmware Upgrade
USB interface and DFOTA*
RoHS
All hardware components are fully compliant with EU RoHS directive
NOTES
1.
2.
3.
“*” means under development.
1)
Within operating temperature range, the module is 3GPP compliant.
2)
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction; there are
also no effects on radio spectrum and no harm to radio network. Only one or more parameters like
Pout might reduce in their value and exceed the specified tolerances. When the temperature returns
to normal operating temperature levels, the module is compliant with 3GPP specification again.
2.4. Functional Diagram
The following figure shows the block diagram of EC25 Mini PCIe.
Figure 1: Functional Diagram
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
15 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Application Interface
3.1. General Description
The physical connections and signal levels of EC25 Mini PCIe comply with PCI Express Mini CEM
specifications. This chapter mainly describes the following interfaces’ definition and application of EC25
Mini PCIe:







Power supply
USIM card interface
USB interface
UART interface
PCM&I2C interfaces
Control signals
Antenna interface
3.2. EC25 Mini PCIe Interface
3.2.1. Definition of Interface
The following tables show the pin definition and description of EC25 Mini PCIe on the 52-pin application.
Table 3: Definition of I/O Parameters
Type
Description
IO
Bidirectional
DI
Digital input
DO
Digital output
OC
Open collector
PI
Power input
PO
Power output
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
16 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Table 4: Description of Pins
Pin No.
Mini PCI Express
Standard Name
EC25 Mini PCIe
Pin Name
I/O
Description
WAKE#
WAKE#
OC
Output signal can be used
to wake up the host.
3.3Vaux
VCC_3V3
PI
3.3V DC supply
COEX1
RESERVED
Reserved
GND
GND
Mini card ground
COEX2
RESERVED
Reserved
1.5V
NC
CLKREQ#
RESERVED
UIM_PWR
USIM_VDD
GND
GND
10
UIM_DATA
USIM_DATA
IO
USIM data signal
11
REFCLK-
UART_RX
DI
UART receive data
12
UIM_CLK
USIM_CLK
DO
USIM clock signal
13
REFCLK+
UART_TX
DO
UART transmit data
14
UIM_RESET
USIM_RST
DO
USIM reset signal
15
GND
GND
Mini card ground
16
UIM_VPP
RESERVED
Reserved
17
RESERVED
RI
18
GND
GND
Mini card ground
19
RESERVED
RESERVED
Reserved
20
W_DISABLE#
W_DISABLE#
21
GND
GND
22
PERST#
PERST#
DI
Functional reset to the card
Active low
23
PERn0
UART_CTS
DI
UART clear to send
Connect to
DTE’s RTS
EC25_Mini_PCIe_Hardware_Design
Comment
Reserved
PO
Power source for the USIM
card
Mini card ground
DO
DI
Connect to
DTE’s TX
Connect to
DTE’s RX
Output signal can be used
to wake up the host.
Disable wireless
communications
Pull-up by
default
Active low
Mini card ground
Confidential / Released
17 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
24
3.3Vaux
RESERVED
Reserved
25
PERp0
UART_RTS
26
GND
GND
Mini card ground
27
GND
GND
Mini card ground
28
1.5V
NC
29
GND
GND
DO
UART request to send
Mini card ground
30
SMB_CLK
I2C_SCL
DO
I2C serial clock
31
PETn0
DTR
DI
Sleep mode control
32
SMB_DATA
I2C_SDA
33
PETp0
RESERVED
Reserved
34
GND
GND
Mini card ground
35
GND
GND
Mini card ground
36
USB_D-
USB_DM
37
GND
GND
38
USB_D+
USB_DP
IO
USB differential data (+)
39
3.3Vaux
VCC_3V3
PI
3.3V DC supply
40
GND
GND
41
3.3Vaux
VCC_3V3
IO
IO
I2C serial data
Require
external
pull-up to
1.8V.
Require
external
pull-up to
1.8V.
USB differential data (-)
Mini card ground
Mini card ground
PI
3.3V DC supply
OC
Active-low. LED signal for
indicating the state of the
card.
42
LED_WWAN#
LED_WWAN#
43
GND
GND
Mini card ground
44
LED_WLAN#
RESERVED
Reserved
45
RESERVED
PCM_CLK*
46
LED_WPAN#
RESERVED
47
RESERVED
PCM_DOUT*
EC25_Mini_PCIe_Hardware_Design
Connect to
DTE’s CTS
IO
PCM clock signal
Reserved
DO
PCM data output
Confidential / Released
18 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
48
1.5V
NC
49
RESERVED
PCM_DIN*
50
GND
GND
51
RESERVED
PCM_SYNC*
IO
PCM frame synchronization
52
3.3Vaux
VCC_3V3
PI
3.3V DC supply
DI
PCM data input
Mini card ground
NOTES
1.
Keep all NC, reserved and unused pins unconnected.
2.
“*” means the digital audio (PCM) function is only supported on Telematics version.
3.2.2. Pin Assignment
The following figure shows the pin assignment of EC25 Mini PCIe module. The top side contains EC25
module and antenna connectors.
PIN1
PIN2
TOP
PIN51
BOT
PIN52
Figure 2: Pin Assignment
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
19 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
3.3. Power Supply
The following table shows pin definition of VCC_3V3 pins and ground pins.
Table 5: Definition of VCC_3V3 and GND Pins
Pin No.
Pin Name
I/O
Power Domain
Description
2, 39, 41, 52
VCC_3V3
PI
3.0~3.6V
3.3V DC supply
4, 9, 15, 18, 21,
26, 27, 29, 34, 35,
37, 40, 43, 50
GND
Mini card ground
The typical supply voltage of EC25 Mini PCIe is 3.3V. In the 2G networks, the input peak current may
reach to 2.7A during the transmitting time. Therefore, the power supply must be able to provide enough
current, and a bypass capacitor of no less than 470µF with low ESR should be used to prevent the
voltage from dropping.
The following figure shows a reference design of power supply. The precision of resistor R2 and R3 is 1%,
and the capacitor C3 needs a low ESR.
Figure 3: Reference Design of Power Supply
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
20 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
3.4. USIM Card Interface
The following table shows the pin definition of USIM card interface.
Table 6: USIM Pin Definition
Pin No.
Pin Name
I/O
Power Domain
Description
USIM_VDD
PO
1.8V/3.0V
Power source for the USIM card
10
USIM_DATA
IO
1.8V/3.0V
USIM data signal
12
USIM_CLK
DO
1.8V/3.0V
USIM clock signal
14
USIM_RST
DO
1.8V/3.0V
USIM reset signal
EC25 Mini PCIe supports 1.8V and 3.0V USIM cards. The following figure shows a reference design for a
6-pin USIM card connector.
Figure 4: Reference Circuit of USIM Card Interface with a 6-Pin USIM Card Connector
In order to enhance the reliability and availability of the USIM card in your application, please follow the
criteria below in USIM circuit design:



Keep layout of USIM card as close to the module as possible. Keep the trace length as less than
200mm as possible.
Keep USIM card signal away from RF and power supply traces.
Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric
potential. The decouple capacitor of USIM_VDD should be less than 1uF and must near to USIM
card connector.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
21 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design



To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and
shield them with surrounded ground.
In order to offer good ESD protection, it is recommended to add a TVS whose parasitic capacitance
should not be more than 50pF. The 22 ohm resistors should be added in series between the module
and the USIM card so as to suppress EMI spurious transmission and enhance ESD protection. The
33pF capacitors are used for filtering interference of GSM900. Please note that the USIM peripheral
circuit should be close to the USIM card connector.
The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
and sensitive occasion are applied, and should be placed close to the USIM card connector.
3.5. USB Interface
The following table shows the pin definition of USB interface.
Table 7: Pin Definition of USB Interface
Pin No.
Pin Name
I/O
Description
Comment
36
USB_DM
IO
USB differential data (-)
Require differential impedance of 90Ω
38
USB_DP
IO
USB differential data (+)
Require differential impedance of 90Ω
EC25 Mini PCIe is compliant with USB 2.0 specification. It can only be used as a slave device. Meanwhile,
it supports high speed (480Mbps) mode and full speed (12Mbps) mode. The USB interface is used for AT
command communication, data transmission, GNSS NMEA output, software debugging, firmware
upgrade and voice over USB*. The following figure shows a reference circuit of USB interface.
Figure 5: Reference Circuit of USB Interface
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
22 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
In order to ensure the integrity of USB data line signal, components R1, R2, R3 and R4 must be placed
close to the module, and also these resistors should be placed close to each other. The extra stubs of
trace must be as short as possible.
In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply
with the following principles:




It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90 ohm.
Do not route signal traces under crystals, oscillators, magnetic devices or RF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding on not only upper
and lower layers but also right and left sides.
If USB connector is used, please keep the ESD protection components to the USB connector as
close as possible. Pay attention to the influence of junction capacitance of ESD protection
components on USB data lines. Typically, the capacitance value should be less than 2pF.
Keep traces of USB data test points short to avoid noise coupled on USB data lines. If possible,
reserve a 0R resistor on these two lines.
NOTES
1.
There are three preconditions when enabling EC25 Mini PCIe to enter into the sleep mode:
a)
2.
Execute AT+QSCLK=1 command to enable the sleep mode. Please refer to document [2] for
details.
b) DTR pin should be kept in high level (pull-up internally).
c) USB interface on Mini PCIe must be connected with the USB interface of the host and please
guarantee the USB of the host is in suspended state.
“*” means under development.
3.6. UART Interface
The following table shows the pin definition of the UART interface.
Table 8: Pin Definition of the UART Interface
Pin No.
EC25 Mini PCIe Pin Name
I/O
Power Domain
Description
11
UART_RX
DI
3.3V
UART receive data
13
UART_TX
DO
3.3V
UART transmit data
23
UART_CTS
DI
3.3V
UART clear to send
25
UART_RTS
DO
3.3V
UART request to send
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
23 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
The UART interface supports 9600, 19200, 38400, 57600, 115200 and 230400bps baud rate. The default
is 115200bps. This interface can be used for AT command communication.
NOTE
AT+IPR command can be used to set the baud rate of the UART, and AT+IFC command can be used to
set the hardware flow control (hardware flow control is disabled by default). Please refer to document [2]
for details.
3.7. PCM and I2C Interfaces
The following table shows the pin definition of PCM and 12C interfaces that can be applied in audio codec
design.
Table 9: Pin Definition of PCM and I2C Interfaces
Pin No.
Pin Name
I/O
Power Domain
Description
45
PCM_CLK
IO
1.8V
PCM clock signal
47
PCM_DOUT
DO
1.8V
PCM data output
49
PCM_DIN
DI
1.8V
PCM data input
51
PCM_SYNC
IO
1.8V
PCM frame synchronization
30
I2C_SCL
DO
1.8V
I2C serial clock, require external
pull-up to 1.8V.
32
I2C_SDA
IO
1.8V
I2C serial data, require external
pull-up to 1.8V.
EC25 Mini PCIe provides one PCM digital interface, which supports 8-bit A-law* and μ-law*, and also
supports 16-bit linear data formats and the following modes:


Primary mode (short frame synchronization, works as either master or slave)
Auxiliary mode (long frame synchronization, works as master only)
NOTE
“*” means under development.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
24 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports 128, 256, 512,
1024 and 2048kHz for different speed codecs. The following figure shows the timing relationship in
primary mode with 8kHz PCM_SYNC and 2048kHz PCM_CLK.
Figure 6: Timing in Primary Mode
In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge; while the PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a
128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only. The following figure shows the timing
relationship in auxiliary mode with 8kHz PCM_SYNC and 128kHz PCM_CLK.
Figure 7: Timing in Auxiliary Mode
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
25 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Clock and mode can be configured by AT command, and the default configuration is master mode using
short frame synchronization format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. In addition, EC25
Mini PCIe’s firmware has integrated the configuration on some PCM codec’s application with I2C interface.
Please refer to document [2] for details about AT+QDAI command.
The following figure shows a reference design of PCM interface with an external codec IC.
Figure 8: Reference Circuit of PCM Application with Audio Codec
3.8. Control Signals
The following table shows the pin definition of control signals.
Table 10: Pin Definition of Control Signals
Pin No.
Pin Name
I/O
Power Domain
Description
17
RI
DO
3.3V
Output signal can be used to wake up
the host.
31
DTR
DI
3.3V
Sleep mode control
20
W_DISABLE#
DI
3.3V
Disable wireless communications;
pull-up by default, active low.
22
PERST#
DI
3.3V
Functional reset to the card; active low.
42
LED_WWAN#
OC
Active-low. LED signal for indicating the
state of the module.
WAKE#
OC
Output signal can be used to wake up
the host.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
26 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
3.8.1. RI Signal
The RI signal can be used to wake up the host. When URC returns, there will be the following behavior on
the RI pin after executing AT+QCFG=“risignaltype”,“physical” command.
Figure 9: RI Behavior
3.8.2. DTR Signal
The DTR signal supports sleep control function. Driving it to low level will wake up the module.
3.8.3. W_DISABLE# Signal
EC25 Mini PCIe provides W_DISABLE# signal to disable wireless communications through hardware
operation. The following table shows the radio operational states of the module. Please refer to
document [2] for related AT commands.
Table 11: Radio Operational States
W_DISABLE#
AT Commands
Radio Operation
High Level
AT+CFUN=1
Enabled
High Level
AT+CFUN=0
AT+CFUN=4
Disabled
Low Level
AT+CFUN=0
AT+CFUN=1
AT+CFUN=4
Disabled
3.8.4. PERST# Signal
The PERST# signal can be used to force a hardware reset on the card. You can reset the module by
driving the PERST# to a low level voltage with the time frame of 150~460ms and then releasing it. The
reset scenario is illustrated in the following figure.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
27 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Figure 10: Timing of Resetting Module
3.8.5. LED_WWAN# Signal
The LED_WWAN# signal of EC25 Mini PCIe is used to indicate the network status of the module, which
can absorb the current up to 40mA. According to the following circuit, in order to reduce the current of the
LED, a resistor must be placed in series with the LED. The LED is emitting light when the LED_WWAN#
output signal is active low.
Figure 11: LED_WWAN# Signal Reference Circuit Diagram
The following table shows the network status indications of the LED_WWAN# signal.
Table 12: Indications of Network Status
LED_WWAN#
Description
Low Level (Light on)
Registered on network
High-impedance (Light off)


No network coverage or not registered
W_DISABLE# signal is at low level. (Disable the RF)

AT+CFUN=0, AT+CFUN=4
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
28 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
3.8.6. WAKE# Signal
The WAKE# signal is an open collector signal which is similar to RI signal, but a host pull-up resistor and
AT+QCFG=“risignaltype”,“physical” command are required. When URC returns, there will be 120ms
low level pulse output as below.
Figure 12: WAKE# Behavior
3.9. Antenna Interfaces
EC25 Mini PCIe antenna interfaces include a main antenna interface, an Rx-diversity antenna interface
and a GNSS antenna interface. And Rx-diversity function is enabled by default.
The following table shows the requirement on main antenna, Rx-diversity antenna and GNSS antenna.
Table 13: Antenna Requirements
Type
Requirements
GNSS
Frequency range: 1561~1615MHz
Polarization: RHCP or linear
VSWR: <2 (Typ.)
Passive antenna gain: >0dBi
GSM/WCDMA/LTE
VSWR: ≤2
Gain (dBi): 1
Max Input Power (W): 50
Input Impedance (ohm): 50
Polarization Type: Vertical
Cable Insertion Loss: <1dB
(GSM900, WCDMA B5/B8, LTE B5/B8/B12/B17/B20)
Cable Insertion Loss: <1.5dB
(GSM1800, WCDMA B1/B2/B3/B4, LTE B1/B2/B3/B4)
Cable insertion loss: <2dB
(LTE B7/B38/B40/B41)
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
29 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
The following figure shows the overall sizes of RF connector.
Figure 13: Dimensions of the RF Connector (Unit: mm)
U.FL-LP serial connectors listed in the following figure can be used to match the RF connector.
Figure 14: Mechanicals of U.FL-LP Connectors
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
30 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Electrical and Radio Characteristics
4.1. General Description
This chapter mainly describes the following electrical and radio characteristics of EC25 Mini PCIe:






Power supply requirements
I/O requirements
Current consumption
RF characteristics
GNSS receiver
ESD characteristics
4.2. Power Supply Requirements
The input voltage of EC25 Mini PCIe is 3.3V±9%, as specified by PCI Express Mini CEM Specifications
1.2. The following table shows the power supply requirements of EC25 Mini PCIe.
Table 14: Power Supply Requirements
Parameter
Description
Min.
Typ.
Max.
Unit
VCC_3V3
Power Supply
3.0
3.3
3.6
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
31 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
4.3. I/O Requirements
The following table shows the I/O requirements of EC25 Mini PCIe.
Table 15: I/O Requirements
Parameter
Description
Min.
Max.
Unit
VIH
Input High Voltage
0.7 × VCC_3V3
VCC_3V3+0.3
VIL
Input Low Voltage
-0.3
0.3 × VCC_3V3
VOH
Output High Voltage
VCC_3V3-0.5
VCC_3V3
VOL
Output Low Voltage
0.4
NOTES
1. The PCM and I2C interfaces belong to 1.8V power domain and other I/O interfaces belong to
VCC_3V3 power domain.
2. The maximum voltage value of VIL for PERST# signal and W_DISABLE# signal is 0.5V.
4.4. RF Characteristics
The following tables show the conducted RF output power and receiving sensitivity of EC25 Mini PCIe
module.
Table 16: EC25 Mini PCIe Conducted RF Output Power
Frequency
Max.
Min.
GSM850/GSM900
33dBm±2dB
5dBm±5dB
DCS1800/PCS1900
30dBm±2dB
0dBm±5dB
GSM850/GSM900 (8-PSK)
27dBm±3dB
5dBm±5dB
DCS1800/PCS1900 (8-PSK)
26dBm±3dB
0dBm±5dB
WCDMA bands
24dBm+1/-3dB
<-50dBm
LTE-FDD bands
23dBm±2dB
<-44dBm
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
32 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
LTE-TDD bands
23dBm±2dB
<-44dBm
Table 17: EC25-A Mini PCIe Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
WCDMA B2
-110.0dBm
-104.7dBm
WCDMA B4
-110.0dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
LTE FDD B2 (10M)
-98.0dBm
-98.0dBm
-101.0dBm
-94.3dBm
LTE FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE FDD B12 (10M)
-96.5dBm
-98.0dBm
-101.0dBm
-93.3dBm
Table 18: EC25-J Mini PCIe Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
WCDMA B1
-110.0dBm
-106.7dBm
WCDMA B6
-110.5dBm
-106.7dBm
WCDMA B8
-110.5dBm
-106.7dBm
WCDMA B19
-110.5dBm
-106.7dBm
LTE-FDD B1 (10M)
-97.5dBm
-98.7dBm
-100.2dBm
-96.3dBm
LTE-FDD B3 (10M)
-96.5dBm
-97.1dBm
-100.5dBm
-93.3dBm
LTE-FDD B8 (10M)
-98.4dBm
-99.0dBm
-101.2dBm
-93.3dBm
LTE-FDD B18 (10M)
-99.5dBm
-99.0dBm
-101.7dBm
-96.3dBm
LTE-FDD B19 (10M)
-99.2dBm
-99.0dBm
-101.4dBm
-96.3dBm
LTE-FDD B26 (10M)
-99.5dBm
-99.0dBm
-101.5dBm
-93.8dBm
LTE-TDD B41 (10M)
-95.0dBm
-95.7dBm
-99.0dBm
-94.3dBm
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
33 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Table 19: EC25-E Mini PCIe Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
GSM900
-109.0dBm
-102.0dBm
DCS1800
-109.0dBm
-102.0dbm
WCDMA B1
-110.5dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
WCDMA B8
-110.5dBm
-103.7dBm
LTE-FDD B1 (10M)
-98.0dBm
-98.0dBm
-101.5dBm
-96.3dBm
LTE-FDD B3 (10M)
-96.5dBm
-98.5dBm
-101.5dBm
-93.3dBm
LTE-FDD B5 (10M)
-98.0dBm
-98.5dBm
-101.0dBm
-94.3dBm
LTE-FDD B7 (10M)
-97.0dBm
-94.5dBm
-99.5dBm
-94.3dBm
LTE-FDD B8 (10M)
-97.0dBm
-97.0dBm
-101.0dBm
-93.3dBm
LTE-FDD B20 (10M)
-97.5dBm
-99.0dBm
-102.5dBm
-93.3dBm
LTE-TDD B38 (10M)
-96.7dBm
-97.0dBm
-100.0dBm
-96.3dBm
LTE-TDD B40 (10M)
-96.3dBm
-98.0dBm
-101.0dBm
-96.3dBm
LTE-TDD B41 (10M)
-95.2dBm
-95.7dBm
-99.0dBm
-94.3dBm
Table 20: EC25-V Mini PCIe Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B13 (10M)
-95.0dBm
-97.0dBm
-100.0dBm
-93.3dBm
4.5. GNSS Receiver
EC25 Mini PCIe integrates a GNSS receiver that supports IZat Gen 8C Lite of Qualcomm (GPS,
GLONASS, BeiDou, Galileo, QZSS). Meanwhile, it supports Qualcomm gpsOneXTRA technology (one
kind of A-GNSS). This technology will download XTRA file from the internet server to enhance the TTFF.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
34 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
XTRA file contains predicted GPS and GLONASS satellites coordinates and clock biases valid for up to 7
days. It is best if XTRA file is downloaded every 1-2 days. Additionally, EC25 Mini PCIe can support
standard NMEA-0183 protocol and output NMEA messages with 1Hz via USB NMEA interface.
EC25 Mini PCIe GNSS engine is switched off by default. You must switch on it by AT command. Please
refer to document [3] for more details about GNSS engine technology and configurations. A passive
antenna should be used for the GNSS engine.
4.6. ESD Characteristics
The following table shows the ESD characteristics of EC25 Mini PCIe.
Table 21: ESD Characteristics of EC25 Mini PCIe
Part
Contact Discharge
Air Discharge
Unit
Power Supply and GND
+/-5
+/-10
kV
Antenna Interface
+/-4
+/-8
kV
USB Interface
+/-4
+/-8
kV
USIM Interface
+/-4
+/-8
kV
Others
+/-0.5
+/-1
kV
4.7. Current Consumption
The following tables describe the current consumption of EC25 Mini PCIe series module.
Table 22: Current Consumption of EC25-A Mini PCIe
Parameter
IVBAT
Description
Conditions
Typ.
Unit
AT+CFUN=0 (USB disconnected)
3.6
mA
WCDMA PF=64 (USB disconnected)
4.4
mA
WCDMA PF=128 (USB disconnected)
3.8
mA
LTE-FDD PF=64 (USB disconnected)
5.9
mA
Sleep state
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
35 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
LTE-FDD PF=128 (USB disconnected)
4.8
mA
WCDMA PF=64 (USB disconnected)
27.0
mA
WCDMA PF=64 (USB connected)
40.0
mA
LTE-FDD PF=64 (USB disconnected)
43.0
mA
LTE-FDD PF=64 (USB connected)
59.0
mA
WCDMA B2 HSDPA @22.63dBm
764.0
mA
WCDMA B2 HSUPA @23.19dBm
741.0
mA
WCDMA B4 HSDPA @22.45dBm
745.0
mA
WCDMA B4 HSUPA @22.57dBm
752.0
mA
WCDMA B5 HSDPA @22.49dBm
616.0
mA
WCDMA B5 HSUPA @22.43dBm
637.0
mA
LTE-FDD B2 @22.92dBm
977.0
mA
LTE-FDD B4 @23.42dBm
1094.0
mA
LTE-FDD B12 @23.39dBm
847.0
mA
WCDMA B2 @23.59dBm
861.0
mA
WCDMA B4 @23.47dBm
812.0
mA
WCDMA B5 @23.46dBm
683.0
mA
Conditions
Typ.
Unit
AT+CFUN=0 (USB disconnected)
3.9
mA
GSM DRX=2 (USB disconnected)
5.1
mA
GSM DRX=9 (USB disconnected)
4.3
mA
WCDMA PF=64 (USB disconnected)
5.5
mA
WCDMA PF=128 (USB disconnected)
4.8
mA
LTE-FDD PF=64 (USB disconnected)
5.8
mA
Idle state
WCDMA data
transfer
(GNSS OFF)
LTE data
transfer
(GNSS OFF)
WCDMA
voice call
Table 23: Current Consumption of EC25-E Mini PCIe
Parameter
IVBAT
Description
Sleep state
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
36 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
LTE-FDD PF=128 (USB disconnected)
5.0
mA
LTE-TDD PF=64 (USB disconnected)
5.8
mA
LTE-TDD PF=128 (USB disconnected)
4.9
mA
GSM DRX=5 (USB disconnected)
30.0
mA
GSM DRX=5 (USB connected)
43.0
mA
WCDMA PF=64 (USB disconnected)
31.0
mA
WCDMA PF=64 (USB connected)
45.0
mA
LTE-FDD PF=64 (USB disconnected)
31.0
mA
LTE-FDD PF=64 (USB connected)
44.0
mA
LTE-TDD PF=64 (USB disconnected)
32.0
mA
LTE-TDD PF=64 (USB connected)
44.0
mA
GSM900 4DL/1UL @33.08dBm
372.0
mA
GSM900 3DL/2UL @31.03dBm
626.0
mA
GSM900 2DL/3UL @29.86dBm
706.0
mA
GSM900 1DL/4UL @29.44dBm
767.0
mA
DCS1800 4DL/1UL @30.39dBm
262.0
mA
DCS1800 3DL/2UL @30.19dBm
417.0
mA
DCS1800 2DL/3UL @30.02dBm
564.0
mA
DCS1800 1DL/4UL @29.86dBm
709.0
mA
GSM900 4DL/1UL @27.59dBm
233.0
mA
GSM900 3DL/2UL @27.45dBm
370.0
mA
GSM900 2DL/3UL @27.31dBm
500.0
mA
GSM900 1DL/4UL @27.14dBm
623.0
mA
DCS1800 4DL/1UL @26.24dBm
224.0
mA
DCS1800 3DL/2UL @26.13dBm
334.0
mA
Idle state
GPRS data
transfer
(GNSS OFF)
EDGE data
transfer
(GNSS OFF)
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
37 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
WCDMA data
transfer
(GNSS OFF)
LTE data
transfer
(GNSS OFF)
GSM
voice call
WCDMA
voice call
DCS1800 2DL/3UL @25.97dBm
440.0
mA
DCS1800 1DL/4UL @25.82dBm
553.0
mA
WCDMA B1 HSDPA @22.49dBm
798.0
mA
WCDMA B1 HSUPA @21.87dBm
788.0
mA
WCDMA B5 HSDPA @22.66dBm
781.0
mA
WCDMA B5 HSUPA @21.99dBm
770.0
mA
WCDMA B8 HSDPA @22.23dBm
655.0
mA
WCDMA B8 HSUPA @21.68dBm
659.0
mA
LTE-FDD B1 @23.12dBm
940.0
mA
LTE-FDD B3 @22.75dBm
989.0
mA
LTE-FDD B5 @22.92dBm
962.0
mA
LTE-FDD B7 @23.42dBm
1188.0
mA
LTE-FDD B8 @22.97dBm
911.0
mA
LTE-FDD B20 @22.51dBm
946.0
mA
LTE-TDD B38 @22.58dBm
686.0
mA
LTE-TDD B40 @22.31dBm
576.0
mA
LTE-TDD B41 @22.03dBm
611.0
mA
GSM900 PCL=5 @33.31dBm
367.0
mA
DCS1800 PCL=0 @20.48dBm
248.0
mA
WCDMA B1 @23.18dBm
868.0
mA
WCDMA B5 @22.62dBm
808.0
mA
WCDMA B8 @23.02dBm
728.0
mA
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
38 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Table 24: Current Consumption of EC25-V Mini PCIe
Parameter
Description
Sleep state
IVBAT
Conditions
Typ.
Unit
AT+CFUN=0 (USB disconnected)
3.4
mA
LTE-FDD PF=64 (USB disconnected)
4.8
mA
LTE-FDD PF=128 (USB disconnected)
4.3
mA
LTE-FDD PF=64 (USB disconnected)
30.0
mA
LTE-FDD PF=64 (USB connected)
42.0
mA
LTE-FDD B4 @23.3dBm
873.0
mA
LTE-FDD B13 @22.13dBm
638.0
mA
Idle state
LTE data
transfer
(GNSS OFF)
Table 25: GNSS Current Consumption of EC25 Mini PCIe Series Module
Parameter
IVBAT
(GNSS)
Description
Conditions
Typ.
Unit
Searching
Cold start @Passive Antenna
75.0
mA
(AT+CFUN=0)
Lost state @Passive Antenna
74.0
mA
Instrument environment
44.0
mA
Open Sky @Passive Antenna
53.0
mA
Open Sky @Active Antenna
58.0
mA
Tracking
(AT+CFUN=0)
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
39 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Dimensions and Packaging
5.1. General Description
This chapter mainly describes mechanical dimensions as well as packaging specification of EC25 Mini
PCIe module.
5.2. Mechanical Dimensions of EC25 Mini PCIe
30.00±0.20
24.20±0.20
8.25±0.10
5.45±0.10
6.38±0.10
5.98±0.10
3x3.00
2xΦ2.60
0.61
2.35±0.10
6.35±0.10
50.95±0.20
34.30±0.20
48.05±0.20
1.40
4.90±0.20
10.35±0.10
4.00±0.10
7.26±0.10
1.00
Pin51
Pin1
9.90±0.10
Top View
Side View
Figure 15: Mechanical Dimensions of EC25 Mini PCIe (Unit: mm)
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
40 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
5.3. Standard Dimensions of Mini PCI Express
The following figure shows the standard dimensions of Mini PCI Express. Please refer to document [1]
for detailed A and B.
Figure 16: Standard Dimensions of Mini PCI Express (Unit: mm)
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
41 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
EC25 Mini PCIe adopts a standard Mini PCI Express connector which compiles with the directives and
standards listed in the document [1]. The following figure takes the Molex 679100002 as an example.
Figure 17: Dimensions of the Mini PCI Express Connector (Molex 679100002, Unit: mm)
5.4. Packaging Specification
The EC25 Mini PCIe is packaged in a tray. Each tray contains 10pcs of modules. The smallest package of
EC25 Mini PCIe contains 100pcs.
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
42 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
Appendix References
Table 26: Related Documents
SN
Document Name
Remark
[1]
PCI Express Mini Card Electromechanical
Specification Revision 1.2
Mini PCI Express Specification
[2]
Quectel_EC25&EC21_AT_Commands_Manual
EC25 and EC21 AT Commands Manual
[3]
Quectel_EC25&EC21_GNSS_AT_Commands_
Manual
EC25 and EC21 GNSS AT Commands
Manual
Table 27: Terms and Abbreviations
Abbreviation
Description
AMR
Adaptive Multi-rate
bps
Bits Per Second
CS
Coding Scheme
DC-HSPA+
Dual-carrier High Speed Packet Access
DFOTA
Delta Firmware Upgrade Over The Air
DL
Down Link
EFR
Enhanced Full Rate
ESD
Electrostatic Discharge
FDD
Frequency Division Duplexing
FR
Full Rate
GLONASS
GLObalnaya Navigatsionnaya Sputnikovaya Sistema, the Russian Global
Navigation Satellite System
GMSK
Gaussian Minimum Shift Keying
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
43 / 42
LTE Module Series
EC25 Mini PCIe Hardware Design
GNSS
Global Navigation Satellite System
GPS
Global Positioning System
GSM
Global System for Mobile Communications
HR
Half Rate
kbps
Kilo Bits Per Second
LED
Light Emitting Diode
LTE
Long-Term Evolution
Mbps
Million Bits Per Second
ME
Mobile Equipment (Module)
MIMO
Multiple-Input Multiple-Output
MMS
Multimedia Messaging Service
MO
Mobile Originated
MT
Mobile Terminated
PCM
Pulse Code Modulation
PDU
Protocol Data Unit
PPP
Point-to-Point Protocol
RF
Radio Frequency
Rx
Receive
USIM
Universal Subscriber Identification Module
SIMO
Single Input Multiple Output
SMS
Short Message Service
UART
Universal Asynchronous Receiver & Transmitter
UL
Up Link
URC
Unsolicited Result Code
WCDMA
Wideband Code Division Multiple Access
EC25_Mini_PCIe_Hardware_Design
Confidential / Released
44 / 42

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : No
Author                          : haojinhua
Create Date                     : 2018:05:04 12:43:02+08:00
Modify Date                     : 2018:05:04 14:49:49+08:00
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00
Format                          : application/pdf
Title                           : Microsoft Word - Quectel_EC25_Hardware_Design_V1.5.doc
Creator                         : haojinhua
Creator Tool                    : PScript5.dll Version 5.2.2
Metadata Date                   : 2018:05:04 14:49:49+08:00
Producer                        : Acrobat Distiller 9.0.0 (Windows)
Document ID                     : uuid:f56690e9-8474-4862-a64b-58929ad5704e
Instance ID                     : uuid:c019b245-1344-419c-87f7-f20ebc272823
Page Count                      : 160
EXIF Metadata provided by EXIF.tools
FCC ID Filing: XMR201805EC25AU

Navigation menu