Sierra Wireless WMP100 Quadband GSM Module User Manual Wireless Microprocessor WMP100 OASS1 0

Sierra Wireless, Inc. Quadband GSM Module Wireless Microprocessor WMP100 OASS1 0

Contents

User Manual

  Wireless Microprocessor® WMP100/ Open AT® Software Suite v1.0 Product Technical Specification and Customer Design Guidelines Reference: WM_DEV_WUP_PTS_005 Revision: 002 Date: March 19, 2007
  WMP100/Open AT® Software Suite v1.0 Product Technical Specification & Customer Design Guidelines Reference: WM_DEV_WUP_PTS_005 Revision: 002 Date: March 19, 2007            Powered by the Wavecom Open AT® Software Suite   confidential ©  Page : 1 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 2 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Document Information Level  Date  History of the evolution   001  19/10/2006  Creation (Preliminary version)  002 19/03/2007 Updates
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 3 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Overview This document defines and specifies the WMP100/Open AT® Software Suite v1.0 available in a GSM/GPRS Class 10 quad-band version.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 4 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Table of Contents Document Information......................................................................... 2 Overview ............................................................................................. 3 Table of Contents................................................................................ 4 Table of Figures................................................................................. 10 Cautions ............................................................................................ 12 Trademarks ....................................................................................... 12 Copyright .......................................................................................... 12 1 References................................................................................ 13 1.1 Reference documents ............................................................................13 1.1.1 WAVECOM reference documentation ............................................13 1.1.2 General reference documentation ..................................................13 1.2 List of abbreviations ..............................................................................14 2 General description................................................................... 17 2.1 General information...............................................................................17 2.1.1 Overall dimensions ........................................................................17 2.1.2 Environment and mechanics..........................................................17 2.1.3 GSM/GPRS Features ......................................................................17 2.1.4 Interfaces.......................................................................................18 2.1.5 Operating system ..........................................................................18 2.2 Functional description ...........................................................................19 2.2.1 RF functionalities ...........................................................................20 2.2.2 Baseband functionalities................................................................20 2.3 Software description .............................................................................20 3 Interfaces ................................................................................. 21 3.1 General Interfaces .................................................................................21 3.2 Power supply ........................................................................................22 3.2.1 Power supply description ..............................................................22 3.2.2 Power supply constraints on VBATT-RF ........................................22 3.2.3 Power supply constraints on VBATT-BB........................................23 3.2.4 Electrical characteristics ................................................................23 3.2.5 Pin description...............................................................................23
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 5 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.2.6 Application ....................................................................................24 3.3 Power consumption ..............................................................................25 3.3.1.1 Power consumption without Open AT® processing .................26 3.3.1.2 Power consumption with a Dhrystone Open AT® application...27 3.3.1.3 Consumption waveform samples.............................................28 3.3.1.3.1 Connected mode current waveform .......................................28 3.3.1.3.2 Slow Idle mode current waveform .........................................29 3.3.1.3.3 Fast Idle mode current waveform ..........................................30 3.3.1.3.4 Transfer mode Class 10 current waveform ............................31 3.4 Electrical information for digital I/O........................................................32 3.5 SPI Bus .................................................................................................34 3.5.1 Features ........................................................................................34 3.5.1.1 Characteristics .........................................................................34 3.5.1.2 SPI configuration .....................................................................34 3.5.1.3 SPI waveforms ........................................................................35 3.5.2 Pin description...............................................................................36 3.5.3 Application ....................................................................................36 3.5.3.1 4-wire interface .......................................................................36 3.5.3.2 3-wire interface .......................................................................37 3.6 I2C bus..................................................................................................38 3.6.1 Features ........................................................................................38 3.6.1.1 Characteristics .........................................................................38 3.6.1.2 I²C waveforms .........................................................................38 3.6.2 Pin description...............................................................................39 3.6.3 Application ....................................................................................39 3.7 Keyboard interface.................................................................................40 3.7.1 Features ........................................................................................40 3.7.2 Pin description...............................................................................41 3.7.3 Application ....................................................................................42 3.8 Main serial link (UART1)........................................................................42 3.8.1 Features ........................................................................................42 3.8.2 Pin description...............................................................................43 3.8.3 First download ..............................................................................45 3.8.4 Application ....................................................................................46 3.9 Auxiliary serial link (UART2) ..................................................................50 3.9.1 Features ........................................................................................50 3.9.2 Pin description...............................................................................51 3.9.3 Application ....................................................................................51 3.10 SIM Interface.........................................................................................52 3.10.1 Features ........................................................................................52 3.10.2 Pin description...............................................................................54 3.10.3 Application ....................................................................................54 3.11 General Purpose Input/Output ...............................................................56 3.11.1 Features ........................................................................................56 3.11.2 Pin description...............................................................................56 3.12 Analog to Digital Converter....................................................................58 3.12.1 Features ........................................................................................58 3.12.2 Pin description...............................................................................58 3.12.3 Application ....................................................................................59 3.13 Digital to Analog Converter....................................................................60
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 6 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.13.1 Features ........................................................................................60 3.13.2 Pin description...............................................................................60 3.14 Analogue audio interface.......................................................................61 3.14.1 Microphone Features.....................................................................61 3.14.1.1 Electrical characteristics...........................................................61 3.14.1.1.1 MIC1 Microphone Inputs ...................................................61 3.14.1.1.2 MIC2 Microphone Inputs ...................................................62 3.14.2 Speaker Features ...........................................................................64 3.14.2.1 Speakers Outputs Power .........................................................64 3.14.2.1.1 SPK1 Speaker Outputs.......................................................64 3.14.2.1.2 SPK2  Speaker Outputs......................................................66 3.14.3 Pin description...............................................................................67 3.14.4 Application ....................................................................................67 3.14.4.1 Microphone .............................................................................67 3.14.4.1.1 MIC2 Differential connection example................................67 3.14.4.1.2 MIC2 single-ended connection example ............................69 3.14.4.1.3 MIC1 Differential connection example................................70 3.14.4.1.4 MIC1 Single-ended connection example ............................72 3.14.4.2 Speaker ...................................................................................73 3.14.4.2.1 SPK2 Differential connection..............................................73 3.14.4.2.2 SPKx Single-ended connection ..........................................74 3.14.5 Design recommendation................................................................74 3.14.5.1 General ....................................................................................74 3.14.5.2 Recommended microphone characteristics..............................74 3.14.5.3 Recommended speaker characteristics ....................................75 3.14.5.4 Recommended filtering components........................................75 3.14.5.5 Audio track and PCB layout recommendation ..........................77 3.15 PWM / Buzzer Output ...........................................................................78 3.15.1 Features ........................................................................................78 3.15.2 Pin description...............................................................................78 3.15.3 Application ....................................................................................79 3.16 Battery charging interface .....................................................................80 3.16.1 Feature ..........................................................................................80 3.16.1.1 Pre-Charging ...........................................................................81 3.16.1.2 Temperature monitoring ..........................................................81 3.16.2 Pin description...............................................................................82 3.16.3 Application ....................................................................................82 3.17 ON / ~OFF signal...................................................................................84 3.17.1 Features ........................................................................................84 3.17.2 Pin description...............................................................................84 3.17.3 Application ....................................................................................84 3.17.3.1 Power ON................................................................................85 3.17.3.2 Power OFF...............................................................................87 3.18 BOOT signal ..........................................................................................88 3.18.1 Features ........................................................................................88 3.18.2 Pin description...............................................................................88 3.18.3 Application ....................................................................................88 3.19 Reset signals .........................................................................................89 3.19.1 Features ........................................................................................89 3.19.2 Pin description...............................................................................92 3.19.3 Application ....................................................................................93 3.20 External Interrupt ..................................................................................94
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 7 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.20.1 Features ........................................................................................94 3.20.2 Pin description...............................................................................94 3.20.3 Application ....................................................................................95 3.21 VCC_2V8 and VCC_1V8 output ..............................................................96 3.21.1 Features ........................................................................................96 3.21.2 Pin description...............................................................................96 3.21.3 Application ....................................................................................96 3.22 Real Time Clock.....................................................................................97 3.22.1 Features ........................................................................................97 3.22.2 Pin description...............................................................................97 3.22.3 Application ....................................................................................98 3.22.4 Design recommendation................................................................98 3.23 BAT-RTC (Backup Battery) ....................................................................99 3.23.1 Features ........................................................................................99 3.23.2 Pin description.............................................................................100 3.23.3 Application ..................................................................................100 3.23.3.1 Super Capacitor .....................................................................100 3.23.3.2 Non Rechargeable battery......................................................101 3.23.3.3 Rechargeable battery cell.......................................................101 3.24 FLASH-LED signal ...............................................................................102 3.24.1 Features ......................................................................................102 3.24.2 Pin description.............................................................................103 3.24.3 Application ..................................................................................104 3.25 Digital audio interface (PCM) ...............................................................104 3.25.1 Features ......................................................................................104 3.25.2 Pin description.............................................................................107 3.25.3 Application TBD...........................................................................107 3.26 USB 2.0 interface ................................................................................107 3.26.1 Features ......................................................................................107 3.26.2 Pin description.............................................................................108 3.26.3 Application ..................................................................................109 3.27 Memory interface ................................................................................110 3.27.1 Features ......................................................................................111 3.27.1.1 Generic Description................................................................111 3.27.1.2 Case of ST 32/8 (M36W0R5030T0ZAQF) ..............................112 3.27.1.3 Access bus Waveform ...........................................................113 3.27.1.4 Flash space............................................................................116 3.27.1.5 RAM space ............................................................................116 3.27.1.6 16-bit wide data bus User Space ...........................................117 3.27.2 Electrical characteristics of the signals.........................................117 3.27.3 Pin description.............................................................................117 3.27.4 Application ..................................................................................120 3.27.5 Constraints ..................................................................................121 3.28 RF interface .........................................................................................124 3.28.1 RF connection..............................................................................124 3.28.2 RF performances .........................................................................124 3.28.3 Antenna specifications ................................................................125 3.28.4 Antenna.......................................................................................125 4 Consumption measurement procedure ................................... 127
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 8 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  4.1 Hardware configuration.......................................................................127 4.1.1 Equipment ...................................................................................127 4.1.2 Wireless Microprocessor motherboard ........................................129 4.1.3 SIM cards used ...........................................................................130 4.2 Software configurations ......................................................................130 4.2.1 Wireless Microprocessor configuration ........................................130 4.2.2 Equipment configuration .............................................................131 4.3 Template .............................................................................................132 5 Technical specifications ......................................................... 133 5.1 Ball Grid Array pin out .........................................................................133 5.2 Environmental Specifications...............................................................139 5.3 MSL level ............................................................................................140 5.4 Mechanical specifications....................................................................140 5.4.1 Physical characteristics................................................................140 5.4.2 Mechanical drawings ..................................................................140 5.4.3 Mechanical constraints................................................................143 5.5 PCB specifications...............................................................................143 6 Peripheral devices references ................................................. 143 6.1 SIM Card Reader .................................................................................143 6.2 Microphone.........................................................................................143 6.3 Speaker ...............................................................................................143 6.4 Antenna Cable.....................................................................................144 6.5 GSM antenna ......................................................................................144 7 Noises and design................................................................... 145 7.1 EMC recommendations .......................................................................145 7.2 Power Supply......................................................................................145 8 Appendix................................................................................. 146 8.1 Standards and Recommendations.......................................................146 8.2 Safety recommendations (for information only) ...................................150 8.2.1 RF safety .....................................................................................150 8.2.1.1 General ..................................................................................150 8.2.1.2 Exposure to RF energy...........................................................150 8.2.1.3 Efficient terminal operation ....................................................150 8.2.1.4 Antenna care and replacement ..............................................151 8.2.2 General safety..............................................................................151 8.2.2.1 Driving...................................................................................151 8.2.2.2 Electronic devices ..................................................................151 8.2.2.3 Vehicle electronic equipment .................................................151 8.2.2.4 Medical electronic equipment ................................................151 8.2.2.5 Aircraft ..................................................................................152 8.2.2.6 Children .................................................................................152
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 9 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  8.2.2.7 Blasting areas........................................................................152 8.2.2.8 Potentially explosive atmospheres .........................................152
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 10 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Table of Figures Figure 1 : Functional architecture ................................................................... 19 Figure 2 : Power supply during burst emission .............................................. 22 Figure 3 : Reject filter diagram........................................................................ 24 Figure 4: SPI Timing diagrams, Mode 0, Master, 4 wires ............................... 35 Figure 5: Example of 4-wire SPI bus application............................................. 36 Figure 6: Example of 3-wire SPI bus application............................................. 37 Figure 7: I²C Timing diagrams, Master ........................................................... 38 Figure 8: First example of I²C bus application................................................. 39 Figure 9: Second example of I²C bus application ............................................ 40 Figure 10: Example of keyboard implementation ............................................ 42 Figure 11: Example of UART1 connection for download with another device on the link...................................................................................................... 45 Figure 12: Example of RS-232 level shifter implementation for UART1........... 46 Figure 13: Example of V24/CMOS serial link implementation for UART1 ........ 48 Figure 14: Example of full modem V24/CMOS serial link implementation for UART1 ...................................................................................................... 49 Figure 15: Example of RS-232 level shifter implementation for UART2........... 51 Figure 16: Example of SIM Socket implementation......................................... 54 Figure 17: Example of MIC2 input differential connection with LC filter.......... 67 Figure 18: Example of MIC2 input differential connection without LC filter..... 68 Figure 19: Example of MIC2 input single-ended connection with LC filter ...... 69 Figure 20: Example of MIC2 input single-ended connection without LC filter . 69 Figure 21: Example of MIC1 input differential connection with LC filter.......... 70 Figure 22: Example of MIC1 input differential connection without LC filter..... 71 Figure 23: Example of MIC1 input single-ended connection with LC filter ...... 72 Figure 24: Example of MIC1 input single-ended connection without LC filter . 72 Figure 25: Example of Speaker differential connection.................................... 73 Figure 26: Example of Speaker single-ended connection ................................ 74 Figure 27: Microphone ................................................................................... 75 Figure 28: Audio track design......................................................................... 77 Figure 29: Example of buzzer implementation ................................................ 79 Figure 30: Example of LED driven by the BUZZ-OUT output........................... 79 Figure 31: Charging block diagram................................................................. 80 Figure 32: Charging schematic for Li-Ion ........................................................ 82
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 11 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Figure 33: Example of ON/~OFF pin connection ............................................. 84 Figure 34 : Power-ON sequence (no PIN code activated) ................................ 85 Figure 35 : Power-OFF sequence ................................................................... 87 Figure 36: Example of BOOT pin implementation ........................................... 88 Figure 37 : Reset functional block................................................................... 89 Figure 38 : Reset waveform events ................................................................ 90 Figure 39 : Reset sequence waveform............................................................ 91 Figure 40 :  BOOT sequence waveform .......................................................... 92 Figure 41: Example of ~RESET pin connection with push button configuration................................................................................................................. 93 Figure 42: Example of ~RESET pin connection with transistor configuration.. 93 Figure 43: Example of INTx driving example with open collector.................... 95 Figure 44: Example of INTx driving example with open collector.................... 95 Figure 45 : PCB lay out for the crystal MS2V-T1S .......................................... 98 Figure 46 : Real Time Clock power supply...................................................... 99 Figure 47: RTC supplied by a gold capacitor................................................. 100 Figure 48: RTC supplied by a non rechargeable battery................................ 101 Figure 49: RTC supplied by a rechargeable battery cell ................................ 101 Figure 50 : FLASH-LED state during RESET and Initialization time ............... 103 Figure 51: Example of GSM activity status implementation.......................... 104 Figure 52 : PCM Frame waveform................................................................ 106 Figure 53 : PCM Sampling waveform........................................................... 106 Figure 54: Example of USB implementation.................................................. 109 Figure 55: Memory bus ................................................................................ 110 Figure 56: Read synchronous timing ............................................................ 113 Figure 57: Write synchronous timing ........................................................... 114 Figure 58: Read / Write Asynchronous timing .............................................. 115 Figure 59: Memory connection schematic .................................................... 120 Figure 60: Memory PCB ............................................................................... 123 Figure 61: Antenna and ground balls placement .......................................... 126 Figure 62: RF 50 ohms embedded line ......................................................... 126 Figure 63: Antenna connection point keep away area .................................. 126 Figure 64: RF connector and ESD protection example .................................. 127 Figure 65: Typical hardware configuration ................................................... 128 Figure 66 : Environmental classes ................................................................ 139 Figure 67 : Mechanical drawing ................................................................... 141 Figure 68 : Mechanical drawing ................................................................... 142
  WM_DEV_WUP_PTS_005 March 19, 2007  Cautions This platform contains a modular transmitter. This device is used for wireless applications. Note that all electronics parts and elements are ESD sensitive. Information provided herein by WAVECOM is accurate and reliable. However no responsibility is assumed for its use and any of such WAVECOM information is herein provided “as is” without any warranty of any kind, whether express or implied. General information about WAVECOM and its range of products is available at the following internet address: http://www.wavecom.com Trademarks ®, WAVECOM®, WISMO®, Open AT®, Wireless Microprocessor®, Wireless CPU®, and certain other trademarks and logos appearing on this document, are filed or registered trademarks of Wavecom S.A. in France or in other countries. All other company and/or product names mentioned may be filed or registered trademarks of their respective owners.  Copyright This manual is copyrighted by WAVECOM with all rights reserved. No part of this manual may be reproduced in any form without the prior written permission of WAVECOM. No patent liability is assumed with respect to the use of their respective owners.   confidential © Page : 12 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 13 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  1 References 1.1 Reference documents For more details, several documents are referenced in this specification.  The WAVECOM documents references herein are provided in the WAVECOM documentation package; the general reference documents which are not WAVECOM owned are not provided in the documentation package. 1.1.1 WAVECOM reference documentation [1] Wireless Microprocessor® WMP100 Technical Specification Reference: WM_DEV_WUP_PTS_004 [2] WMP100 Development Kit User Guide Reference: WM_DEV_WUP_UGD_001 [3] AT Command Interface Guide for Open AT® Firmware v6.5 Reference: WM_DEV_OAT_UGD_035 1.1.2 General reference documentation [4] “I²C Bus Specification”, Version 2.0, Philips Semiconductor 1998 [5] ISO 7816-3 Standard
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 14 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  1.2 List of abbreviations Abbreviation Definition AC Alternative Current ADC Analog to Digital Converter A/D Analog to Digital conversion AF Audio-Frequency AT ATtention (prefix for modem commands) AUX AUXiliary CAN Controller Area Network CB Cell Broadcast CEP Circular Error Probable CLK CLocK CMOS Complementary Metal Oxide Semiconductor CS Coding Scheme CTS Clear To Send DAC Digital to Analogue Converter dB Decibel DC Direct Current DCD Data Carrier Detect DCE Data Communication Equipment DCS Digital Cellular System DR Dynamic Range DSR Data Set Ready DTE Data Terminal Equipment DTR Data Terminal Ready EFR Enhanced Full Rate E-GSM Extended GSM EMC ElectroMagnetic Compatibility EMI ElectroMagnetic Interference EMS Enhanced Message Service EN ENable ESD ElectroStatic Discharges FIFO First In First Out FR Full Rate FTA Full Type Approval
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 15 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Abbreviation Definition GND GrouND GPI General Purpose Input GPC General Purpose Connector GPIO General Purpose Input Output GPO General Purpose Output GPRS General Packet Radio Service GPS Global Positioning System GSM Global System for Mobile communications HR Half Rate I/O Input / Output LED Light Emitting Diode LNA Low Noise Amplifier MAX MAXimum MIC MICrophone MIN MINimum MMS Multimedia Message Service MO Mobile Originated MT Mobile Terminated na Not Applicable NF Noise Factor NMEA National Marine Electronics Association NOM NOMinal NTC Négative Temperature Coefficient PA Power Amplifier Pa Pascal (for speaker sound pressure measurements) PBCCH Packet Broadcast Control CHannel PC Personal Computer PCB Printed Circuit Board PDA Personal Digital Assistant PFM Power Frequency Modulation PSM Phase Shift Modulation PWM Pulse Width Modulation RAM Random Access Memory RF Radio Frequency RFI Radio Frequency Interference
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 16 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Abbreviation Definition RHCP Right Hand Circular Polarization RI Ring Indicator RST ReSeT RTC   Real Time Clock RTCM Radio Technical Commission for Maritime services RTS Request To Send RX Receive  SCL Serial CLock SDA Serial DAta SIM Subscriber Identification Module SMS Short Message Service SPI Serial Peripheral Interface SPL Sound Pressure Level SPK SPeaKer SRAM Static RAM TBC To Be Confirmed TDMA Time Division Multiple Access TP Test Point TVS Transient Voltage Suppressor TX Transmit TYP TYPical UART Universal Asynchronous Receiver-Transmitter USB Universal Serial Bus USSD Unstructured Supplementary Services Data VSWR Voltage Standing Wave Ratio
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 17 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   2 General description 2.1 General information The WMP100 Wireless Microprocessor® is a self-contained E-GSM/GPRS 900/1800 and 850/1900 quad-band processor, including the characteristics listed in the subsection below. 2.1.1 Overall dimensions • Length: 25 mm • Width: 25 mm • Thickness: 3.65 mm • Weight: 4.25 g • Package: WMBGA576 / ball Ø 0,6 mm @ pitch 1mm 2.1.2 Environment and mechanics • Green policy: Restriction of Hazardous Substances in Electrical and Electronic Equipment (RoHS) compliant • Complete shielding  The WMP100 is compliant with RoHS Directive 2002/95/EC which sets limits for the use of certain restricted hazardous substances.  This directive states that “from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)”. 2.1.3 GSM/GPRS Features • 2 Watts EGSM 900/GSM 850 radio section running under 3.6 Volts • 1 Watt GSM1800/1900 radio section running under 3.6 Volts • Hardware GPRS class 10 capable
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 18 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  2.1.4 Interfaces • Digital section running under 2.8 Volts and 1.8Volts. • 3V/1V8 SIM interface • 1.8V Parallel interface for devices (memories, LCD…) • Power supply • Watchdog • Serial links (UART) • Analogue audio • ADC / DAC • PCM digital audio  • Keyboard • USB 2.0 slave • Serial buses (I2C,SPI) • PWM • GPIOs 2.1.5 Operating system • Real Time Clock with calendar • Echo Cancellation + noise reduction (quadri codec) • Full GSM or GSM/GPRS Operating System stack
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 19 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  2.2 Functional description The global architecture of WMP100 is described below:  32768 kHzWMP100ARM 94632bitcoreDSPcoreRadioGSM / GPRSDigital InterfacesAnalog InterfacesExtended Memory BridgeSPI1,2I²CGPIOsITsUSB 2.0UART1,2KEYPADPCMDACADCsAUDIOCH1 & CH2SIMControl &PowerAHB busControlDataAddressresetRTCpowersupplysCharging  PWM Figure 1 : Functional architecture
  WM_DEV_WUP_PTS_005 March 19, 2007  2.2.1 RF functionalities The Radio Frequency (RF) range complies with the Phase II EGSM 900/DCS 1800 and GSM 850/PCS 1900 recommendation.  The frequencies are listed in the table below.   Transmit band (Tx)  Receive band (Rx) GSM 850  824 to 849 MHz  869 to 894 MHz E-GSM 900  880 to 915 MHz  925 to 960 MHz DCS 1800  1710 to 1785 MHz  1805 to 1880 MHz PCS 1900  1850 to 1910 MHz  1930 to 1990 MHz  The RF part is based on a specific quad band chip including: • a Digital low-IF receiver • a Quad-band LNAs (Low Noise Amplifier) • an Offset PLL (Phase Locked Loop) transmitter • a Frequency synthesizer • a Digitally controlled crystal oscillator (DCXO) • a Tx/Rx FEM (Front-End Wireless Microprocessor®) for quad-band GSM/GPRS 2.2.2 Baseband functionalities The Baseband is composed of an ARM9, a DSP and an analog element (with audio signals, I/Q signals, ADC, DAC). The core power supply is to 1.8 volts. The analog power supply is to 2.8v 2.3 Software description The Open AT® Software Suite v1.0 is the software package that supports WMP100.  It consists of: • An Open AT® Firmware v6.5 which drives the WMP100 thanks to an AT command interface over a serial port or USB. • An Open AT® Operating System (OS) v5.0 which runs various types of applications (telemetry, multimedia, automotive…) • An Open AT® Integrated Development Environment (IDE) which builds and debugs applications over the Open AT® Operating System • Several Open AT® plug-ins which are software provided by Wavecom that are able to run over the Open AT® Operating System  confidential © Page : 20 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 21 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3 Interfaces 3.1 General Interfaces  The WMP100 is provided with a “Development Kit Wireless Microprocessor®” containing an access to the all interfaces. The available interfaces are described in the table below.  chapter  Name  Driven by Open AT® Firmware v6.5 Not driven by Open AT® Firmware v6.5 Driven by Open AT® OS v5.0 Not driven by Open AT® OS v5.0 18.5.1 SPI Bus   X X  18.5.2 I2C Bus   X X  11 Keyboard Interface X  X  12.2  Main Serial Link  X    X   13.2  Auxiliary Serial Link  X    X   14 SIM Interface  X  X  3  General Purpose IO  X    X   18.3  Analog to Digital Converter X  X  18.4  Digital to Analog Converter X  X  16  Analog audio Interface X  X  9  PWM / Buzzer Output  X    X   18.3.1 Battery charging interface X  X  18.7 External Interruption X  X  18.1 VCC_2V8 and VCC_1V8  X  X 17 Real Time Clock  X  X  18.2 BAT-RTC (Backup Battery) X  X  8 FLASH-LED signal X  X  18.6 Digital Audio Interface (PCM) X  X  15  USB 2.0 Interface  X    X   4  Memory interface  (on parallel interface)  X X
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 22 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   3.2 Power supply 3.2.1 Power supply description The power supply is one of the key elements in the design of a GSM terminal. The WMP100 is powered by a single power supply VBATT.  This power supply feeds two inputs to the supply, VBATT-BB and VBATT-RF.  VBATT-RF powers all the radio components of the WMP100.  It has to be carefully designed because most of the current is transmitted through this input. The VBATT-RF current is bursted due to the GSM / GPRS transmission protocol.  VBATT-BB supplies the digital part of the WMP100.  VBATT-BB is directly connected to the internal power management unit of the WMP100.  This unit controls the VBATT-BB voltage and provides the power supplies like VCC_1V8 and VCC_2V8.  Note: The VBATT-BB input generates noise, so the VBATT must be filtered by a band reject filter. 3.2.2 Power supply constraints on VBATT-RF Due to the bursted emission in GSM / GPRS, the power supply must be able to deliver high current peaks in a short time. During the peaks the ripple (Uripp) on the supply voltage must not exceed a certain limit (see Table 1 Power supply voltage for details). • In communication mode, a GSM/GPRS class 2 terminal emits 577μs radio bursts every 4.615ms. (See Figure 2 below.) Uripp VBATT-RFT Uripp  T = 4,615 ms t = 577 μs  Figure 2 : Power supply during burst emission • In communication mode, a GPRS class 10 terminal emits 1154μs radio bursts every 4.615ms. VBATT-RF:  • supplies the RF components with 3.6 V directly. It is essential to keep a minimum voltage ripple at this connection in order to avoid any phase error.
  WM_DEV_WUP_PTS_005 March 19, 2007  The RF Power Amplifier current (1.5 A peak in GSM /GPRS mode) flows with a ratio of:  o 1/8 of the time (around 577μs every 4.615ms for GSM /GPRS cl. 2) and  o 2/8 of the time (around 1154μs every 4.615ms for GSM /GPRS cl. 10).  The rising time is around 10μs.   3.2.3 Power supply constraints on VBATT-BB  The VBATT-BB input is used as well to supply the WMP100 core as well to monitor the level voltage of VBATT. VBATT-BB is internally connected to several regulators and to a switching regulator which provides the VCC_1V8 voltage internally. Because the switching regulator generates perturbation on the VBATT signal, it is mandatory to add an external reject filter between VBATT and VBATT-BB.  3.2.4 Electrical characteristics   Input power Supply Voltage   VMIN  VNOM  VMAX  IMAX Ripple max (Uripp) VBATT-BB 3.2 3.6 4.8 0.3 A (TBC)  (TBD) VBATT-RF1,2 3.2 3.6 4.8 1.5 A (TBC) 10mV(TBC) Table 1 Power supply voltage  (1): This value has to be guaranteed during the burst (with 1.5A Peak in GSM or GPRS mode) (2): Maximum operating Voltage Stationary Wave Ratio (VSWR) 2:1  When powering the WMP100 with a battery, the total impedance (battery+protections+PCB) should be <150 mOhms. 3.2.5 Pin description   confidential © Page : 23 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 24 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal  Pin number VBATT-BB  AC1,AC2,AD1,AD2 VBATT-RF  A12,A13,A14,B12,B13,B14   3.2.6 Application The reject filter must be connected between VBATT and VBATT-BB.  Filter WMP100VBATT VBATT-BBL1C1 C2VBATT-RF Figure 3 : Reject filter diagram Recommended components: C1, C2:   10μF +/-20% o GRM21BR60J106KE19L   from MURATA o CM21X5R106M06AT   from KYOCERA o JMK212BJ106MG-T    from TAYO YUDEN o C2012X5R0J106MT   from TDK  L1:    220nH +/-5%  o 0805CS-221XJLC    from COILCRAFT o 0805G221J E         from STETCO
  WM_DEV_WUP_PTS_005 March 19, 2007  3.3 Power consumption Power consumption depends on the configuration used. It is for this reason that the following consumption values are given for each mode, RF band and type of software used (with or without an Open AT® application). Note: All of the following information is given assuming a 50 Ω RF output. The following consumption values were obtained by performing measurements on WMP100 samples at a temperature of 25° C. Three VBATT values are used to measure the consumption, VBATTMIN (3.2V), VBATTMAX (4.8V) and VBATTTYP (3.6V).  The average current is given for the three VBATT values and the peak current given is the maximum current peak measured with the three VBATT voltages.  For a more detailed description of the operating modes, (refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5). For more information about the consumption measurement procedure, refer to § 4. All following consumption measurement values have to be confirmed. confidential © Page : 25 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 26 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.3.1.1 Power consumption without Open AT® processing The following measurement results are relevant when: ¾ There is no Open AT® application  ¾ The Open AT® application is disabled ¾ No processing is required by the Open AT® application  Power consumption without Open AT® processing Operating mode  Parameters IMIN averageVBATT=4,8VINOM average VBATT=3,6V IMAX average VBATT=3,2V IMAX peak  unitAlarm Mode  21  16  15   µAPaging 9 (Rx burst occurrence ~2s)  15  17  18 160 RX mAFast Idle Mode  Paging 2 (Rx burst occurrence ~0,5s)  17  18  19 160 RX mAPaging 9 (Rx burst occurrence ~2s)  1.5 (1.5 to 1.75)1.6 (1.6 to 1.9) 1.7 (1.7 to 2.05) 160 RX mASlow Idle Mode 1 Paging 2 (Rx burst occurrence ~0,5s)  4 (4 to 4.3) 4.4 (4.4 to 4.75) 4.6 (4.6 to 4.95) 160 RX mAFast Standby Mode  30  36  39   mASlow Standby Mode  1.4  1.4  1.5   mAPCL5 (TX power 33dBm) 210  218  222 1450 TX mA850/900 MHz PCL19 (TX power 5dBm) 81  89  92 270 TX mAPCL0 (TX power 30dBm) 145  153  157 850 TX mAConnected Mode 1800/1900 MHz PCL15 (TX power 0dBm) 77  85  88 250 TX mAgam. 3(TX power 33dBm) 201  209  213 1450 TX mA850/900 MHz gam.17(TX power 5dBm) 78  85  88 270 TX mAgam.3(TX power 30dBm) 138  146  149 850 TX mATransfer Mode  class 8 (4Rx/1Tx) 1800/1900 MHz gam.18(TX power 0dBm) 74  81  84 250 TX mAgam.3 (TX power 33dBm) 364  372  378 1450 TX mA850/900 MHz gam.17 (TX power 5dBm) 112  120  123 270 TX mAgam.3 (TX power 30dBm) 237  245  248 850 TX mATransfer Mode  class 10 (3Rx/2Tx) 1800/1900 MHz gam.18 (TX power 0dBm) 104  111  115 250 TX mATX means that the current peak is the RF transmission burst (Tx burst)  RX means that the current peak is the RF reception burst (Rx burst) 1Slow Idle Mode consumption depends on the SIM card used. Some SIM cards respond faster than others, in which case the longer the response time is, the higher the consumption is. These measurements were performed with a large number of 3V SIM cards, the results in brackets are the minimum and maximum currents measured from among all the SIMs used.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 27 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.3.1.2 Power consumption with a Dhrystone Open AT® application The Open AT® application used is the Dhrystone application.  The following consumption results are measured during the run of the Dhrystone application.  Power consumption with Dhrystone Open AT® application Operating mode  Parameters IMIN averageVBATT=4,8VINOM average VBATT=3,6V IMAX average VBATT=3,2V IMAX peak  unitAlarm Mode  N/A  N/A  N/A   µAPaging 9 (Rx burst occurrence ~2s)  31  38  41 160 RX mAFast Idle Mode Paging 2 (Rx burst occurrence ~0,5s)  32  39  42 160 RX mAPaging 9 (Rx burst occurrence ~2s)  N/A  N/A  N/A 160 RX mASlow Idle Mode Paging 2 (Rx burst occurrence ~0,5s)  N/A  N/A  N/A 160 RX mAFast Standby Mode  31  38  41   mASlow Standby Mode  N/A  N/A  N/A   mAPCL5 (TX power 33dBm) 211  219  223 1450 TX mA850/900 MHz PCL19 (TX power 5dBm) 82  90  93 270 TX mAPCL0 (TX power 30dBm) 146  154  159 850 TX mAConnected Mode 1800/1900 MHz PCL15 (TX power 0dBm) 78  85  89 250 TX mAgam. 3(TX power 33dBm) 202  210  214 1450 TX mA850/900 MHz gam.17(TX power 5dBm) 78  86  89 270 TX mAgam.3(TX power 30dBm) 140  148  151 850 TX mATransfer Mode  class 8 (4Rx/1Tx) 1800/1900 MHz gam.18(TX power 0dBm) 75  82  85 250 TX mAgam.3 (TX power 33dBm) 365  373  379 1450 TX mA850/900 MHz gam.17 (TX power 5dBm) 113  121  125 270 TX mAgam.3 (TX power 30dBm) 239  247  250 850 TX mATransfer Mode  class 10 (3Rx/2Tx) 1800/1900 MHz gam.18 (TX power 0dBm) 105  113  117 250 TX mATX means that the current peak is the RF transmission burst (Tx burst)   RX means that the current peak is the RF reception burst (Rx burst)
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 28 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.3.1.3 Consumption waveform samples  The consumption waveforms presented below are for an EGSM900 network configuration without the Open AT® Software Suite running on the WMP100. The typical VBATT voltage is 3.6V. Four significant operating mode consumption waveforms are described: ¾ Connected Mode (PCL5: Tx power 33dBm) ¾ Slow Idle mode (Paging 9) ¾ Fast idle mode (Paging 9) ¾ Transfer mode (GPRS class 10, gam.3: Tx power 33dBm )  The following waveform shows only the form of the current. 3.3.1.3.1 Connected mode current waveform  Connected mode    33dBmCurrent(A) / Time (s)00.20.40.60.811.21.41.600.0020.0040.0060.0080.010.0120.014  TX PEAK
  WM_DEV_WUP_PTS_005 March 19, 2007  3.3.1.3.2 Slow Idle mode current waveform Slow Idle mode    Paging ~2sCurrent(A) / Time (s)0.020.040.060.080.10.120.140.16-0.02001234567RX PEAK  confidential © Page : 29 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007   3.3.1.3.3 Fast Idle mode current waveform Fast Idle mode    Paging ~2sCurrent(A) / Time (s)00.020.040.060.080.10.120.140.1601234567RX PEAK  confidential © Page : 30 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.3.1.3.4 Transfer mode Class 10 current waveform Transfer mode Class 10    33dBmCurrent(A) / Time (s)00.20.40.60.811.21.41.600.0020.0040.0060.0080.010.0120.014TX PEAK  confidential © Page : 31 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.4 Electrical information for digital I/O There are three types of digital I/O on the WMP100: 2.8Volt CMOS, 1.8Volt CMOS and Open drain. The I/O concerned are all interfaces like GPIOs, SPIs, Keypad, etc. The three types are described below.  Electrical characteristics of digital I/O 2.8 Volts type (2V8 ) Parameter  I/O type  Minim.  Typ  Maxim.  Condition Internal 2.8V power supply  VCC_2V8 2.74V 2.8V 2.86V  VIL CMOS  -0.5V*  0.84V   VIH CMOS  1.96V  3.2V*   VOL CMOS    0.4V IOL = - 4 mA VOH CMOS  2.4V    IOH = 4 mA IOH    4mA   Input / Output pin IOL    - 4mA  *Absolute maximum ratings   1.8 Volts type (1V8) Parameter  I/O type  Minim.  Typ  Maxim.  Condition Internal 1V8 power supply  VCC_1V8 1.76V 1.8V 1.94V   VIL CMOS -0.5V*    0.54V   VIH CMOS 1.33V    2.2V*   VOL CMOS    0.4V IOL = - 4 mA VOH CMOS 1.4V     IOH = 4 mA IOH    4mA   Input / Output pin IOL    - 4mA  *Absolute maximum ratings confidential © Page : 32 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 33 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Open drain outputs type Signal name  Parameter  I/O type  Minimum  Typ  Maximum  Condition VOL Open Drain   0.4V  FLASH-LED IOL Open Drain   8mA  VOL Open Drain   0.4V  BUZZ-OUT IOL Open Drain   100mA  VTOL Open Drain   3.3V Tolerated voltage VIH Open Drain 2V      VIL Open Drain   0.8V  VOL Open Drain   0.4V  SDA / GPIO27  and SCL / GPIO26 IOL Open Drain   3mA   The reset states of each I/O are given in their corresponding interface’s chapter descriptions. The states definitions are defined below:  Reset state definition Parameter  Definition 0  Set to GND 1  Set to supply 1V8 or 2V8 depending of I/O type Pull down  Internal pull down with ~60K resistor. Pull up  Internal pull up with ~60K resistor to supply 1V8 or 2V8 depending of I/O type. Z  High impedance Undefined  Be careful, undefined mustn’t be used in your application if a special state at reset is needed. Those pins can be a toggling signal during reset.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 34 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.5 SPI Bus The WMP100 provides two SPI bus (i.e. for LCD, memories…). 3.5.1 Features • a CLK signal • an I/O signal • an I signal • a CS signal complying with standard SPI bus.  3.5.1.1 Characteristics • Master mode operation • The Hardware CS is usable only for word handling mode. In normal mode the CS can be any GPIO. • The SPI speed is from 102 Kbit/s up to 13 Mbit/s in master mode operation • 3 or 4-wire interface • SPI-mode configuration: 0 to 3 (for more details, refer to document [3] AT Command Interface Guide for Open AT® Firmware v6.5). • 1 to 16 bits data length 3.5.1.2 SPI configuration Operation  Maximum Speed SPI-Mode Duplex 3-wire type  4-wire type Master   13 Mb/s  0,1,2,3 Half SPIx-CLK; SPIx-IO; ~SPIx-CS SPIx-CLK; SPIx-IO; SPIx-I; ~SPIx-CS For the 4-wire configuration, SPIx-I/O is used as output only, SPIx-I is used as input only. For the 3-wire configuration, SPIx-I/O is used as input and output.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 35 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.5.1.3 SPI waveforms Waveform for SPI transfer with 4-wire configuration in master mode 0 (chip select is not represented). Data-OUTdelayCLK-cycleData-IN-holdData-IN-setupSPIx-IOData validData validSPIx-CLKSPIx-I Figure 4: SPI Timing diagrams, Mode 0, Master, 4 wires  AC characteristics Signal  Description  Minimum Typ  Maximum  Unit CLK-cycle  SPI clock frequency   0.1015    13  MHz Data-OUT delay  Data out ready delay time      10  ns Data-IN-setup  Data in setup time  2      ns Data-OUT-hold  Data out hold time  2      ns
  WM_DEV_WUP_PTS_005 March 19, 2007  3.5.2 Pin description Signal  Pin number I/O  I/O type Reset state Description  Multiplexed with SPI1-CLK U15  O 2V8  Z SPI Serial Clock  GPIO28 SPI1-IO  V12  I/O 2V8  Z  SPI Serial input/output  GPIO29 SPI1-I  R13  I 2V8  Z SPI Serial input  GPIO30 ~SPI1-CS  M14  O  2V8  Z  SPI Enable   GPIO31 / INT5  Signal  Pin number I/O  I/O type Reset state Description  Multiplexed with SPI2-CLK  R15  O 2V8  Z SPI Serial Clock  GPIO32 SPI2-IO  M13  I/O 2V8  Z  SPI Serial input/output  GPIO33 SP2-I  U16  I 2V8  Z SPI Serial input  GPIO34 ~SPI2-CS  T18  O  2V8  Z  SPI Enable   GPIO35 / INT4  See chapter 3.4, “Electrical information for digital I/O” for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.5.3 Application 3.5.3.1 4-wire interface The particularity of the 4-wire serial interface (SPI bus) is that the input and the output data lines are dissociated. The SPIx-IO signal is used only for data output and the SPIx-I signal is used only for data input. SPIx-ISPIx-IOSPIx-CLK~SPIx-CSCustomerapplicationWMP100 VCC_2V8R1 Figure 5: Example of 4-wire SPI bus application One pull up resistor R is needed to set the SPIx-CS level during the reset state. confidential © Page : 36 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  Except for R, no external component is needed if the electrical specification of the customer application complies with the WMP100 SPIx interface electrical specification. 3.5.3.2 3-wire interface When used in 3-wire interface (SPI bus), only the line SPIx-IO is used for output and input data. SPIx-ISPIx-IOSPIx-CLK~SPIx-CSCustomerapplicationWMP100 VCC_2V8R1 Figure 6: Example of 3-wire SPI bus application  The SPIx-I line is not used in 3-wire configuration. This line can be left opened or used as GPIO for a different application functionality.  One pull up resistor R is needed to set the SPIx-CS level during the reset state.  Except for R, no external component is needed if the electrical specification of the customer application complies with the WMP100 SPIx interface electrical specification.  The SPIx interface voltage range is 2.8V. It can be powered by the VCC_2V8 (ball R1) of the WMP100 or by another power supply. R value depends on the peripheral plugged on the SPIx interface. confidential © Page : 37 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.6 I2C bus 3.6.1 Features The I2C interface includes a clock signal (SCL) and a data signal (SDA) complying with a 100Kbit/s-standard interface (standard mode: s-mode).  3.6.1.1 Characteristics The I²C bus is always master. The maximum speed transfer range is 400Kbit/s (Fast mode: f-mode).  For more information on the bus, see document [4] “I²C Bus Specification”, Version 2.0, Philips Semiconductor 1998. 3.6.1.2 I²C waveforms I²C bus waveform in master mode configuration:  confidential © Page : 38 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Data validSCL-freqT-freeT-startT-highT-data-setupT-data-holdT-stopSCLSDAData valid Figure 7: I²C Timing diagrams, Master
  WM_DEV_WUP_PTS_005 March 19, 2007  AC characteristics Signal  Description  Minimum Typ  Maximum  Unit SCL-freq  I²C clock frequency   100    400  KHz T-start  Hold time START condition  0.6      μs T-stop  Setup time STOP condition  0.6      μs T-free  Bus free time, STOP to START 1.3     μs T-high  High period for clock  0.6      μs T-data-hold Data hold time  0  0.9 μs T-data-setup  Data setup time  100      ns 3.6.2 Pin description Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with SCL  AA15  O  Open drain  Z  Serial Clock  GPIO26 SDA  AA16  I/O  Open drain  Z  Serial Data  GPIO27 See chapter 3.4, “Electrical information for digital I/O” for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.6.3 Application The two lines need to be pull up to the VI²C  voltage. The VI²C voltage is dependent on the customer application component connected on the I²C bus. Nevertheless, the VI²C must complying with the WMP100 electrical specification (3.3V Max). The VCC_2V8 (ball R1) of the WMP100 can be used to connect the pull up resistors, if the I²C bus voltage is 2.8 V. confidential © Page : 39 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  CustomerapplicationWMP100SDASCLVI²C1K 1K Figure 8: First example of I²C bus application
  WM_DEV_WUP_PTS_005 March 19, 2007  The I²C bus is complying with the Standard mode (baud rate 100Kbit/s) and the Fast mode (baud rate 400Kbit/s). The pull up resistor value choice depends on the mode used. For the Fast mode, it is recommended to use 1K ohm resistor to ensure the compliance with the I²C specification. For the Standard mode, higher values of resistors can be used to save power consumption. confidential © Page : 40 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Customer applicationWMP100SDASCL1K 1KVCC_2V8R1 Figure 9: Second example of I²C bus application 3.7 Keyboard interface 3.7.1 Features This interface provides 10 connections:   5 rows (ROW0 to ROW4),  5 columns (COL0 to COL4). The scanning is a digital one, and the debouncing is done in the WMP100. No discrete components like resistors or capacitors are needed. The keyboard scanner is equipped with:  • internal pull-down resistors for the rows  • pull-up resistors for the columns.  Current only flows from the column pins to the row pins. This allows a transistor to be used in place of the switch for power-on functions. No discrete components like R, C (Resistor, Capacitor) are needed.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.7.2 Pin description Signal  Pin number I/O  I/O type Reset state Description  Multiplexed with ROW0  AC23  I/O 1V8  0  Row scan  GPIO9 ROW1  AD22  I/O  1V8  0 Row scan  GPIO10 ROW2  AD21  I/O  1V8  0 Row scan  GPIO11 ROW3  AC22  I/O  1V8  0 Row scan  GPIO12 ROW4  AD23  I/O  1V8  0 Row scan  GPIO13 COL0  AD19  I/O  1V8  Pull up  Column scan  GPIO4 COL1  AD20  I/O  1V8  Pull up  Column scan  GPIO5 COL2  AC20  I/O  1V8  Pull up  Column scan  GPIO6 COL3  AC19  I/O  1V8  Pull up  Column scan  GPIO7 COL4  AC21  I/O  1V8  Pull up  Column scan   GPIO8  See chapter 3.4, “Electrical information for digital I/O” for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. confidential © Page : 41 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 42 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.7.3 Application Keypad matrix application allows for up to 25 keys. Col 1Col 2Col 3Col 4Col 0Row 0Row 1Row 2Row 3Row 4  Figure 10: Example of keyboard implementation 3.8 Main serial link (UART1) A flexible 8-wire serial interface is available complying with V24 protocol signaling but not with V28 (electrical interface) due to a 2.8 Volts interface. 3.8.1 Features The maximum baud rate of the UART1 is 460 Kbit/s.  The signals are the follows: • TX data (CT103/TX) • RX data (CT104/RX) • Request To Send (~CT105/RTS) • Clear To Send (~CT106/CTS) • Data Terminal Ready (~CT108-2/DTR)
  WM_DEV_WUP_PTS_005 March 19, 2007  • Data Set Ready (~CT107/DSR) •  Data Carrier Detect (~CT109/DCD) • Ring Indicator (~CT125/RI).  3.8.2 Pin description    Signal  Pin number I/O I/O type Reset state Description  Multiplexed with CT103/TXD1*  R17  I 2V8  Z  Transmit serial data GPIO36 CT104/RXD1*  T13  O  2V8  1 Receive serial data GPIO37 ~CT105/RTS1*  Y18  I  2V8  Z Request To Send GPIO38 ~CT106/CTS1*  N15  O  2V8  Z  Clear To Send  GPIO39 ~CT107/DSR1*  T12  O  2V8  Z  Data Set Ready  GPIO40 ~CT108-2/DTR1* M16  I  2V8  Z Data Terminal Ready GPIO41 ~CT109/DCD1 *  AB16  O  2V8  Undefined Data Carrier Detect GPIO43 ~CT125/RI1 *  AA18  O  2V8  Undefined Ring Indicator  GPIO42 CT102/GND*  AA19   GND  Ground   See chapter 3.4, “Electrical information for digital I/O”  for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. *According to PC view  The rising time and falling time of the reception signals (mainly CT103) have to be less than 300 ns.   Recommendation: The WMP100 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission.   confidential © Page : 43 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  For the use case with 5-wire serial interface  • Signal: CT103/TXD1*, CT104/RXD1*, ~CT105/RTS1*, ~CT106/CTS1* • The signal ~CT108-2/DTR1* must be managed following the V24 protocol signalling if we want to use the slow idle mode  • The other signals and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information.  For the use case with 4-wire serial interface  • CT103/TXD1*, CT104/RXD1*, ~CT105/RTS1*, ~CT106/CTS1*  • The signal ~CT108-2/DTR1* must be configured at the low level • The other signals and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information.  For the use case with 2-wire serial interface  • This case is possible for connected external chip but not recommended (and forbidden for AT command or modem use)  • The external chip must be a flow control • CT103/TXD1*, CT104/RXD1* • The signal ~CT108-2/DTR1* must be configured at the low level • The signals ~CT105/RTS1*, ~CT106/CTS1* are not used, please configure the AT command (AT+IFC=0,0 see document [3] AT Command Interface Guide for Open AT® Firmware v6.5). • The signal ~CT105/RTS1* must be configured at the low level • The other signals and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information.  confidential © Page : 44 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 45 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.8.3 First download  The first download of the Flash (when Flash is blank) of the WMP100 must be done through the UART1 serial interface. That’s mandatory that the UART1 is available for the first download, so it’s necessary to be careful about the connectivity of the UART1 with others devices used in the application. If no device is connected and there are no conflicts, the computer can be directly connected on the WMP100 through a RS232 level shifter. When a device is used on UART1, allowing for the ability to unselect the device during the download is recommended (via the enable signal).   Figure 11: Example of UART1 connection for download with another device on the link The Download connector is directly connected on the four UART1 signals, which may create conflicts with the Device lines. For this reason an enable must be available on the device to set the device output signals at High impedance.  NOTE: • In this configuration (4-wire), the signal ~CT108-2/DTR1 (ball M16) must be configured at the low level.
  WM_DEV_WUP_PTS_005 March 19, 2007  At the same time, to run the first download, the BOOT signal of the WMP100 must be driven. The switch S2 must be closed. After the download started S2 can be open. See the BOOT signal chapter (§ 3.18) for more information. If the WMP100 is power ON (VBATT present), S1 must be closed for enable the WMP100. Start the specific PC software tool provided by WAVECOM. S3 must be closed* (a pulse to 0L during at least 200μs) for start the download. See RESET signals chapter (§3.19) for more information.  * S3 can be not use if the condition on S1 and S2 are respected before than the power supply is applied.(There is in this case an automatic internal reset).  If a computer is used for the first download, a RS232 level shifter must be used (See the application with the ADM3307EACP in this chapter). Note: XMODEM download can be launched through UART1 and UART2, but first download has to be launched with a specific PC software tool provided by WAVECOM only through UART1. 3.8.4 Application The level shifter must be a 2.8V with V28 electrical signal compliant.    Figure 12: Example of RS-232 level shifter implementation for UART1 U1 chip also protects the WMP100 against ESD at 15KV. (Air Discharge)  confidential © Page : 46 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  Recommended components:  R1, R2 : 15Kohm  C1, C2, C3, C4, C5 : 1uF  C6 : 100nF  C7 : 6.8uF TANTAL 10V CP32136     AVX  U1 : ADM3307EACP      ANALOG DEVICES  J1 : SUB-D9 female   R1 and R2 are necessary only during Reset state to forced ~CT1125-RI1 and ~CT109-DCD1 signal to high level.   The ADM3307EACP chip is able to speed up to 921Kb/s*. If others level shifters are used, ensured that their speed are compliant with the UART1 speed useful. *: For this baud rate the power supply must be provided by an external regulator at 3.0 V.  The ADM3307EACP can be powered by the VCC_2V8 (ball R1) of the WMP100 or by an external regulator at 2.8 V (the baud rate will be limited up to 720kbps).  If the UART1 interface is connected directly to a host processor, it is not necessary to used level shifters. The interface can be connected as shown below:  confidential © Page : 47 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 48 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  V24/CMOS possible design:  Customer application( DTE )WMP100( DCE )~RESETON / ~OFFCT103-TXD1 / GPIO36CT104-RXD1 / GPIO37~CT105-RTS1 / GPIO38~CT106-CTS1 / GOPI39U5M16Y18T13V6R17GNDRxRTSCTSGNDTxN15 Figure 13: Example of V24/CMOS serial link implementation for UART1  The design shown in the above figure is a basic design.  However, a more flexible design to access this serial link with all modem signals is shown below
  WM_DEV_WUP_PTS_005 March 19, 2007  Customerapplication( DTE )WMP100( DCE )GND~RESET~CT107-DSR1 / GPIO40~CT109-DCD1 / GPIO43~CT108-2-DTR1 / GPIO41~CT125-RI1 / GPIO42AB16M16AA18V6T12GNDDCDDTRRIGNDDSRON / ~OFFU5CT103-TXD1 / GPIO36CT104-RXD1 / GPIO37~CT105-RTS1 / GPIO38~CT106-CTS1 / GOPI39N15Y18T13R17RxRTSCTSTx2x 15K2.8Volt Figure 14: Example of full modem V24/CMOS serial link implementation for UART1 It is recommended to add a 15K-ohm pull-up resistor on ~CT125-RI1 and ~CT109-DCD1 to set high level during reset state. The UART1 interface is 2.8 Volt type, but is 3 Volt tolerant. The WMP100 UART1 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission.  Warning: If you want to activate Power Down mode (Wavecom 32K mode) in your Open AT® application, you need to wire the DTR ball to a GPIO. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 (see the “Appendixes”) for more information on Wavecom 32K mode activation using the Open AT® Software Suite. confidential © Page : 49 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.9 Auxiliary serial link (UART2) An auxiliary serial interface (UART2) is available on WMP100. This interface may be used to connect a Bluetooth or a GPS chip controlled by an Open AT® Plug-in. 3.9.1 Features  Maximum baud rate of the UART2 is 460 Kbit/s.  The signals are the follows: • TX data (CT103/TX) • RX data (CT104/RX) • Request To Send (~CT105/RTS) • Clear To Send (~CT106/CTS)  The WMP100 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission.  For the use case with 2-wire serial interface  • This case is possible for connected external chip but not recommended (and forbidden for AT command or modem use)  • The external chip must be a flow control • CT103/TXD2*, CT104/RXD2* • The signals ~CT105/RTS2*, ~CT106/CTS2* are not used, please configure the AT command (AT+IFC=0,0. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5. • The signal ~CT105/RTS2* must be configured at the low level • The other signal and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 (see the “Appendixes”).   confidential © Page : 50 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 51 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.9.2 Pin description Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with CT103 / TXD2* T16  I  1V8  Z  Transmit serial data  GPIO14 / INT6 CT104 / RXD2* U17  O  1V8  Z  Receive serial data  GPIO15 ~CT106 / CTS2* W17  O  1V8  Z  Clear To Send  GPIO16 ~CT105 / RTS2*  V13  I  1V8  Z  Request To Send  GPIO17 / INT7 CT102/GND*  V15   GND   Ground   * According to PC view See chapter 3.4, “Electrical information for digital I/O” Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.9.3 Application The voltage level shifter must be a 1.8V with V28 electrical signal compliant.   Figure 15: Example of RS-232 level shifter implementation for UART2
  WM_DEV_WUP_PTS_005 March 19, 2007  Recommended components: Capacitors  C1 : 220nF   C2, C3, C4 : 1μF Inductor  L1 : 10μH RS-232 Transceiver  U1 : LINEAR TECHNOLOGY LTC®2804IGN  J1 : SUB-D9 female  The LTC2804 can be powered by the VCC_1V8 (ball AD5) of the WMP100 or by an external regulator at 1.8 V. The UART2 interface can be connected directly to others components if the voltage interface is 1.8 V. 3.10 SIM Interface The Subscriber Identification Module can be directly connected to the WMP100 through this dedicated interface. 3.10.1 Features The SIM interface controls 1.8V and 3V SIM card. It is recommended to add Transient Voltage Suppressor diodes (TVS) on the signal connected to the SIM socket in order to prevent any Electrostatics Discharge. TVS diodes with low capacitance (less than 10 pF) have to be connected on SIM-CLK and SIM-IO signals to avoid any disturbance of the rising and falling edge. These types of diodes are mandatory for the Full Type Approval. They shall be placed as close as possible to the SIM socket. The following references can be used: DALC208SC6 from ST Microelectronics.  5 signals exist: • SIM-VCC: SIM power supply. • ~SIM-RST: reset. • SIM-CLK: clock. • SIM-IO: I/O port. • SIMPRES: SIM card detect.  The SIM interface controls a 3V / 1V8 SIM. This interface is fully compliant with GSM 11.11 recommendations concerning SIM functions. confidential © Page : 52 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 53 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Electrical Characteristics of SIM interface Parameter  Conditions  Minim.  Typ  Maxim. Unit SIM-IO VIH IIH = ± 20μA  0.7xSIMVCC   V SIM-IO VIL IIL = 1mA    0.4 V ~SIM-RST, SIM-CLK VOH Source current = 20μA  0.9xSIMVCC   V SIM-IO VOH Source current = 20μA  0.8xSIMVCC    ~SIM-RST, SIM-IO, SIM-CLK  VOL Sink current = -200μA   0.4 V SIMVCC = 2.9V IVCC= 1mA 2.84 2.9 2.96 V SIM-VCC Output Voltage SIMVCC = 1.8V IVCC= 1mA 1.74 1.8 1.86 V SIM-VCC current  VBATT = 3.6V    10 mA SIM-CLK  Rise/Fall Time Loaded with 30pF   20  ns ~SIM-RST, Rise/Fall Time Loaded with 30pF   20  ns SIM-IO Rise/Fall Time Loaded with 30pF   0.7 1 μs SIM-CLK Frequency  Loaded with 30pF    3.25 MHz Note: When SIMPRES is used, a low to high transition means that the SIM card is inserted and a high to low transition means that the SIM card is removed.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 54 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.10.2 Pin description Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with SIM-CLK  Y2  O  2V9 / 1V8  0  SIM Clock  Not mux ~SIM-RST  Y1  O  2V9 / 1V8  0 SIM Reset Not mux SIM-IO  W1  I/O  2V9 / 1V8  *Pull up  SIM Data  Not mux SIM-VCC  W2  O  2V9 / 1V8   SIM Power Supply Not mux SIMPRES  Y3  I  1V8  Z SIM Card Detect GPIO18 / INT8 *SIM-IO pull up is about 10K ohm See chapter 3.4, “Electrical information for digital I/O” on page 32 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.10.3 Application   Figure 16: Example of SIM Socket implementation
  WM_DEV_WUP_PTS_005 March 19, 2007   Recommended components:  • R1 : 100K ohm • C1 : 470pF • C2 : 100nF • D1 : ESDA6V1SC6 from ST • D2 : DALC208SC6 from SGS-THOMSON • J1 : ITT CANNON CCM03 series (See chapter 9.2 for more information)  The capacitor (C2) placed on the SIM-VCC line must not exceed 330 nF.  SIM socket connection:  Pin description of the SIM socket Signal  Pin number  Description VCC 1  SIM-VCC RST 2  ~SIM-RST CLK 3  SIM-CLK SIMPRES with 100 kΩ pull down resistor and 470 pF capacitor CC4 4 GND 5  GROUND VPP 6  Not connected I/O 7  SIM-IO CC8  8  VCC_1V8 of WMP100 (ball AD5 )   confidential © Page : 55 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 56 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.11 General Purpose Input/Output The Wireless Microprocessor® provides up to 49 General Purpose I/O. They are used to control any external device such as a LCD or a Keyboard backlight...  3.11.1 Features Reset State:  0 : Set to GND  1: Set to supply 1V8 or 2V8 depending of I/O type.  Pull down: Internal pull down with ~60K resistor.  Pull up: Internal pull up with ~60K resistor to supply 1V8 or 2V8 depending of I/O type.  Z: High impedance.  Undefined: Be careful, undefined mustn’t be used in your application if a special state at reset is needed. Those pins can be toggling signals. 3.11.2 Pin description Signal  Pin number  I/O I/O type  Reset state  Multiplexed with GPIO0  W15  I/O  1V8  0  Not mux  GPIO1 R18 I/O  1V8  Z  CS2 / A25 GPIO2  U22  I/O  1V8  Z  A24 GPIO3  V16 I/O  1V8  Z  INT0 / A26 GPIO4  AD19 I/O  1V8  Pull up  COL0 GPIO5  AD20 I/O  1V8  Pull up  COL1 GPIO6  AC20 I/O  1V8  Pull up  COL2 GPIO7  AC19 I/O  1V8  Pull up  COL3 GPIO8  AC21 I/O  1V8  Pull up  COL4 GPIO9  AC23 I/O  1V8  0  ROW0 GPIO10  AD22 I/O  1V8  0  ROW1 GPIO11  AD21 I/O  1V8  0  ROW2 GPIO12  AC22 I/O  1V8  0  ROW3 GPIO13  AD23 I/O  1V8  0  ROW4 GPIO14  T16  I/O  1V8  Z  CT103-TXD2 / INT6 GPIO15 U17 I/O 1V8  Z  CT104-RXD2 GPIO16 W17 I/O 1V8  Z  ~CT106-CTS2
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 57 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal  Pin number  I/O I/O type  Reset state  Multiplexed with GPIO17 V13 I/O 1V8  Z  ~CT105-RTS2 / INT7 GPIO18  Y3 I/O 1V8  Z  SIMPRES / INT8 GPIO19  AA17 I/O  2V8  Z  Not mux  GPIO20  Y13 I/O  2V8  Undefined  Not mux  GPIO21  AA13 I/O  2V8  Undefined  Not mux  GPIO22  M15 I/O  2V8  Z  Not mux  GPIO23  V17 I/O  2V8  Z  Not mux  GPIO24  N16 I/O  2V8  Z  Not mux  GPIO25  Y19 I/O  2V8  Z  INT1 GPIO26  AA15 I/O  Open drain Z  SCL GPIO27  AA16 I/O  Open drain Z  SDA GPIO28 U15 I/O 2V8  Z  SPI1-CLK  GPIO29 V12 I/O 2V8  Z  SPI1-IO GPIO30 R13 I/O 2V8  Z  SP1-I GPIO31  M14  I/O  2V8  Z  ~SPI1-CS / INT5 GPIO32 R15 I/O 2V8  Z  SPI2-CLK  GPIO33 M13 I/O 2V8  Z  SPI2-IO GPIO34 U16 I/O 2V8  Z  SP2-I GPIO35  T18  I/O  2V8  Z  ~SPI2-CS / INT4 GPIO36 R17 I/O 2V8  Z  CT103-TXD1 GPIO37 T13 I/O 2V8  1  CT104-RXD1 GPIO38 Y18 I/O 2V8  Z  ~CT105-RTS1 GPIO39 N15 I/O 2V8  Z  ~CT106-CTS1 GPIO40 T12 I/O 2V8  Z  ~CT107-DSR1 GPIO41 M16 I/O 2V8  Z  ~CT108-2-DTR1 GPIO42 AA18 I/O 2V8 Undefined ~CT125-RI1  GPIO43 AB16 I/O 2V8 Undefined ~CT109-DCD1 GPIO44 AB13 I/O 2V8 Undefined 32kHz buffered output clock GPIO45 Y17 I/O 1V8  Z  INT2 GPIO46 V18 I/O 2V8  Z  INT3
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 58 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal  Pin number  I/O I/O type  Reset state  Multiplexed with GPIO47  Y15  I/O  1V8  0  Not mux  GPIO48  Y16  I/O  1V8  0  Not mux   See chapter 3.4, “Electrical information for digital I/O” for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.12 Analog to Digital Converter Three Analog to Digital Converters inputs are provided by the WMP100. Those converters are 10 bits resolution, ranging from 0 to 2V.  3.12.1 Features BAT-TEMP / AUX-ADC2 input can be used, typically, to monitor external temperature, useful for safety power off in case of application over heating (for Li-Ion battery). AUX-ADC0 and AUX-ADC1 input can be used for customer application Electrical Characteristics of ADC Parameter  Min  Typ  Max  Unit Resolution   10  bits Sampling rate   216  S/s Input signal range  0    2  V ADC Reference Accuracy    TBD   % Integral Accuracy   15  mV Differential Accuracy   2.5  mV BAT-TEMP / AUX-ADC2    1M  Ω AUX-ADC0    1M  Ω Input impedance  AUX-ADC1    1M  Ω  3.12.2 Pin description Signal  Pin number I/O  I/O type  Description BAT-TEMP / AUX- N18  I Analog  A/D converter
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 59 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  ADC2* AUX-ADC0  N17  I Analog  A/D converter AUX-ADC1  M17  I Analog  A/D converter *This input can be used for battery charging temperature sensor,  see chapter “3.16 Battery Charging interface “.  3.12.3 Application The BAT-TEMP / AUX-ADC2 input is used for battery monitoring during charging of battery. All information is provided in the “Battery Charging” (see chapter 3.16).
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 60 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.13 Digital to Analog Converter One  Digital to  Analog Converter (DAC) input is provided by the Wireless Microprocessor®.  3.13.1 Features  The converter is 8-bit resolution, guaranteed monotonic with a  ranges from 0V to 2.3V.  This output assumes a typical external load of 2kΩ and 50pF in parallel to GND.   Electrical Characteristics of the DAC Parameter  Min  Typ  Max  Unit Resolution - 8 - bits Maximum Output voltage 2.1 2.2 2.3 V Minimum Output voltage  0  -  40  mV Output voltage after reset  -  1.147  -  V Integral Accuracy  -5  -  +5  LSB Differential Accuracy  -1  -  +1  LSB Full scale settling time (load: 50pF // 2kΩ to GND) - 40 - μs One LSB settling time (load: 50pF // 2kΩ to GND ) - 8 - μs  3.13.2 Pin description  Pin description of the DAC Signal  Pin number I/O  I/O type  Description AUX-DAC0 V14 O Analog D/A converter
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 61 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   3.14 Analogue audio interface Two different microphone inputs and two different speaker outputs are supported. The WMP100 also includes an echo cancellation feature which allows hands free function. In some cases, ESD protection must be added on the audio interface lines. 3.14.1 Microphone Features  The connection can be either differential or single-ended but using a differential connection in order to reject common mode noise and TDMA noise is strongly recommended. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path. The gain of MIC inputs is internally adjusted and can be tuned using an AT command. Both can be configured in differential or single ended. The MIC2 inputs already include the biasing for an electret microphone allowing an easy connection. 3.14.1.1 Electrical characteristics   3.14.1.1.1 MIC1 Microphone Inputs   By default, the MIC1 inputs are single-ended but it can be configured in differential.  The MIC1 inputs do not include an internal bias . The MIC1 input needs to have an external biasing if an electret micro is used. AC coupling is already embedded in the Wireless Microprocessor®.  Equivalent circuits of MIC1 DC equivalent circuit  AC equivalent circuit   Electrical Characteristics of MIC1 MIC1P MIC1N Z1 Z1 GND MIC1P MIC1N DC Blocked
  WM_DEV_WUP_PTS_005 March 19, 2007   Parameters  Min Typ  Max  Unit DC Characteristics      N/A   V AC Characteristics 200 Hz<F<4 kHz  Z1  70  120  160  KΩ AT+VGT*=2  13.8  mVrms AT+VGT*=1  77.5  confidential © Page : 62 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Maximum working voltage  ( MIC1P-MIC1N)  AT+VGT*=0  346     Positive      +7.35  V Maximum rating voltage (MIC1P or MIC1N)  Negative  -0.9       • *The input voltage depends of the input micro gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5. 3.14.1.1.2 MIC2 Microphone Inputs   By default, the MIC2 inputs are differential ones, but it can be configured in single ended. They already include the convenient biasing for an electret microphone. The electret microphone can be directly connected on those inputs, thus allowing easy connection to a handset. AC coupling is already embedded in the Wireless Microprocessor®.  Equivalent circuits of MIC2 DC equivalent circuit  AC equivalent circuit   Electrical Characteristics of MIC2 MIC2P MIC2N Z2 Z2  GND MIC2+ MIC2P MIC2N RRGND
  WM_DEV_WUP_PTS_005 March 19, 2007   Parameters  Min  Typ  Max  Unit MIC2+  2  2.1  2.2  V Output current   0.5  1.5 confidential © Page : 63 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  mA Internal biasing  DC Characteristics R2  1650 1900 2150  Ω Z2  MIC2P (MIC2N=Open) Z2  MIC2N (MIC2P=Open) 1.1  1.3  1.6 Z2  MIC2P (MIC2N=GND) Z2  MIC2N (MIC2P=GND) 0.9  1.1  1.4 AC Characteristics 200 Hz<F<4 kHz Impedance between MIC2P and MIC2N 1.3  1.6  2 KΩ AT+VGT*=2   13.8   AT+VGT*=1   77.5   Maximum working voltage  ( MIC2P-MIC2N)  AT+VGT*=0   346   mVrms Positive      +7.35** Maximum rating voltage (MIC2P or MIC2N)  Negative  -0.9      V • *The input voltage depends of the input micro gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 • **Because MIC2P is internally biased, it is necessary to use a coupling capacitor to connect an audio signal provided by an active generator. Only a passive microphone can be directly connected to the MIC2P and MIC2N inputs.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 64 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   3.14.2 Speaker Features  The connection is single-ended on SPK1 and is differential or single-ended on SPK2. Using a differential connection to reject common mode noise and TDMA noise is strongly recommended. Moreover in single-ended mode, ½ of the power is lost. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path.  Parameter  Typ  Unit  Connection Z (SPK1P, SPK1N)  16 or 32  Ω single-ended mode Z (SPK2P, SPK2N)  4  Ω single-ended mode Z (SPK2P, SPK2N)  8  Ω Differential mode 3.14.2.1 Speakers Outputs Power The both speakers maximum power output are not similar, that is due to the different configuration between the Speaker1 which is only single ended and the speaker2 which can be differential, so speaker2 can provides more power. The maximal specifications given below are available with the maximum power output configuration values set by an AT command. The typical values are recommanded.  3.14.2.1.1 SPK1 Speaker Outputs   With the SPK1 interface, only single ended speaker connection is allowed   Equivalent circuits of SPK1         Electrical Characteristics of SPK1  1Ω 1Ω WMP100 SPK1N SPK1P
  WM_DEV_WUP_PTS_005 March 19, 2007  Parameters  Min  Typ  Max  Unit Biasing voltage -  1.30  V RL=16Ω: AT+VGR=6; single-ended - 1.7 - Vpp Output swing voltage  RL=32Ω; AT+VGR=6; single-ended - 1.9 2.75  Vpp RL Load resistance  14.5 32 - Ω RL=16Ω - 40 85 mA IOUT Output current; single-ended; peak value  RL=32Ω - 22 - mA RL=16Ω; AT+VGR*=6  - 25  mW POUT RL=32Ω; AT+VGR*=6  - 16 27 mW RPD  Output pull-down resistance at power-down 28 40 52 KΩ *The output voltage depends of the output speaker gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5.    confidential © Page : 65 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 66 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.14.2.1.2 SPK2  Speaker Outputs   The SPK2 interface allows differential and single ended speaker connection  Equivalent circuits of SPK2         Electrical Characteristics of SPK2 Parameters  Min  Typ  Max  Unit Biasing voltage SPK2P and SPK2N    1.30    V RL=8Ω: AT+VGR=6*; single ended - - 2 Vpp RL=8Ω: AT+VGR=6*; differential  - - 4 Vpp RL=32Ω: AT+VGR=6*; single ended - - 2.5 Vpp Output swing voltage RL=32Ω: AT+VGR=6*; differential  - - 5 Vpp RL Load resistance  6 8 - Ω IOUT  Output current; peak value; RL=8Ω - - 180 mA POUT  RL=8Ω; AT+VGR=6*;  - - 250 mW RPD  Output pull-down resistance at power-down 28 40 52 KΩ VPD  Output DC voltage at power-down - - 100 mV *The output voltage depends of the output speaker gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5.  If a singled ended solution is used with the speaker2 output, only one of the both SPK2 has to be chosen. The result is a maximal output power divided by 2.  1Ω 1Ω SPKWMP100 +  SPK2N SPK2P
  WM_DEV_WUP_PTS_005 March 19, 2007  3.14.3 Pin description  Signal  Pin number I/O  I/O type  Description MIC1P  AC10  I  Analog  Microphone 1 positive input confidential © Page : 67 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  MIC1N  AB10  I  Analog  Microphone 1 negative input MIC2P  AC9  I  Analog  Microphone 2 positive input MIC2N  AB9  I  Analog  Microphone 2 negative input SPK1P  AC8  O  Analog  Speaker 1 positive output SPK1N  AB8  O  Analog  Speaker 1 negative output SPK2P  AC7  O  Analog  Speaker 2 positive output SPK2N  AB7  O  Analog  Speaker 2 negative output  3.14.4 Application 3.14.4.1 Microphone 3.14.4.1.1 MIC2 Differential connection example     Figure 17: Example of MIC2 input differential connection with LC filter *:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2. Note: Audio quality can be very good without L1, L2, C2, C3, C4 depending on the design. But if there is EMI perturbation, this filter can reduce the TDMA noise. This filter (L1, L2, C2, C3, C4) is not mandatory. If not used, the capacitor must be removed and coil replaced by 0 Ohm resistors as the shown in the following schematic.
  WM_DEV_WUP_PTS_005 March 19, 2007      Figure 18: Example of MIC2 input differential connection without LC filter *:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2. The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone. Recommended components:  • C1 : 12pF to 33pF (depending of the design ,needs to be tuned) • C2, C3, C4 : 47pF (need to be tuned depending  on the design) • L1, L2 : 100nH (need to be tuned depending on the design)  confidential © Page : 68 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.14.4.1.2 MIC2 single-ended connection example AC9AB9AudioADCZ2*= 1100  typ2.1V typ100nF100nFWMP100MIC2PMIC2NC1MICL1C2 Figure 19: Example of MIC2 input single-ended connection with LC filter *:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2. Internal input impedance value becomes 1100 ohms, due to the connection of MIC2N to ground. The single ended design is not recommended for improve TDMA rejection noise. Usually, it’s difficult to eliminate TDMA noise from a single ended design. It is recommended to add L1 and C2 footprint to add a LC filter to try to eliminate the TDMA noise. When not used, the filter can be removed by replacing L1 by a 0 Ohm resistor and by disconnecting C2, as the following schematic.  Figure 20: Example of MIC2 input single-ended connection without LC filter confidential © Page : 69 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  *:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2. The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.   Recommended components:   C1: 12pF to 33pF (depending of the design ,needs to be tuned )  C2: Must be tuned depending of the design.  L1: Must be tuned depending of the design.  3.14.4.1.3 MIC1 Differential connection example  VCC_2V8confidential © Page : 70 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  C5AudioADCZ1*=120k Ohm typ100nF100nFWMP100MIC1PMIC1NR3R2R1C2C3R4C1L1L2C4Z1*=120k Ohm typAC10AB10MIC Figure 21: Example of MIC1 input differential connection with LC filter  *:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1. Note : Audio quality can be very good without L1, L2, C2, C3, C4 depending on the design. But if there is EMI perturbation, this filter can reduce the TDMA noise. This filter (L1, L2, C2, C3, C4) is not mandatory. When not used, the capacitor must be removed and coil replaced by 0 Ohm resistors as shown in the following schematic.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 71 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  AudioADCZ1*=120k Ohm typ100nF100nFWMP100MIC1PMIC1NZ1*=120k Ohm typAC10AB10VCC_2V8C1MICR3R2R1R4C5 Figure 22: Example of MIC1 input differential connection without LC filter *:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1. The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone. Vbias can be VCC_2V8 of the WMP100 (ball R1) but it is possible to use another 2V to 3V supply voltage depending of the micro characteristics.  Be careful, if VCC_2V8 is used TDMA noise can degrade quality. Recommended components:   R1 : 4.7K ohm ( for Vbias equal to 2.8V )  R2, R3 : 820 ohm  R4 : 1K ohm  C1 : 12pF to 33pF (depending of the design ,needs to be tuned )  C2, C3, C4 : 47pF (need to be tuned depending on the design)  C5 : 2.2uF +/- 10%   L1, L2 : 100nH (need to be tuned depending on the design)
  WM_DEV_WUP_PTS_005 March 19, 2007  3.14.4.1.4 MIC1 Single-ended connection example  AudioADCZ1*=120k Ohm typ100nF100nFWMP100MIC1PMIC1NZ1*=120k Ohm typAC10AB10L1C2C1MICVCC_2V8R2R1C5  Figure 23: Example of MIC1 input single-ended connection with LC filter *:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1. The single ended design is not recommended for improve TDMA rejection noise. Usually, it’s difficult to eliminate TDMA noise from a single ended design. It is recommended to add L1 and C2 footprint to add a LC EMI filter to try to eliminate the TDMA noise. When not used, the filter can be removed by replacing L1 by a 0 Ohm resistor and by disconnecting C2, as the following schematic. VCC_2V8AudioADCZ1*=120k Ohm typ100nF100nFWMP100MIC1PMIC1Nconfidential © Page : 72 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Z1*=120k Ohm typAC10AB10C1MICR2R1C5 Figure 24: Example of MIC1 input single-ended connection without LC filter *:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1.
  WM_DEV_WUP_PTS_005 March 19, 2007   Recommended components:   R1: 4K7 ohm ( for Vbias equal to 2.8V )  R2: 820 ohm  C1: 12pF to 33pF (depending of the design ,needs to be tuned)  C2: Must be tuned depending of the design.  C5 : 2.2uF +/- 10%   L1: Must be tuned depending of the design.  Vbias must be very “clean” to avoid bad performance in case of single-ended implementation. That is the reason why Vbias could be another 2 V to 3V power supply instead of VCC_2V8 which is available on the ball R1. CAUTION: If VCC_2V8 is used TDMA noise can degrade quality.  The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone. 3.14.4.2 Speaker 3.14.4.2.1 SPK2 Differential connection   SPK2P SPK2N  Figure 25: Example of Speaker differential connection  Impedance of the speaker amplifier output in differential mode is: R ≤ 2Ω +/-10 %.  The connection between the WMP100 pins and the speaker must be designed to keep the serial impedance lower than 3 Ω in differential mode. confidential © Page : 73 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.14.4.2.2 SPKx Single-ended connection  Typical implementation:  Figure 26: Example of Speaker single-ended connection  4.7 μF < C1 < 47 μF (depending on speaker characteristics and output power).  Using a single-ended connection includes losing of the output power (- 6 dB) compared to a differential connection.  The connection between the WMP100 pins and the speaker must be designed to keep the serial impedance lower than 1.5 Ω in single ended mode.  If  SPKxP channel is used, SPKxN can be left opened. If  SPKxN channel is used, SPKxP can be left opened. 3.14.5 Design recommendation 3.14.5.1 General When speakers and microphones are exposed to the external environment, it is recommended to add ESD protection as closed as possible to the speaker or microphone, connected between the audio lines and a good ground. The microphone connections may be either differential or single-ended, but using a differential connection to reject common mode noise and TDMA noise is strongly recommended.  While using a single-ended connection, ensure to have a good ground plane, a good filtering as well as shielding, in order to avoid any disturbance on the audio path. It is important to select an appropriate microphone, speaker and filtering components to avoid TDMA noise 3.14.5.2 Recommended microphone characteristics The impedance of the microphone has to be around 2 kΩ. confidential © Page : 74 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  Sensitivity from -40dB to –50 dB.  SNR > 50 dB. Frequency response compatible with the GSM specifications. To suppress TDMA noise, it is highly recommended to use microphones with two internal decoupling capacitors: -CM1=56pF (0402 package) for the TDMA noise coming from the demodulation of the GSM 850 and GSM900 frequency signal. -CM2=15pF (0402 package) for the TDMA noise coming from the demodulation of the DCS/PCS frequency signal.  The capacitors have to be soldered in parallel of the microphone confidential © Page : 75 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   CM  Figure 27: Microphone   3.14.5.3 Recommended speaker characteristics Type of speakers: Electro-magnetic /10mW Impedance: 8Ω for hands-free (SPK2) Impedance: 32Ω for heads kit (SPK1) Sensitivity: 110dB SPL min  Receiver frequency response compatible with the GSM specifications. 3.14.5.4 Recommended filtering components When designing a GSM application, it is important to select the right audio filtering components. The strongest noise, called TDMA, is mainly due to the demodulation of the GSM850/GSM900/DCS1800 and PCS1900 signal: A burst being produced every 4.615ms; the frequency of the TDMA signal is equal to 216.7Hz plus harmonics. The TDMA noise can be suppress by filtering the RF signal using the right decoupling components.
  WM_DEV_WUP_PTS_005 March 19, 2007  The types of filtering components are: -RF decoupling inductors -RF decoupling capacitors A good “Chip S-Parameter” simulator is proposed by Murata, the following link help to find it: http://www.murata.com/designlib/mcsil.htmlUsing different Murata components, we could see that the value, the package and the current rating can have different decoupling effects. The table below shows some examples with different Murata components:  Package  0402 confidential © Page : 76 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Filtered band  GSM900  GSM 850/900  DCS/PCS Value 100nH  56pF  15pF Types Inductor  Capacitor  Capacitor Position Serial  Shunt  Shunt Manufacturer Murata Murata  Murata Rated 150mA  50V  50V Reference LQG15HSR10J02 or LQG15HNR10J02 GRM1555C1H560JZ01 GRM1555C1H150JZ01 or GRM1555C1H150JB01 Package  0603 Filtered band  GSM900  GSM 850/900  DCS/PCS Value 100nH  47pF  10pF Types Inductor  Capacitor  Capacitor Position Serial  Shunt  Shunt Manufacturer Murata Murata  Murata Rated 300mA  50V  50V Reference LQG18HNR10J00 GRM1885C1H470JA01 or GRM1885C1H470JB01 GRM1885C1H150JA01 or GQM1885C1H150JB01
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 77 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.    3.14.5.5 Audio track and PCB layout recommendation To avoid TDMA noise, it is recommended to surround the audio tracks by ground:         Figure 28: Audio track design Remark: Avoid digital tracks crossing under and over the audio tracks.   0.2mm min Differential Audio line Ground Ground 1mm 0.15mm max 1mm Differential Audio line always in parallel Application board Ground Plane WMP100
  WM_DEV_WUP_PTS_005 March 19, 2007  3.15 PWM / Buzzer Output This output is controlled by a PWM controller and can be used as buzzer or as PWM. 3.15.1 Features The BUZZ-OUT is an open drain one. A buzzer can be directly connected between this output and VBATT. The maximum current is 100 mA (PEAK).  Electrical Characteristics confidential © Page : 78 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Parameter  Condition  Minimum Maximum  Unit VOL Iol = 100mA  0.4 V IPEAK VBATT = VBATTmax  100 mA Frequency   TBD TBD Hz Duty cycle    TBD TBD %  3.15.2 Pin description Signal  Pin number I/O  I/O type  Reset state Description BUZZ-OUT U4  O  Open drain Z  PWM / Buzzer output  See chapter 3.4, “Electrical information for digital I/O” on page 32 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 79 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  BUZZ-OUTC1D1VBATT3.15.3 Application The maximum peak current is 100 mA and the maximum average current is 40 mA. A diode against transient peak voltage must be added as described below.  R1WMP100 Figure 29: Example of buzzer implementation Where: R1 must be chosen in order to limit the current at IPEAK max C1 = 0 to 100 nF (depending on the buzzer type) D1 = BAS16 (for example)  Recommended characteristics for the buzzer:  electro-magnetic type  Impedance: 7 to 30 Ω  Sensitivity: 90 dB SPL min @ 10 cm  Current: 60 to 90 mA  The BUZZ-OUT output can also be used to drive a LED as shown in the Figure below: BUZZ-OUT VBATT« BUZZER »D112R1470 Ω Figure 30: Example of LED driven by the BUZZ-OUT output  R1 value can be accorded depending of the LED (D1) characteristics.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.16 Battery charging interface The WMP100 charging interface is able to drive the charging of different batteries technologies by combing hardware and software controls.  3.16.1 Feature The charging architecture of WMP100 supports 3 batteries technologies: ¾ Ni-Cd   (Nickel-Cadmium)  ¾ Ni-Mh   (Nickel-Metal  Hydride) ¾ Li-Ion   (Lithium-Ion)   confidential © Page : 80 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  CHARGERDC outputWMP100BATTERYTEMPERATURE SENSOR INTERFACECHG-INVCC_2V8NTC BAT-TEMPVBATT-BB ALGORITHM CONTROLCHG-GATEV2/V3V4AC1/AC2/AD1/AD2R1N18 Figure 31: Charging block diagram  The software algorithm controls a switch (by CHG-GATE signal), which connects the CHG-IN signal to the VBATT-BB signal. The algorithm controls the frequency and the connected time of the switching. During the charging procedure the battery charging level is controlled by the VBATT-BB measurement. When the battery is full, the algorithm stopped the charging procedure. When Li-Ion battery is used, the battery temperature is monitoring through the BAT-TEMP ADC input. One more charging mode is provided by the WMP100. It’s called “Pre-charging” mode, but it’s a special charging mode because it is activated only
  WM_DEV_WUP_PTS_005 March 19, 2007  when the WMP100 is OFF. So the control is only performed by the hardware. The goal of this charging mode is to prevent the battery to be damaged by preventing the discharged under the minimum battery level.  3.16.1.1 Pre-Charging  When a charger DC power supply is connected to the CHG-IN signal and if the voltage battery is between 2.8v and  3.2v, a constant current of 50mA is provided to the battery.  When the battery is able to supply the WMP100/Open AT® Software Suite v1.0, the WMP100 is automatically powered on and the software algorithm is activated to finish the charge. Note: When pre-charging is launched, the FLASH-LED output blinks automatically.  3.16.1.2 Temperature monitoring The monitoring of the temperature is only available for the Li-Ion battery. The BAT-TEMP / AUX-ADC2 (N18) ADC input must be used to sample the temperature analog signal provided by a NTC temperature sensor which is placed close to the battery cellular. The minimum and maximum temperature range can be set by software command.  Electrical Characteristics of battery charging interface Parameter  Minimum Typ  Maximum  Unit Charging Operating temperature  0    50  °C resolution  10  confidential © Page : 81 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  bits sampling rate    216    S/s Input Impedance ( R )  1M   Ω BAT-TEMP / AUX-ADC2  Input signal range  0    2  V Voltage (for I=Imax)  4.6*      V CHG-IN  Voltage (for I=0)      6*  V CHG-GATE  Switch control by current 30 40 50  mA *To be parameterized as per battery manufacturer
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 82 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.16.2 Pin description  Pin description of battery charging interface Signal  Pin number I/O  I/O type  Description CHG-IN  V2 / V3  I  Analog  Current source input CHG-GATE  V4  O  Analog  Current source to drive PNP transistor BAT-TEMP / AUX-ADC2 N18 I Analog  A/D converter  3.16.3 Application VCC_2V8BAT-TEMP / AUX-ADC2VBATT-BBCHG-GATECHG-INDCR2T1WMP100Battery cells+ NTCGNDOUTNTC outNTCChargerR1R3  Figure 32: Charging schematic for Li-Ion
  WM_DEV_WUP_PTS_005 March 19, 2007  The charging schematic needs a transistor to switch the current from the Charger DC source power supply to the battery. The control of the transistor is performed by the WMP100 through the CHG-GATE signal. It is important that the Charger DC power supply has a limited output current to not damage the transistor T1.  The R1 and R2 resistors are needed only when the temperature is monitored, typically for Li-Ion battery. The R1 is necessary to bias the NTC resistor of the battery. The VCC_2V8 output power voltage of the WMP100 can be used to power the bridge R1/ R2 / NTC. The R1 and R2 values have to be calculated to have a maximum of 2volt at the BAT-TEMP / AUX-ADC2 input on the WMP100. The R3 resistor must be added to improve the performances of the charge. Pre-Charging mode doesn’t use the T1 transistor, when Pre-charging is activated, the current provided by the Charger DC power supply crosses the WMP100 by the CHG-IN signal to the VBATT-BB to charge the battery. The current limitation is controlled inside the WMP100.   Recommended components: o T1 : NSL12AW from On Semiconductor o R1 = 100K o R2 = 270K o R3= 5.6K (package 0402, 1/16W, +-5% is sufficient)  o NTC = 100K @ 25°C    NTH4G42B104F01 from MURATA  Note:  o In this example, the transistor T1 has a maximal continuous current of 2A, so the Charger DC power supply must have an output current limited to 2A.  o The maximum Charger output current, provided to the battery, must be accorded to the battery electrical characteristics. confidential © Page : 83 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 84 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.17 ON / ~OFF signal This input is used to switch ON or OFF the Wireless Microprocessor.  A high level signal has to be provided on the pin ON/~OFF to switch ON the Wireless Microprocessor.. The voltage of this signal has to be maintained at 0.8 x VBATT during a minimum of 4000ms. This signal can be left at high level until switch off. To switch OFF the Wireless Microprocessor  the pin ON/OFF has to be released. The Wireless Microprocessor can be switched off through the Operating System. ) Warning: All external signals must be inactive when the Wireless Microprocessor is OFF to avoid any damage when starting and allow Wireless Microprocessor to start and stop correctly.  3.17.1 Features  Electrical Characteristics of the signal Parameter  I/O type  Minimum  Maximum  Unit VIL CMOS    VBATT x 0.2 V VIH CMOS VBATT x 0.8 VBATT V  3.17.2 Pin description Signal  Pin number  I/O  I/O type  Description ON/∼OFF  U5  I  CMOS  WMP100 Power ON  3.17.3 Application VBATT123SwitchON/~OFF Figure 33: Example of ON/~OFF pin connection
  WM_DEV_WUP_PTS_005 March 19, 2007  3.17.3.1 Power ON Once WMP100/Open AT® Software Suite v1.0 is powered, the application must set the ON/OFF signal to high to start the WMP100/Open AT® Software Suite v1.0 power ON sequence. The ON/OFF signal must be held high during a minimum delay of Ton/off-hold  (Minimum hold delay on the ON/~OFF signal) to power-ON. After this delay, an internal mechanism maintains the WMP100/Open AT® Software Suite v1.0 in power ON condition. During the power ON sequence, an internal reset is automatically performed by the WMP100/Open AT® Software Suite v1.0 for 40ms (typically). During this phase, any external reset should be avoided during this phase.   confidential © Page : 85 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   POWER SUPPLYON/OFFTon/off-hold  (2000ms min) STATE OF THE MODULEModule OFF IBB+RF < 22μA AT answers « OK » Module READY SIM and Network dependent RESET mode IBB+RF=20 to 40mAINTERNAL RSTTrst  (40ms typ) Module ON IBB+RF<120mA  (no loc. update) IBB+RF = overall current consumption (Base Band + RF part)  Figure 34 : Power-ON sequence (no PIN code activated) The duration of the firmware power-up sequence depends on: • the need to perform a recovery sequence if the power has been lost during a flash memory modification. Other factors have a minor influence • the number of parameters stored in EEPROM by the AT commands received so far • the ageing of the hardware components, especially the flash memory • the temperature conditions
  WM_DEV_WUP_PTS_005 March 19, 2007  The recommended way to de-assert the ON/~OFF signal is to use either an AT command or WIND indicators: the application has to detect the end of the power-up initialization and de-assert ON/~OFF afterwards. • Send an “AT” command and wait for the “OK” answer: once the initialization is complete the AT interface answers « OK » to “AT” message1.  • Wait for the “+WIND: 3” message: after initialization, the WMP100/Open AT® Software Suite v1.0, if configured to do so, will return an unsolicited “+WIND: 3” message. The generation of this message is enabled or disabled via an AT command. Note: • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information on these commands.  Proceeding thus – by software detection - will always prevent the application from de-asserting the ON/~OFF signal too early. If WIND indicators are disabled or AT commands unavailable or not used, it is still possible to de-assert ON/~OFF after a delay long enough (Ton/off-hold) to ensure that the firmware has already completed its power-up initialization. The table below gives the minimum values of Ton/off-hold:  Ton/off-hold minimum values Ton/off-hold Open AT® Firmware Safe evaluations of the firmware power-up time 6.65 & above  8 s   The above figure take the worst cases into account: power-loss recovery operations, slow flash memory operations in high temperature conditions, and so on. But they are safe because they are large enough to ensure that ON/~OFF is not de-asserted too early. Additional notes: 1. Typical power-up initialization time figures for best cases conditions (no power-loss recovery, fast and new flash memory…) approximate 3.5 seconds in every firmware version. But releasing ON/~OFF after this delay does not guarantee that the application will actually start-up if for example the power plug has been pulled off during a flash memory operation, like a phone book entry update or an AT&W command… 2. The ON/~OFF signal can be left at a high level until switch OFF. But this is not recommended as it will prevent the AT+CPOF command from performing a clean power-off. (see also <<<NOTE IN POWER OFF CHAPTER>>> for an alternate usage)                                          confidential © Page : 86 / 1521 If the application manages hardware flow control, the AT command can be sent during the initialisation phase.  This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 87 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  POWER SUPPLY ON/OFF AT COMMAND STATE OF THE MODULE 3. When using a battery as power source, it is not recommended to let this signal high: If the battery voltage is too low and the ON/~OFF signal at low level, an internal mechanism switches OFF the WMP100/Open AT® Software Suite v1.0. This automatic process prevents the battery to be over discharged and optimize its life span. 4. During the power-ON sequence, an internal reset is automatically performed by the WMP100/Open AT® Software Suite v1.0 for 40 ms (typically). Any external reset should be avoided during this phase. 5. Connecting a charger on the WMP100/Open AT® Software Suite v1.0 as exactly the same effect than setting the ON/~OFF signal. In particular the WMP100/Open AT® Software Suite v1.0 will not POWER-OFF after the AT+CPOF command, unless the Charger is disconnected. 3.17.3.2 Power OFF To properly power OFF the WMP100/Open AT® Software Suite v1.0 the application must reset the ON/OFF signal and then send the AT+CPOF command to deregister from the network and switch off the WMP100/Open AT® Software Suite v1.0.  Once the « OK » response is issued by the WMP100/Open AT® Software Suite v1.0, the power supply can be switched off.  AT+CPOF Module READY Module OFF IBB+RF<22µA Network dependent OK response IBB+RF = overall current consumption (Base Band + RF part)   Figure 35 : Power-OFF sequence Note: • If the ON/~OFF pin is maintained to ON (High Level) then the module can’t be switched OFF.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.18 BOOT signal A specific control pin BOOT is available to download the WMP100 only if the standard XMODEM download, controlled with AT command, is not possible. Specific PC software, provided by WAVECOM, is needed to perform this download, specifically for the first download of the Flash memory. 3.18.1 Features The BOOT pin must be connected to the VCC_1V8 for this specific download.  BOOT  Operating mode  Comment Leave open  Normal use  No download Leave open  Download XMODEM  AT command for Download AT+WDWL 1  Download specific  Need WAVECOM PC software For more information, see chapter 3.8.3.  This BOOT pin must be left open for normal use or XMODEM download. However, in order to make development and maintenance phases easier, it is highly recommended to set a test point, either a jumper or a switch to VCC_1V8 (ball AD5) power supply. 3.18.2 Pin description Signal  Pin number  I/O  I/O type  Description BOOT W18 I  1V8  Download mode selection 3.18.3 Application  VCC_1V8123SwitchBOOT Figure 36: Example of BOOT pin implementation confidential © Page : 88 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.19 Reset signals The WMP100 have two reset signals. The main is ~RESET which is the input reset of the processor. The second is ~EXT-RESET which is derived from the main reset.  3.19.1 Features confidential © Page : 89 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  WatchdogPowermanagement~RESET ~EXT-RESETPower supplyProcessor controlWMP100to processor internal reset Figure 37 : Reset functional block The ~RESET signal is an input/output signal. It is controlled as well by the user as well by an internal voltage supervisor. This ~RESET signal drive the reset of the processor through the watchdog unit.  The ~EXT-RESET is an output signal and is the result of the combination of the ~RESET and the watchdog reset. This signal is used to provide a reset to all the microprocessor’s system components. Typically, the ~EXT-RESET is used to reset the NOR Flash memories state machine.
  WM_DEV_WUP_PTS_005 March 19, 2007   Figure 38 : Reset waveform events  Three different reset events can occur: o Power on reset: The power on reset is automatically controlled by the internal power management unit. It resets the ~RESET signal as long as the power supply voltage VCC_1V8 is under 1.60 V typ.  The ~RESET is always reset when the VCC_1V8  is high, after what a cancellation time is launched (ta). The ~EXT-RESET is always reset when the ~RESET signal is high, after what a cancellation time is launched (tb). o External reset (~RESET): The external reset is managed by the user or by an external event of the WMP100. This is the asynchronous reset of the processor. The external reset must be generated on the ~RESET signal. The ~Reset signal must be held low during the time (tc) to reset the microprocessor. .  o Internal reset (~EXT-RESET): The internal reset is launched by the watchdog unit, controlled by the processor. This reset affects only the ~EXT-RESET signal (td).   confidential © Page : 90 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  Electrical Characteristics of the signals Parameter  Minimum Typ  Maximum  Unit Input Impedance ( R )*   100K    Ω Input Impedance ( C )   10n    F ~Reset time (tc)   200    μs Cancellation time (ta)  at power up only 20 40 100 ms VH** 0.57    confidential © Page : 91 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  V VIL 0  0.57 V ~RESET VIH 1.33     V Watchdog reset (td)   300   μs Cancellation time (tb)   34 35 ms ~EXT-RESET  Delay after a ~RESET active (te)   122 μs First access time (tf)   17   μs BOOT = 1    200 ~CS0  Total boot time (tg)  BOOT = Leave open ***   20 ms * internal pull up **VH :  Hysterisis Voltage *** Normal configuration. Refer to the chapter 3.18 for further details on the BOOT signal.  Sequence after an external reset event (~RESET):: To activate the « emergency » reset sequence, the ~RESET signal has to be set to low for 200μs minimum for example by a push button . As soon as the reset is complete, the interface answers « OK » to the application.  RESET mode IBB+RF=20 to 40mA ~EXT-RESET STATE OF THE MODULE Module READY tc = Min:200μs  AT answers “OK” Module READY SIM and network dependent Module ON IBB+RF<120mA without loc update ~RESET tb = Typ:34ms  Figure 39 : Reset sequence waveform
  WM_DEV_WUP_PTS_005 March 19, 2007   At power up, the ~RESET time (ta), is performed after switching ON the Wireless Microprocessor®. It is generated by the internal WMP100 voltage supervisor. The ~RESET time is provided by the internal RC component. To keep the same time, it’s not recommended to plug another R or C component into the ~RESET signal. Only a switch or an open drain gate is recommended. The (tb) time is the cancellation time needed for the WMP100/Open AT® Software Suite v1.0 initialization. (tb) time is automatically done by the WMP100/Open AT® Software Suite v1.0 itself, after a hardware reset.  The firsts access on ~CS0 after an internal reset event (~EXT-RESET): After an internal reset (like a Watchdog reset) the delay of the active ~CS0 signal (chip select 0 for access to the external FLASH) depend of the BOOT signal state. Refer to the chapter 3.18 for further details on the BOOT signal.  Figure 40 :  BOOT sequence waveform 3.19.2 Pin description Signal  Pin number I/O  I/O type  Description ~RESET V6  I/O Open Drain*  1V8   WMP100 Reset ~EXT-RESET   AB14  O Push Drain  1V8  External Reset  * internal pull up. See the characteristics in the table §3.19.1.   confidential © Page : 92 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.19.3 Application If used (emergency reset), it has to be driven by an open collector or an open drain output (due to the internal pull-up resistor embedded into the Wireless Microprocessor®) as shown in the diagram hereunder. GND123Push button~RESET Figure 41: Example of ~RESET pin connection with push button configuration  GND~RESETResetcommand T1 Rohm DTC144EE Figure 42: Example of ~RESET pin connection with transistor configuration  Open collector or open drain transistor can be used. If an open collector is chosen, T1 can be a Rohm DTC144EE. Reset command  ~RESET   Operating mode 1 0 Reset activated 0 1 Reset inactive   confidential © Page : 93 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.20 External Interrupt The WMP100 provides up to 9 external interrupts inputs in two voltages ranges (in 1.8V and 2.8V).  3.20.1 Features Those interrupt inputs can be activated on: • high to low edge • low to high edge • low to high and high to low edge • low level • high level  When used, interruptions input must not be left opened. If not used, they have to be configured as GPIO. Electrical characteristics of the signals Parameter  Minimum  Maximum  Unit VIL  0.54 V Interrupt pin at 1V8  VIH 1.33    V VIL  0.84 V Interrupt pin at 2V8  VIH 1.96    V 3.20.2 Pin description Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with INT0  V16  I  1V8  Z  External Interrupt 0  GPIO3 / A26 INT1  Y19  I  2V8  Z  External Interrupt 1  GPIO25 INT2  Y17  I  1V8  Z  External Interrupt 2  GPIO45 INT3  V18  I  2V8  Z  External Interrupt 3  GPIO46  INT4  T18  I  2V8  Z  External Interrupt 4  GPIO35 / ~SPI2-CS INT5  M14  I  2V8  Z  External Interrupt 5  GPIO31 / ~SPI1-CS INT6  T16  I  1V8  Z  External Interrupt 6  GPIO14 / CT103-TXD2 INT7  V13  I  1V8  Z  External Interrupt 7  GPIO17 / confidential © Page : 94 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 95 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with ~CT105-RTS2 INT8  Y3  I  1V8  Z  External Interrupt 8  GPIO18 / SIMPRES See chapter 3.4, “Electrical information for digital I/O” on page 32 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.20.3 Application INTx are high impedance input type, so it is important to set the interrupt input signal with pull up or pull down resistor if they are driven by an open drain, open collector or by a switch. If they are driven by a push-pull transistor, no pull up or pull down resistor is necessary. GNDINTxIntxcommand T1 Rohm DTC144EEVCC_1V8R1 Figure 43: Example of INTx driving example with open collector GNDINTxIntxcommand T1 Rohm DTC144EEVCC_2V8R1 Figure 44: Example of INTx driving example with open collector Where: R1 value can be 47K Ohm. T1 can be a Rohm DTC144EE open collector transistor.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.21 VCC_2V8 and VCC_1V8 output VCC_2V8  output can be used only for pull-up resistor and can be used as a reference supply. VCC_1V8 is used to supply the Flash and Ram memories; it can be used as well for pull-up resistors. Those voltages supplies are available when the WMP100 is on. 3.21.1 Features  Electrical characteristics of the signals Parameter  Minimum Typ  Maximum  Unit Output voltage 1.76 1.8 1.94  V VCC_1V8  Output Current    80 (TBC) mA Output voltage 2.74 2.8 2.86  V VCC_2V8  Output Current    15 mA 3.21.2 Pin description  Signal  Pin number  I/O  I/O type  Description confidential © Page : 96 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  VCC_1V8  AD5  O Supply  Digital supply VCC_2V8  R1  O Supply  Digital supply 3.21.3 Application Those digital power supplies are mainly used to: o VCC_1V8 is used to supply Flash and Ram memory devices o pull-up signals such as I/O o supply the digital transistors driving LEDs o supply the SIMPRES signal o act as a voltage reference for ADC interface AUX-ADC (only for VCC_2V8)
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 97 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.22 Real Time Clock  The Real Time Clock of the WMP100 need to be feeds by a 32768Hz frequency. An internal oscillator is available to drive a crystal at the frequency of 32768Hz. 3.22.1 Features Those two pins are used to connect a crystal which is mandatory to setup and to run the WMP100.  It is possible to access to the 32768 Hz signal (buffered output) on the GPIO44 (ball AB13). Refer to the chapter 3.11.  Electrical characteristics of the signal Parameter  Minimum Typ  Maximum Unit 32kHz oscillator input cycle time - 1/32768 -  μs 32kHz oscillator input high time 5 -  - μs XIN_32K  32kHz oscillator input low time 5 -  - μs Start time  32kHz oscillator start time - - 2 s GPIO44 Delay time with respect to XIN_32K - - 20 ns  3.22.2 Pin description Signal  Pin number I/O  I/O type  Description XIN_32K AC24  I analog  Oscillator input XOUT_32K AB24  O analog  Oscillator output
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 98 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.22.3 Application  R1C1 C2X1XIN_32KXOUT_32K The R1 resistor is mandatory if the crystal maximum power dissipation is under 1μW. The value of the components R1, C1 and C2 are tuned with the crystal MS2V-T1S. It is important to place the crystal close to the WMP100, to reduce as a minimum the length of the nets. Recommended components:  C1, C2 : 22pF   R1 : 100Kohm  X1: 32768Hz crystal. MS2V-T1S (+/- 20ppm @25°C) Microcrystal  3.22.4 Design recommendation Exemple with the crystal. MS2V-T1S Layer 1: -Good ground under the crystal. -Good ground connection of the crystal legs and the load capacitance of the crystal. -Crystal as close as possible to the WMP100 in order to decreases as maximum as possible the parasite capacitance brought by the design of the layout       Figure 45 : PCB lay out for the crystal MS2V-T1S 0.2mm width
  WM_DEV_WUP_PTS_005 March 19, 2007  Layer 2:  A complete layer of ground 3.23 BAT-RTC (Backup Battery) The WMP100 provides an input / output to connect a Real Time Clock power supply. 3.23.1 Features This pin is used as a back-up power supply for the internal Real  Time  Clock. The RTC is supported by the WMP100 when VBATT is available but a back-up power supply is needed to save date and hour when the VBATT is switched off.  confidential © Page : 99 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  2.5Vregulator1.8Vregulatorfrom VBATTto RTCWMP100BAT-RTC Figure 46 : Real Time Clock power supply  If the RTC is not used this pin can be left open. If the VBATT is available, the back-up battery can be charged by the internal 2.5V power supply regulator.
  WM_DEV_WUP_PTS_005 March 19, 2007  Electrical characteristics of the signal Parameter  Minimum Typ  Maximum Unit Input voltage  1.85    2.5  V Input current consumption*   3.3  μA Output voltage    2.45    V Output current      2  mA *Provided by a RTC back-up battery when WMP100 is off and VBATT = 0V. 3.23.2 Pin description  Signal  Pin number  I/O  I/O type  Description BAT-RTC  U6  I/O  Supply  RTC Back-up supply 3.23.3 Application Back-up Power Supply can be provided by: • A super capacitor • A non rechargeable battery • A rechargeable battery cell. 3.23.3.1 Super Capacitor   Figure 47: RTC supplied by a gold capacitor  confidential © Page : 100 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  Estimated range with 0.47 Farad Gold Cap: 25 minutes minimum.  Note: the Gold Capacitor maximum voltage is 2.5V. 3.23.3.2 Non Rechargeable battery  Figure 48: RTC supplied by a non rechargeable battery The diode D1 is mandatory to not damage the non rechargeable battery. Estimated range with 85 mAh battery: 800 h minimum. 3.23.3.3 Rechargeable battery cell  Figure 49: RTC supplied by a rechargeable battery cell  Estimated range with 2 mAh rechargeable battery: ~15 hours. WARNING:  Before battery cell assembly ensure that cell voltage is lower than 2.5 V to avoid any damage to the Wireless Microprocessor®.  confidential © Page : 101 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.24 FLASH-LED signal  3.24.1 Features FLASH LED is an open drain output. A LED and a resistor can be directly connected between this output and VBATT. When the WMP100 is OFF, if 2.8V < VBATT < 3.2V and a charger is connected on CHG-IN inputs, this output indicates, by flashing (100 ms ON, 900 ms OFF) , the pre-charging phase of the battery. When the WMP100 is ON, this output is used to indicate the network status. FLASH-LED status WMP100  state VBATT status  FLASH-LED status  WMP100  status VBATT<2.8V or VBATT> 3.2V OFF  WMP100  is OFF WMP100  OFF  2.8V < VBATT < 3.2V Pre-charge flash LED ON for 100 ms, OFF for 900 ms WMP100 is OFF, Pre-charging mode confidential © Page : 102 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  (charger must be connected on CHG-IN to activate this mode) Permanent  WMP100 switched ON, not registered on the network Slow flash LED ON for 200 ms, OFF for 2 s WMP100 switched ON, registered on the network Quick flash LED ON for 200 ms, OFF for 600 ms WMP100  switched ON, registered on the network, communication in progress WMP100 ON  VBATT > 3.2V Very quick flash LED ON for 100ms, OFF for 200ms WMP100 switched on, software downloaded is either corrupted or non-compatible ("BAD SOFTWARE")
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 103 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Electrical characteristics of the signal Parameter  Condition  Minimum Typ  Maximum  Unit VOL    0.4 V IOUT    8 mA  The FLASH-LED state is high during the RESET time and undefined during the software initialization time. During software initialization time, during 2 seconds max after RESET cancellation, the FLASH-LED signal is toggling and it doesn’t provide the WMP100 status. After the 2s, the FLASH-LED provides the true status of the Wireless Microprocessor®.  Undefined2sModule Status~RESETFLASH-LED 1led OFF Figure 50 : FLASH-LED state during RESET and Initialization time  3.24.2 Pin description  Signal  Pin number I/O  I/O type  Reset state Description FLASH-LED U3 O Open Drain Output 1 *  LED driving         * This signal is undefined 2 seconds after the reset (initialization time). See chapter 3.4, “Electrical information for digital I/O” on page 32 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.24.3 Application The GSM activity status indication signals FLASH-LED (pin U3) can be used to drive a LED. This signal is an open-drain digital transistor according to the WMP100 activity status.  confidential © Page : 104 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  FLASH-LED« GSM »D112R1470 ΩVBATT Figure 51: Example of GSM activity status implementation  R1 value can be harmonized depending of the LED (D1) characteristics. 3.25 Digital audio interface (PCM)  The Digital audio interface (PCM) interface mode allows the connectivity with audio standard peripherals. It can be used, for example, for connecting an external audio codec.  The programmability of this mode allows address a large range of audio peripherals. 3.25.1 Features  • IOM-2 compatible device on physical level • Master mode only with 6 slots by frame, user only on slot 0 • Bit rate single clock mode at 768KHz only  • 16 bits data word MSB first only • Linear Law only (no compression law) • Long Frame Synchronization only • Push pull configuration on PCM-OUT and PCM-IN  The digital audio interface configuration can’t be different from the specified features above.
  WM_DEV_WUP_PTS_005 March 19, 2007  AC characteristics Signal  Description  Minimum Typ  Maximum  Unit Tsync_low + Tsync_high PCM-SYNC period    125    μs confidential © Page : 105 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Tsync_low  PCM-SYNC low time    93    μs Tsync_high  PCM-SYNC high time    32    μs TSYNC-CLK  PCM-SYNC to PCM-CLK time  -154   Ns TCLK-cycle PCM-CLK period   1302  Ns TIN-setup  PCM-IN setup time  50      Ns TIN-hold  PCM-IN hold time  50      Ns TOUT-delay PCM-OUT delay time      20 Ns   PCM interface consists of 4 wires: • PCM-SYNC (output): The frame synchronization signal delivers an 8KHz frequency pulse that synchronizes the frame data in and the frame data out.  • PCM-CLK (output): The frame bit clock signal controls the data transfer with the audio peripheral. • PCM-OUT (output): The frame “data out” depending on the selected configuration mode. • PCM-IN (input): The frame “data in” is depending on the selected configuration mode.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 106 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  SLOT 0 SLOT 1 SLOT 5 SLOT 0SLOT 0 SLOT 1 SLOT 5 SLOT 0SLOT 5SLOT 5PCM-SYNCPCM-CLKPCM-INPCM-OUTTsync_high Tsync_lowEnd of frameBegining offrame Figure 52 : PCM Frame waveform TOUTdelayTSYNC-CLKTCLK-cycleTIN-holdTIN-setupPCM-SYNCPCM-CLKPCM-INPCM-OUTSLOT 0 bit 15 SLOT 0 bit 14 SLOT 0 bit 13SLOT 5 bit 0SLOT 0 bit 15 SLOT 0 bit 14 SLOT 0 bit 13SLOT 5 bit 0 Figure 53 : PCM Sampling waveform
  WM_DEV_WUP_PTS_005 March 19, 2007  3.25.2 Pin description  Signal  Pin number I/O  I/O type Reset state  Description PCM-SYNC  Y21  O  1V8  Pull down  Frame synchronization 8Khz PCM-CLK  W21  O  1V8  Pull down  Data clock W22 PCM-OUT  O  1V8  Pull up  Data output PCM-IN  AA22  I  1V8  Pull up  Data input  See chapter 3.4, “Electrical information for digital I/O” on page 32 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.25.3 Application TBD   3.26 USB 2.0 interface A 5-wire USB slave interface is available, compiling with USB 2.0 protocol signaling, but not with electrical interface, due to the not complying 5V of VPAD-USB.  The USB interface signals are VPAD-USB, USB-DP, USB-DM, USB-DET, USB-CN  and GND. 3.26.1 Features  ¾ 12Mbit/s full speed transfer rate ¾ 3.3V typ compatible ¾ USB Softconnect feature ¾ Download feature is not supported by USB ¾ CDC 1.1 – ACM compliant   confidential © Page : 107 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 108 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Electrical characteristics of the signals Parameter Min Typ Max Unit VPAD-USB, USB-DP, USB-DM, USB-CN  3  3.3  3.6  V VPAD-USB Input current consumption    8    mA  NOTE: A 5V to 3.3V typ. voltage regulator is needed between the external interface power in line (+5V) and the WMP100 line (VPAD-USB). 3.26.2 Pin description   Signal  Pin number I/O  I/O type  Description  Multiplexed with VPAD-USB  AB19  I VPAD_USB USB Power Supply  Not mux USB-DP  W19  I/O VPAD_USB Differential data interface positive Not mux USB-DM  AA20  I/O VPAD_USB Differential data interface negative Not mux USB-CN Y20 O VPAD_USB Connect (high or low speed) Not mux USB-DET R14  I VCC_1V8  Detection  Not mux
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 109 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.26.3 Application A typical schematic is shown below:   Figure 54: Example of USB implementation Recommended components:  R1,R2, R3 : 1MOhm  C1, C3 : 100nF  C2, C4 : 2.2μF  D1 : STF2002-22 from SEMTECH  U1 : LP2985AIM   3.3V from NATIONAL SEMICONDUCTOR  U2 : NC7SZ66L6X from FAIRCHILD The regulator used is a 3.3V one. It is supply through J1 when the USB wire is plugged. USB-DET is a WMP100 External Interruption (R14) used for the USB wire presence detection. The EMI/RFI filter with ESD protection is D1. The D1 integrated pull up resistor used to detection of full speed. USB-CN (Y20) drives this pull-up. R1 and C1 have to be close J1.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.27 Memory interface The memory interface is used to connect many memory parts technologies as Flash NOR, Flash NAND, SRAM and PSRAM components. ComboWMP100ProcessorNORFlashCS0SRAM /PSRAMCS1ADDDATACTRCS2CS3 Figure 55: Memory bus   The interface is able to drive up to 4 independents memories. Some memories can be enclosed in the same package, like the Combo memories. Each Chip select space can be configured undependably. It is mandatory that the memory connected on CS0 is the FLASH and CS1 is the RAM.  confidential © Page : 110 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  3.27.1 Features  3.27.1.1 Generic Description  ¾ Up to 128 MByte address range per chip select ¾ Up to 4 chip select available ¾ Support for 8, 16, and 32 bit (multiplexed synchronous mode) devices ¾ Byte enable signals for 16 bit and 32 bits operation ¾ Fully programmable timings based on hclk (a division of the ARM clock) cycles (except for synchronous mode which is based on CLKBURST cycles) o individually selectable timings for read and write o 0 to 7 clock cycles for setup o 1 to 32 clock cycles for access cycle o 1 to 8 clock cycles for page access cycle o 0 to 7 clock cycles for hold o 1 to 15 clock cycles for turnaround ¾ Page mode Flash memory support o page size of 4, 8, 16 or 32 ¾ Burst mode Flash memory support up to hclk clock frequency (for devices sensitive to rising edge of the clock only) o hclk, hclk/2, hclk/4 or hclk/8 burst clock output o burst size of 4, 8, 16, 32 o WAIT input o automatic CLKBURST power-down between accesses ¾ Intel mode (WE and OE) and Motorola mode (E and R/W) control signals ¾ Synchronous write mode ¾ Synchronous multiplexed data/address mode (x32 mode) ¾ Adaptation to word, halfword, and byte accesses to the external devices confidential © Page : 111 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 112 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.27.1.2 Case of ST 32/8 (M36W0R5030T0ZAQF) ¾ 32 Mbits FLASH: Mandatory configuration of CS0 space : o Bursted mode (Synchronous read / asynchronous write)Burst frequency: 26 MHz o Burst size: 4 half words o 3 clock cycles for read access cycle o 5 clock cycles for write access cycle o 1 clock cycle for turnaround o 16-bit wide data bus o “Top boot” type of flash architecture o Intel SW command set  ¾ 8 Mbits SRAM: Mandatory configuration of CS1 space : o Asynchronous mode  o Intel mode (WE and OE) o Same configuration for Read and Write access o 1 clock cycle for setup o 2 clock cycles for access cycle o 0 clock cycles for hold o 1 clock cycle for turnaround
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 113 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.27.1.3 Access bus Waveform  Synchronous timing diagram CLKBURSTDATA~CS~ADV~OE~WAITADDTCLKBURST_cycleTADD_setupTADD_holdTADD_tristateTWAIT_setupTDATA_holdTCS_setupTADV_setup TADV_holdTOE_delayTWAIT_holdTWAIT_setupTDATA_setup Figure 56: Read synchronous timing Signal  Description  Minimum Typ  Maximum  Unit TCLKBURST  CLKBURST clock period time 19  78 ns TADD_setup  Address bus setup time  7      ns TADD_hold  Address bus hold time  19      ns TADD_tristate  Address bus tristate time      10  ns TDATA_setup  Data bus setup time  5      ns TDATA_hold  Data bus hold time  3      ns TCS_setup  Chip select setup time  7      ns TADV_setup  ADV setup time  7      ns TADV_hold ADV hold time  7   ns TOE_delay  Output Enable delay time      13  ns TWAIT_setup  Wait setup time  5      ns TWAIT_hold Wait hold time  5   ns
  WM_DEV_WUP_PTS_005 March 19, 2007  TCLKBURST_cycleDATA~CS~ADV~WE~WAITADD~BETADD_setupTADD_holdCLKBURSTTADD_tristateTWAIT_setupTCS_setupTADV_setup TADV_holdTWAIT_holdTWAIT_setupTDATA_delayTWE_setupTBE_delay  Figure 57: Write synchronous timing  Signal  Description  Minimum Typ  Maximum  Unit TDATA_delay  CLKBURTS falling edge to DATA valid delay   4 ns TWE_setup  WE to CLKBURST setup time 7    ns TBE_delay  CLKBURST falling edge to BE delay   4 ns  confidential © Page : 114 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  Asynchronous time diagram ADDIO~CS~ADV~WE~OE~BETDATA_holdTDATA_setupTADD_delayTADV_delayTOE_delayTADV_delayTADD_delayTDATA_delayTADV_delayTWE_delayTBE_delayTDATA_secureTDATA_secureTADV_delay  Figure 58: Read / Write Asynchronous timing confidential © Page : 115 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007   Signal  Description  Minimum Typ  Maximum Unit TADD_delay  Address delay time from Chip Select active   3 ns TDATA_setup  Data to Output Enable setup time 18     ns TDATA_hold  Data hold time after Output Enable inactive 3    ns TDATA_delay  Data delay time from Chip Select active   5 ns TDATA_secure  Data hold time after Write Enable inactive or Chip Select inactive -5    ns TADV_delay  ADV delay time from Chip Select active and inactive   3 ns TWE_delay  Write Enable delay time from Chip Select active   3 ns TOE_delay  Output Enable delay time from Chip Select active   5 ns TBE_delay  BE delay time from Chip Select active   3 ns  3.27.1.4 Flash space   The Flash space (program memory) is dedicated on the CS0 pin chip select. This memory is embedded in the Open AT® Software Suite v1.0, so this device has to run at a special configuration of the memory bus to ensure the full functionality of the WMP100/Open AT® Software Suite v1.0. Refer to the chapter 3.27.1.2 for the details on the configuration. 3.27.1.5 RAM space  The Ram space is dedicated on the CS1 pin chip select. This memory has to run at a special configuration of the memory bus to ensure the full functionality of the WMP100/Open AT® Software Suite v1.0. Refer to the chapter 3.27.1.2 for the details on the configuration.  confidential © Page : 116 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 117 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.27.1.6 16-bit wide data bus User Space  The users’ memory space is available on chip select CS2 and CS3. User space are freely configurable. 3.27.2 Electrical characteristics of the signals The memory interface voltage is provided by the VCC_1V8 power supply. So it is mandatory to supply the memories devices by VCC_1V8 power supply voltage provided by the WMP100 Wireless Microprocessor®. Parameter  Min Typ  Max  Unit VCC_1V8 (Wireless Microprocessor® supply output) 1.76 1.9 1.94  V FLASH 1,7  1,95 V Memory Specification  (M36W0R5030T0ZAQF)  SRAM 1,7  1,95 V 3.27.3 Pin description   Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with ~WAIT R19 I  1V8 Pull up Flash burst wait for synchronous operation Not mux ~CS0  P19  O  1V8  1  Flash chip select  Not mux ~CS1  R20  O  1V8  1  RAM chip select  Not mux ~CS2 (*)  R18  O  1V8  Z  User chip select  GPIO1 / A25 ~CS3  T17  O  1V8  1  User chip select  Not mux CLKBURST  M19  O  1V8  Z  Burst Clock  Not mux ~ADV  U19  O  1V8  1  Burst address valid  Not mux ~WE-E  P20  O  1V8  1  write enable (Intel mode) / enable signal (Motorola mode) Not mux ~OE-R/W  N20  O  1V8  1  output enable (Intel mode) / read not write (Motorola mode) Not mux BE1 P18 O 1V8 1 select for 16 or 32 bits devices Not mux (*) Add a pull-up for the Reset State
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 118 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with D0  W24  I/O  1V8  Pull down  Data  Not mux D1  W23  I/O  1V8  Pull down  Data  Not mux D2  AA24  I/O  1V8  Pull down  Data  Not mux D3 Y23 I/O 1V8 Pull down Data Not mux D4  U21  I/O  1V8  Pull down  Data  Not mux D5 Y22 I/O 1V8 Pull down Data Not mux D6 Y24 I/O 1V8 Pull down Data Not mux D7  V21  I/O  1V8  Pull down  Data  Not mux D8  V20  I/O  1V8  Pull down  Data  Not mux D9  U20  I/O  1V8  Pull down  Data  Not mux D10  V24  I/O  1V8  Pull down  Data  Not mux D11  V22  I/O  1V8  Pull down  Data  Not mux D12  V23  I/O  1V8  Pull down  Data  Not mux D13  AA23  I/O  1V8  Pull down  Data  Not mux D14  U23  I/O  1V8  Pull down  Data  Not mux D15  T23  I/O  1V8  Pull down  Data  Not mux A0 T19 O 1V8  1  Address Not mux A1 U18 O 1V8  1  Address Not mux A2  U24  I/O  1V8  Pull down  Address  Not mux A3  P24  I/O  1V8  Pull down  Address  Not mux A4  N24  I/O  1V8  Pull down  Address  Not mux A5  M21  I/O  1V8  Pull down  Address  Not mux A6  M24  I/O  1V8  Pull down  Address  Not mux A7  N23  I/O  1V8  Pull down  Address  Not mux A8  R24  I/O  1V8  Pull down  Address  Not mux A9  R22  I/O  1V8  Pull down  Address  Not mux A10  P22  I/O  1V8  Pull down  Address  Not mux A11  T22  I/O  1V8  Pull down  Address  Not mux A12  R23  I/O  1V8  Pull down  Address  Not mux A13  M22  I/O  1V8  Pull down  Address  Not mux A14  P21  I/O  1V8  Pull down  Address  Not mux
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 119 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal  Pin number I/O  I/O type  Reset state Description  Multiplexed with A15  R21  I/O  1V8  Pull down  Address  Not mux A16  P23  I/O  1V8  Pull down  Address  Not mux A17  T21  I/O  1V8  Pull down  Address  Not mux A18 T24 O 1V8  0  Address  Not mux A19 M23 O 1V8  0  Address  Not mux A20 N21 O 1V8  0  Address  Not mux A21 N22 O 1V8  0  Address  Not mux A22 M20 O 1V8  0  Address  Not mux A23 N19 O 1V8  0  Address  Not mux A24 U22 O 1V8  Z  Address  GPIO2 A25 R18 O 1V8  Z  Address  GPIO1 / ~CS2 A26 V16 O 1V8  Z  Address  GPIO3 / INT0
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 120 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  3.27.4 Application  An application is given with a combo memory ST (M36W0R5030T0ZAQF) which embedded SRAM and FLASH memory                              Figure 59: Memory connection schematic  NC: not connected
  WM_DEV_WUP_PTS_005 March 19, 2007  Recommended components: • U1 : WMP100 • U2 : M36W0R5030T0ZAQF  from STMicroelectronics : o 32Mbits of Bursted Flash (synchrone), Top type. o 8Mbits of SRAM (asynchrone). o Temperature range from –40°C to +85°C. o 16Bit bus Data wide type o 1.8 Volt core and I/O type  • Decoupling capacitors: 100nF 3.27.5 Constraints  Electrical constraints: • The Flash type must be a “Top” type, see on the part number: M36W0R5030T0ZAQF • The reset of the Flash must be done by the ~EXT-RESET signal, (see RESET chapter). • Decoupling capacitors have to be used and to be placed close to the memory power supply pins. (see the Memory location figure below) • The power supply VCC_1V8 is provided by the WMP100 (VCC_1V8 ball “AD5”). • Because it is a 16Bit bus data wide implementation, the Address signal A0 has to be used to select the Low value of the data bus (8 bits LSB). So ~BE1 and A0 have to be connected to ~R-UB and ~R-LB of the memory (See schematic). • The Flash must be connected on ~CS0 and the SRAM on the ~CS1.  PCB constraints: • The memory must be place close to the Wireless Microprocessor® (see the Memory location figure below)  confidential © Page : 121 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 122 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Figure 55: Memory location
  WM_DEV_WUP_PTS_005 March 19, 2007  • All the memory bus nets must have a maximum length of 30 mm. • It is recommended to shield around all the signals (see the Memory PCB figure below). • All signals must be routed with adjoining layers (see the Memory PCB figure below). We do not recommend adding other signals between the Wireless Microprocessor® and the memory. • PCB structure example : 4 layers (see the Memory PCB figure below) o Inner layer trace 100 μm, clearance 100 μm  o Layer top and bottom trace 150 μm, clearance 150 μm                confidential © Page : 123 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.               Figure 60: Memory PCB
  WM_DEV_WUP_PTS_005 March 19, 2007  3.28 RF interface  The impedance is 50 Ohms nominal and the DC impedance is 0 Ohm. 3.28.1 RF connection The RF antenna connection uses a unique BGA Ball associated with grounded BGA balls all around. This ball must be connected, using a PCB via, to an embedded RF 50 ohms line, in order to avoid any pollution coming from base-band signals.  For the same reasons, the RF connection and the RF embedded line must be kept 1 cm away from any noisy base-band signal. Without following this rule the RX sensitivity might be degraded. The other side of the embedded 50 ohms RF line can be connected to a RF connector or a soldering pad in order to connect an antenna.  It’s also possible to use a CMS antenna or to design an antenna directly on the same PCB. confidential © Page : 124 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Notes: • The WMP100 does not support an antenna switch for a car kit but this function can be implemented externally and it can be driven using a GPIO. • The antenna cable and connector should be chosen in order to minimize losses in the frequency bands used for GSM 850/900MHz and 1800/1900MHz. • 0.5dB can be considered as a maximum value for loss between the WMP100 and an external connector. 3.28.2 RF performances RF performances are compliant with the ETSI recommendation GSM 05.05. The main parameters for Receiver are:  •  GSM850 Reference Sensitivity = -108 dBm Static & TUHigh •  E-GSM900 Reference Sensitivity = -108 dBm Static & TUHigh •  DCS1800 Reference Sensitivity = -107 dBm Static & TUHigh •  PCS1900 Reference Sensitivity = -107 dBm Static & TUHigh •  Selectivity @ 200 kHz : > +9 dBc  •  Selectivity @ 400 kHz : > +41 dBc •  Linear dynamic range: 63 dB •  Co-channel rejection: >= 9 dBc  And for Transmitter: •  Maximum output power (EGSM & GSM850): 33 dBm +/- 2 dB at ambient temperature •  Maximum output power (GSM1800 & PCS1900): 30 dBm +/- 2 dB at ambient temperature
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 125 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  •  Minimum output power (EGSM & GSM850): 5 dBm +/- 5 dB at ambient temperature •  Minimum output power (GSM1800 & PCS1900): 0 dBm +/- 5 dB at ambient temperature 3.28.3 Antenna specifications The antenna must fulfill the following requirements: •  The optimum operating frequency depends on application. A dual Band or a quad band antenna shall work in these frequency bands and have the following characteristics: WMP100 86 Characteristic  E-GSM 900  DCS 1800  GSM 850  PCS 1900 TX Frequency   880 to 915 MHz 1710 to 1785 MHz 824 to 849 MHz 1850 to 1910 MHz RX Frequency   925 to 960 MHz 1805 to 1880 MHz 869 to 894 MHz 1930 to 1990 MHz Impedance  50 Ohms Rx max  1.5 :1 VSWR   Tx max  1.5 :1 Typical radiated gain  0dBi in one direction at least   3.28.4 Antenna The RF antenna connection uses a unique BGA Ball associated with grounded BGA balls all around. This BGA ball must be connected, using a PCB via, to an embedded RF 50 ohms line, in order to protect the antenna line from the noise coming from base-band signals.  The figure below shows the RF ball and the ground balls around, and a PCB via placement example.  PCB via
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 126 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Figure 61: Antenna and ground balls placement  The figure below shows the RF embedded line and the PCB via.  Figure 62: RF 50 ohms embedded line  This 50 ohms line is surrounded by two ground planes in order to protect this antenna line from noise. The length of the line shouldn’t be too high (more than a few cm) because of RF insertions losses. The width of the line must be calculated in order to ensure a 50 ohms characteristic impedance.  For the same reasons, not only the RF connection but also the RF embedded line should be kept about 1 cm away from any (noisy) Base-band signal in order to ensure a good RX sensitivity level. Figure below shows a keep away area for the antenna connection point. This restricted area must not contain any noisy base-band signals (like any bus or clock signal).    Figure 63: Antenna connection point keep away area The other end of the embedded 50 ohms RF line can be connected to a RF connector or a soldering pad in order to connect an antenna.  Keep  away  area
  WM_DEV_WUP_PTS_005 March 19, 2007  It’s recommended to add an ESD protection component on the antenna line, in order to increase the final product ESD tolerance. ESD protection  Figure 64: RF connector and ESD protection example This ESD protection component can be an 82 nH Multi-Layer HF inductor (0603 case). It must be connected between RF output and ground as short as possible. It’s also possible to use an antenna chip or to choose to design an antenna directly on the same PCB. WARNING: Wavecom strongly recommends working with an antenna manufacturer either to develop an antenna adapted to the application or to adapt an existing solution to the application. Both the mechanical and electrical antenna adaptation is one of the key issues in the design of the GSM terminal. 4 Consumption measurement procedure This chapter describes the consumption measurement procedure used to obtain the Wireless Microprocessor consumption specification  WMP100/OASS1.0 consumption specification values are measured for all operating modes available on this product. See the appendix of document [3] AT Command Interface Guide for Open AT® Firmware v6.5.  Consumption results are highly dependent on the hardware configuration used during measurement, this chapter describes the hardware configuration settings to be used to obtain optimum consumption measurements. 4.1 Hardware configuration The hardware configuration includes both the measurement equipment and the Wireless Microprocessor with its motherboard.  4.1.1 Equipment Four devices are used to perform consumption measurement. ¾ A communication tester ¾ A current measuring power supply confidential © Page : 127 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  ¾ A standalone power supply ¾ A computer, to control the Wireless Microprocessor and save measurement data.  Figure 65: Typical hardware configuration confidential © Page : 128 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 129 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  The communication tester is a CMU 200 from Rhode & Schwartz. This tester offers all GSM/GPRS network configurations required and allows a wide range of network configurations to be set. The  AX502  standalone power supply is used to supply all motherboard components except the Wireless Microprocessor. The goal is to separate motherboard consumption from Wireless Microprocessor consumption -which is measured by the other power supply, the 66321B “current measuring power supply”. The “current measuring power supply” is also connected and controlled by the computer (GPIB control not shown in the previous figure). A SIM must be inserted in the Development Kit  Wireless Microprocessor during all consumption measurements.  Equipment reference list: Device  Manufacturer  Reference   Communication Tester Rhode & Schwartz CMU 200  Quad Band GSM/DCS/GPRS Current measuring power supply Agilent  66321B  Used for VBATT (for WMP alone) Stand alone power supply Metrix  AX502  Used for VBAT (for boards peripherals)  4.1.2 Wireless Microprocessor motherboard The Wireless Microprocessor board used is the Development Kit Wireless Microprocessor V2. This board can be used to perform consumption measurement with several settings. For a description of the settings, see document [2] WMP100 Development Kit User Guide. The Wireless Microprocessor is only powered by VBATT. The Development Kit board is powered by the standalone power supply at VBAT. It is for this reason that the link between VBATT and VBAT (J605) must be opened (by removing the solder at the top of board in the SUPPLY area). ¾ VBATT powered by the current measuring power supply (66321B). ¾ VBAT powered by the standalone power supply (AX502). The R600, resistor, and D603,D604 diodes (around the BAT-TEMP connector) must be removed. The UART2 link is not used, therefore J201, J202, J203, J204 must be opened (by removing the solder).  The “FLASH-LED” must be not used, so J602 must be opened (by removing the solder).
  WM_DEV_WUP_PTS_005 March 19, 2007  The USB link is not used, therefore J301, J302, J303, J304, J305 must be opened (by removing the solder). Around “CONFIG” area, the switch BOOT must be to OFF position.  The goal of the settings is to eliminate all bias current from VBATT and to supply the entire board (except the Wireless Microprocessor) via VBAT only. The standalone power supply may be set to 4 Volts.  4.1.3 SIM cards used Consumption measurement may be performed with 3-Volt or 1.8-Volt SIM cards. However, all specified consumption values are for a 3-Volt SIM card. CAUTION: The SIM card is supplied by the Wireless Microprocessor, consumption measurement results may vary depending of the SIM card used. 4.2 Software configurations  Software configuration for the equipment and Wireless Microprocessor  settings. 4.2.1 Wireless Microprocessor configuration  Wireless Microprocessor software configuration is simply performed by selecting the operating mode to be used to perform the measurement.   A description of the operating modes and the procedure used to change operating mode are given in the appendix of document [3] AT Command Interface Guide for Open AT® Firmware v6.5. An overview of the WMP100/OASS1.0 operating modes is given below:  ¾ Alarm Mode ¾ Fast Idle Mode ¾ Slow Idle Mode ¾ Fast Standby Mode ¾ Slow Standby Mode ¾ Connected Mode ¾ Transfer Mode class 8 (4Rx/1Tx) (in GPRS mode) ¾ Transfer Mode class 10 (3Rx/2Tx) (in GPRS mode)  confidential © Page : 130 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 131 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  4.2.2 Equipment configuration  The communication tester is set according to Wireless Microprocessor operating mode.  Paging during idle modes, Tx burst power, RF band and GSM/DCS/GPRS may be selected on the communication tester.  Network analyzer configuration according to operating mode:  Operating mode  Communication tester configuration Alarm Mode  N/A Paging 9 (Rx burst occurrence ~2s) Fast Idle Mode Paging 2 (Rx burst occurrence ~0,5s) Paging 9 (Rx burst occurrence ~2s) Slow Idle Mode  Paging 2 (Rx burst occurrence ~0,5s) Fast Standby Mode  N/A Slow Standby Mode  N/A PCL5 (TX power 33dBm) 850/900 MHz PCL19 (TX power 5dBm) PCL0 (TX power 30dBm) Connected Mode 1800/1900 MHz PCL15 (TX power 0dBm) Gam.3 (TX power 33dBm) 850/900 MHz Gam.17 (TX power 5dBm) Gam.3 (TX power 30dBm) Transfer Mode class 8 (4Rx/1Tx) 1800/1900 MHz Gam.18 (TX power 0dBm) Gam.3 (TX power 33dBm) 850/900 MHz Gam.17 (TX power 5dBm) Gam.3 (TX power 30dBm) 1800/1900 MHz Gam.18 (TX power 0dBm) Gam.5 (TX power 26dBm) GPRS Transfer Mode class 10 (3Rx/2Tx) 1800/1900 MHz Gam.18 (TX power 0dBm) The standalone power supply may be set from 3.2V to 4.5V. The power supply (VBATT) used for measurement may be set from 3.2V to 4.8V according Wireless Microprocessor VBATT specifications.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 132 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  4.3 Template This template may be used for consumption measurement, all modes and configurations are available.  Three VBATT voltages are measured, 3.2V, 3.6V and 4.8V and the minimum/maximum RF transmission power configurations are set and measured. Power consumption  Operating mode  Parameters  IMIN average VBATT=4,8VINOM average VBATT=3,6VIMAX average VBATT=3,2V IMAX peak  unitAlarm Mode       µA Paging 9 (Rx burst occurrence ~2s)       mA Fast Idle Mode Paging 2 (Rx burst occurrence ~0,5s)       mA Paging 9 (Rx burst occurrence ~2s)       mA Slow Idle Mode Paging 2 (Rx burst occurrence ~0,5s)       mA Fast Standby Mode       mA Slow Standby Mode       mA PCL5 (TX power 33dBm)      mA 850/900 MHz PCL19 (TX power 5dBm)      mA PCL0 (TX power 30dBm)      mA Connected Mode 1800/1900 MHz PCL15 (TX power 0dBm)      mA Gam.3 (TX power 33dBm)      mA 850/900 MHz Gam.17 (TX power 5dBm)      mA Gam.3 (TX power 30dBm)      mA Transfer Mode  class 8 (4Rx/1Tx) 1800/1900 MHz Gam.18 (TX power 0dBm)      mA Gam.3 (TX power 33dBm)      mA 850/900 MHz Gam.17 (TX power 5dBm)      mA Gam.3 (TX power 30dBm)      mA Gam.18 (TX power 0dBm)      mA GPRS Transfer Mode  class 10 (3Rx/2Tx) 1800/1900 MHz Gam.18 (TX power 0dBm)      mA
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 133 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  5 Technical specifications 5.1 Ball Grid Array pin out Signal Name  Description  I/O  Voltage Domain  MUX  MUX  MUX  Ball number VBATT-RF  Power Supply  I  VBATT  VBATT-RF  _ _ A12, A13, A14, B12, B13, B14 VBATT-BB  Power Supply  I  VBATT  VBATT-BB  _ _ AC1, AC2, AD1, AD2 RF-OUT  Radio antenna connection  I/O Analog RF  RF-OUT  _ _ B23 VCC_2V8  Power Supply  O  VCC_2V8  VCC_2V8  _ _ R1 VCC_1V8  Power Supply  O  VCC_1V8  VCC_1V8  _ _ AD5 BAT-RTC  Power Supply  I/O  BAT-RTC  BAT-RTC  _ _ U6 SIM-CLK  SIM clock  O  1V8 / 2V9  SIM-CLK  _ _ Y2 ~SIM-RST  SIM reset  O  1V8 / 2V9  ~SIM-RST  _ _ Y1 SIM-IO  SIM data  I/O  1V8 / 2V9  SIM-IO  _ _ W1 SIM-VCC  SIM power supply  O  1V8 / 2V9  SIM-VCC  _ _ W2 SIMPRES / INT8 / GPIO18 SIM presence detection  I/O VCC_1V8  SIMPRES  INT8  GPIO18  Y3 MIC1P  Microphone input 1 positive  I Analog  MIC1P  _ _ AC10 MIC1N  Microphone input 1 negative  I Analog  MIC1N  _ _ AB10 MIC2P  Microphone input 2 positive  I Analog  MIC2P  _ _ AC9 MIC2N  Microphone input 2 negative  I Analog  MIC2N  _ _ AB9 SPK1P  Speaker output 1 positive  O Analog  SPK1P  _ _ AC8 SPK1N  Speaker output 1 negative  O Analog  SPK1N  _ _ AB8 SPK2P  Speaker output 2 positive  O Analog  SPK2P  _ _ AC7 SPK2N  Speaker output 2 negative  O Analog  SPK2N  _ _ AB7 CHG-IN  Charger input voltage  I Analog  CHG-IN  _ _ V2, V3 CHG-GATE  Charger transistor control output  O  Analog current  CHG-GATE _ _ V4 AUX-ADC2 / BAT-TEMP Analog to Digital converter 3  I Analog AUX-ADC2 / BAT-TEMP  _ _ N18 AUX-ADC1  Analog to Digital converter 2  I Analog AUX-ADC1  _ _ M17 AUX-ADC0  Analog to Digital converter 1  I Analog AUX-ADC0  _ _ N17 AUX-DAC0  Digital to Analog converter  O Analog AUX-DAC0  _ _ V14
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 134 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal Name  Description  I/O  Voltage Domain  MUX  MUX  MUX  Ball number XIN_32K  Oscillator crystal input  I Analog  XIN_32K  _ _ AC24 XOUT_32K  Oscillator crystal output  O Analog XOUT_32K  _ _ AB24 ~RESET  Input Reset signal  I/O  VCC_1V8  ~RESET  _ _ V6 ~EXT-RESET  Output External reset  O VCC_1V8  ~EXT-RESET  _ _ AB14 BOOT  BOOT control  I  VCC_1V8  BOOT  _ _ W18 Flash LED  WMP100  Status LED  O Open Drain VBATT Flash LED _ _ U3 BUZZ-OUT  Buzzer output control  O Open Drain VBATT BUZZ-OUT _ _ U4 ROW0 / GPIO9 Row Scan of keypad  I/O VCC_1V8  ROW0  GPIO9  _ AC23 ROW1 / GPIO10 Row Scan of keypad I/O VCC_1V8  ROW1  GPIO10  _ AD22 ROW2 / GPIO11 Row Scan of keypad I/O VCC_1V8  ROW2  GPIO11  _ AD21 ROW3 / GPIO12 Row Scan of keypad I/O VCC_1V8  ROW3  GPIO12  _ AC22 ROW4 / GPIO13 Row Scan of keypad I/O VCC_1V8  ROW4  GPIO13  _ AD23 COL0 / GPIO4  Column Scan of keypad I/O VCC_1V8  COL0  GPIO4  _ AD19 COL1 / GPIO5  Column Scan of keypad  I/O VCC_1V8  COL1  GPIO5  _ AD20 COL2 / GPIO6  Column Scan of keypad  I/O VCC_1V8  COL2  GPIO6  _ AC20 COL3 / GPIO7  Column Scan of keypad  I/O VCC_1V8  COL3  GPIO7  _ AC19 COL4 / GPIO8  Column Scan of keypad  I/O VCC_1V8  COL4  GPIO8  _ AC21 PCM-SYNC  PCM frame synchronization  O VCC_1V8 PCM-SYNC _ _ Y21 PCM-CLK  PCM clock  O  VCC_1V8 PCM-CLK _ _ W21 PCM-OUT  PCM data output  O  VCC_1V8 PCM-OUT _ _ W22 PCM-IN  PCM data input  I  VCC_1V8 PCM-IN _ _ AA22 CT103 / TXD1 / GPIO36 Transmit serial data  I/O VCC_2V8  CT103 / TXD1  GPIO36 _ R17 CT104 / RXD1 / GPIO37 Receive serial data  I/O  VCC_2V8 CT104 / RXD1  GPIO37 _ T13 ~CT105 / RTS1 / GPIO38 Ready To Send I/O VCC_2V8 ~CT105 / RTS1  GPIO38 _ Y18 ~CT106 / CTS1 / GPIO39 Clear To Send  I/O  VCC_2V8 ~CT106 / CTS1  GPIO39 _ N15 ~CT107 / DSR1  Data Set Ready  I/O  VCC_2V8 ~CT107 / DSR1  GPIO40 _ T12 ~CT108-2 / DTR1 / GPIO41 Data Serial Ready  I/O  VCC_2V8 ~CT108-2 / DTR1  GPIO41 _ M16
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 135 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal Name  Description  I/O  Voltage Domain  MUX  MUX  MUX  Ball number ~CT109 / DCD1 / GPIO43 Data Carrier Detect  I/O VCC_2V8 ~CT109 / DCD1  GPIO43 _ AB16 ~CT125 / RI1 / GPIO42  Ring Indicator  I/O  VCC_2V8 ~CT125 / RI1  GPIO42 _ AA18 CT103 / TXD2 / INT6 / GPIO14 Transmit serial data  I/O VCC_1V8  CT103 / TXD2  INT6 GPIO14  T16 CT104 / RXD2 / GPIO15 Receive serial data  I/O  VCC_1V8 CT104 / RXD2  GPIO15 _  U17 ~CT105 / RTS2 / INT7 / GPIO17 Ready To Send I/O VCC_1V8 ~CT105 / RTS2  INT7 GPIO17  V13 ~CT106 / CTS2 / GPIO16 Clear To Send  I/O  VCC_1V8 ~CT106 / CTS2  GPIO16 _ W17 SCL / GPIO26  I²C serial clock  I/O  Open drain  SCL  GPIO26  _ AA15 SDA / GPIO27  I²C serial data  I/O  Open Drain  SDA  GPIO27  _ AA16 SPI1-CLK / GPIO28  SPI serial clock  I/O  VCC_2V8  SPI1-CLK  GPIO28  _ U15 SPI1-IO / GPIO29 SPI serial data input and output  I/O VCC_2V8  SPI1-IO  GPIO29  _ V12 SPI1-I / GPIO30 SPI serial data input only input  I/O VCC_2V8  SPI1-I  GPIO30  _ R13 SPI1-CS / INT5 / GPIO31 SPI chip select  I/O  VCC_2V8  SPI1-CS  INT5  GPIO31  M14 SPI2-CLK / GPIO32  SPI serial clock  I/O  VCC_2V8  SPI2-CLK  GPIO32  _ R15 SPI2-IO / GPIO33 SPI serial data input and output  I/O VCC_2V8  SPI2-IO  GPIO33  _ M13 SPI2-I / GPIO34 SPI serial data input only input  I/O VCC_2V8  SPI2-I  GPIO34  _ U16 SPI2-CS / INT4 / GPIO35 SPI chip select  I/O  VCC_2V8  SPI2-CS  INT4  GPIO35  T18 INT3 / GPIO46  SPI chip select  I/O  VCC_2V8  INT3  GPIO46  _  V18 USB-DP  Universal Serial Bus Data positive  I/O VPAD-USB  USB-DP  _ _ W19 USB-DM  Universal Serial Bus Data negative  I/O VPAD-USB  USB-DM  _ _ AA20 USB-CN  Universal Serial Bus Connect  O VPAD-USB  USB-CN  _ _ Y20 USB-DET  Universal Serial Bus interruption  I VCC_1V8  USB-DET  _ _ R14 GPIO44  General Purpose Input Output  I/O VCC_2V8  GPIO44  _ _ AB13 GPIO19  General Purpose Input Output I/O VCC_2V8 GPIO19 _ _ AA17 GPIO21  General Purpose Input Output I/O VCC_2V8 GPIO21 _ _ AA13 GPIO20  General Purpose Input Output I/O VCC_2V8 GPIO20 _ _ Y13
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 136 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal Name  Description  I/O  Voltage Domain  MUX  MUX  MUX  Ball number GPIO47  General Purpose Input Output I/O VCC_1V8 GPIO47  _ _ Y15 GPIO48  General Purpose Input Output I/O VCC_1V8 GPIO48  _ _ Y16 GPIO0  General Purpose Input Output I/O VCC_1V8 GPIO0  _ _ W15 GPIO24  General Purpose Input Output I/O VCC_2V8 GPIO24  _ _ N16 GPIO22  General Purpose Input Output I/O VCC_2V8 GPIO22 _ _ M15 GPIO23  General Purpose Input Output I/O VCC_2V8 GPIO23 _ _ V17 INT0 / A26 / GPIO3  Interruption input  I/O  VCC_1V8 INT0  A26  GPIO3  V16 INT1 / GPIO25  Interruption input  I/O  VCC_2V8  INT1  GPIO25  _ Y19 INT2 / GPIO45  Interruption input  I/O  VCC_1V8  INT2  GPIO45  _ Y17 A0  Address bus  O  VCC_1V8  A0  _ _ T19 A1  Address bus O VCC_1V8  A1  _ _ U18 A2  Address bus O VCC_1V8  A2  _ _ U24 A3  Address bus O VCC_1V8  A3  _ _ P24 A4  Address bus O VCC_1V8  A4  _ _ N24 A5  Address bus O VCC_1V8  A5  _ _ M21 A6  Address bus O VCC_1V8  A6  _ _ M24 A7  Address bus O VCC_1V8  A7  _ _ N23 A8  Address bus O VCC_1V8  A8  _ _ R24 A9  Address bus O VCC_1V8  A9  _ _ R22 A10  Address bus O VCC_1V8  A10  _ _ P22 A11  Address bus O VCC_1V8  A11  _ _ T22 A12  Address bus O VCC_1V8  A12  _ _ R23 A13  Address bus O VCC_1V8  A13  _ _ M22 A14  Address bus O VCC_1V8  A14  _ _ P21 A15  Address bus O VCC_1V8  A15  _ _ R21 A16  Address bus O VCC_1V8  A16  _ _ P23 A17  Address bus O VCC_1V8  A17  _ _ T21 A18  Address bus O VCC_1V8  A18  _ _ T24 A19  Address bus O VCC_1V8  A19  _ _ M23 A20  Address bus O VCC_1V8  A20  _ _ N21 A21  Address bus O VCC_1V8  A21  _ _ N22 A22  Address bus O VCC_1V8  A22  _ _ M20 A23  Address bus O VCC_1V8  A23  _ _ N19 A24 / GPIO2  Address bus I/O VCC_1V8  A24  GPIO2  _ U22 D0  Data bus  I/O  VCC_1V8  D0  _ _ W24
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 137 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal Name  Description  I/O  Voltage Domain  MUX  MUX  MUX  Ball number D1  Data bus I/O VCC_1V8  D1  _ _ W23 D2  Data bus I/O VCC_1V8  D2  _ _ AA24 D3  Data bus I/O VCC_1V8  D3  _ _ Y23 D4  Data bus I/O VCC_1V8  D4  _ _ U21 D5  Data bus I/O VCC_1V8  D5  _ _ Y22 D6  Data bus I/O VCC_1V8  D6  _ _ Y24 D7  Data bus I/O VCC_1V8  D7  _ _ V21 D8  Data bus I/O VCC_1V8  D8  _ _ V20 D9  Data bus I/O VCC_1V8  D9  _ _ U20 D10  Data bus I/O VCC_1V8  D10  _ _ V24 D11  Data bus I/O VCC_1V8  D11  _ _ V22 D12  Data bus I/O VCC_1V8  D12  _ _ V23 D13  Data bus I/O VCC_1V8  D13  _ _ AA23 D14  Data bus I/O VCC_1V8  D14  _ _ U23 D15  Data bus I/O VCC_1V8  D15  _ _ T23 ~WAIT  Burst Wait signal  I  VCC_1V8  ~WAIT  _ _ R19 ~CS0  Chip select Flash  O  VCC_1V8  ~CS0  _ _ P19 ~CS1  Chip select RAM  O  VCC_1V8  ~CS1  _ _ R20 ~CS2 / A25 / GPIO1  Chip select I/O VCC_1V8  ~CS2  A25  GPIO1  R18 ~CS3  Chip select O VCC_1V8  ~CS3  _ _ T17 CLKBURST  Burst clock  O  VCC_1V8  CLKBURST  _ _ M19 ~ADV  Burst address valid signal  O VCC_1V8  ~ADV  _ _ U19 ~WE-E  Write enable  O  VCC_1V8  ~WE-E  _ _ P20 ~OE-R/W  Read enable  O  VCC_1V8  ~OE-R/W  _ _ N20 BE1  2nd byte enable  O  VCC_1V8  BE1  _ _ P18 BE3  4th byte enable  O  VCC_1V8  BE3  _ _ T20
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 138 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  Signal Name  Description  I/O  Voltage Domain  MUX  MUX  MUX  Ball number GND  Ground A1, A10, A11, A15, A16, A17, A18, A19, A2, A20, A21, A22, A23, A24, A3, A4, A5, A6, A7, A8, A9, B1, B10, B11, B15, B16, B17, B18, B19, B20, B21, B22, B24, B3, B4, B5, B6, B7, B8, B9, C1, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C3, C4, C5, C6, C7, C8, C9, D1, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D2, D20, D21, D22, D23, D24, D3, D4, D5, D6, D7, D8, D9, E1, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E2, E20, E21, E22, E23, E24, E3, E4, E5, E6, E7, E8, E9, F1, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F2, F20, F21, F22, F23, F24, F3, F4, F5, F6, F7, F8, F9, G1, G10, G11, G12, G13, G14, G15, G16, G17, G18, G19, G2, G20, G21, G22, G23, G24, G3, G4, G5, G6, G7, G8, G9, H1, H10, H11, H12, H13, H14, H15, H16, H17, H18, H19, H2, H20, H21, H22, H23, H24, H3, H4, H5, H6, H7, H8, H9, J1, J10, J11, J12, J13, J14, J15, J16, J17, J18, J19, J2, J20, J21, J22, J23, J24, J3, J4, J5, J6, J7, J8, J9, K1, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K2, K20, K21, K22, K23, K24, K3, K4, K5, K6, K7, K8, K9, L1, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L2, L20, L21, L22, L23, L24, L3, L4, L5, L6, L7, L8, L9, M1, M10, M11, M12, M18, M2, M3, M4, M5, M6, M7, M8, M9, N1, N10, N2, N3, N7, N8, N9, P1, P10, P13, P14, P15, P2, P3, P4, P5, P6, P7, P8, P9, R10, R11, R12, R2, R3, R4, R5, R6, R7, R8, R9, T1, T10, T11, T14, T15, T2, T8, T9, U1, U10, U11, U12, U13, U14, U2, U7, U8, U9, V1, V10, V11, V15, V7, V8, V9, W10, W11, W12, W13, W14, W16, W3, W6, W7, W8, W9, Y10, Y12, Y14, Y7, AA1, AA10, AA11, AA12, AA14, AA19, AA2, AA21, AA3, AA4, AA5, AA6, AA7, AA8, AA9, AB1, AB12, AB15, AB17, AB18, AB2, AB21, AB22, AB23, AB3, AB4, AB5, AB6, AC12, AC13, AC14, AC15, AC16, AC17, AC18, AC3, AC4, AC5, AC6, AD10, AD11, AD12, AD13, AD14, AD15, AD16, AD17, AD18, AD24, AD3, AD4, AD6, AD7, AD8, AD9 RESERVED Do not connect. (Left opened) B2, C2, N11, N12, N13, N14, N4, N5, N6, P11, P12, P16, P17, R16, T3, T4, T5, T6, T7, V19, V5, W20, W4, W5, Y11, Y4, Y5, Y6, Y8, Y9, AB11, AB20, AC11  *   The I/O direction information is concerning only the nominal signal. When the signal is configured in GPIO, it can always be an Input or an Output. **   For more information about the multiplexing of those signals, see “General purpose input /output” chapter 3.11
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 139 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  5.2 Environmental Specifications Wavecom specify following temperature range of WMP100 product The WMP100 is compliant with following operating class Conditions Temperature range Operating / Class A -20 °C to +55°C Operating / Storage / Class B  -40 °C to +85°C  Function Status Classification: Class A:    The WMP100 shall have full function during and after an external influence. The GSM performance shall meet the minimum ETSI requirements. Class B:    Any functions can be out of specified tolerances. All the functions will be going back to normal tolerances automatically after that the external influence has been removed. Performance is allowed to go outside of the minimum ETSI requirements, but it must be possible to connect a call and send an SMS. Q2686 ENVIRONNEMENTAL CLASSESTYPE OF TEST STANDARDS STORAGE TRANSPORTATION OPERATING (PORT USE)Class 1.2 Class 2.3 Class 7.3Cold IEC 68-2.1 -25° C                              72 h -40° C                               72 h -20° C (GSM900)                 16 hAb test -10° C (GSM1800/1900)    16hDry heat IEC 68-2.2 +70° C                              72 h +70° C                               72 h +55° C                               16 hBb testChange of temperature IEC 68-2.14 -40° / +30° C              5 cycles -20° / +30° C (GSM900) 3 cyclesNa/Nb test                                      t1 = 3 h -10° / +30° C (GSM1800/1900):3 cycles                    t1 = 3 hDamp heat IEC 68-2.30  +30° C               2 cycles  +40° C               2 cycles  +40° C               2 cyclescyclic Db test 90% - 100% RH                           90% - 100% RH                            90% - 100% RHvariant 1 variant 1 variant 1Damp heat IEC 68-2.56  +30° C               4 days  +40° C               4 days  +40° C               4 daysCb testSinusoidal vibration IEC 68-2.6 5 - 62 Hz     :               5 mm / sFc test 62 - 200Hz :               2 m / s23 x 5 sweep cycles5 - 20 Hz     :        0.96 m2 / s3 10 -12 Hz     :        0.96 m2 / s3Random vibration IEC 68-3.36 20 - 500Hz :         - 3 dB / oct 12 - 150Hz :         - 3 dB / octwide band Fdb test 3 x 10 min 3 x 30 min Figure 66 : Environmental classes
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 140 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  5.3 MSL level The WMP100 is MSL 3 and 2 reflows are allowed in customer side including one for rework of the component. If the product is double side, the WMP100 should be assembled on the side that will see only one reflow. 5.4 Mechanical specifications 5.4.1 Physical characteristics The WMP100 has a complete self-contained shield. • Overall dimensions  :25 x 25 x 3.65 mm • Weight: 4.25 g 5.4.2 Mechanical drawings The next page gives the mechanical specifications of WMP100.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 141 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Figure 67 : Mechanical drawing
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 142 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Figure 68 : Mechanical drawing
  WM_DEV_WUP_PTS_005 March 19, 2007  5.4.3 Mechanical constraints Wavecom recommend the customer to check on their own application if the WMP100 can withstand their mechanical environment. 5.5 PCB specifications Due to the density of connections, the PCB stack should be the following: 4 layers (track / distance 100 μm / 100 μm, with though-holes vias Diam 0.25, pad 0.5 mm), but 6 layers may be necessary according to the functionality needed (track / distance 150 μm / 150 μm may be possible). 6 Peripheral devices references 6.1 SIM Card Reader • ITT CANNON CCM03 series (see http://www.ittcannon.com ) • AMPHENOL C707 series (see http://www.amphenol.com ) • JAE (see http://www.jae.com )  Drawer type: • MOLEX 99228-0002 (connector) / MOLEX 91236-0002 (holder) (see http://www.molex.com ) 6.2 Microphone Possible suppliers: • HOSIDEN  • PANASONIC  • PEIKER  6.3 Speaker Possible suppliers: • SANYO • HOSIDEN • PRIMO • PHILIPS confidential © Page : 143 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  6.4 Antenna Cable The following cable reference has been qualified for being mounted on WMP100: • RG178 • TBD  6.5 GSM antenna GSM antennas and support for antenna adaptation can be obtained from manufacturers such as: • ALLGON (http://www.allgon.com ) • IRSCHMANN (http://www.hirschmann.com/ ) confidential © Page : 144 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 145 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  7 Noises and design 7.1 EMC recommendations The EMC tests have to be performed as soon as possible on the application to detect any possible problem. When designing, special attention should be paid to: • Possible spurious emission radiated by the application to the RF receiver in the receiver band • ESD protection is mandatory for all peripherals accessible from outside (SIM, serial link, etc.) • EMC protection on audio input/output (filters against 900MHz emissions) • Biasing of the microphone inputs • Length of the SIM interface lines (preferably <10cm) • Ground plane: WAVECOM recommends having a common ground plane for analog / digital / RF grounds. • Metallic case or plastic casing with conductive paint are recommended Note: The WMP100 does not include any protection against overvoltage. 7.2 Power Supply The power supply is one of the key issues in the design of a GSM terminal. A weak power supply design could affect in particular: • EMC performances. • the emissions spectrum  • the phase error and frequency error WARNING: Careful attention should be paid to: • Quality of the power supply: low ripple, PFM or PSM systems should be avoided (PWM converter preferred). • Capacity to deliver high current peaks in a short time (pulsed radio emission).
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 146 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  8 Appendix 8.1 Standards and Recommendations GSM ETSI, 3GPP, GCF and NAPRD03 recommendations for Phase II. Specification Reference  Title 3GPP TS 45.005  v5.5.0 (2002-08) Release 5  Technical Specification Group GSM/EDGE. Radio Access Network; Radio transmission and reception GSM 02.07 V8.0.0 (1999-07) Digital cellular telecommunications system (Phase 2+); Mobile Stations (MS) features (GSM 02.07 version 8.0.0 Release 1999) GSM 02.60 V8.1.0 (1999-07) Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service description, Stage 1 (GSM 02.60 version 8.1.0 Release 1999) GSM 03.60 V7.9.0 (2002-09) Technical Specification Group Services and System Aspects; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service description; Stage 2 (Release 1998) 3GPP TS 43.064 V5.0.0 (2002-04) Technical Specification Group GERAN; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Overall description of the GPRS radio interface; Stage 2 (Release 5) 3GPP TS 03.22 V8.7.0 (2002-08) Technical Specification Group GSM/EDGE. Radio Access Network; Functions related to Mobile Station (MS) in idle mode and group receive mode; (Release 1999) 3GPP TS 03.40 V7.5.0 (2001-12)  Technical Specification Group Terminals; Technical realization of the Short Message Service (SMS) (Release 1998) 3GPP TS 03.41 V7.4.0 (2000-09) Technical Specification Group Terminals; Technical realization of Cell Broadcast Service (CBS) (Release 1998) ETSI EN 300 903 V8.1.1 (2000-11) Digital cellular telecommunications system (Phase 2+); Transmission planning aspects of the speech service in the GSM Public Land Mobile Network (PLMN) system (GSM 03.50 version 8.1.1 Release 1999)
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 147 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Specification Reference  Title 3GPP TS 04.06 V8.2.1 (2002-05) Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station - Base Station System (MS - BSS) interface; Data Link (DL) layer specification (Release 1999) 3GPP TS 04.08 V7.18.0 (2002-09) Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); Mobile radio interface layer 3 specification (Release 1998) 3GPP TS 04.10 V7.1.0 (2001-12)  Technical Specification Group Core Networks; Mobile radio interface layer 3 Supplementary services specification; General aspects (Release 1998) 3GPP TS 04.11 V7.1.0 (2000-09) Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); Point-to-Point (PP) Short Message Service (SMS) support on mobile radio interface (Release 1998) 3GPP TS 45.005  v5.5.0 (2002-08)  Technical Specification Group GSM/EDGE. Radio Access Network; Radio transmission and reception (Release 5) 3GPP TS 45.008 V5.8.0 (2002-08) Technical Specification Group GSM/EDGE Radio Access Network; Radio subsystem link control (Release 5) 3GPP TS 45.010 V5.1.0 (2002-08) Technical Specification Group GSM/EDGE Radio Access Network; Radio subsystem synchronization (Release 5) 3GPP TS 46.010 V5.0.0 (2002-06) Technical Specification Group Services and System Aspects; Full rate speech; Transcoding (Release 5) 3GPP TS 46.011 V5.0.0 (2002-06) Technical Specification Group Services and System Aspects; Full rate speech; Substitution and muting of lost frames for full rate speech channels (Release 5) 3GPP TS 46.012 V5.0.0 (2002-06) Technical Specification Group Services and System Aspects; Full rate speech; Comfort noise aspect for full rate speech traffic channels (Release 5)
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 148 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.   Specification Reference  Title 3GPP TS 46.031 V5.0.0 (2002-06) Technical Specification Group Services and System Aspects; Full rate speech; Discontinuous Transmission (DTX) for full rate speech traffic channels (Release 5) 3GPP TS 46.032 V5.0.0 (2002-06) Technical Specification Group Services and System Aspects; Full rate speech; Voice Activity Detector (VAD) for full rate speech traffic channels (Release 5) TS 100 913V8.0.0 (1999-08) Digital cellular telecommunications system (Phase 2+); General on Terminal Adaptation Functions (TAF) for Mobile Stations (MS) (GSM 07.01 version 8.0.0 Release 1999) GSM 09.07 V8.0.0 (1999-08) Digital cellular telecommunications system (Phase 2+); General requirements on interworking between the Public Land Mobile Network (PLMN) and the Integrated Services Digital Network (ISDN) or Public Switched Telephone Network (PSTN) (GSM 09.07 version 8.0.0 Release 1999) 3GPP TS 51.010-1 v5.0.0 (2002-09) Technical Specification Group GSM/EDGE ; Radio Access Network ;Digital cellular telecommunications system (Phase 2+);Mobile Station (MS) conformance specification; Part 1: Conformance specification (Release 5) 3GPP TS 51.011 V5.0.0 (2001-12) Technical Specification Group Terminals; Specification of the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface (Release 5) ETS 300 641 (1998-03)  Digital cellular telecommunications system (Phase 2); Specification of the 3 Volt Subscriber Identity Module - Mobile Equipment (SIM-ME) interface (GSM 11.12 version 4.3.1) GCF-CC V3.7.1 (2002-08)  Global Certification Forum – Certification criteria  NAPRD03 V2.6.0 (2002-06)  North America Permanent Reference Document for PTCRB tests
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 149 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  The Wireless Microprocessor WMP100 connected to a development kit board application is certified to be in accordance with the following Rules and Regulations of the Federal Communications Commission (FCC). Power listed on the Gant is conducted for Part 22 and conducted for Part 24. This device contains EGSM/GPRS Class 10 functions in the 900 and 1800MHz Band, which are not operational in U.S. Territories. This device can be used only for mobile and fixed applications. The antenna(s) used for this transmitter must be installed at a distance of minimum 20 cm from all persons and must not be co-located or operated with any other antenna or transmitter.  Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance. Antennas used for this OEM module must not exceed 0.9 dBi gain for GSM 850 MHz and 7.1 dBi for GSM 1900 MHz for fixed operating configurations. For mobile operations the gain must not exceed 0.9 dBi for GSM 850 MHz and 3.1 dBi for GSM 1900 MHz. This device is approved as a module to be installed in other devices. Installed in portable devices, the RF exposure condition requires a separate mandatory equipment authorization for the final device. The license module will have a FCC ID label on the module itself. The FCC ID label must be visible through a window or it must be visible when an access panel, door or cover is easily removed.   If not, a second label must be placed on the outside of the device that contains the following text: FCC ID: O9EWMP100 This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:  o This device may not cause harmful interference. o This device must accept any interference received, including interference that may cause undesired operation.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 150 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  8.2 Safety recommendations (for information only) IMPORTANT FOR THE EFFICIENT AND SAFE OPERATION OF YOUR GSM APPLICATION BASED ON WMP100  PLEASE READ THIS INFORMATION CAREFULLY 8.2.1  RF safety 8.2.1.1 General Your GSM terminal is based on the GSM standard for cellular technology. The GSM standard is spread all over the world. It covers Europe, Asia and some parts of America and Africa. This is the most used telecommunication standard. Your GSM terminal is actually a low power radio transmitter and receiver. It sends out and receives radio frequency energy. When you use your GSM application, the cellular system which handles your calls controls both the radio frequency and the power level of your cellular modem. 8.2.1.2 Exposure to RF energy There has been some public concern about possible health effects of using GSM terminals. Although research on health effects from RF energy has focused on the current RF technology for many years, scientists have begun research regarding newer radio technologies, such as GSM. After existing research had been reviewed, and after compliance to all applicable safety standards had been tested, it has been concluded that the product was fitted for use. If you are concerned about exposure to RF energy there are things you can do to minimize exposure. Obviously, limiting the duration of your calls will reduce your exposure to RF energy. In addition, you can reduce RF exposure by operating your cellular terminal efficiently by following the below guidelines. 8.2.1.3  Efficient terminal operation For your GSM terminal to operate at the lowest power level, consistent with satisfactory call quality: If your terminal has an extendible antenna, extend it fully. Some models allow you to place a call with the antenna retracted. However your GSM terminal operates more efficiently with the antenna fully extended. Do not hold the antenna when the terminal is « IN USE ». Holding the antenna affects call quality and may cause the modem to operate at a higher power level than needed.
  WM_DEV_WUP_PTS_005 March 19, 2007  confidential © Page : 151 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.  8.2.1.4 Antenna care and replacement Do not use the GSM terminal with a damaged antenna. If a damaged antenna comes into contact with the skin, a minor burn may result. Replace a damaged antenna immediately. Consult your manual to see if you may change the antenna yourself. If so, use only a manufacturer-approved antenna. Otherwise, have your antenna repaired by a qualified technician. Use only the supplied or approved antenna. Unauthorized antennas, modifications or attachments could damage the terminal and may contravene local RF emission regulations or invalidate type approval. 8.2.2  General safety 8.2.2.1 Driving Check the laws and the regulations regarding the use of cellular devices in the area where you have to drive as you always have to comply with them. When using your GSM terminal while driving, please: • give full attention to driving, • pull off the road and park before making or answering a call if driving conditions so require. 8.2.2.2  Electronic devices Most electronic equipment, for example in hospitals and motor vehicles is shielded from RF energy. However RF energy may affect some improperly shielded electronic equipment. 8.2.2.3  Vehicle electronic equipment Check your vehicle manufacturer representative to determine if any on-board electronic equipment is adequately shielded from RF energy. 8.2.2.4  Medical electronic equipment Consult the manufacturer of any personal medical devices (such as pacemakers, hearing aids, etc...) to determine if they are adequately shielded from external RF energy. Turn your terminal OFF in health care facilities when any regulations posted in the area instruct you to do so. Hospitals or health care facilities may be using RF monitoring equipment.
  WM_DEV_WUP_PTS_005 March 19, 2007  8.2.2.5 Aircraft Turn your terminal OFF before boarding any aircraft. • Use it on the ground only with crew permission. • Do not use it in the air. To prevent possible interference with aircraft systems, Federal Aviation Administration (FAA) regulations require you to have permission from a crew member to use your terminal while the aircraft is on the ground. To prevent interference with cellular systems, local RF regulations prohibit using your modem while airborne. 8.2.2.6  Children Do not allow children to play with your GSM terminal. It is not a toy. Children could hurt themselves or others (by poking themselves or others in the eye with the antenna, for example). Children could damage the modem, or make calls that increase your modem bills. 8.2.2.7  Blasting areas To avoid interfering with blasting operations, turn your unit OFF when in a « blasting area » or in areas posted: « turn off two-way radio ». Construction crews often use remote control RF devices to set off explosives. 8.2.2.8  Potentially explosive atmospheres Turn your terminal OFF when in any area with a potentially explosive atmosphere. It is rare, but your application or its accessories could generate sparks. Sparks in such areas could cause an explosion or fire resulting in bodily injuries or even death. Areas with a potentially explosive atmosphere are often, but not always, clearly marked. They include fuelling areas such as petrol stations; below decks on boats; fuel or chemical transfer or storage facilities; and areas where the air contains chemicals or particles, such as grain, dust, or metal powders. Do not transport or store flammable gas, liquid, or explosives, in the compartment of your vehicle which contains your terminal or accessories. Before using your terminal in a vehicle powered by liquefied petroleum gas (such as propane or butane) ensure that the vehicle complies with the relevant fire and safety regulations of the country in which the vehicle is to be used. confidential © Page : 152 / 152 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.  Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable.
 GR/GS64 Charging Interface  Page: 1/1  APPLICATION NOTE  This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable WAVECOM S.A. - 3 esplanade du Foncet - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33(0)1 46 29 08 00 - Fax: +33(0)1 46 29 08 08Wavecom, Inc. - 430 Davis Drive - Suite 300 - Research Triangle Park, NC 27709 - USA - Tel: +1 919 237 4000 - Fax: +1 919 237 4140WAVECOM Asia Pacific Ltd. - Unit 201-207, 2PndP Floor - Bio-Informatics Centre - No. 2 Science Park West Avenue - Hong Kong Science Park,Shatin - New Territories, Hong Kong - Tel: +852 2824 0254 - Fax: +852 2824 0255

Navigation menu