STMicroelectronicsS DZSTM32WA DZ-SB-S-A Zigbee Module User Manual DiZiC ZigBee Modules

STMicroelectronics DZ-SB-S-A Zigbee Module DiZiC ZigBee Modules

Contents

manual

© 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  802.15.4 Family of RF Modules High Performance and Long Range 802.15.4 STM32W RF Modules Quickly add wireless capability with these high performance ZigBee compliant modules READY TO USE SoC RF MODULES Quickly  add  wireless  networking  capabilities  to  your products  with  these  ready-to-use  DiZiC  802.15.4  RF Modules. Simple to operate and available in a wide range of configurations,  these  ZigBee  compliant  RF  modules  are ideal for industrial sensors, consumer remote  controls, home appliances, and more. Based  on  the  STM32W108  wireless  System-on-Chip (SoC) from STMicroelectronics, this family of modules offer outstanding  RF  performance  with  a  -99  dBm  normal  RX sensitivity  (configurable  to  -100  dBm)  and  +3  dBm normal mode output power (configurable up to +7 dBm). With  a small  form  factor and  pin-to-pin  compatible,  DiZiC 802.15.4  RF  Modules  are  available  with  several  software stack options, including EmberZNet PRO, RF4CE stack, or  proprietary low level MAC / PHY stack. VERSATILE CONFIGURATIONS With several possible  configurations,  select from  3 power level  options,  3  output  options,  3  software  stack  options and 2 EMI options: Power  Level  Options -  Choose  from  a  standard power level (+7 dBm), and two versions of RF front end (PA and LNA, +20 dBm). RF Output Options - Choose from a chip antenna, a U.FL connector, or a single port 50 Ohm RF pad. The  U.FL  connector  allows,  amongst  other  uses,  for connecting  an  external  antenna,  for  connecting  to  an application  board  that  provides  additional  filters,  or  for connecting to another 50 Ohm coaxial cable TX line. The single port 50 Ohm RF pad allows for a direct connection to another board, application module, or external antenna. Software  Stack  Options -  Choose  from  EmberZNet PRO, RF4CE, or a low level PHY / MAC stack. EmberZNet  PRO  is  an  easy  to  use  ZigBee  platform  for complex  mesh  networks.  RF4CE  (Radio  Frequency  for Consumer  Electronics)  is  a  new  protocol  for  consumer remote controlled equipment. Custom applications can be developed  on  top  of  a  simple  to  use  and  low  footprint PHY/MAC API library. EMI Options – Choose metal shielding protection where enhanced  electromagnetic  interference  immunity  is required  otherwise  standard  version  without  metal shielding is advisable.  D/Z/C 802.15.4 STM32WRF Module with RF front end and antenna Key Features • STM32W108 ZigBee / IEEE 802.15.4 SoC • 32-bit ARM Cortex-M3 processor • 128 kB of Flash and 8 kB of SRAM • JTAG / SWD (programming and debugging) • 2.4 GHz ISM supporting 16 channels • Data rate up to 250 kbit/s • 128-bit AES encryption • Peripherals • 24 GPIOs, SPI, USART, and I2C • 12-bit ADC with up to 6 inputs • 2x 16-bit timers • DMA controller • Standard module • RX Sensitivity -99 dBm (-100 dBm Boost) • TX Power 3 dBm (+7 dBm Boost) • RF front end options • Two Front End options • Both with RX Sensitivity -105 dBm • Both with TX Power +20 dBm • RF Options • Chip antenna, U.FL connector, or single port 50 Ohm RF pad • Shielding option for enhanced EMI protection Ordering Information DZ_ZB_[P] [O] [S][E] , where: [P] Power level options, one of: S (standard +7 dBm), R (Front End with Power Level Detect +20 dBm), or T (Front End +20 dBm) [O] Output options, one of: A (Embedded SMD antenna assembled on module), P (Single  ended 50 Ohm.  RF Pad), or U (50 Ohm  U.FL coaxial connector)  [S]  Stack options,  one  of:  F  (RF4CE  stack),  X  (Proprietary  stack),  or       Z (EmberZNet PRO stack) [E]  EMI  protection  options,  one  of:  S  (standard,  no  shielding),  or       M (enhanced, with metal shield)
© 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  TABLE OF CONTENT 1 FEATURE LIST....................................................................................................................................... 3 2 MODULE VARIANTS............................................................................................................................... 4 2.1 INTRODUCTION ............................................................................................................................ 4 2.2 DIZIC 802.15.4 RF MODULE: OUTPUT OPTIONS ...................................................................... 4 2.3 DIZIC 802.15.4 RF MODULE: POWER LEVEL OPTIONS ............................................................ 5 2.4 DIZIC 802.15.4 RF MODULE: STACK OPTIONS ........................................................................ 5 2.5 DIZIC 802.15.4 RF MODULE: EMI PROTECTION OPTIONS ...................................................... 5 3 COMPONENTS OVERVIEW .................................................................................................................... 6 3.1 STM32W108 – SYSTEM-ON-CHIP ............................................................................................ 6 3.2 RF FRONT END WITH RF OUTPUT  POWER LEVEL DETECTOR ................................................. 7 3.3 RF FRONT END ........................................................................................................................... 8 3.4 ZIGBEE STACKS .......................................................................................................................... 8 4 ELECTRICAL CHARACTERISTICS ........................................................................................................... 9 4.1 PARAMETER CONDITIONS ........................................................................................................... 9 4.1.1 Minimum and maximum values ............................................................................................ 9 4.1.2 Typical values .......................................................................................................................... 9 4.2 ABSOLUTE MAXIMUM RATINGS .................................................................................................... 9 4.3 OPERATING CONDITIONS .......................................................................................................... 10 4.3.1 General operating conditions .............................................................................................. 10 4.3.2 Electrostatic discharge (ESD) ............................................................................................. 10 4.4 DC CHARACTERISTICS ............................................................................................................. 11 4.5 RF CHARACTERISTIC ................................................................................................................ 13 4.5.1 Receiver ................................................................................................................................. 13 4.5.2 Transmitter ............................................................................................................................. 13 5 MECHANICAL CHARACTERISTICS ........................................................................................................ 14 5.1 MODULE PAD DIAGRAM ............................................................................................................ 14 5.2 MODULE PAD DESCRIPTION ..................................................................................................... 15 5.3 PACKAGE MECHANICAL DIMENSIONS ....................................................................................... 20 6 SOLDERING ........................................................................................................................................ 21 6.1 SOLDER TEMPERATURE PROFILE ........................................................................................... 21 6.2 PROFILE PARAMETERS ............................................................................................................ 21 6.3 RECOMMENDED FOOTPRINT .................................................................................................... 22 7 ORDERING  INFORMATION ................................................................................................................... 23 8 LIST OF ACRONYMS ............................................................................................................................ 24 9 REFERENCES & REVISION HISTORY ................................................................................................... 25
© 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  DIZIC 802.15.4 RF MODULE DZ-ZB-[P]-[O]-[S]-[E] DATA SHEET  POWER LEVEL OPTIONS                                                             STANDARD                    FRONT  END                       FRONT END WITH              RF POWER LEVEL DETECTOR 1   FEATURE LISTComplete System-on-Chip • 32-bit ARM® Cortex-M3 processor • 2.4 GHz IEEE 802.15.4 transceiver & lower MAC • 128 kB flash, 8kB RAM memory • AES128 encryption accelerator • Flexible ADC, SPI/UART/TWI serial communications, and general purpose timers  • 24 highly configurable GPIO with Schmitt trigger inputs  Industry-leading ARM Cortex-M3 processor • Leading 32-bit processing performance • Highly efficient Thumb-2 instruction set • Operation at 6, 12 or 24 MHz • Flexible Nested Vectored Interrupt Controller  Low power consumption, advanced management • RX Current (w/ CPU): 27 mA • TX Current (w/ CPU, +3 dBm TX): 31 mA  • Low deep sleep current, with retained RAM and GPIO: 400 nA/800 nA with/without sleep timer • Low-frequency internal RC oscillator for low-power sleep timing • High-frequency internal RC oscillator for fast (100 µsec) processor start-up from sleep  Innovative network and processor debug •  Serial Wire/JTAG interface • Standard ARM debug capabilities: Flash Patch & Breakpoint; Data Watch-point & Trace; Instrumentation Trace MacrocellExceptional RF Performance • Normal mode Link Budget up to 102 dB; configurable up to107dB • -99 dBm normal RX sensitivity; configurable to -100 dBm (1%PER, 20 byte packet) • +3 dB normal mode output power; configurable up to +7 dBm  •  Robust WiFi and Bluetooth coexistence  Application Flexibility • Single voltage operation: 2.1-3.6 V • Optional 32.768 kHz crystal for higher timer accuracy • Low external component count with single 24 MHz crystal  •  External power amplifier versions  Target applications for the Modules include: •  Smart Energy •  Building automation and control (HVAC) •  Home automation and control •  Security and monitoring •  AMR/AMI •  Logistic & Asset tracking •  Medical •  General ZigBee wireless sensor networking •  Active RFID  •  Wireless handheld terminals •  Industry telemetry and automatic data collection system •  Temperature and humidity control system •  Traffic and control for street lamp
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS   2   MODULE VARIANTS 2.1   INTRODUCTION The DZ-ZB  is  low-power, high sensitivity  IEEE 802.15.4  / ZigBee-compliant module.  This multi-functional  device based on STMicroelectronics STM32W108 fully integrated System-on-Chip [1]. The STM32W108 integrates a 2.4 GHz, IEEE 802.15.4-compliant  transceiver,  32-bit  ARM®  Cortex™-M3  microprocessor,  Flash  and  RAM  memory,  and  peripherals  of  use  to designers  of  ZigBee-based  systems  [2].    Block  diagrams  of  DZ-ZB  Module  is  show  on  Figure  2.1  and  utilizes STM32W108CBU6x version of the high performance, IEEE 802.15.4 compliant, wireless system-on-chip STM32W108 family.    Fig. 2.1 Block diagram of DZ-ZB Modules   DZ-ZB  modules  are  available  in  two  different  product  lines:  without/with  PA/LNA  Front-End  (FE).  Both  product  lines offering  three ZigBee  stack configurations.  The first decision  you need  to make is if you  want the  Output  option. The following options are available:   A  - Embedded SMD Antenna    P  - Single ended 50 Ohm RF Pad   U  - U.FL 50 Ohm coaxial connector The second decision you need to make is Power level option. The following options are available:   S  - Standard + 7dBm   R  - Front End (PA and LNA) with RF output power level detector + 20 dBm   T  - Front End (PA and LNA) + 20 dBm The third decision you need to make ZigBee stack. The following options are available:  F  - RF4CE stack   X  - Proprietary stack  Z  - EmberZnet PRO stack The final decision is level of electromagnetic immunity (EMI) protection. The following options are available:   M  - Metal cap shielding enabling enhanced level of electromagnetic immunity (EMI) protection   S  -  Standard, without metal shielding cap  The next chapters will explain each of all options.  2.2   DIZIC 802.15.4 RF MODULE: OUTPUT OPTIONS The following Output Options are available:   A  - Embedded SMD Antenna    P  - Single ended 50 Ohm RF Pad   U  - U.FL 50 Ohm coaxial connector
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS   2.3   DIZIC 802.15.4 RF MODULE: POWER LEVEL OPTIONS The following Power Level Options are available:    Option S  - Standard + 7dBm STM32W  chip:  System  on  Chip  -  where  radio,  microcontroller,  program/user  memory,  RAM,  ZigBee  protocols  stack  are integrated in one chip.    Option R  - Front End (PA and LNA) with RF output power level detector + 20 dBm STM32W  chip:  System  on  Chip  -  where  radio,  microcontroller,  program/user  memory,  RAM,  ZigBee  protocols  stack  are integrated in one chip.    Option T  - Front End (PA and LNA) + 20 dBm STM32W  chip:  System  on  Chip  -  where  radio,  microcontroller,  program/user  memory,  RAM,  ZigBee  protocols  stack  are integrated in one chip.   2.4    DIZIC 802.15.4 RF MODULE: STACK OPTIONS The following ZigBee stack options are available:   Option F  - RF4CE stack   Option X  - Proprietary stack   Option Z  - EmberZnet PRO stack  Instructions concerning to programming ST32W108 you will find at [7] and examples of Application at [6].  2.5    DIZIC 802.15.4 RF MODULE: EMI PROTECTION OPTIONS The following EMI protection options are available:   Option M  - Metal shield cap enabling enhanced level of electromagnetic immunity (EMI) protection   Option S  - Standard module without metal shielding
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  3   COMPONENTS OVERVIEW 3.1   STM32W108 – SYSTEM-ON-CHIP The is a fully The is a fully integrated System-on-Chip that integrates a 2.4 GHz, IEEE 802.15.4-compliant transceiver, 32-bit ARM® Cortex™-M3 microprocessor, Flash and RAM memory, and peripherals of use to designers of ZigBee-based systems.  Block diagram of STM32W108 is show on Fig. 3.1 below:   Fig. 3.1 Block diagram of System-on-Chip STM32W108   The transceiver utilizes an efficient architecture that exceeds the dynamic range requirements imposed by the IEEE 802.15.4-2003 standard by over 15 dB. The integrated receive channel filtering allows for robust co-existence with other communication standards in the 2.4 GHz spectrum, such as IEEE 802.11 and Bluetooth. The integrated regulator, VCO, loop filter, and power amplifier  keep  the  external  component  count  low.  An  optional  high  performance  radio  mode  (boost  mode)  is  software-selectable to boost dynamic range.  The integrated 32-bit ARM® Cortex™-M3 microprocessor is highly optimized for high performance, low power consumption, and efficient memory utilization. Including an integrated MPU, it supports two different modes of operation: System mode and Application mode. The networking stack software runs in System mode with full access to all areas of the chip. Application code runs in Application mode with limited access to the STM32W108 resources; this allows for the scheduling of events by the application developer while preventing modification of restricted areas of memory and registers. This architecture results in increased stability and reliability of deployed solutions.  The STM32W108 has 128 Kbytes of embedded Flash memory and 8 Kbytes of integrated RAM for data and program storage. The  STM32W108  HAL software  employs  an  effective wear-levelling  algorithm  that optimizes the lifetime of  the  embedded Flash.  To  maintain  the  strict  timing  requirements  imposed  by  the  ZigBee  and  IEEE  802.15.4-2003  standards,  the  STM32W108 integrates  a  number  of  MAC  functions  into  the  hardware.  The  MAC  hardware  handles  automatic  ACK  transmission  and reception, automatic back off delay, and clear channel assessment for transmission, as well as automatic filtering of received packets. A packet trace interface is also integrated with the MAC, allowing complete, non-intrusive capture of all packets to and from the STM32W108.  The STM32W108 offers a number of advanced power management features that enable long battery life. A high-frequency internal RC oscillator allows the processor core to begin code execution quickly upon waking. Various deep sleep modes are
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS available with less than 1  μsec a power consumption while retaining RAM contents. To support user-defined applications, on-chip  peripherals  include  UART,  SPI,  TWI,  ADC  and  general-purpose  timers,  as  well  as  up  to  24  GPIOs.  Additionally,  an integrated voltage regulator, power-on-reset circuit, and sleep timer are available.   Finally, the STM32W utilizes standard Serial Wire and JTAG interfaces for powerful software debugging and programming of the ARM Cortex-M3 core. The STM32W integrates the standard ARM system debug components: Flash Patch and Breakpoint (FPB), Data Watch-point and Trace (DWT), and Instrumentation Trace Macrocell (ITM).   3.2   RF FRONT END WITH RF OUTPUT  POWER LEVEL DETECTOR  The  Front  End  (FE)  is  a  fully  integrated,  single-chip,  single-die  microwave  IC  which  incorporates  all  the  RF  functionality needed  for  today’s  wireless communications. The FE architecture integrates the PA, LNA, Transmit and Receive switching circuitry, the associated matching network, and the harmonic filter -- all in a BiCMOS single-chip device. Combining superior performance, high sensitivity and efficiency, low noise, small form factor, and low cost, is the perfect solution for applications requiring extended range and bandwidth and can result in a potential 10x range increase. The RF power level (at PA output) detect circuit is also integrated. Block diagram of the module with this FE is shown below:    Fig. 3.2 Block diagram of the module with front end incorporating RF power level detector (Power level option “R”)  Functional description of the signals controlling front end are summarized in table 3.1 below  Table 3.1 Functional description of the Front End signals  FE Signal name Direction Description STM32W108 port name TX_ON Digital input to FE When RX_ON = 1: TX_ON = 1: Transmit Mode TX_ON = 0: Receive Mode PC5, TX_ACTIVE RX_ON Digital input to FE RX_ON = 0: FE in shut down mode RX_ON = 1: FE enabled Transmit / Receive function is determined by TX_ON signal PC6, nTX_ACTIVE PA_DETECT Analog output from FE PA_DETECT voltage is proportional to generated RF power at FE output pin. For RF output power between:    +5 dBm to +20 dBm     PA_DETECT voltage is between     20 mV to 1200 mV respectively PB5, ADC0
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  3.3    RF FRONT END This is a cost-effective and high performance RF Front End for low-power and low-voltage 2.4-GHz wireless applications. It is a range extender for all existing and future 2.4-GHz low-power RF transceivers, transmitters and System-on-Chip products. It increases the link budget by providing a power amplifier for increased output power, and  an LNA with low noise figure for improved  receiver  sensitivity.  This  FE  consists  of  PA,  LNA,  RF  switches,  RF  impedance  matching,  and  balun  for  high performance wireless applications. Module Block diagram with this Front End is shown below:  Fig. 3.3 Block diagram of the module with front end (Power level option “T”) Functional description of the signals controlling front end are summarized in table 3.2 below Table 3.2 Functional description of the Front End signals  FE Signal name Direction Description STM32W108 port name TxRx Digital input to FE When ENABLE = 1: TxRx = 1: Transmit Mode TxRx = 0: Receive Mode PC5, TX_ACTIVE HIGH_GAIN Digital input to FE Receive only (ENABLE = 1, TxRx = 0): HIGH_GAIN = 1: LNA is in High Gain Mode.      LNA Gain = approx. 11dB HIGH_GAIN = 0: LNA is in Lo Gain Mode.       LNA Gain = approx. 1 dB PB5, ADC0 ENABLE Digital input to FE ENABLE = 1: FE Enabled ENABLE = 0: FE in power down mode PC6, nTX_ACTIVE   3.4  ZIGBEE STACKS The three stacks are available (see block diagram below depicted on Fig. 3.4):    RF4CE stack    Proprietary stack    EmberZNet PRO stack  Fig. 3.4 Available stacks: Left. Proprietary stack,  Centre. RF4CE stack,  Right. EmberZNet PRO For more details regarding stacks please consult [3], [4] [5]. Instruction concerning to programming ST32W108 you will find at [7].
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS 4    ELECTRICAL CHARACTERISTICS 4.1   PARAMETER CONDITIONS Unless otherwise specified, all voltages are referenced to VSS.  4.1.1    Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA =  TAmax (given  by  the  selected  temperature range).  Data  based  on characterization results,  design simulation  and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ).  4.1.2   Typical values  are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.  4.2   ABSOLUTE MAXIMUM RATINGS Stresses above the absolute maximum ratings listed in Table 4.1: Voltage characteristics, Table 4.2: Current characteristics and  Table  4.3:  Thermal  characteristics may  cause  permanent  damage  to  the  device.  These  are  stress  ratings  only  and functional  operation  of the device  at these  conditions  is  not  implied.  Exposure  to maximum  rating conditions for extended periods may affect device reliability.  Table 4.1 Voltage characteristics   Ratings Min. Max. Unit Regulator input voltage (VDD_PADS) -0.3 +3.6 V RF Input Power (for max level for correct packet reception Receive characteristics) RX signal into a lossless balun  15 dBm Voltage on any GPIO (PA[7:0], PB[7:0], PC[7:0]), SWCLK, nRESET, VREG_OUT -0.3 VDD_PADS +0.3 V   Table 4.2 Current characteristics Symbol  Ratings Max. Unit IVDD Total current into VDD/VDDA power lines (source) 150 mA IVSS Total current out of VSS ground lines (sink) 150 mA IIO Output current sunk by any I/O and control pin 25 mA   Table 4.3 Thermal characteristics Symbol  Ratings Value Unit TSTG Storage temperature range –40 to +140 °C TJ Maximum junction temperature 150 °C
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  4.3   OPERATING CONDITIONS 4.3.1    General operating conditions Table 4.4 Operating conditions Symbol Parameter Min. Typ. Max. Unit VDD_PADS Regulator input voltage (VDD_PADS) 2,1  3,6 V TOP Operating temperature range -40  85 °C   4.3.2    Electrostatic discharge (ESD)  Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.  Table 4.5 ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value Unit VESD (HBM) Electrostatic discharge voltage (Human Body Model) TA = +25 °C conforming to JESD22-A114 2 ±2000 V VESD (CDM) Electrostatic discharge voltage (Charge Device Model) for non-RF pins TA = +25 °C  conforming to JESD22-C101 II ±400 Electrostatic discharge  voltage (Charge Device Model) for RF pins ±225 MSL Moisture sensitivity level   MSL3 –
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  4.4   DC CHARACTERISTICS Table 4.6 DC electrical characteristics Parameter Conditions Typical value for module  (Power Level Option) Unit "S" Standard "R" Front End "T"  Front End Regulator input voltage (VDD_PADS)  2,0  -  3,6 V Deep Sleep Current             Quiescent current, internal RC oscillator disabled    -40°C, VDD_PADS = 3,6 V   0,4      μA   +25°C, VDD_PADS = 3,6 V   0,4 5,4 0,7 μA   +85°C, VDD_PADS = 3,6 V   0,6      μA  Quiescent current, including internal RC oscillator  -40°C, VDD_PADS = 3.6 V  0,7     μA  +25°C, VDD_PADS = 3.6 V  0,8 5,8 1,1 μA  +85°C, VDD_PADS = 3.6 V  1,2     μA  Quiescent current, including 32.768 kHz oscillator  -40°C, VDD_PADS = 3.6V  1,2     μA  +25°C, VDD_PADS = 3.6 V  1,3 6,3 1,6 μA  +85°C, VDD_PADS = 3.6 V  1,7     μA  Quiescent current, including internal RC oscillator and 32.768 kHz oscillator  -40°C, VDD_PADS = 3.6V  1,4     μA  +25°C, VDD_PADS = 3.6V  1,5 6,5 1,8 μA  +85°C, VDD_PADS = 3.6 V  2     μA  Simulated deep sleep (debug mode) current  With no debugger activity  200     μA  Reset current            Quiescent current, nRESET asserted  Typical at 25°C/3 V Max at 85°C/3.6 V  1,2 1,2 1,2 mA  Processor and peripheral currents            ARM® Cortex-M3, RAM, and flash memory  25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 running at 12 MHz from crystal oscillator Radio and all peripherals off  8.0  8.0  8.0  mA  ARM® Cortex-M3, RAM, and flash memory  25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 running at 24 MHz from crystal oscillator Radio and all peripherals off  9.0  9.0  9.0  mA  ARM® Cortex-M3, RAM, and flash memory sleep current  25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 clocked at 12 MHz from the crystal oscillator Radio and all peripherals off  4.0  4.0  4.0  mA  ARM® Cortex-M3, RAM, and flash memory sleep current  25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 clocked at 6 MHz from the high frequency RC oscillator Radio and all peripherals off  2.0  2.0  2.0  mA  Serial controller current  For each controller at maximum data rate  0.2  0.2  0.2  mA  General purpose timer current  For each timer at maximum clock rate  0.1  0.1  0.1  mA  General purpose ADC current    At maximum sample rate, DMA enabled   1,1 1,1 1,1  mA
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Table 4.6 DC electrical characteristics (cont) Rx current             Radio receiver, MAC, and baseband    ARM® Cortex-M3 sleeping   20 27 24  mA   Total RX current (Radio receiver, MAC and baseband, CPU + IRAM, and Flash memory)    VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 12 MHz   27 34 31  mA   VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 24 MHz      28 35 32  mA   Boost mode total RX current (Radio receiver, MAC and baseband, CPU+ IRAM, and Flash memory )    VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 12 MHz   28 35 32  mA   VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 24 MHz      29 36 33  mA   Tx current             Radio transmitter, MAC, and baseband 25°C and 1.8 V core; max. power out (+3 dBm typical) ARM® Cortex-M3 sleeping  26 136 138 mA  Total Tx current (Radio transmitter, MAC and baseband, CPU + IRAM, and Flash memory )  VDD_PADS = 3.0 V, 25°C; maximum power setting (+7dBm); running at 24 MHz  40 150 152 mA  VDD_PADS = 3.0 V, 25°C; +3 dBm power setting; ARM® Cortex-M3 running at 24 MHz  32 142 144 mA  VDD_PADS = 3.0 V, 25°C; 0dBm power setting; ARM®  Cortex-M3 running at 24 MHz  30 140 142 mA  VDD_PADS = 3.0 V, 25°C; minimum power setting; ARM® Cortex-M3 running at 24 MHz 24 134 136 mA
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  4.5   RF CHARACTERISTIC 4.5.1    Receiver Table 4.7 Receiver characteristics  Parameter Conditions Typical value for module (Power Level Option) Unit "S" Standard "R" Front End "T" Front End         Frequency range      2400  -  2500  MHz   Sensitivity (boost mode)   1% PER, 20 byte packet defined by IEEE 802.15.4-2003   -100 TBD -105  dBm   Sensitivity   1% PER, 20 byte packet defined by IEEE 802.15.4-2003   -99 TBD -104  dBm   Co-channel rejection   IEEE 802.15.4 signal at -82 dBm   -6       dBc   Relative frequency error (2 x 40 ppm required by IEEE 802.15.4)      -120  …  +120  ppm   Relative timing error (2 x 40 ppm required by IEEE 802.15.4)      -120  …  +120  ppm   Linear RSSI range    As defined by IEEE 802.15.4   40        dB   RSSI Range       -90  …  -30  dBm       4.5.2    Transmitter  Table 4.8 Transmitter characteristics  Parameter Conditions Typical value for module  (Power Level Option) Unit "S" Standard "R" Front End "T" Front End     Maximum output power (boost mode) At highest power setting 7 20 20 dBm Maximum output power At highest power setting 3 20 20 dBm Minimum output power At lowest power setting -32 -9 -9 dBm Error vector magnitude As defined by IEEE 802.15.4, which sets a 35% maximum 5  …  15 % Carrier frequency error  -40  …  +40 ppm PSD mask relative 3,5 MHz away -20   dB PSD mask absolute 3,5 MHz away -30   dBm
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  5    MECHANICAL CHARACTERISTICS 5.1   MODULE PAD DIAGRAM Module pad connection diagram is depicted below (top view):   Fig. 5.1 Pad connection diagram for modules (top view)
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  5.2   MODULE PAD DESCRIPTION The following table describes the pads of the module. Table 5.1: Pad Description Pad# Signal Direction Description 1 GND Power Ground supply pad 2 GND Power Ground supply pad 3 VCC Power Power supply pad 4 VCC Power Power supply pad 5 nRESET I Active low chip reset (internal pull-up) 6 PC5 I/O Digital I/O TX_ACTIVE O Logic-level control for external Rx/Tx switch. The STM32W108 baseband controls TX_ACTIVE and drives it high (VDD_PADS) when in Tx mode. Select alternate output function with GPIO_PCCFGH[7:4] 7 PC6 I/O Digital I/O OSC32B I/O 32.768 kHz crystal oscillator. Select analogue function with GPIO_PCCFGH[11 :8] nTX_ACTIVE O Inverted TX_ACTIVE signal (see PC5) Select alternate output function with GPIO_PCCFGH[11:8] 8 PC7 I/O Digital I/O OSC32A I/O 32.768 kHz crystal oscillator. Select analogue function with GPIO_PCCFGH[15:12] OSC32_EXT I Digital 32 kHz clock input source 9 PA7 I/O High current Digital I/O Disable REG_EN with GPIO_DBGCFG[4] TIM1CH4 O Timer 1 Channel 4 output Enable timer output with TIM1_CCER Select alternate output function with GPIO_PACFGH[15:12] Disable REG_EN with GPIO_DBGCFG[4] I Timer 1 Channel 4 input. Cannot be remapped REG_EN O External regulator open drain output. (Enabled after reset). 10 PB3 I/O Digital I/O TIM2_CH3 (see also Pad 13) O Timer 2 channel 3 output Enable remap with TIM2_OR[6] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PBCFGL[15:12] I Timer 2 channel 3 input Enable remap with TIM2_OR[6] UART_CTS I UART CTS handshake of Serial Controller 1 Enable with SC1_UARTCFG[5] Select UART with SC1_MODE SC1SCLK O SPI master clock of Serial Controller 1 Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[6] Enable master with SC1_SPICFG[4] Select SPI with SC1_MODE Select alternate output function with GPIO_PBCFGL[15:12] I SPI slave clock of Serial Controller 1 Enable slave with SC1_SPICFG[4] Select SPI with SC1_MODE
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Table 5.1: Pad Description (cont) Pad# Signal Direction Description 11 PB4 I/O Digital I/O TIM2_CH4 (see also Pad 15) O Timer 2 channel 4 output Enable remap with TIM2_OR[7] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PBCFGH[3:0] I Timer 2 channel 4 input  Enable remap with TIM2_OR[7] UART_RTS O UART RTS handshake of Serial Controller 1 Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[7] Enable with SC1_UARTCFG[5] Select UART with SC1_MODE Select alternate output function with GPIO_PBCFGH[3:0] SC1nSSEL I SPI slave select of Serial Controller 1 Enable slave with SC1_SPICFG[4] Select SPI with SC1_MODE 12 PA0 I/O Digital I/O TIM2_CH1 (see also Pad 20) O Timer 2 channel 1 output Disable remap with TIM2_OR[4] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PACFGL[3:0] I Timer 2 channel 1 input Disable remap with TIM2_OR[4] SC2MOSI O SPI master data out of Serial Controller 2 Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[4] Enable master with SC2_SPICFG[4] Select SPI with SC2_MODE Select alternate output function with GPIO_PACFGL[3:0] I SPI slave data in of Serial Controller 2 Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE 13 PA1 I/O Digital I/O TIM2_CH3 (see also Pad 10) O Timer 2 channel 3 output Disable remap with TIM2_OR[6] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PACFGL[7:4] I Timer 2 channel 3 input Disable remap with TIM2_OR[6] SC2SDA I/O TWI data of Serial Controller 2 Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[6] Select TWI with SC2_MODE Select alternate open-drain output function with GPIO_PACFGL[7:4] SC2MISO O SPI slave data out of Serial Controller 2 Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[6] Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE Select alternate output function with GPIO_PACFGL[7:4] I SPI master data in of Serial Controller 2 Enable slave with SC2_SPICFG[4] 14 GND Power Ground supply pad.
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Table 5.1: Pad Description (cont) Pad# Signal Direction Description 15 PA2 I/O Digital I/O. TIM2_CH4 (see also Pad 11) O Timer 2 channel 4 output. Disable remap with TIM2_OR[7]. Enable timer output in TIM2_CCER . Select alternate output function with GPIO_PACFGL[11:8]. I Timer 2 channel 4 input Disable remap with TIM2_OR[7]. SC2SCL I/O TWI clock of Serial Controller 2. Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[7]. Select TWI with SC2_MODE. Select alternate open-drain output function with GPIO_PACFGL[11:8]. SC2SCLK O SPI master clock of Serial Controller 2. Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[7]. Enable master with SC2_SPICFG[4]. Select SPI with SC2_MODE. Select alternate output function with GPIO_PACFGL[11:8]. I SPI slave clock of Serial Controller 2. Enable slave with SC2_SPICFG[4]. Select SPI with SC2_MODE. 16 PA3 I/O Digital I/O SC2nSSEL I SPI slave select of Serial Controller 2 Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE TRACECLK (see also Pad 27) O Synchronous CPU trace clock . Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[5]. Enable trace interface in ARM core. Select alternate output function with GPIO_PACFGL[15:12]. TIM2_CH2 (see also Pad 21) O Timer 2 channel 2 output. Disable remap with TIM2_OR[5]. Enable timer output in TIM2_CCER. Select alternate output function with GPIO_PACFGL[15:12]. I Timer 2 channel 2 input Disable remap with TIM2_OR[5]. 17 PA4 I/O Digital I/O. ADC4 Analog ADC Input 4 Select analogue function with GPIO_PACFGH[3:0]. PTI_EN O Frame signal of Packet Trace Interface (PTI). Disable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[3:0]. TRACEDATA2 O Synchronous CPU trace data bit 2. Select 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[3:0]. 18 PA5 I/O Digital I/O. ADC5 Analog ADC Inputs Select analog function with GPIO_PACFGH[7:4]. PTI_DATA O Data signal of Packet Trace Interface (PTI). Disable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[7:4]. nBOOTMODE I Embedded serial boot-loader activation out of reset Signal is active during and immediately after a reset on nRESET. TRACEDATA3 O Synchronous CPU trace data bit 3. Select 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[7:4]. 19 PA6 I/O High current Digital I/O. TIM1_CH3 O Timer 1 channel 3 output. Enable timer output in TIM1_CCER. Select alternate output function with GPIO_PACFGH[11 :8]. I Timer 1 channel 3 input Cannot be remapped.
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  Table 5.1: Pad Description (cont) Pad# Signal Direction Description 20 PB1 I/O Digital I/O. SC1MISO O SPI slave data out of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select SPI with SC1_MODE. Select slave with SC1_SPICR. Select alternate output function with GPIO_PBCFGL[7:4]. SC1MOSI O SPI master data out of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select SPI with SC1_MODE. Select master with SC1_SPICR. Select alternate output function with GPIO_PBCFGL[7:4] SC1SDA I/O TWI data of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select TWI with SC1_MODE. Select alternate open-drain output function with GPIO_PBCFGL[7:4]. SC1TXD O UART transmit data of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select UART with SC1_MODE. Select alternate output function with GPIO_PBCFGL[7:4]. TIM2_CH1 (see also Pad 12) O Timer 2 channel 1 output. Enable remap with TIM2_OR[4]. Enable timer output in TIM2_CCER. Select alternate output function with GPIO_PACFGL[7:4]. I Timer 2 channel 1 input Disable remap with TIM2_OR[4]. 21 PB2 I/O Digital I/O SC1MISO I SPI master data in of Serial Controller 1. Select SPI with SC1_MODE. Select master with SC1_SPICR. SC1MOSI I SPI slave data in of Serial Controller 1. Select SPI with SC1_MODE. Select slave with SC1_SPICR SC1SCL I/O TWI clock of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[5]. Select TWI with SC1_MODE. Select alternate open-drain output function with GPIO_PBCFGL[11 :8]. SC1RXD I UART receive data of Serial Controller 1. Select UART with SC1_MODE. TIM2_CH2 (see also Pad 16) O Timer 2 channel 2 output. Enable remap with TIM2_OR[5]. Enable timer output in TIM2_CCER. Select alternate output function with GPIO_PBCFGL[11 :8]. I Timer 2 channel 2 input. Enable remap with TIM2_OR[5]. 22 SWCLK I/O Serial Wire clock input/output with debugger. Selected when in Serial Wire mode (see JTMS description, Pad 26) JTCK 1 JTAG clock input from debugger. Selected when in JTAG mode (default mode, see JTMS description, Pad 26) Internal pull-down is enabled. 23 PC2 I/O Digital I/O. Enable with GPIO_DBGCFG[5]. JTDO O JTAG data out to debugger. Selected when in JTAG mode (default mode, see JTMS description, Pad 26). SWO O Serial Wire Output asynchronous trace output to debugger. Select asynchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[11:8]. Enable Serial Wire mode (see JTMS description, Pad 26). Internal pull-up is enabled.
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Table 5.1: Pad Description (cont) Pad# Signal Direction Description 24 PC3 I/O Digital I/O Either Enable with GPIO_DBGCFG[5], or enable Serial Wire mode (see JTMS description, Pad 26) JTDI 1 JTAG data in from debugger Selected when in JTAG mode (default mode, see JTMS description, Pad 26). Internal pull-up is enabled. 25 GND Power Ground supply pad. 26 PC4 I/O Digital I/O Enable with GPIO_DBGCFG[5] JTMS I JTAG mode select from debugger. Selected when in JTAG mode (default mode). JTAG mode is enabled after power-up or by forcing nRESET low. Select Serial Wire mode using the ARM-defined protocol through a debugger. Internal pull-up is enabled. SWDIO I/O Serial Wire bidirectional data to/from debugger. Enable Serial Wire mode (see JTMS description). Select Serial Wire mode using the ARM-defined protocol through a debugger. Internal pull-up is enabled. 27 PB0 I/O Digital I/O VREF Analog O ADC reference output. Enable analog function with GPIO_PBCFGL[3:0] VREF Analog I ADC reference input. Enable analog function with GPIO_PBCFGL[3:0]. Enable reference output with an STM system function IRQA I External interrupt source A. TRACECLK (see also Pad 16) O Synchronous CPU trace clock. Enable trace interface in ARM core. Select alternate output function with GPIO_PBCFGL[3:0]. TIM1CLK I Timer 1 external clock input TIM2MSK I Timer 2 external clock mask input 28 GND Power Ground supply pad. 29 PC1 I/O Digital I/O ADC3 Analog ADC Inputs Enable analog function with GPIO_PCCFGL[7:4] SWO (see also Pad 23) O Serial Wire Output asynchronous trace output to debugger. Select asynchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[7:4]. TRACEDATA0 O Synchronous CPU trace data bit 0. Select 1-, 2- or 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[7:4]. 30 PC0 I/O High current Digital I/O. Either enable with GPIO_DBGCFG[5], or enable Serial Wire mode (see JTMS description, Pad 26) and disable TRACEDATA1. JRST I JTAG reset input from debugger. Selected when in JTAG mode (default mode, see JTMS description) and TRACEDATA1 is disabled. Internal pull-up is enabled. IRQD1 I Default external interrupt source D TRACEDATA1 O Synchronous CPU trace data bit 1. Select 2- or 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[3:0].
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Table 5.1: Pad Description (cont) Pad# Signal Direction Description 31 PB7 I/O High current Digital I/O ADC2 Analog ADC Input 2 Enable analog function with GPIO_PBCFGH[15:12] IRQC1 I Default external interrupt source C TIM1_CH2 O Timer 1 channel 2 output. Enable timer output in TIM1_CCER. Select alternate output function with GPIO_PBCFGH[15:12]. I Timer 1 channel 2 input .(Cannot be remapped). 32 PB6 I/O High current Digital I/O. ADC1 Analog ADC Input 1. Enable analog function with GPIO_PBCFGH[11:8]. IRQB I External interrupt source B. TIM1_CH1 O Timer 1 channel 1 output. Enable timer output in TIM1_CCER. Select alternate output function with GPIO_PBCFGH[11:8]. I Timer 1 channel 1 input. (Cannot be remapped). 33 PB5 I/O Digital I/O ADC0 Analog ADC Input 0. Enable analog function with GPIO_PBCFGH[7:4]. TIM2CLK I Timer 2 external clock input. TIM1MSK I Timer 2 external clock mask input. 34 GND Power Ground supply pad. 35 GNDRF RF Ground Ground pad for RF port. 36 RF Analog RF port with 50 Ohm impedance. 37 GNDRF RF Ground Ground pad for RF port.       5.3   PACKAGE MECHANICAL DIMENSIONS Module dimensions are 25 mm x 19 mm x 2 mm and detailed drawing is shown below on Fig. 5.2.  Fig. 5.2 Dimensions of the module. Left: EMI Option “S” -- without shielding; Right: Option “M” – with metal shielding (Enhanced EMI protection)
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  6    SOLDERING 6.1   SOLDER TEMPERATURE PROFILE The following Fig. 6.1  illustrates the  solder temperature profile  for the  module. This temperature  profile is  similar for  other RoHS compliant packages, but manufacturing lines should be programmed with this profile in order to guarantee proper solder connection to the PCB. Please note: module can be soldered only once. Reflow Profile  Fig. 6.1 Reflow profile  6.2   PROFILE PARAMETERS The following table 6.1 contains the temperature profile parameters.  Important note: module should be processed according to recommended temperature profile only one time.  Table 6.1 Solder Reflow Parameters Parameter Value Average Ramp Up Rate (from Tsoakmax to Tpeak) 3°C per second max Average Ramp Up Rate (from 25°C to Tsoakmin) 2°C to 4°C per second max Minimum Soak Temperature (Tsoakmjn) 150°C Maximum Soak Temperature (Tsoakmax) 200°C TL 220°C Time above TL 30  to 60 seconds Minimum Peak Temperature Tpeakmin 230°C Maximum Peak Temperature Tpeakmax 250°C Ramp Down Rate 6°C per second max
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  6.3   RECOMMENDED FOOTPRINT Top view of recommended footprint for module is shown below on Fig. 6.2:   Fig. 6.2 Recommended footprint for modules (top view)  For the modules with output option “A” (with Embedded SMD Antenna) it is important to prevent presence of any conductive materials  in  proximity  of  the  module’s  antenna.  This  requirement  is  valid  for  copper  traces,  ground  planes,  wires  and connectors too. Recommended “Copper-Keep-Out” area, where presence of copper (and any conductive material too) should be avoided is depicted on Fig. 6.3 below:  Fig. 6.3 Recommended “Copper-Keep-Out” Area (top view) – only for modules with Output Option “A”
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  7    ORDERING  INFORMATION Example:            DZ -  ZB -  P -  O -  S -   E -      Manufactured by DiZiC   ZigBee Module    Power level options  S  -- Standard + 7dBm R  -- Front End with RF Output Power Level Detector + 20 dBm T  -- Front End + 20 dBm    Output options:  A  -- Embedded SMD Antenna  P  -- Single ended 50 Ohm RF Pad U  -- U.FL 50 Ohm coaxial connector     Stack options:  F  -- RF4CE stack X  -- Proprietary stack Z  -- EmberZNet PRO stack   Electromagnetic Interference (EMI) protection options:  S  -- Standard, without protective metal shielding M  -- Metal Shield, for enhanced EMI protection
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS 8    LIST OF ACRONYMS This  chapter  defines  a  collection  of  terms  that  are  commonly  used  when  talking  about  networks  in  general  or  ZigBee  in particular.    AC      Alternating Current ACK      Acknowledge ADC       Analogue-to-Digital Converter API       Application Programming Interface ARM      Advanced RISC Machines Ltd, now ARM Holdings BiCMOS     Bipolar junction transistors combined with CMOS technology BER      Bit Error Rate CMOS      Complementary Metal–Oxide–Semiconductor CPU      Central Processing Unit CTS      Clear To Send dB      decibel, logarithmic unit of measurement that expresses the magnitude of a physical quantity dBm      Power ratio in decibels of the measured power referenced to one milliwatt (1 mW) DC       Direct Current DWT      Data Watch-point and Trace EEPROM     Electrically Erasable Programmable Read-Only Memory EMI      Electromagnetic Interference ESD       Electrostatic Discharge FE      Front End FPB      Flash Patch and Breakpoint GPIO       General Purpose Input/Output HAL      Hardware Abstraction Layer HBM      Human Body Model HF      High Frequency HVAC       Heating, Ventilating and Air Conditioning I²C      Inter-Integrated Circuit bus IEEE       Institute of Electrical and Electronics Engineers IRQ       Interrupt Request ISM       Industrial, Scientific and Medical radio band ITM      Instrumentation Trace Macrocell JTAG      Joint Test Action Group, digital interface for debugging of embedded device LNA       Low Noise Amplifier MAC       Media Access Control layer MCU      Microcontroller Unit MPU      Multi-core Processing Unit PA       Power Amplifier PCB       Printed Circuit Board PER       Package Error Ratio PSD      Power Spectral Density PTI      Packet Trace Interface RAM       Random Access Memory RF       Radio Frequency RF4CE      Radio Frequency for Consumer Electronics consortium RSSI      Received Signal Strength Indicator RX       Receiver SMD      Surface Mounted Device SPI       Serial Peripheral Interface STM      STMicroelectronics, an Italian-French electronics and semiconductor manufacturer TWI      Two Wire Interface, a variant of I²C TX       Transmitter UART       Universal Asynchronous Receiver/Transmitter U.FL      Miniature coaxial RF connector (up to 6 GHz) manufactured by Hirose Electric Group in Japan VCO      Voltage Controlled Oscillator ZigBee, ZigBee PRO  Wireless networking standards targeted at low-power applications 802.15.4     The IEEE 802.15.4-2003 standard applicable to low-rate wireless Personal Area Network
 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN          Email: info@dizic.com | Web: www.dizic.com All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS  9    REFERENCES & REVISION HISTORY [1]. STM32W108HB, STM32W108CB, High-performance, 802.15.4 wireless system-on-chip, Data brief,  20-Aug-2009, Rev. 1  [2]. STM32W108HB, STM32W108CB, High-performance, 802.15.4 wireless system-on-chip, Preliminary data,  01-Mar-2010, Rev. 4  [3]. RN0034, Release notes, STM32W108xx starter and extension kits EmberZNet 4.0.2 GA, Doc ID 16225,  16-Feb-2010, Rev. 2   [4]. RN0047, Release notes, STM32W108xx starter and extension kits ZigBee RF4CE, Doc  ID 17098, 23-Feb-2010, Rev. 1   [5]. RN0046, Release note, STM32W108xx starter and extension kits for Simple MAC library, Doc  ID 16996, 04-March-2010, Rev. 1   [6]. UM0894, User Manual, STM32W-SK and STM32W-EXT starter and extension kits for STM32W108xx,  Doc  ID 16999, 05-Feb-2010, Rev. 1  [7]. UM0847, User Manual, IAR customization for STM32W108 system-on-chip,  Doc  ID 16551, 16-Nov-2009, Rev. 1.

Navigation menu