Sierra Wireless WMP100 Quadband GSM Module User Manual Wireless Microprocessor WMP100 OASS1 0
Sierra Wireless, Inc. Quadband GSM Module Wireless Microprocessor WMP100 OASS1 0
Contents
- 1. User Manual
- 2. User Guide
User Manual
Product Technical Specification and Customer Design Guidelines Wireless Microprocessor® WMP100/ Open AT® Software Suite v1.0 Reference: WM_DEV_WUP_PTS_005 Revision: 002 Date: March 19, 2007 WMP100/Open AT® Software Suite v1.0 Product Technical Specification & Customer Design Guidelines Reference: WM_DEV_WUP_PTS_005 Revision: 002 Date: March 19, 2007 Powered by the Wavecom Open AT® Software Suite Page : 1 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Document Information Level Date History of the evolution 001 19/10/2006 Creation (Preliminary version) 002 19/03/2007 Updates Page : 2 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Overview This document defines and specifies the WMP100/Open AT® Software Suite v1.0 available in a GSM/GPRS Class 10 quad-band version. Page : 3 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Table of Contents Document Information......................................................................... 2 Overview ............................................................................................. 3 Table of Contents ................................................................................ 4 Table of Figures................................................................................. 10 Cautions ............................................................................................ 12 Trademarks ....................................................................................... 12 Copyright .......................................................................................... 12 References................................................................................ 13 1.1 Reference documents ............................................................................13 1.1.1 WAVECOM reference documentation ............................................13 1.1.2 General reference documentation ..................................................13 1.2 List of abbreviations ..............................................................................14 General description................................................................... 17 2.1 General information ...............................................................................17 2.1.1 Overall dimensions ........................................................................17 2.1.2 Environment and mechanics..........................................................17 2.1.3 GSM/GPRS Features ......................................................................17 2.1.4 Interfaces.......................................................................................18 2.1.5 Operating system ..........................................................................18 2.2 Functional description ...........................................................................19 2.2.1 RF functionalities ...........................................................................20 2.2.2 Baseband functionalities................................................................20 2.3 Software description .............................................................................20 Interfaces ................................................................................. 21 3.1 General Interfaces .................................................................................21 3.2 Power supply ........................................................................................22 3.2.1 Power supply description ..............................................................22 3.2.2 Power supply constraints on VBATT-RF ........................................22 3.2.3 Power supply constraints on VBATT-BB........................................23 3.2.4 Electrical characteristics ................................................................23 3.2.5 Pin description...............................................................................23 Page : 4 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.2.6 Application ....................................................................................24 3.3 Power consumption ..............................................................................25 3.3.1.1 Power consumption without Open AT® processing .................26 3.3.1.2 Power consumption with a Dhrystone Open AT® application...27 3.3.1.3 Consumption waveform samples.............................................28 3.3.1.3.1 Connected mode current waveform .......................................28 3.3.1.3.2 Slow Idle mode current waveform .........................................29 3.3.1.3.3 Fast Idle mode current waveform ..........................................30 3.3.1.3.4 Transfer mode Class 10 current waveform ............................31 3.4 Electrical information for digital I/O ........................................................32 3.5 SPI Bus .................................................................................................34 3.5.1 Features ........................................................................................34 3.5.1.1 Characteristics .........................................................................34 3.5.1.2 SPI configuration .....................................................................34 3.5.1.3 SPI waveforms ........................................................................35 3.5.2 Pin description...............................................................................36 3.5.3 Application ....................................................................................36 3.5.3.1 4-wire interface .......................................................................36 3.5.3.2 3-wire interface .......................................................................37 3.6 I2C bus..................................................................................................38 3.6.1 Features ........................................................................................38 3.6.1.1 Characteristics .........................................................................38 3.6.1.2 I²C waveforms .........................................................................38 3.6.2 Pin description...............................................................................39 3.6.3 Application ....................................................................................39 3.7 Keyboard interface.................................................................................40 3.7.1 Features ........................................................................................40 3.7.2 Pin description...............................................................................41 3.7.3 Application ....................................................................................42 3.8 Main serial link (UART1) ........................................................................42 3.8.1 Features ........................................................................................42 3.8.2 Pin description...............................................................................43 3.8.3 First download ..............................................................................45 3.8.4 Application ....................................................................................46 3.9 Auxiliary serial link (UART2) ..................................................................50 3.9.1 Features ........................................................................................50 3.9.2 Pin description...............................................................................51 3.9.3 Application ....................................................................................51 3.10 SIM 3.10.1 3.10.2 3.10.3 Interface.........................................................................................52 Features ........................................................................................52 Pin description...............................................................................54 Application ....................................................................................54 3.11 General Purpose Input/Output ...............................................................56 3.11.1 Features ........................................................................................56 3.11.2 Pin description...............................................................................56 3.12 Analog to Digital Converter....................................................................58 3.12.1 Features ........................................................................................58 3.12.2 Pin description...............................................................................58 3.12.3 Application ....................................................................................59 3.13 Digital to Analog Converter....................................................................60 Page : 5 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.13.1 3.13.2 Features ........................................................................................60 Pin description...............................................................................60 3.14 Analogue audio interface .......................................................................61 3.14.1 Microphone Features.....................................................................61 3.14.1.1 Electrical characteristics...........................................................61 3.14.1.1.1 MIC1 Microphone Inputs ...................................................61 3.14.1.1.2 MIC2 Microphone Inputs ...................................................62 3.14.2 Speaker Features ...........................................................................64 3.14.2.1 Speakers Outputs Power .........................................................64 3.14.2.1.1 SPK1 Speaker Outputs.......................................................64 3.14.2.1.2 SPK2 Speaker Outputs......................................................66 3.14.3 Pin description...............................................................................67 3.14.4 Application ....................................................................................67 3.14.4.1 Microphone .............................................................................67 3.14.4.1.1 MIC2 Differential connection example................................67 3.14.4.1.2 MIC2 single-ended connection example ............................69 3.14.4.1.3 MIC1 Differential connection example................................70 3.14.4.1.4 MIC1 Single-ended connection example ............................72 3.14.4.2 Speaker ...................................................................................73 3.14.4.2.1 SPK2 Differential connection..............................................73 3.14.4.2.2 SPKx Single-ended connection ..........................................74 3.14.5 Design recommendation................................................................74 3.14.5.1 General ....................................................................................74 3.14.5.2 Recommended microphone characteristics..............................74 3.14.5.3 Recommended speaker characteristics ....................................75 3.14.5.4 Recommended filtering components........................................75 3.14.5.5 Audio track and PCB layout recommendation ..........................77 3.15 PWM / Buzzer Output ...........................................................................78 3.15.1 Features ........................................................................................78 3.15.2 Pin description...............................................................................78 3.15.3 Application ....................................................................................79 3.16 Battery charging interface .....................................................................80 3.16.1 Feature ..........................................................................................80 3.16.1.1 Pre-Charging ...........................................................................81 3.16.1.2 Temperature monitoring ..........................................................81 3.16.2 Pin description...............................................................................82 3.16.3 Application ....................................................................................82 3.17 ON / ~OFF signal ...................................................................................84 3.17.1 Features ........................................................................................84 3.17.2 Pin description...............................................................................84 3.17.3 Application ....................................................................................84 3.17.3.1 Power ON ................................................................................85 3.17.3.2 Power OFF...............................................................................87 3.18 BOOT signal ..........................................................................................88 3.18.1 Features ........................................................................................88 3.18.2 Pin description...............................................................................88 3.18.3 Application ....................................................................................88 3.19 Reset signals .........................................................................................89 3.19.1 Features ........................................................................................89 3.19.2 Pin description...............................................................................92 3.19.3 Application ....................................................................................93 3.20 External Interrupt ..................................................................................94 Page : 6 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.20.1 3.20.2 3.20.3 Features ........................................................................................94 Pin description...............................................................................94 Application ....................................................................................95 3.21 VCC_2V8 and VCC_1V8 output ..............................................................96 3.21.1 Features ........................................................................................96 3.21.2 Pin description...............................................................................96 3.21.3 Application ....................................................................................96 3.22 Real 3.22.1 3.22.2 3.22.3 3.22.4 Time Clock .....................................................................................97 Features ........................................................................................97 Pin description...............................................................................97 Application ....................................................................................98 Design recommendation................................................................98 3.23 BAT-RTC (Backup Battery) ....................................................................99 3.23.1 Features ........................................................................................99 3.23.2 Pin description.............................................................................100 3.23.3 Application ..................................................................................100 3.23.3.1 Super Capacitor .....................................................................100 3.23.3.2 Non Rechargeable battery......................................................101 3.23.3.3 Rechargeable battery cell .......................................................101 3.24 FLASH-LED signal ...............................................................................102 3.24.1 Features ......................................................................................102 3.24.2 Pin description.............................................................................103 3.24.3 Application ..................................................................................104 3.25 Digital audio interface (PCM) ...............................................................104 3.25.1 Features ......................................................................................104 3.25.2 Pin description.............................................................................107 3.25.3 Application TBD...........................................................................107 3.26 USB 3.26.1 3.26.2 3.26.3 2.0 interface ................................................................................107 Features ......................................................................................107 Pin description.............................................................................108 Application ..................................................................................109 3.27 Memory interface ................................................................................110 3.27.1 Features ......................................................................................111 3.27.1.1 Generic Description................................................................111 3.27.1.2 Case of ST 32/8 (M36W0R5030T0ZAQF) ..............................112 3.27.1.3 Access bus Waveform ...........................................................113 3.27.1.4 Flash space............................................................................116 3.27.1.5 RAM space ............................................................................116 3.27.1.6 16-bit wide data bus User Space ...........................................117 3.27.2 Electrical characteristics of the signals.........................................117 3.27.3 Pin description.............................................................................117 3.27.4 Application ..................................................................................120 3.27.5 Constraints ..................................................................................121 3.28 RF interface .........................................................................................124 3.28.1 RF connection..............................................................................124 3.28.2 RF performances .........................................................................124 3.28.3 Antenna specifications ................................................................125 3.28.4 Antenna.......................................................................................125 Consumption measurement procedure ................................... 127 Page : 7 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Hardware configuration.......................................................................127 4.1 4.1.1 Equipment ...................................................................................127 4.1.2 Wireless Microprocessor motherboard ........................................129 4.1.3 SIM cards used ...........................................................................130 4.2 Software configurations ......................................................................130 4.2.1 Wireless Microprocessor configuration ........................................130 4.2.2 Equipment configuration .............................................................131 4.3 Template .............................................................................................132 Technical specifications ......................................................... 133 5.1 Ball Grid Array pin out .........................................................................133 5.2 Environmental Specifications...............................................................139 5.3 MSL level ............................................................................................140 5.4 Mechanical specifications....................................................................140 5.4.1 Physical characteristics................................................................140 5.4.2 Mechanical drawings ..................................................................140 5.4.3 Mechanical constraints................................................................143 5.5 PCB specifications ...............................................................................143 Peripheral devices references ................................................. 143 6.1 SIM Card Reader .................................................................................143 6.2 Microphone .........................................................................................143 6.3 Speaker ...............................................................................................143 6.4 Antenna Cable.....................................................................................144 6.5 GSM antenna ......................................................................................144 Noises and design................................................................... 145 7.1 EMC recommendations .......................................................................145 7.2 Power Supply......................................................................................145 Appendix................................................................................. 146 8.1 Standards and Recommendations .......................................................146 8.2 Safety recommendations (for information only) ...................................150 8.2.1 RF safety .....................................................................................150 8.2.1.1 General ..................................................................................150 8.2.1.2 Exposure to RF energy...........................................................150 8.2.1.3 Efficient terminal operation ....................................................150 8.2.1.4 Antenna care and replacement ..............................................151 8.2.2 General safety..............................................................................151 8.2.2.1 Driving...................................................................................151 8.2.2.2 Electronic devices ..................................................................151 8.2.2.3 Vehicle electronic equipment .................................................151 8.2.2.4 Medical electronic equipment ................................................151 8.2.2.5 Aircraft ..................................................................................152 8.2.2.6 Children .................................................................................152 Page : 8 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 8.2.2.7 8.2.2.8 Blasting areas ........................................................................152 Potentially explosive atmospheres .........................................152 Page : 9 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Table of Figures Figure 1 : Functional architecture ................................................................... 19 Figure 2 : Power supply during burst emission .............................................. 22 Figure 3 : Reject filter diagram........................................................................ 24 Figure 4: SPI Timing diagrams, Mode 0, Master, 4 wires ............................... 35 Figure 5: Example of 4-wire SPI bus application............................................. 36 Figure 6: Example of 3-wire SPI bus application............................................. 37 Figure 7: I²C Timing diagrams, Master ........................................................... 38 Figure 8: First example of I²C bus application................................................. 39 Figure 9: Second example of I²C bus application ............................................ 40 Figure 10: Example of keyboard implementation ............................................ 42 Figure 11: Example of UART1 connection for download with another device on the link...................................................................................................... 45 Figure 12: Example of RS-232 level shifter implementation for UART1........... 46 Figure 13: Example of V24/CMOS serial link implementation for UART1 ........ 48 Figure 14: Example of full modem V24/CMOS serial link implementation for UART1 ...................................................................................................... 49 Figure 15: Example of RS-232 level shifter implementation for UART2........... 51 Figure 16: Example of SIM Socket implementation......................................... 54 Figure 17: Example of MIC2 input differential connection with LC filter.......... 67 Figure 18: Example of MIC2 input differential connection without LC filter..... 68 Figure 19: Example of MIC2 input single-ended connection with LC filter ...... 69 Figure 20: Example of MIC2 input single-ended connection without LC filter . 69 Figure 21: Example of MIC1 input differential connection with LC filter.......... 70 Figure 22: Example of MIC1 input differential connection without LC filter..... 71 Figure 23: Example of MIC1 input single-ended connection with LC filter ...... 72 Figure 24: Example of MIC1 input single-ended connection without LC filter . 72 Figure 25: Example of Speaker differential connection.................................... 73 Figure 26: Example of Speaker single-ended connection ................................ 74 Figure 27: Microphone ................................................................................... 75 Figure 28: Audio track design......................................................................... 77 Figure 29: Example of buzzer implementation ................................................ 79 Figure 30: Example of LED driven by the BUZZ-OUT output........................... 79 Figure 31: Charging block diagram................................................................. 80 Figure 32: Charging schematic for Li-Ion ........................................................ 82 Page : 10 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Figure 33: Example of ON/~OFF pin connection ............................................. 84 Figure 34 : Power-ON sequence (no PIN code activated) ................................ 85 Figure 35 : Power-OFF sequence ................................................................... 87 Figure 36: Example of BOOT pin implementation ........................................... 88 Figure 37 : Reset functional block................................................................... 89 Figure 38 : Reset waveform events ................................................................ 90 Figure 39 : Reset sequence waveform............................................................ 91 Figure 40 : BOOT sequence waveform .......................................................... 92 Figure 41: Example of ~RESET pin connection with push button configuration ................................................................................................................. 93 Figure 42: Example of ~RESET pin connection with transistor configuration.. 93 Figure 43: Example of INTx driving example with open collector.................... 95 Figure 44: Example of INTx driving example with open collector.................... 95 Figure 45 : PCB lay out for the crystal MS2V-T1S .......................................... 98 Figure 46 : Real Time Clock power supply ...................................................... 99 Figure 47: RTC supplied by a gold capacitor................................................. 100 Figure 48: RTC supplied by a non rechargeable battery................................ 101 Figure 49: RTC supplied by a rechargeable battery cell ................................ 101 Figure 50 : FLASH-LED state during RESET and Initialization time ............... 103 Figure 51: Example of GSM activity status implementation.......................... 104 Figure 52 : PCM Frame waveform ................................................................ 106 Figure 53 : PCM Sampling waveform ........................................................... 106 Figure 54: Example of USB implementation.................................................. 109 Figure 55: Memory bus ................................................................................ 110 Figure 56: Read synchronous timing ............................................................ 113 Figure 57: Write synchronous timing ........................................................... 114 Figure 58: Read / Write Asynchronous timing .............................................. 115 Figure 59: Memory connection schematic .................................................... 120 Figure 60: Memory PCB ............................................................................... 123 Figure 61: Antenna and ground balls placement .......................................... 126 Figure 62: RF 50 ohms embedded line ......................................................... 126 Figure 63: Antenna connection point keep away area .................................. 126 Figure 64: RF connector and ESD protection example .................................. 127 Figure 65: Typical hardware configuration ................................................... 128 Figure 66 : Environmental classes ................................................................ 139 Figure 67 : Mechanical drawing ................................................................... 141 Figure 68 : Mechanical drawing ................................................................... 142 Page : 11 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Cautions This platform contains a modular transmitter. This device is used for wireless applications. Note that all electronics parts and elements are ESD sensitive. Information provided herein by WAVECOM is accurate and reliable. However no responsibility is assumed for its use and any of such WAVECOM information is herein provided “as is” without any warranty of any kind, whether express or implied. General information about WAVECOM and its range of products is available at the following internet address: http://www.wavecom.com Trademarks ®, WAVECOM®, WISMO®, Open AT®, Wireless Microprocessor®, Wireless CPU®, and certain other trademarks and logos appearing on this document, are filed or registered trademarks of Wavecom S.A. in France or in other countries. All other company and/or product names mentioned may be filed or registered trademarks of their respective owners. Copyright This manual is copyrighted by WAVECOM with all rights reserved. No part of this manual may be reproduced in any form without the prior written permission of WAVECOM. No patent liability is assumed with respect to the use of their respective owners. Page : 12 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 1 References 1.1 Reference documents For more details, several documents are referenced in this specification. The WAVECOM documents references herein are provided in the WAVECOM documentation package; the general reference documents which are not WAVECOM owned are not provided in the documentation package. 1.1.1 WAVECOM reference documentation [1] Wireless Microprocessor® WMP100 Technical Specification Reference: WM_DEV_WUP_PTS_004 [2] WMP100 Development Kit User Guide Reference: WM_DEV_WUP_UGD_001 [3] AT Command Interface Guide for Open AT® Firmware v6.5 Reference: WM_DEV_OAT_UGD_035 1.1.2 General reference documentation [4] “I²C Bus Specification”, Version 2.0, Philips Semiconductor 1998 [5] ISO 7816-3 Standard Page : 13 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 1.2 List of abbreviations Abbreviation Definition AC Alternative Current ADC Analog to Digital Converter A/D Analog to Digital conversion AF Audio-Frequency AT ATtention (prefix for modem commands) AUX AUXiliary CAN Controller Area Network CB Cell Broadcast CEP Circular Error Probable CLK CLocK CMOS Complementary Metal Oxide Semiconductor CS Coding Scheme CTS Clear To Send DAC Digital to Analogue Converter dB Decibel DC Direct Current DCD Data Carrier Detect DCE Data Communication Equipment DCS Digital Cellular System DR Dynamic Range DSR Data Set Ready DTE Data Terminal Equipment DTR Data Terminal Ready EFR Enhanced Full Rate E-GSM Extended GSM EMC ElectroMagnetic Compatibility EMI ElectroMagnetic Interference EMS Enhanced Message Service EN ENable ESD ElectroStatic Discharges FIFO First In First Out FR Full Rate FTA Full Type Approval Page : 14 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Abbreviation Definition GND GrouND GPI General Purpose Input GPC General Purpose Connector GPIO General Purpose Input Output GPO General Purpose Output GPRS General Packet Radio Service GPS Global Positioning System GSM Global System for Mobile communications HR Half Rate I/O Input / Output LED Light Emitting Diode LNA Low Noise Amplifier MAX MAXimum MIC MICrophone MIN MINimum MMS Multimedia Message Service MO Mobile Originated MT Mobile Terminated na Not Applicable NF Noise Factor NMEA National Marine Electronics Association NOM NOMinal NTC Négative Temperature Coefficient PA Power Amplifier Pa Pascal (for speaker sound pressure measurements) PBCCH Packet Broadcast Control CHannel PC Personal Computer PCB Printed Circuit Board PDA Personal Digital Assistant PFM Power Frequency Modulation PSM Phase Shift Modulation PWM Pulse Width Modulation RAM Random Access Memory RF Radio Frequency RFI Radio Frequency Interference Page : 15 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Abbreviation Definition RHCP Right Hand Circular Polarization RI Ring Indicator RST ReSeT RTC Real Time Clock RTCM Radio Technical Commission for Maritime services RTS Request To Send RX Receive SCL Serial CLock SDA Serial DAta SIM Subscriber Identification Module SMS Short Message Service SPI Serial Peripheral Interface SPL Sound Pressure Level SPK SPeaKer SRAM Static RAM TBC To Be Confirmed TDMA Time Division Multiple Access TP Test Point TVS Transient Voltage Suppressor TX Transmit TYP TYPical UART Universal Asynchronous Receiver-Transmitter USB Universal Serial Bus USSD Unstructured Supplementary Services Data VSWR Voltage Standing Wave Ratio Page : 16 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 2 General description 2.1 General information The WMP100 Wireless Microprocessor® is a self-contained E-GSM/GPRS 900/1800 and 850/1900 quad-band processor, including the characteristics listed in the subsection below. 2.1.1 Overall dimensions • • • • • Length: 25 mm Width: 25 mm Thickness: 3.65 mm Weight: 4.25 g Package: WMBGA576 / ball Ø 0,6 mm @ pitch 1mm 2.1.2 Environment and mechanics • Green policy: Restriction of Hazardous Substances in Electrical and Electronic Equipment (RoHS) compliant • Complete shielding The WMP100 is compliant with RoHS Directive 2002/95/EC which sets limits for the use of certain restricted hazardous substances. This directive states that “from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)”. 2.1.3 GSM/GPRS Features • • • 2 Watts EGSM 900/GSM 850 radio section running under 3.6 Volts 1 Watt GSM1800/1900 radio section running under 3.6 Volts Hardware GPRS class 10 capable Page : 17 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 2.1.4 Interfaces • • • • • • • • • • • • • • Digital section running under 2.8 Volts and 1.8Volts. 3V/1V8 SIM interface 1.8V Parallel interface for devices (memories, LCD…) Power supply Watchdog Serial links (UART) Analogue audio ADC / DAC PCM digital audio Keyboard USB 2.0 slave Serial buses (I2C,SPI) PWM GPIOs 2.1.5 Operating system • • • Real Time Clock with calendar Echo Cancellation + noise reduction (quadri codec) Full GSM or GSM/GPRS Operating System stack Page : 18 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 2.2 Functional description The global architecture of WMP100 is described below: WMP100 Analog Interfaces Radio GSM / GPRS DSP core AUDIO CH1 & CH2 Digital Interfaces DAC ADCs UART 1,2 SPI 1,2 Control & Power PCM power supplys ARM 946 I²C 32bit core reset 32768 kHz SIM ITs USB 2.0 KEYPAD RTC GPIOs AHB bus Charging PWM Extended Memory Bridge Address Data Control Figure 1 : Functional architecture Page : 19 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 2.2.1 RF functionalities The Radio Frequency (RF) range complies with the Phase II EGSM 900/DCS 1800 and GSM 850/PCS 1900 recommendation. The frequencies are listed in the table below. Transmit band (Tx) Receive band (Rx) GSM 850 824 to 849 MHz 869 to 894 MHz E-GSM 900 880 to 915 MHz 925 to 960 MHz DCS 1800 1710 to 1785 MHz 1805 to 1880 MHz PCS 1900 1850 to 1910 MHz 1930 to 1990 MHz The RF part is based on a specific quad band chip including: • • • • • • a Digital low-IF receiver a Quad-band LNAs (Low Noise Amplifier) an Offset PLL (Phase Locked Loop) transmitter a Frequency synthesizer a Digitally controlled crystal oscillator (DCXO) a Tx/Rx FEM (Front-End Wireless Microprocessor®) for quad-band GSM/GPRS 2.2.2 Baseband functionalities The Baseband is composed of an ARM9, a DSP and an analog element (with audio signals, I/Q signals, ADC, DAC). The core power supply is to 1.8 volts. The analog power supply is to 2.8v 2.3 Software description The Open AT® Software Suite v1.0 is the software package that supports WMP100. It consists of: • An Open AT® Firmware v6.5 which drives the WMP100 thanks to an AT command interface over a serial port or USB. • An Open AT® Operating System (OS) v5.0 which runs various types of applications (telemetry, multimedia, automotive…) • An Open AT® Integrated Development Environment (IDE) which builds and debugs applications over the Open AT® Operating System • Several Open AT® plug-ins which are software provided by Wavecom that are able to run over the Open AT® Operating System Page : 20 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3 Interfaces 3.1 General Interfaces The WMP100 is provided with a “Development Kit Wireless Microprocessor®” containing an access to the all interfaces. The available interfaces are described in the table below. chapter Name Driven by Open AT® Firmware v6.5 Not driven by Open AT® Firmware v6.5 Driven by Open AT® OS v5.0 18.5.1 SPI Bus 18.5.2 I2C Bus 11 Keyboard Interface 12.2 Main Serial Link 13.2 Auxiliary Serial Link 14 SIM Interface General Purpose IO 18.3 Analog to Digital Converter 18.4 Digital to Analog Converter 16 Analog audio Interface PWM / Buzzer Output 18.3.1 Battery charging interface 18.7 External Interruption 18.1 VCC_2V8 and VCC_1V8 17 Real Time Clock 18.2 BAT-RTC (Backup Battery) FLASH-LED signal 18.6 Digital Audio Interface (PCM) 15 USB 2.0 Interface Memory interface Not driven by Open AT® OS v5.0 (on parallel interface) Page : 21 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.2 Power supply 3.2.1 Power supply description The power supply is one of the key elements in the design of a GSM terminal. The WMP100 is powered by a single power supply VBATT. This power supply feeds two inputs to the supply, VBATT-BB and VBATT-RF. VBATT-RF powers all the radio components of the WMP100. It has to be carefully designed because most of the current is transmitted through this input. The VBATT-RF current is bursted due to the GSM / GPRS transmission protocol. VBATT-BB supplies the digital part of the WMP100. VBATT-BB is directly connected to the internal power management unit of the WMP100. This unit controls the VBATT-BB voltage and provides the power supplies like VCC_1V8 and VCC_2V8. Note: The VBATT-BB input generates noise, so the VBATT must be filtered by a band reject filter. 3.2.2 Power supply constraints on VBATT-RF Due to the bursted emission in GSM / GPRS, the power supply must be able to deliver high current peaks in a short time. During the peaks the ripple (Uripp) on the supply voltage must not exceed a certain limit (see Table 1 Power supply voltage for details). • In communication mode, a GSM/GPRS class 2 terminal emits 577μs radio bursts every 4.615ms. (See Figure 2 below.) VBATT-RFT Uripp Uripp t = 577 μs T = 4,615 ms Figure 2 : Power supply during burst emission • In communication mode, a GPRS class 10 terminal emits 1154μs radio bursts every 4.615ms. VBATT-RF: • supplies the RF components with 3.6 V directly. It is essential to keep a minimum voltage ripple at this connection in order to avoid any phase error. Page : 22 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The RF Power Amplifier current (1.5 A peak in GSM /GPRS mode) flows with a ratio of: 1/8 of the time (around 577μs every 4.615ms for GSM /GPRS cl. 2) and 2/8 of the time (around 1154μs every 4.615ms for GSM /GPRS cl. 10). The rising time is around 10μs. 3.2.3 Power supply constraints on VBATT-BB The VBATT-BB input is used as well to supply the WMP100 core as well to monitor the level voltage of VBATT. VBATT-BB is internally connected to several regulators and to a switching regulator which provides the VCC_1V8 voltage internally. Because the switching regulator generates perturbation on the VBATT signal, it is mandatory to add an external reject filter between VBATT and VBATT-BB. 3.2.4 Electrical characteristics Input power Supply Voltage VMIN VNOM VMAX IMAX Ripple max (Uripp) VBATT-BB 3.2 3.6 4.8 0.3 A (TBC) (TBD) VBATT-RF1,2 3.2 3.6 4.8 1.5 A (TBC) 10mV(TBC) Table 1 Power supply voltage (1): This value has to be guaranteed during the burst (with 1.5A Peak in GSM or GPRS mode) (2): Maximum operating Voltage Stationary Wave Ratio (VSWR) 2:1 When powering the WMP100 with a battery, the total impedance (battery+protections+PCB) should be <150 mOhms. 3.2.5 Pin description Page : 23 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Pin number VBATT-BB AC1,AC2,AD1,AD2 VBATT-RF A12,A13,A14,B12,B13,B14 3.2.6 Application The reject filter must be connected between VBATT and VBATT-BB. VBATT-RF Filter WMP100 L1 VBATT-BB VBATT C1 C2 Figure 3 : Reject filter diagram Recommended components: C1, C2: 10μF +/-20% GRM21BR60J106KE19L from MURATA CM21X5R106M06AT from KYOCERA JMK212BJ106MG-T from TAYO YUDEN C2012X5R0J106MT from TDK L1: 220nH +/-5% 0805CS-221XJLC from COILCRAFT 0805G221J E from STETCO Page : 24 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.3 Power consumption Power consumption depends on the configuration used. It is for this reason that the following consumption values are given for each mode, RF band and type of software used (with or without an Open AT® application). Note: All of the following information is given assuming a 50 Ω RF output. The following consumption values were obtained by performing measurements on WMP100 samples at a temperature of 25° C. Three VBATT values are used to measure the consumption, VBATTMIN (3.2V), VBATTMAX (4.8V) and VBATTTYP (3.6V). The average current is given for the three VBATT values and the peak current given is the maximum current peak measured with the three VBATT voltages. For a more detailed description of the operating modes, (refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5). For more information about the consumption measurement procedure, refer to § 4. All following consumption measurement values have to be confirmed. Page : 25 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.3.1.1 Power consumption without Open AT® processing The following measurement results are relevant when: ¾ There is no Open AT® application ¾ The Open AT® application is disabled ¾ No processing is required by the Open AT® application Power consumption without Open AT® processing Operating mode IMIN average Parameters INOM average IMAX average VBATT=4,8V VBATT=3,6V VBATT=3,2V Alarm Mode IMAX peak unit 21 16 15 Paging 9 (Rx burst occurrence ~2s) 15 17 18 160 RX mA Paging 2 (Rx burst occurrence ~0,5s) 17 18 19 160 RX mA 1.5 1.6 1.7 (1.5 to 1.75) (1.6 to 1.9) (1.7 to 2.05) 160 RX mA 4.4 4.6 (4 to 4.3) (4.4 to 4.75) (4.6 to 4.95) 160 RX mA Fast Standby Mode 30 36 39 mA Slow Standby Mode 1.4 1.4 1.5 mA PCL5 (TX power 33dBm) 210 218 222 1450 TX mA PCL19 (TX power 5dBm) 81 89 92 270 TX mA PCL0 (TX power 30dBm) 145 153 157 850 TX mA PCL15 (TX power 0dBm) 77 85 88 250 TX mA gam. 3(TX power 33dBm) 201 209 213 1450 TX mA gam.17(TX power 5dBm) 78 85 88 270 TX mA gam.3(TX power 30dBm) 138 146 149 850 TX mA gam.18(TX power 0dBm) 74 81 84 250 TX mA gam.3 (TX power 33dBm) 364 372 378 1450 TX mA gam.17 (TX power 5dBm) 112 120 123 270 TX mA gam.3 (TX power 30dBm) 237 245 248 850 TX mA gam.18 (TX power 0dBm) 104 111 115 250 TX mA Fast Idle Mode Paging 9 (Rx burst occurrence ~2s) Slow Idle Mode Paging 2 (Rx burst occurrence ~0,5s) 850/900 MHz Connected Mode 1800/1900 MHz 850/900 MHz Transfer Mode class 8 (4Rx/1Tx) 1800/1900 MHz 850/900 MHz Transfer Mode class 10 (3Rx/2Tx) 1800/1900 MHz TX means that the current peak is the RF transmission burst (Tx burst) RX means that the current peak is the RF reception burst (Rx burst) µA Slow Idle Mode consumption depends on the SIM card used. Some SIM cards respond faster than others, in which case the longer the response time is, the higher the consumption is. These measurements were performed with a large number of 3V SIM cards, the results in brackets are the minimum and maximum currents measured from among all the SIMs used. Page : 26 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.3.1.2 Power consumption with a Dhrystone Open AT® application The Open AT® application used is the Dhrystone application. The following consumption results are measured during the run of the Dhrystone application. Power consumption with Dhrystone Open AT® application Operating mode IMIN average Parameters INOM average IMAX average VBATT=4,8V VBATT=3,6V VBATT=3,2V Alarm Mode IMAX peak unit N/A N/A N/A Paging 9 (Rx burst occurrence ~2s) 31 38 41 160 RX mA Paging 2 (Rx burst occurrence ~0,5s) 32 39 42 160 RX mA Paging 9 (Rx burst occurrence ~2s) N/A N/A N/A 160 RX mA Paging 2 (Rx burst occurrence ~0,5s) N/A N/A N/A 160 RX mA Fast Standby Mode 31 38 41 mA Slow Standby Mode N/A N/A N/A mA PCL5 (TX power 33dBm) 211 219 223 1450 TX mA PCL19 (TX power 5dBm) 82 90 93 270 TX mA PCL0 (TX power 30dBm) 146 154 159 850 TX mA PCL15 (TX power 0dBm) 78 85 89 250 TX mA gam. 3(TX power 33dBm) 202 210 214 1450 TX mA gam.17(TX power 5dBm) 78 86 89 270 TX mA gam.3(TX power 30dBm) 140 148 151 850 TX mA gam.18(TX power 0dBm) 75 82 85 250 TX mA gam.3 (TX power 33dBm) 365 373 379 1450 TX mA gam.17 (TX power 5dBm) 113 121 125 270 TX mA gam.3 (TX power 30dBm) 239 247 250 850 TX mA gam.18 (TX power 0dBm) 105 113 117 250 TX mA Fast Idle Mode Slow Idle Mode 850/900 MHz Connected Mode 1800/1900 MHz 850/900 MHz Transfer Mode class 8 (4Rx/1Tx) 1800/1900 MHz 850/900 MHz Transfer Mode class 10 (3Rx/2Tx) 1800/1900 MHz TX means that the current peak is the RF transmission burst (Tx burst) RX means that the current peak is the RF reception burst (Rx burst) µA Page : 27 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.3.1.3 Consumption waveform samples The consumption waveforms presented below are for an EGSM900 network configuration without the Open AT® Software Suite running on the WMP100. The typical VBATT voltage is 3.6V. Four significant operating mode consumption waveforms are described: ¾ Connected Mode (PCL5: Tx power 33dBm) ¾ Slow Idle mode (Paging 9) ¾ Fast idle mode (Paging 9) ¾ Transfer mode (GPRS class 10, gam.3: Tx power 33dBm ) The following waveform shows only the form of the current. 3.3.1.3.1 Connected mode current waveform Connected mode 33dBm Current(A) / Time (s) 1.6 TX PEAK 1.4 1.2 0.8 0.6 0.4 0.2 0.00 0.00 0.00 0.00 0.01 0.01 0.01 Page : 28 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.3.1.3.2 Slow Idle mode current waveform Slow Idle mode Paging ~2s Current(A) / Time (s) 0.16 RX PEAK 0.14 0.12 0.1 0.08 0.06 0.04 0.02 -0.02 Page : 29 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.3.1.3.3 Fast Idle mode current waveform Fast Idle mode Paging ~2s Current(A) / Time (s) 0.16 RX PEAK 0.14 0.12 0.1 0.08 0.06 0.04 0.02 Page : 30 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.3.1.3.4 Transfer mode Class 10 current waveform Transfer mode Class 10 33dBm Current(A) / Time (s) 1.6 TX PEAK 1.4 1.2 0.8 0.6 0.4 0.2 0.00 0.00 0.00 0.00 0.01 0.01 0.01 Page : 31 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.4 Electrical information for digital I/O There are three types of digital I/O on the WMP100: 2.8Volt CMOS, 1.8Volt CMOS and Open drain. The I/O concerned are all interfaces like GPIOs, SPIs, Keypad, etc. The three types are described below. Electrical characteristics of digital I/O 2.8 Volts type (2V8 ) Parameter I/O type Minim. Typ Maxim. Internal 2.8V power supply VCC_2V8 2.74V 2.8V 2.86V Input / Output pin VIL CMOS -0.5V* 0.84V VIH CMOS 1.96V 3.2V* VOL CMOS VOH CMOS 0.4V 2.4V Condition IOL = - 4 mA IOH = 4 mA IOH 4mA IOL - 4mA *Absolute maximum ratings 1.8 Volts type (1V8) Parameter I/O type Minim. Typ Maxim. Internal 1V8 power supply VCC_1V8 1.76V 1.8V 1.94V VIL CMOS -0.5V* 0.54V VIH CMOS 1.33V 2.2V* VOL CMOS VOH CMOS Input / Output pin 0.4V 1.4V Condition IOL = - 4 mA IOH = 4 mA IOH 4mA IOL - 4mA *Absolute maximum ratings Page : 32 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Open drain outputs type Signal name Parameter FLASH-LED I/O type Minimum Typ Maximum VOL Open Drain 0.4V IOL Open Drain 8mA VOL Open Drain 0.4V IOL Open Drain 100mA SDA / GPIO27 VTOL Open Drain 3.3V and VIH Open Drain SCL / GPIO26 VIL Open Drain 0.8V VOL Open Drain 0.4V IOL Open Drain 3mA BUZZ-OUT Condition Tolerated voltage 2V The reset states of each I/O are given in their corresponding interface’s chapter descriptions. The states definitions are defined below: Reset state definition Parameter Definition Set to GND Set to supply 1V8 or 2V8 depending of I/O type Pull down Pull up Undefined Internal pull down with ~60K resistor. Internal pull up with ~60K resistor to supply 1V8 or 2V8 depending of I/O type. High impedance Be careful, undefined mustn’t be used in your application if a special state at reset is needed. Those pins can be a toggling signal during reset. Page : 33 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.5 SPI Bus The WMP100 provides two SPI bus (i.e. for LCD, memories…). 3.5.1 Features • a CLK signal • an I/O signal • an I signal • a CS signal complying with standard SPI bus. 3.5.1.1 Characteristics • Master mode operation • The Hardware CS is usable only for word handling mode. In normal mode the CS can be any GPIO. • The SPI speed is from 102 Kbit/s up to 13 Mbit/s in master mode operation • 3 or 4-wire interface • SPI-mode configuration: 0 to 3 (for more details, refer to document [3] AT Command Interface Guide for Open AT® Firmware v6.5). • 1 to 16 bits data length 3.5.1.2 SPI configuration Operation Maximum Speed SPIMode Duplex Master 13 Mb/s 0,1,2,3 Half 3-wire type 4-wire type SPIx-CLK; SPIx- SPIx-CLK; SPIx-IO; IO; ~SPIx-CS SPIx-I; ~SPIx-CS For the 4-wire configuration, SPIx-I/O is used as output only, SPIx-I is used as input only. For the 3-wire configuration, SPIx-I/O is used as input and output. Page : 34 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.5.1.3 SPI waveforms Waveform for SPI transfer with 4-wire configuration in master mode 0 (chip select is not represented). CLK-cycle SPIx-CLK Data-OUTdelay SPIx-IO Data valid Data-IN-setup Data-IN-hold SPIx-I Data valid Figure 4: SPI Timing diagrams, Mode 0, Master, 4 wires AC characteristics Signal CLK-cycle Description SPI clock frequency Minimum 0.1015 Data-OUT delay Data out ready delay time Typ Maximum Unit 13 MHz 10 ns Data-IN-setup Data in setup time ns Data-OUT-hold Data out hold time ns Page : 35 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.5.2 Pin description Signal Pin number I/O I/O type Reset state Description Multiplexed with SPI1-CLK U15 2V8 SPI Serial Clock GPIO28 SPI1-IO V12 I/O 2V8 SPI Serial input/output GPIO29 SPI1-I R13 2V8 SPI Serial input GPIO30 ~SPI1-CS M14 2V8 SPI Enable Signal Pin number I/O I/O type Reset state SPI2-CLK R15 2V8 SPI Serial Clock GPIO32 SPI2-IO M13 I/O 2V8 SPI Serial input/output GPIO33 SP2-I U16 2V8 SPI Serial input GPIO34 ~SPI2-CS T18 2V8 SPI Enable GPIO31 / INT5 Description Multiplexed with GPIO35 / INT4 See chapter 3.4, “Electrical information for digital I/O” for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.5.3 Application 3.5.3.1 4-wire interface The particularity of the 4-wire serial interface (SPI bus) is that the input and the output data lines are dissociated. The SPIx-IO signal is used only for data output and the SPIx-I signal is used only for data input. SPIx-CLK SPIx-IO WMP100 SPIx-I VCC_2V8 Customer application R1 ~SPIx-CS Figure 5: Example of 4-wire SPI bus application One pull up resistor R is needed to set the SPIx-CS level during the reset state. Page : 36 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Except for R, no external component is needed if the electrical specification of the customer application complies with the WMP100 SPIx interface electrical specification. 3.5.3.2 3-wire interface When used in 3-wire interface (SPI bus), only the line SPIx-IO is used for output and input data. SPIx-CLK SPIx-IO WMP100 SPIx-I VCC_2V8 Customer application R1 ~SPIx-CS Figure 6: Example of 3-wire SPI bus application The SPIx-I line is not used in 3-wire configuration. This line can be left opened or used as GPIO for a different application functionality. One pull up resistor R is needed to set the SPIx-CS level during the reset state. Except for R, no external component is needed if the electrical specification of the customer application complies with the WMP100 SPIx interface electrical specification. The SPIx interface voltage range is 2.8V. It can be powered by the VCC_2V8 (ball R1) of the WMP100 or by another power supply. R value depends on the peripheral plugged on the SPIx interface. Page : 37 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.6 I2C bus 3.6.1 Features The I2C interface includes a clock signal (SCL) and a data signal (SDA) complying with a 100Kbit/s-standard interface (standard mode: s-mode). 3.6.1.1 Characteristics The I²C bus is always master. The maximum speed transfer range is 400Kbit/s (Fast mode: f-mode). For more information on the bus, see document [4] “I²C Bus Specification”, Version 2.0, Philips Semiconductor 1998. 3.6.1.2 I²C waveforms I²C bus waveform in master mode configuration: SCL-freq T-high SCL T-start T-data- T-data- hold setup T-stop T-free SDA Data valid Data valid Figure 7: I²C Timing diagrams, Master Page : 38 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 AC characteristics Signal Description Minimum Typ Maximum Unit SCL-freq I²C clock frequency 100 T-start Hold time START condition 0.6 μs T-stop Setup time STOP condition 0.6 μs T-free Bus free time, STOP to START 1.3 μs T-high High period for clock 0.6 μs T-data-hold Data hold time T-data-setup Data setup time 100 400 0.9 KHz μs ns 3.6.2 Pin description Signal Pin number I/O I/O type Reset state Description Multiplexed with SCL AA15 Open drain Serial Clock GPIO26 SDA AA16 I/O Open drain Serial Data GPIO27 See chapter 3.4, “Electrical information for digital I/O” for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.6.3 Application The two lines need to be pull up to the VI²C voltage. The VI²C voltage is dependent on the customer application component connected on the I²C bus. Nevertheless, the VI²C must complying with the WMP100 electrical specification (3.3V Max). The VCC_2V8 (ball R1) of the WMP100 can be used to connect the pull up resistors, if the I²C bus voltage is 2.8 V. V I²C 1K WMP100 SCL 1K Customer application SDA Figure 8: First example of I²C bus application Page : 39 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The I²C bus is complying with the Standard mode (baud rate 100Kbit/s) and the Fast mode (baud rate 400Kbit/s). The pull up resistor value choice depends on the mode used. For the Fast mode, it is recommended to use 1K ohm resistor to ensure the compliance with the I²C specification. For the Standard mode, higher values of resistors can be used to save power consumption. R1 VCC_2V8 1K WMP100 SCL 1K Customer application SDA Figure 9: Second example of I²C bus application 3.7 Keyboard interface 3.7.1 Features This interface provides 10 connections: 5 rows (ROW0 to ROW4), 5 columns (COL0 to COL4). The scanning is a digital one, and the debouncing is done in the WMP100. No discrete components like resistors or capacitors are needed. The keyboard scanner is equipped with: • internal pull-down resistors for the rows • pull-up resistors for the columns. Current only flows from the column pins to the row pins. This allows a transistor to be used in place of the switch for power-on functions. No discrete components like R, C (Resistor, Capacitor) are needed. Page : 40 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.7.2 Pin description Signal Pin number I/O I/O type Reset state Description Multiplexed with ROW0 AC23 I/O 1V8 Row scan GPIO9 ROW1 AD22 I/O 1V8 Row scan GPIO10 ROW2 AD21 I/O 1V8 Row scan GPIO11 ROW3 AC22 I/O 1V8 Row scan GPIO12 ROW4 AD23 I/O 1V8 Row scan GPIO13 COL0 AD19 I/O 1V8 Pull up Column scan GPIO4 COL1 AD20 I/O 1V8 Pull up Column scan GPIO5 COL2 AC20 I/O 1V8 Pull up Column scan GPIO6 COL3 AC19 I/O 1V8 Pull up Column scan GPIO7 COL4 AC21 I/O 1V8 Pull up Column scan GPIO8 See chapter 3.4, “Electrical information for digital I/O” for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. Page : 41 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.7.3 Application Keypad matrix application allows for up to 25 keys. l0 l1 l2 l3 l4 Row 0 Row 1 Row 2 Row 3 Row 4 Figure 10: Example of keyboard implementation 3.8 Main serial link (UART1) A flexible 8-wire serial interface is available complying with V24 protocol signaling but not with V28 (electrical interface) due to a 2.8 Volts interface. 3.8.1 Features The maximum baud rate of the UART1 is 460 Kbit/s. The signals are the follows: • TX data (CT103/TX) • RX data (CT104/RX) • Request To Send (~CT105/RTS) • Clear To Send (~CT106/CTS) • Data Terminal Ready (~CT108-2/DTR) Page : 42 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 • • • Data Set Ready (~CT107/DSR) Data Carrier Detect (~CT109/DCD) Ring Indicator (~CT125/RI). 3.8.2 Pin description Signal Pin number I/O I/O type Reset state Description Multiplexed with CT103/TXD1* R17 2V8 Transmit serial data GPIO36 CT104/RXD1* T13 2V8 Receive serial data GPIO37 ~CT105/RTS1* Y18 2V8 Request To Send GPIO38 ~CT106/CTS1* N15 2V8 Clear To Send GPIO39 ~CT107/DSR1* T12 2V8 Data Set Ready GPIO40 ~CT1082/DTR1* M16 2V8 Data Terminal Ready GPIO41 ~CT109/DCD1 * AB16 2V8 Undefined Data Carrier Detect GPIO43 ~CT125/RI1 * AA18 2V8 Undefined Ring Indicator GPIO42 CT102/GND* AA19 GND See chapter 3.4, “Electrical information for digital I/O” characteristics and for Reset state definition. Ground for Open drain, 2V8 and 1V8 voltage *According to PC view The rising time and falling time of the reception signals (mainly CT103) have to be less than 300 ns. Recommendation: The WMP100 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission. Page : 43 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 For the use case with 5-wire serial interface • Signal: CT103/TXD1*, CT104/RXD1*, ~CT105/RTS1*, ~CT106/CTS1* • The signal ~CT108-2/DTR1* must be managed following the V24 protocol signalling if we want to use the slow idle mode • The other signals and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information. For the use case with 4-wire serial interface • CT103/TXD1*, CT104/RXD1*, ~CT105/RTS1*, ~CT106/CTS1* • The signal ~CT108-2/DTR1* must be configured at the low level • The other signals and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information. For the use case with 2-wire serial interface • This case is possible for connected external chip but not recommended (and forbidden for AT command or modem use) • The external chip must be a flow control • CT103/TXD1*, CT104/RXD1* • The signal ~CT108-2/DTR1* must be configured at the low level • The signals ~CT105/RTS1*, ~CT106/CTS1* are not used, please configure the AT command (AT+IFC=0,0 see document [3] AT Command Interface Guide for Open AT® Firmware v6.5). • The signal ~CT105/RTS1* must be configured at the low level • The other signals and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information. Page : 44 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.8.3 First download The first download of the Flash (when Flash is blank) of the WMP100 must be done through the UART1 serial interface. That’s mandatory that the UART1 is available for the first download, so it’s necessary to be careful about the connectivity of the UART1 with others devices used in the application. If no device is connected and there are no conflicts, the computer can be directly connected on the WMP100 through a RS232 level shifter. When a device is used on UART1, allowing for the ability to unselect the device during the download is recommended (via the enable signal). Figure 11: Example of UART1 connection for download with another device on the link The Download connector is directly connected on the four UART1 signals, which may create conflicts with the Device lines. For this reason an enable must be available on the device to set the device output signals at High impedance. NOTE: • In this configuration (4-wire), the signal ~CT108-2/DTR1 (ball M16) must be configured at the low level. Page : 45 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 At the same time, to run the first download, the BOOT signal of the WMP100 must be driven. The switch S2 must be closed. After the download started S2 can be open. See the BOOT signal chapter (§ 3.18) for more information. If the WMP100 is power ON (VBATT present), S1 must be closed for enable the WMP100. Start the specific PC software tool provided by WAVECOM. S3 must be closed* (a pulse to 0L during at least 200μs) for start the download. See RESET signals chapter (§3.19) for more information. * S3 can be not use if the condition on S1 and S2 are respected before than the power supply is applied.(There is in this case an automatic internal reset). If a computer is used for the first download, a RS232 level shifter must be used (See the application with the ADM3307EACP in this chapter). Note: XMODEM download can be launched through UART1 and UART2, but first download has to be launched with a specific PC software tool provided by WAVECOM only through UART1. 3.8.4 Application The level shifter must be a 2.8V with V28 electrical signal compliant. Figure 12: Example of RS-232 level shifter implementation for UART1 U1 chip also protects the WMP100 against ESD at 15KV. (Air Discharge) Page : 46 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Recommended components: R1, R2 : 15Kohm C1, C2, C3, C4, C5 : 1uF C6 : 100nF C7 : 6.8uF TANTAL 10V CP32136 U1 : ADM3307EACP J1 : SUB-D9 female AVX ANALOG DEVICES R1 and R2 are necessary only during Reset state to forced ~CT1125-RI1 and ~CT109-DCD1 signal to high level. The ADM3307EACP chip is able to speed up to 921Kb/s*. If others level shifters are used, ensured that their speed are compliant with the UART1 speed useful. *: For this baud rate the power supply must be provided by an external regulator at 3.0 V. The ADM3307EACP can be powered by the VCC_2V8 (ball R1) of the WMP100 or by an external regulator at 2.8 V (the baud rate will be limited up to 720kbps). If the UART1 interface is connected directly to a host processor, it is not necessary to used level shifters. The interface can be connected as shown below: Page : 47 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 V24/CMOS possible design: U5 V6 WMP100 ( DCE ) R17 ON / ~OFF ~RESET CT103-TXD1 / GPIO36 T13 CT104-RXD1 / GPIO37 Y18 ~CT105-RTS1 / GPIO38 N15 ~CT106-CTS1 / GOPI39 Tx Customer application ( DTE ) Rx RTS CTS M16 GND GND Figure 13: Example of V24/CMOS serial link implementation for UART1 The design shown in the above figure is a basic design. However, a more flexible design to access this serial link with all modem signals is shown below Page : 48 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 U5 V6 ON / ~OFF ~RESET 2.8Volt 2x 15K WMP100 AB16 AA18 ( DCE ) R17 T13 Y18 N15 T12 M16 GND ~CT109-DCD1 / GPIO43 DCD ~CT125-RI1 / GPIO42 RI CT103-TXD1 / GPIO36 Tx CT104-RXD1 / GPIO37 ~CT105-RTS1 / GPIO38 ~CT106-CTS1 / GOPI39 ~CT107-DSR1 / GPIO40 ~CT108-2-DTR1 / GPIO41 GND Rx Customer application ( DTE ) RTS CTS DSR DTR GND Figure 14: Example of full modem V24/CMOS serial link implementation for UART1 It is recommended to add a 15K-ohm pull-up resistor on ~CT125-RI1 and ~CT109-DCD1 to set high level during reset state. The UART1 interface is 2.8 Volt type, but is 3 Volt tolerant. The WMP100 UART1 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission. Warning: If you want to activate Power Down mode (Wavecom 32K mode) in your Open AT® application, you need to wire the DTR ball to a GPIO. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 (see the “Appendixes”) for more information on Wavecom 32K mode activation using the Open AT® Software Suite. Page : 49 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.9 Auxiliary serial link (UART2) An auxiliary serial interface (UART2) is available on WMP100. This interface may be used to connect a Bluetooth or a GPS chip controlled by an Open AT® Plug-in. 3.9.1 Features Maximum baud rate of the UART2 is 460 Kbit/s. The signals are the follows: • TX data (CT103/TX) • RX data (CT104/RX) • Request To Send (~CT105/RTS) • Clear To Send (~CT106/CTS) The WMP100 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission. For the use case with 2-wire serial interface • This case is possible for connected external chip but not recommended (and forbidden for AT command or modem use) • The external chip must be a flow control • CT103/TXD2*, CT104/RXD2* • The signals ~CT105/RTS2*, ~CT106/CTS2* are not used, please configure the AT command (AT+IFC=0,0. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5. • The signal ~CT105/RTS2* must be configured at the low level • The other signal and their multiplexed are not available • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 (see the “Appendixes”). Page : 50 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.9.2 Pin description Signal Pin I/O I/O type Reset state Description Multiplexed with number CT103 / TXD2* T16 1V8 Transmit serial data GPIO14 / INT6 CT104 / RXD2* U17 1V8 Receive serial data GPIO15 ~CT106 / CTS2* W17 1V8 Clear To Send GPIO16 ~CT105 / RTS2* V13 1V8 Request To Send GPIO17 / INT7 CT102/GND* V15 GND Ground * According to PC view See chapter 3.4, “Electrical information for digital I/O” Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.9.3 Application The voltage level shifter must be a 1.8V with V28 electrical signal compliant. Figure 15: Example of RS-232 level shifter implementation for UART2 Page : 51 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Recommended components: Capacitors C1 : 220nF C2, C3, C4 : 1μF Inductor L1 : 10μH RS-232 Transceiver U1 : LINEAR TECHNOLOGY LTC®2804IGN J1 : SUB-D9 female The LTC2804 can be powered by the VCC_1V8 (ball AD5) of the WMP100 or by an external regulator at 1.8 V. The UART2 interface can be connected directly to others components if the voltage interface is 1.8 V. 3.10 SIM Interface The Subscriber Identification Module can be directly connected to the WMP100 through this dedicated interface. 3.10.1 Features The SIM interface controls 1.8V and 3V SIM card. It is recommended to add Transient Voltage Suppressor diodes (TVS) on the signal connected to the SIM socket in order to prevent any Electrostatics Discharge. TVS diodes with low capacitance (less than 10 pF) have to be connected on SIM-CLK and SIM-IO signals to avoid any disturbance of the rising and falling edge. These types of diodes are mandatory for the Full Type Approval. They shall be placed as close as possible to the SIM socket. The following references can be used: DALC208SC6 from ST Microelectronics. 5 signals exist: • • • • • SIM-VCC: SIM power supply. ~SIM-RST: reset. SIM-CLK: clock. SIM-IO: I/O port. SIMPRES: SIM card detect. The SIM interface controls a 3V / 1V8 SIM. This interface is fully compliant with GSM 11.11 recommendations concerning SIM functions. Page : 52 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Electrical Characteristics of SIM interface Parameter Conditions Minim. Typ Maxim. Unit 0.7xSIMVCC SIM-IO VIH IIH = ± 20μA SIM-IO VIL IIL = 1mA ~SIM-RST, SIM-CLK Source current = 20μA 0.9xSIMVCC Source current = 20μA 0.8xSIMVCC 0.4 VOH SIM-IO VOH ~SIM-RST, SIM-CLK SIM-IO, Sink current = 0.4 -200μA VOL SIM-VCC Voltage Output SIMVCC = 2.9V 2.84 2.9 2.96 1.74 1.8 1.86 10 mA IVCC= 1mA SIMVCC = 1.8V IVCC= 1mA SIM-VCC current VBATT = 3.6V SIM-CLK Time Rise/Fall Loaded with 30pF 20 ns ~SIM-RST, Time Rise/Fall Loaded with 30pF 20 ns SIM-IO Time Rise/Fall Loaded with 30pF 0.7 SIM-CLK Frequency Loaded with 30pF μs 3.25 MH Note: When SIMPRES is used, a low to high transition means that the SIM card is inserted and a high to low transition means that the SIM card is removed. Page : 53 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.10.2 Pin description Signal Pin number I/O I/O type Reset state Description Multiplexed with SIM-CLK Y2 2V9 / 1V8 SIM Clock Not mux ~SIM-RST Y1 2V9 / 1V8 SIM Reset Not mux SIM-IO W1 I/O 2V9 / 1V8 *Pull up SIM Data Not mux SIM-VCC W2 2V9 / 1V8 SIM Power Supply Not mux SIMPRES Y3 1V8 SIM Card Detect GPIO18 / INT8 *SIM-IO pull up is about 10K ohm See chapter 3.4, “Electrical information for digital 1V8 voltage characteristics and for Reset state definition. I/O” on page 32 for Open drain, 2V8 and 3.10.3 Application Figure 16: Example of SIM Socket implementation Page : 54 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Recommended components: • R1 : 100K ohm • C1 : 470pF • C2 : 100nF • D1 : ESDA6V1SC6 from ST • D2 : DALC208SC6 from SGS-THOMSON • J1 : ITT CANNON CCM03 series (See chapter 9.2 for more information) The capacitor (C2) placed on the SIM-VCC line must not exceed 330 nF. SIM socket connection: Pin description of the SIM socket Signal Pin number Description VCC SIM-VCC RST ~SIM-RST CLK SIM-CLK CC4 SIMPRES with 100 kΩ pull down resistor and 470 pF capacitor GND GROUND VPP Not connected I/O SIM-IO CC8 VCC_1V8 of WMP100 (ball AD5 ) Page : 55 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.11 General Purpose Input/Output The Wireless Microprocessor® provides up to 49 General Purpose I/O. They are used to control any external device such as a LCD or a Keyboard backlight... 3.11.1 Features Reset State: 0 : Set to GND 1: Set to supply 1V8 or 2V8 depending of I/O type. Pull down: Internal pull down with ~60K resistor. Pull up: Internal pull up with ~60K resistor to supply 1V8 or 2V8 depending of I/O type. Z: High impedance. Undefined: Be careful, undefined mustn’t be used in your application if a special state at reset is needed. Those pins can be toggling signals. 3.11.2 Pin description Signal Pin number I/O I/O type Reset state GPIO0 W15 I/O 1V8 Not mux GPIO1 R18 I/O 1V8 CS2 / A25 GPIO2 U22 I/O 1V8 A24 GPIO3 V16 I/O 1V8 INT0 / A26 GPIO4 AD19 I/O 1V8 Pull up COL0 GPIO5 AD20 I/O 1V8 Pull up COL1 GPIO6 AC20 I/O 1V8 Pull up COL2 GPIO7 AC19 I/O 1V8 Pull up COL3 GPIO8 AC21 I/O 1V8 Pull up COL4 GPIO9 AC23 I/O 1V8 ROW0 GPIO10 AD22 I/O 1V8 ROW1 GPIO11 AD21 I/O 1V8 ROW2 GPIO12 AC22 I/O 1V8 ROW3 GPIO13 AD23 I/O 1V8 ROW4 GPIO14 T16 I/O 1V8 CT103-TXD2 / INT6 GPIO15 U17 I/O 1V8 CT104-RXD2 GPIO16 W17 I/O 1V8 ~CT106-CTS2 Multiplexed with Page : 56 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Pin number I/O I/O type GPIO17 V13 I/O 1V8 ~CT105-RTS2 / INT7 GPIO18 Y3 I/O 1V8 SIMPRES / INT8 GPIO19 AA17 I/O 2V8 Not mux GPIO20 Y13 I/O 2V8 Undefined Not mux GPIO21 AA13 I/O 2V8 Undefined Not mux GPIO22 M15 I/O 2V8 Not mux GPIO23 V17 I/O 2V8 Not mux GPIO24 N16 I/O 2V8 Not mux GPIO25 Y19 I/O 2V8 INT1 AA15 I/O Open drain AA16 I/O Open drain GPIO28 U15 I/O 2V8 SPI1-CLK GPIO29 V12 I/O 2V8 SPI1-IO GPIO30 R13 I/O 2V8 SP1-I GPIO31 M14 I/O 2V8 ~SPI1-CS / INT5 GPIO32 R15 I/O 2V8 SPI2-CLK GPIO33 M13 I/O 2V8 SPI2-IO GPIO34 U16 I/O 2V8 SP2-I GPIO35 T18 I/O 2V8 ~SPI2-CS / INT4 GPIO36 R17 I/O 2V8 CT103-TXD1 GPIO37 T13 I/O 2V8 CT104-RXD1 GPIO38 Y18 I/O 2V8 ~CT105-RTS1 GPIO39 N15 I/O 2V8 ~CT106-CTS1 GPIO40 T12 I/O 2V8 ~CT107-DSR1 GPIO41 M16 I/O 2V8 ~CT108-2-DTR1 GPIO42 AA18 I/O 2V8 Undefined ~CT125-RI1 GPIO43 AB16 I/O 2V8 Undefined ~CT109-DCD1 GPIO44 AB13 I/O 2V8 Undefined 32kHz buffered output clock GPIO45 Y17 I/O 1V8 INT2 GPIO46 V18 I/O 2V8 INT3 GPIO26 GPIO27 Reset state Multiplexed with SCL SDA Page : 57 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Pin number I/O I/O type GPIO47 Y15 I/O 1V8 Not mux GPIO48 Y16 I/O 1V8 Not mux See chapter 3.4, “Electrical information characteristics and for Reset state definition. 3.12 Reset state Multiplexed with for digital I/O” for Open drain, 2V8 and 1V8 voltage Analog to Digital Converter Three Analog to Digital Converters inputs are provided by the WMP100. Those converters are 10 bits resolution, ranging from 0 to 2V. 3.12.1 Features BAT-TEMP / AUX-ADC2 input can be used, typically, to monitor external temperature, useful for safety power off in case of application over heating (for Li-Ion battery). AUX-ADC0 and AUX-ADC1 input can be used for customer application Electrical Characteristics of ADC Parameter Min Resolution Sampling rate Input signal range Typ Max Unit 10 bits 216 S/s ADC Reference Accuracy TBD Integral Accuracy 15 mV Differential Accuracy 2.5 mV BAT-TEMP / AUX-ADC2 1M Ω AUX-ADC0 1M Ω AUX-ADC1 1M Ω Input impedance 3.12.2 Pin description Signal Pin number I/O I/O type Description BAT-TEMP / AUX- N18 Analog A/D converter Page : 58 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 ADC2* AUX-ADC0 N17 Analog A/D converter AUX-ADC1 M17 Analog A/D converter *This input can be used for battery charging temperature sensor, see chapter “3.16 Battery Charging interface “. 3.12.3 Application The BAT-TEMP / AUX-ADC2 input is used for battery monitoring during charging of battery. All information is provided in the “Battery Charging” (see chapter 3.16). Page : 59 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.13 Digital to Analog Converter One Digital to Analog Converter (DAC) input is provided by the Wireless Microprocessor®. 3.13.1 Features The converter is 8-bit resolution, guaranteed monotonic with a ranges from 0V to 2.3V. This output assumes a typical external load of 2kΩ and 50pF in parallel to GND. Electrical Characteristics of the DAC Parameter Min Typ Max Unit bits Maximum Output voltage 2.1 2.2 2.3 Minimum Output voltage 40 mV Output voltage after reset 1.147 Integral Accuracy -5 +5 LSB Differential Accuracy -1 +1 LSB 40 μs μs Resolution Full scale settling time (load: 50pF // 2kΩ to GND) One LSB settling time (load: 50pF // 2kΩ to GND 3.13.2 Pin description Pin description of the DAC Signal Pin number I/O I/O type Description AUX-DAC0 V14 Analog D/A converter Page : 60 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.14 Analogue audio interface Two different microphone inputs and two different speaker outputs are supported. The WMP100 also includes an echo cancellation feature which allows hands free function. In some cases, ESD protection must be added on the audio interface lines. 3.14.1 Microphone Features The connection can be either differential or single-ended but using a differential connection in order to reject common mode noise and TDMA noise is strongly recommended. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path. The gain of MIC inputs is internally adjusted and can be tuned using an AT command. Both can be configured in differential or single ended. The MIC2 inputs already include the biasing for an electret microphone allowing an easy connection. 3.14.1.1 Electrical characteristics 3.14.1.1.1 MIC1 Microphone Inputs By default, the MIC1 inputs are single-ended but it can be configured in differential. The MIC1 inputs do not include an internal bias . The MIC1 input needs to have an external biasing if an electret micro is used. AC coupling is already embedded in the Wireless Microprocessor®. Equivalent circuits of MIC1 DC equivalent circuit MIC1P MIC1N AC equivalent circuit DC Blocked MIC1P MIC1N Z1 Z1 GND Electrical Characteristics of MIC1 Page : 61 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Parameters Min DC Characteristics Max Unit N/A AC Characteristics Z1 200 Hz50 dB. Frequency response compatible with the GSM specifications. To suppress TDMA noise, it is highly recommended to use microphones with two internal decoupling capacitors: -CM1=56pF (0402 package) for the TDMA noise coming demodulation of the GSM 850 and GSM900 frequency signal. from the -CM2=15pF (0402 package) for the TDMA demodulation of the DCS/PCS frequency signal. from the noise coming The capacitors have to be soldered in parallel of the microphone CM Figure 27: Microphone 3.14.5.3 Recommended speaker characteristics Type of speakers: Electro-magnetic /10mW Impedance: 8Ω for hands-free (SPK2) Impedance: 32Ω for heads kit (SPK1) Sensitivity: 110dB SPL min Receiver frequency response compatible with the GSM specifications. 3.14.5.4 Recommended filtering components When designing a GSM application, it is important to select the right audio filtering components. The strongest noise, called TDMA, is mainly due to the demodulation of the GSM850/GSM900/DCS1800 and PCS1900 signal: A burst being produced every 4.615ms; the frequency of the TDMA signal is equal to 216.7Hz plus harmonics. The TDMA noise can be suppress by filtering the RF signal using the right decoupling components. Page : 75 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The types of filtering components are: -RF decoupling inductors -RF decoupling capacitors A good “Chip S-Parameter” simulator is proposed by Murata, the following link help to find it: http://www.murata.com/designlib/mcsil.html Using different Murata components, we could see that the value, the package and the current rating can have different decoupling effects. The table below shows some examples with different Murata components: Package 0402 Filtered band GSM900 GSM 850/900 DCS/PCS Value 100nH 56pF 15pF Types Inductor Capacitor Capacitor Position Serial Shunt Shunt Manufacturer Murata Murata Murata Rated 150mA 50V 50V Reference LQG15HSR10J02 or LQG15HNR10J02 GRM1555C1H560JZ01 GRM1555C1H150JZ01 or GRM1555C1H150JB01 Package 0603 Filtered band GSM900 GSM 850/900 DCS/PCS Value 100nH 47pF 10pF Types Inductor Capacitor Capacitor Position Serial Shunt Shunt Manufacturer Murata Murata Murata Rated 300mA 50V 50V Reference LQG18HNR10J00 GRM1885C1H470JA01 or GRM1885C1H470JB01 GRM1885C1H150JA01 or GQM1885C1H150JB01 Page : 76 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.14.5.5 Audio track and PCB layout recommendation To avoid TDMA noise, it is recommended to surround the audio tracks by ground: 1mm 0.2mm min Differential Audio line Ground 0.15mm max Ground 1mm WMP100 Differential Audio line always in parallel Ground Plane Application board Figure 28: Audio track design Remark: Avoid digital tracks crossing under and over the audio tracks. Page : 77 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.15 PWM / Buzzer Output This output is controlled by a PWM controller and can be used as buzzer or as PWM. 3.15.1 Features The BUZZ-OUT is an open drain one. A buzzer can be directly connected between this output and VBATT. The maximum current is 100 mA (PEAK). Electrical Characteristics Parameter Condition VOL IPEAK Minimum Maximum Unit Iol = 100mA 0.4 VBATT = VBATTmax 100 mA Frequency TBD TBD Hz Duty cycle TBD TBD 3.15.2 Pin description Signal Pin number I/O I/O type Reset state Description BUZZ-OUT U4 Open drain PWM / Buzzer output See chapter 3.4, “Electrical information for digital I/O” on page 32 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. Page : 78 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.15.3 Application The maximum peak current is 100 mA and the maximum average current is 40 mA. A diode against transient peak voltage must be added as described below. VBATT R1 D1 WMP100 C1 BUZZ-OUT Figure 29: Example of buzzer implementation Where: R1 must be chosen in order to limit the current at IPEAK max C1 = 0 to 100 nF (depending on the buzzer type) D1 = BAS16 (for example) Recommended characteristics for the buzzer: electro-magnetic type Impedance: 7 to 30 Ω Sensitivity: 90 dB SPL min @ 10 cm Current: 60 to 90 mA The BUZZ-OUT output can also be used to drive a LED as shown in the Figure below: « BUZZER » BUZZ-OUT R1 470 Ω VBATT D1 Figure 30: Example of LED driven by the BUZZ-OUT output R1 value can be accorded depending of the LED (D1) characteristics. Page : 79 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.16 Battery charging interface The WMP100 charging interface is able to drive the charging of different batteries technologies by combing hardware and software controls. 3.16.1 Feature The charging architecture of WMP100 supports 3 batteries technologies: ¾ Ni-Cd (Nickel-Cadmium) ¾ Ni-Mh (Nickel-Metal Hydride) ¾ Li-Ion (Lithium-Ion) WMP100 CHARGER DC output V2/V3 V4 AC1/AC2/ AD1/AD2 R1 BATTERY NTC TEMPERATURE SENSOR INTERFACE N18 CHG-IN CHG-GATE VBATT-BB ALGORITHM CONTROL VCC_2V8 BAT-TEMP Figure 31: Charging block diagram The software algorithm controls a switch (by CHG-GATE signal), which connects the CHG-IN signal to the VBATT-BB signal. The algorithm controls the frequency and the connected time of the switching. During the charging procedure the battery charging level is controlled by the VBATT-BB measurement. When the battery is full, the algorithm stopped the charging procedure. When Li-Ion battery is used, the battery temperature is monitoring through the BAT-TEMP ADC input. One more charging mode is provided by the WMP100. It’s called “Precharging” mode, but it’s a special charging mode because it is activated only Page : 80 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 when the WMP100 is OFF. So the control is only performed by the hardware. The goal of this charging mode is to prevent the battery to be damaged by preventing the discharged under the minimum battery level. 3.16.1.1 Pre-Charging When a charger DC power supply is connected to the CHG-IN signal and if the voltage battery is between 2.8v and 3.2v, a constant current of 50mA is provided to the battery. When the battery is able to supply the WMP100/Open AT® Software Suite v1.0, the WMP100 is automatically powered on and the software algorithm is activated to finish the charge. Note: When pre-charging automatically. is launched, the FLASH-LED output blinks 3.16.1.2 Temperature monitoring The monitoring of the temperature is only available for the Li-Ion battery. The BAT-TEMP / AUX-ADC2 (N18) ADC input must be used to sample the temperature analog signal provided by a NTC temperature sensor which is placed close to the battery cellular. The minimum and maximum temperature range can be set by software command. Electrical Characteristics of battery charging interface Parameter Minimum Charging Operating temperature BAT-TEMP / AUXADC2 CHG-IN Typ Unit 50 °C resolution 10 bits sampling rate 216 S/s Input Impedance ( R ) 1M Ω Input signal range Voltage (for I=Imax) 4.6* Switch control by current 30 Voltage (for I=0) CHG-GATE Maximum 40 6* 50 mA *To be parameterized as per battery manufacturer Page : 81 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.16.2 Pin description Pin description of battery charging interface Signal Pin number I/O I/O type Description CHG-IN V2 / V3 Analog Current source input CHG-GATE V4 Analog Current source to drive PNP transistor BAT-TEMP / AUX-ADC2 N18 Analog A/D converter 3.16.3 Application WMP100 CHG-IN T1 CHG-GATE R3 VBATT-BB OUT DC Battery cells + NTC VCC_2V8 Charger R1 BAT-TEMP / AUX-ADC2 NTC out NTC R2 GND Figure 32: Charging schematic for Li-Ion Page : 82 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The charging schematic needs a transistor to switch the current from the Charger DC source power supply to the battery. The control of the transistor is performed by the WMP100 through the CHG-GATE signal. It is important that the Charger DC power supply has a limited output current to not damage the transistor T1. The R1 and R2 resistors are needed only when the temperature is monitored, typically for Li-Ion battery. The R1 is necessary to bias the NTC resistor of the battery. The VCC_2V8 output power voltage of the WMP100 can be used to power the bridge R1/ R2 / NTC. The R1 and R2 values have to be calculated to have a maximum of 2volt at the BAT-TEMP / AUX-ADC2 input on the WMP100. The R3 resistor must be added to improve the performances of the charge. Pre-Charging mode doesn’t use the T1 transistor, when Pre-charging is activated, the current provided by the Charger DC power supply crosses the WMP100 by the CHG-IN signal to the VBATT-BB to charge the battery. The current limitation is controlled inside the WMP100. Recommended components: T1 : NSL12AW from On Semiconductor R1 = 100K R2 = 270K R3= 5.6K (package 0402, 1/16W, +-5% is sufficient) NTC = 100K @ 25°C NTH4G42B104F01 from MURATA Note: In this example, the transistor T1 has a maximal continuous current of 2A, so the Charger DC power supply must have an output current limited to 2A. The maximum Charger output current, provided to the battery, must be accorded to the battery electrical characteristics. Page : 83 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.17 ON / ~OFF signal This input is used to switch ON or OFF the Wireless Microprocessor. A high level signal has to be provided on the pin ON/~OFF to switch ON the Wireless Microprocessor.. The voltage of this signal has to be maintained at 0.8 x VBATT during a minimum of 4000ms. This signal can be left at high level until switch off. To switch OFF the Wireless Microprocessor the pin ON/OFF has to be released. The Wireless Microprocessor can be switched off through the Operating System. ) Warning: All external signals must be inactive when the Wireless Microprocessor is OFF to avoid any damage when starting and allow Wireless Microprocessor to start and stop correctly. 3.17.1 Features Electrical Characteristics of the signal Parameter I/O type VIL CMOS VIH CMOS Minimum VBATT x 0.8 Maximum Unit VBATT x 0.2 VBATT 3.17.2 Pin description Signal Pin number I/O I/O type Description ON/∼OFF U5 CMOS WMP100 Power ON 3.17.3 Application Switch VBATT ON/~OFF Figure 33: Example of ON/~OFF pin connection Page : 84 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.17.3.1 Power ON Once WMP100/Open AT® Software Suite v1.0 is powered, the application must set the ON/OFF signal to high to start the WMP100/Open AT® Software Suite v1.0 power ON sequence. The ON/OFF signal must be held high during a minimum delay of Ton/off-hold (Minimum hold delay on the ON/~OFF signal) to power-ON. After this delay, an internal mechanism maintains the WMP100/Open AT® Software Suite v1.0 in power ON condition. During the power ON sequence, an internal reset is automatically performed by the WMP100/Open AT® Software Suite v1.0 for 40ms (typically). During this phase, any external reset should be avoided during this phase. POWER SUPPLY ON/OFF Ton/off-hold (2000ms min) INTERNAL RST Trst (40ms typ) AT answers « OK » STATE OF THE MODULE Module OFF IBB+RF < 22μA RESET mode IBB+RF=20 to 40mA Module ON IBB+RF<120mA (no loc. update) Module READY SIM and Network dependent IBB+RF = overall current consumption (Base Band + RF part) Figure 34 : Power-ON sequence (no PIN code activated) The duration of the firmware power-up sequence depends on: • the need to perform a recovery sequence if the power has been lost during a flash memory modification. Other factors have a minor influence • the number of parameters stored in EEPROM by the AT commands received so far • the ageing of the hardware components, especially the flash memory • the temperature conditions Page : 85 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The recommended way to de-assert the ON/~OFF signal is to use either an AT command or WIND indicators: the application has to detect the end of the power-up initialization and de-assert ON/~OFF afterwards. • Send an “AT” command and wait for the “OK” answer: once the initialization is complete the AT interface answers « OK » to “AT” message 1 . • Wait for the “+WIND: 3” message: after initialization, the WMP100/Open AT® Software Suite v1.0, if configured to do so, will return an unsolicited “+WIND: 3” message. The generation of this message is enabled or disabled via an AT command. Note: • Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information on these commands. Proceeding thus – by software detection - will always prevent the application from de-asserting the ON/~OFF signal too early. If WIND indicators are disabled or AT commands unavailable or not used, it is still possible to de-assert ON/~OFF after a delay long enough (Ton/off-hold) to ensure that the firmware has already completed its power-up initialization. The table below gives the minimum values of Ton/off-hold: Ton/off-hold minimum values Open AT® Firmware 6.65 & above Ton/off-hold Safe evaluations of the firmware power-up time 8s The above figure take the worst cases into account: power-loss recovery operations, slow flash memory operations in high temperature conditions, and so on. But they are safe because they are large enough to ensure that ON/~OFF is not de-asserted too early. Additional notes: 1. Typical power-up initialization time figures for best cases conditions (no power-loss recovery, fast and new flash memory…) approximate 3.5 seconds in every firmware version. But releasing ON/~OFF after this delay does not guarantee that the application will actually start-up if for example the power plug has been pulled off during a flash memory operation, like a phone book entry update or an AT&W command… 2. The ON/~OFF signal can be left at a high level until switch OFF. But this is not recommended as it will prevent the AT+CPOF command from performing a clean power-off. (see also << >> for an alternate usage) If the application manages hardware flow control, the AT command can be sent during the initialisation phase. Page : 86 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3. When using a battery as power source, it is not recommended to let this signal high: If the battery voltage is too low and the ON/~OFF signal at low level, an internal mechanism switches OFF the WMP100/Open AT® Software Suite v1.0. This automatic process prevents the battery to be over discharged and optimize its life span. 4. During the power-ON sequence, an internal reset is automatically performed by the WMP100/Open AT® Software Suite v1.0 for 40 ms (typically). Any external reset should be avoided during this phase. 5. Connecting a charger on the WMP100/Open AT® Software Suite v1.0 as exactly the same effect than setting the ON/~OFF signal. In particular the WMP100/Open AT® Software Suite v1.0 will not POWER-OFF after the AT+CPOF command, unless the Charger is disconnected. 3.17.3.2 Power OFF To properly power OFF the WMP100/Open AT® Software Suite v1.0 the application must reset the ON/OFF signal and then send the AT+CPOF command to deregister from the network and switch off the WMP100/Open AT® Software Suite v1.0. Once the « OK » response is issued by the WMP100/Open AT® Software Suite v1.0, the power supply can be switched off. POWER SUPPLY ON/OFF AT+CPOF AT COMMAND OK response Network dependent STATE OF THE MODULE Module READY Module OFF IBB+RF<22µA IBB+RF = overall current consumption (Base Band + RF part) Figure 35 : Power-OFF sequence Note: • If the ON/~OFF pin is maintained to ON (High Level) then the module can’t be switched OFF. Page : 87 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.18 BOOT signal A specific control pin BOOT is available to download the WMP100 only if the standard XMODEM download, controlled with AT command, is not possible. Specific PC software, provided by WAVECOM, is needed to perform this download, specifically for the first download of the Flash memory. 3.18.1 Features The BOOT pin must be connected to the VCC_1V8 for this specific download. BOOT Operating mode Comment Leave open Normal use No download Leave open Download XMODEM AT command for Download AT+WDWL Download specific Need WAVECOM PC software For more information, see chapter 3.8.3. This BOOT pin must be left open for normal use or XMODEM download. However, in order to make development and maintenance phases easier, it is highly recommended to set a test point, either a jumper or a switch to VCC_1V8 (ball AD5) power supply. 3.18.2 Pin description Signal Pin number I/O I/O type Description BOOT W18 1V8 Download mode selection 3.18.3 Application VCC_1V8 Switch BOOT Figure 36: Example of BOOT pin implementation Page : 88 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.19 Reset signals The WMP100 have two reset signals. The main is ~RESET which is the input reset of the processor. The second is ~EXT-RESET which is derived from the main reset. 3.19.1 Features WMP100 Processor control ~RESET to processor internal reset Watchdog ~EXT-RESET Power supply Power management Figure 37 : Reset functional block The ~RESET signal is an input/output signal. It is controlled as well by the user as well by an internal voltage supervisor. This ~RESET signal drive the reset of the processor through the watchdog unit. The ~EXT-RESET is an output signal and is the result of the combination of the ~RESET and the watchdog reset. This signal is used to provide a reset to all the microprocessor’s system components. Typically, the ~EXT-RESET is used to reset the NOR Flash memories state machine. Page : 89 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Figure 38 : Reset waveform events Three different reset events can occur: Power on reset: The power on reset is automatically controlled by the internal power management unit. It resets the ~RESET signal as long as the power supply voltage VCC_1V8 is under 1.60 V typ. The ~RESET is always reset when the VCC_1V8 is high, after what a cancellation time is launched (ta). The ~EXT-RESET is always reset when the ~RESET signal is high, after what a cancellation time is launched (tb). External reset (~RESET): The external reset is managed by the user or by an external event of the WMP100. This is the asynchronous reset of the processor. The external reset must be generated on the ~RESET signal. The ~Reset signal must be held low during the time (tc) to reset the microprocessor. . Internal reset (~EXT-RESET): The internal reset is launched by the watchdog unit, controlled by the processor. This reset affects only the ~EXT-RESET signal (td). Page : 90 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Electrical Characteristics of the signals Parameter ~RESET ~EXTRESET Minimum Typ Unit Input Impedance ( R )* 100K Ω Input Impedance ( C ) 10n ~Reset time (tc) 200 Cancellation time (ta) 20 μs 40 100 ms at power up only VH** 0.57 VIL VIH 1.33 0.57 Watchdog reset (td) Cancellation time (tb) 34 Delay after a ~RESET active (te) Total boot time (tg) 300 μs 35 ms 122 μs 17 First access time (tf) ~CS0 Maximum μs BOOT = 1 200 BOOT = Leave open *** 20 ms * internal pull up **VH : Hysterisis Voltage *** Normal configuration. Refer to the chapter 3.18 for further details on the BOOT signal. Sequence after an external reset event (~RESET):: To activate the « emergency » reset sequence, the ~RESET signal has to be set to low for 200μs minimum for example by a push button . As soon as the reset is complete, the interface answers « OK » to the application. ~RESET ~EXT-RESET STATE OF THE MODULE Module READY RESET mode IBB+RF=20 to 40mA tc = Min:200μs tb = Typ:34ms Module ON IBB+RF<120mA without loc update AT answers “OK” Module READY SIM and network dependent Figure 39 : Reset sequence waveform Page : 91 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 At power up, the ~RESET time (ta), is performed after switching ON the Wireless Microprocessor®. It is generated by the internal WMP100 voltage supervisor. The ~RESET time is provided by the internal RC component. To keep the same time, it’s not recommended to plug another R or C component into the ~RESET signal. Only a switch or an open drain gate is recommended. The (tb) time is the cancellation time needed for the WMP100/Open AT® Software Suite v1.0 initialization. (tb) time is automatically done by the WMP100/Open AT® Software Suite v1.0 itself, after a hardware reset. The firsts access on ~CS0 after an internal reset event (~EXT-RESET): After an internal reset (like a Watchdog reset) the delay of the active ~CS0 signal (chip select 0 for access to the external FLASH) depend of the BOOT signal state. Refer to the chapter 3.18 for further details on the BOOT signal. Figure 40 : BOOT sequence waveform 3.19.2 Pin description Signal Pin number I/O I/O type Description ~RESET V6 I/O Open Drain* 1V8 WMP100 Reset ~EXT-RESET AB14 O Push Drain 1V8 External Reset * internal pull up. See the characteristics in the table §3.19.1. Page : 92 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.19.3 Application If used (emergency reset), it has to be driven by an open collector or an open drain output (due to the internal pull-up resistor embedded into the Wireless Microprocessor®) as shown in the diagram hereunder. Push button ~RESET GND Figure 41: Example of ~RESET pin connection with push button configuration ~RESET Reset command T1 Rohm DTC144EE GND Figure 42: Example of ~RESET pin connection with transistor configuration Open collector or open drain transistor can be used. If an open collector is chosen, T1 can be a Rohm DTC144EE. Reset command ~RESET Operating mode Reset activated Reset inactive Page : 93 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.20 External Interrupt The WMP100 provides up to 9 external interrupts inputs in two voltages ranges (in 1.8V and 2.8V). 3.20.1 Features Those interrupt inputs can be activated on: • high to low edge • low to high edge • low to high and high to low edge • low level • high level When used, interruptions input must not be left opened. If not used, they have to be configured as GPIO. Electrical characteristics of the signals Parameter Minimum VIL Interrupt pin at 1V8 VIH Unit 0.54 1.33 VIL Interrupt pin at 2V8 Maximum 0.84 1.96 VIH 3.20.2 Pin description Signal Pin number I/O I/O type Reset state Description Multiplexed with INT0 V16 1V8 External Interrupt 0 GPIO3 / A26 INT1 Y19 2V8 External Interrupt 1 GPIO25 INT2 Y17 1V8 External Interrupt 2 GPIO45 INT3 V18 2V8 External Interrupt 3 GPIO46 INT4 T18 2V8 External Interrupt 4 GPIO35 / ~SPI2-CS INT5 M14 2V8 External Interrupt 5 GPIO31 / ~SPI1-CS INT6 T16 1V8 External Interrupt 6 GPIO14 / CT103-TXD2 INT7 V13 1V8 External Interrupt 7 GPIO17 / Page : 94 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Pin number I/O I/O type Reset state Description Multiplexed with ~CT105RTS2 Y3 INT8 1V8 External Interrupt 8 GPIO18 / SIMPRES See chapter 3.4, “Electrical information for digital I/O” on page 32 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition. 3.20.3 Application INTx are high impedance input type, so it is important to set the interrupt input signal with pull up or pull down resistor if they are driven by an open drain, open collector or by a switch. If they are driven by a push-pull transistor, no pull up or pull down resistor is necessary. VCC_1V8 R1 INTx Intx command T1 Rohm DTC144EE GND Figure 43: Example of INTx driving example with open collector VCC_2V8 R1 INTx Intx command T1 Rohm DTC144EE GND Figure 44: Example of INTx driving example with open collector Where: R1 value can be 47K Ohm. T1 can be a Rohm DTC144EE open collector transistor. Page : 95 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.21 VCC_2V8 and VCC_1V8 output VCC_2V8 output can be used only for pull-up resistor and can be used as a reference supply. VCC_1V8 is used to supply the Flash and Ram memories; it can be used as well for pull-up resistors. Those voltages supplies are available when the WMP100 is on. 3.21.1 Features Electrical characteristics of the signals Parameter Output voltage VCC_1V8 Minimum Typ Maximum Unit 1.76 1.8 1.94 80 (TBC) mA 2.86 15 mA Output Current Output voltage VCC_2V8 2.74 Output Current 2.8 3.21.2 Pin description Signal Pin number I/O I/O type Description VCC_1V8 AD5 Supply Digital supply VCC_2V8 R1 Supply Digital supply 3.21.3 Application Those digital power supplies are mainly used to: VCC_1V8 is used to supply Flash and Ram memory devices pull-up signals such as I/O supply the digital transistors driving LEDs supply the SIMPRES signal act as a voltage reference for ADC interface AUX-ADC (only for VCC_2V8) Page : 96 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.22 Real Time Clock The Real Time Clock of the WMP100 need to be feeds by a 32768Hz frequency. An internal oscillator is available to drive a crystal at the frequency of 32768Hz. 3.22.1 Features Those two pins are used to connect a crystal which is mandatory to setup and to run the WMP100. It is possible to access to the 32768 Hz signal (buffered output) on the GPIO44 (ball AB13). Refer to the chapter 3.11. Electrical characteristics of the signal Parameter Minimu Typ Maximu Unit 32kHz oscillator input cycle time 1/3276 μs 32kHz oscillator input high time μs 32kHz oscillator input low time μs Start time 32kHz oscillator start time GPIO44 Delay time with respect to XIN_32K 20 ns XIN_32K 3.22.2 Pin description Signal Pin number I/O I/O type Description XIN_32K AC24 analog Oscillator input XOUT_32K AB24 analog Oscillator output Page : 97 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.22.3 Application XOUT_32K R1 X1 XIN_32K C1 C2 The R1 resistor is mandatory if the crystal maximum power dissipation is under 1μW. The value of the components R1, C1 and C2 are tuned with the crystal MS2VT1S. It is important to place the crystal close to the WMP100, to reduce as a minimum the length of the nets. Recommended components: C1, C2 : 22pF R1 : 100Kohm X1: 32768Hz crystal. MS2V-T1S (+/- 20ppm @25°C) Microcrystal 3.22.4 Design recommendation Exemple with the crystal. MS2V-T1S Layer 1: -Good ground under the crystal. -Good ground connection of the crystal legs and the load capacitance of the crystal. -Crystal as close as possible to the WMP100 in order to decreases as maximum as possible the parasite capacitance brought by the design of the layout 0.2mm width Figure 45 : PCB lay out for the crystal MS2V-T1S Page : 98 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Layer 2: A complete layer of ground 3.23 BAT-RTC (Backup Battery) The WMP100 provides an input / output to connect a Real Time Clock power supply. 3.23.1 Features This pin is used as a back-up power supply for the internal Real Time Clock. The RTC is supported by the WMP100 when VBATT is available but a back-up power supply is needed to save date and hour when the VBATT is switched off. WMP100 from VBATT 2.5V regulator to RTC 1.8V regulator BAT-RTC Figure 46 : Real Time Clock power supply If the RTC is not used this pin can be left open. If the VBATT is available, the back-up battery can be charged by the internal 2.5V power supply regulator. Page : 99 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Electrical characteristics of the signal Parameter Minimum Input voltage 1.85 Typ Maximum Unit 2.5 Input current consumption* 3.3 μA Output voltage 2.45 Output current mA *Provided by a RTC back-up battery when WMP100 is off and VBATT = 0V. 3.23.2 Pin description Signal Pin number I/O I/O type Description BAT-RTC U6 I/O Supply RTC Back-up supply 3.23.3 Application Back-up Power Supply can be provided by: • A super capacitor • A non rechargeable battery • A rechargeable battery cell. 3.23.3.1 Super Capacitor Figure 47: RTC supplied by a gold capacitor Page : 100 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Estimated range with 0.47 Farad Gold Cap: 25 minutes minimum. Note: the Gold Capacitor maximum voltage is 2.5V. 3.23.3.2 Non Rechargeable battery Figure 48: RTC supplied by a non rechargeable battery The diode D1 is mandatory to not damage the non rechargeable battery. Estimated range with 85 mAh battery: 800 h minimum. 3.23.3.3 Rechargeable battery cell Figure 49: RTC supplied by a rechargeable battery cell Estimated range with 2 mAh rechargeable battery: ~15 hours. WARNING: Before battery cell assembly ensure that cell voltage is lower than 2.5 V to avoid any damage to the Wireless Microprocessor®. Page : 101 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.24 FLASH-LED signal 3.24.1 Features FLASH LED is an open drain output. A LED and a resistor can be directly connected between this output and VBATT. When the WMP100 is OFF, if 2.8V < VBATT < 3.2V and a charger is connected on CHG-IN inputs, this output indicates, by flashing (100 ms ON, 900 ms OFF) , the pre-charging phase of the battery. When the WMP100 is ON, this output is used to indicate the network status. FLASH-LED status WMP100 VBATT status state WMP100 OFF VBATT<2.8V or VBATT> 3.2V FLASH-LED status WMP100 status OFF WMP100 is OFF 2.8V < VBATT Pre-charge flash < 3.2V LED ON for 100 ms, OFF for 900 ms WMP100 is OFF, Pre-charging mode (charger must be connected on CHG-IN to activate this mode) WMP100 VBATT > 3.2V Permanent ON WMP100 switched ON, not registered on the network Slow flash WMP100 switched ON, registered on the network LED ON for 200 ms, OFF for 2 s Quick flash LED ON for 200 ms, OFF for 600 ms WMP100 switched ON, registered on the network, communication in progress Very quick flash WMP100 switched on, software downloaded is LED ON for 100ms, OFF either corrupted or nonfor 200ms compatible ("BAD SOFTWARE") Page : 102 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Electrical characteristics of the signal Parameter Condition Minimum Typ Maximum Unit VOL 0.4 IOUT mA The FLASH-LED state is high during the RESET time and undefined during the software initialization time. During software initialization time, during 2 seconds max after RESET cancellation, the FLASH-LED signal is toggling and it doesn’t provide the WMP100 status. After the 2s, the FLASH-LED provides the true status of the Wireless Microprocessor®. 2s ~RESET FLASH-LED led OFF Undefined Module Status Figure 50 : FLASH-LED state during RESET and Initialization time 3.24.2 Pin description Signal Pin number I/O I/O type Reset state Description FLASHLED U3 Open Drain Output 1* LED driving * This signal is undefined 2 seconds after the reset (initialization time). See chapter 3.4, “Electrical information for digital 1V8 voltage characteristics and for Reset state definition. I/O” on page 32 for Open drain, 2V8 and Page : 103 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.24.3 Application The GSM activity status indication signals FLASH-LED (pin U3) can be used to drive a LED. This signal is an open-drain digital transistor according to the WMP100 activity status. « GSM » FLASH-LED R1 470 Ω VBATT D1 Figure 51: Example of GSM activity status implementation R1 value can be harmonized depending of the LED (D1) characteristics. 3.25 Digital audio interface (PCM) The Digital audio interface (PCM) interface mode allows the connectivity with audio standard peripherals. It can be used, for example, for connecting an external audio codec. The programmability of this mode allows address a large range of audio peripherals. 3.25.1 Features • IOM-2 compatible device on physical level • Master mode only with 6 slots by frame, user only on slot 0 • Bit rate single clock mode at 768KHz only • 16 bits data word MSB first only • Linear Law only (no compression law) • Long Frame Synchronization only • Push pull configuration on PCM-OUT and PCM-IN The digital audio interface configuration can’t be different from the specified features above. Page : 104 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 AC characteristics Signal Description Minimum Typ Maximum Tsync_low + Tsync_high PCM-SYNC period 125 μs Tsync_low PCM-SYNC low time 93 μs Tsync_high PCM-SYNC high time 32 μs TSYNC-CLK PCM-SYNC to PCM-CLK time -154 Ns TCLK-cycle PCM-CLK period 1302 Ns TIN-setup PCM-IN setup time 50 Ns TIN-hold PCM-IN hold time 50 Ns TOUT-delay PCM-OUT delay time 20 Unit Ns PCM interface consists of 4 wires: • PCM-SYNC (output): The frame synchronization signal delivers an 8KHz frequency pulse that synchronizes the frame data in and the frame data out. • PCM-CLK (output): The frame bit clock signal controls the data transfer with the audio peripheral. • PCM-OUT (output): The frame “data out” depending on the selected configuration mode. • PCM-IN (input): The frame “data in” is depending on the selected configuration mode. Page : 105 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 ing gin e Be fram do En Tsync_high am f fr Tsync_low PCM-SYNC PCM-CLK PCM-IN SLOT 5 SLOT 0 SLOT 1 SLOT 5 SLOT 0 SLOT 0 SLOT 1 SLOT 5 SLOT 0 PCM-OUT SLOT 5 Figure 52 : PCM Frame waveform PCM-SYNC TCLK-cycle TSYNC-CLK PCM-CLK TIN-setup TIN-hold PCM-IN SLOT 5 bit 0 SLOT 0 bit 15 SLOT 0 bit 14 SLOT 0 bit 13 SLOT 0 bit 14 SLOT 0 bit 13 TOUTdelay PCM-OUT SLOT 5 bit 0 SLOT 0 bit 15 Figure 53 : PCM Sampling waveform Page : 106 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.25.2 Pin description Signal Pin number I/O I/O type Reset state Description PCM-SYNC Y21 1V8 Pull down Frame synchronization 8Khz PCM-CLK W21 1V8 Pull down Data clock PCM-OUT W22 1V8 Pull up Data output PCM-IN AA22 1V8 Pull up Data input See chapter 3.4, “Electrical information for digital 1V8 voltage characteristics and for Reset state definition. I/O” on page 32 for Open drain, 2V8 and 3.25.3 Application TBD 3.26 USB 2.0 interface A 5-wire USB slave interface is available, compiling with USB 2.0 protocol signaling, but not with electrical interface, due to the not complying 5V of VPAD-USB. The USB interface signals are VPAD-USB, USB-DP, USB-DM, USB-DET, USBCN and GND. 3.26.1 Features ¾ 12Mbit/s full speed transfer rate ¾ 3.3V typ compatible ¾ USB Softconnect feature ¾ Download feature is not supported by USB ¾ CDC 1.1 – ACM compliant Page : 107 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Electrical characteristics of the signals Parameter Min Typ Max Unit VPAD-USB, USB-DP, USB-DM, USB-CN 3.3 3.6 VPAD-USB Input current consumption mA NOTE: A 5V to 3.3V typ. voltage regulator is needed between the external interface power in line (+5V) and the WMP100 line (VPAD-USB). 3.26.2 Pin description Signal Pin number I/O I/O type Description Multiplexed with VPAD-USB AB19 VPAD_USB USB Power Supply Not mux USB-DP W19 I/O VPAD_USB Differential data interface positive Not mux USB-DM AA20 I/O VPAD_USB Not mux USB-CN Y20 VPAD_USB Differential data interface negative Connect (high or low speed) USB-DET R14 VCC_1V8 Detection Not mux Not mux Page : 108 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.26.3 Application A typical schematic is shown below: Figure 54: Example of USB implementation Recommended components: R1,R2, R3 : 1MOhm C1, C3 : 100nF C2, C4 : 2.2μF D1 : STF2002-22 from SEMTECH U1 : LP2985AIM U2 : NC7SZ66L6X from FAIRCHILD 3.3V from NATIONAL SEMICONDUCTOR The regulator used is a 3.3V one. It is supply through J1 when the USB wire is plugged. USB-DET is a WMP100 External Interruption (R14) used for the USB wire presence detection. The EMI/RFI filter with ESD protection is D1. The D1 integrated pull up resistor used to detection of full speed. USB-CN (Y20) drives this pull-up. R1 and C1 have to be close J1. Page : 109 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.27 Memory interface The memory interface is used to connect many memory parts technologies as Flash NOR, Flash NAND, SRAM and PSRAM components. Combo NOR Flash CS0 ADD WMP100 Processor DATA CTR SRAM / PSRAM CS1 CS2 CS3 Figure 55: Memory bus The interface is able to drive up to 4 independents memories. Some memories can be enclosed in the same package, like the Combo memories. Each Chip select space can be configured undependably. It is mandatory that the memory connected on CS0 is the FLASH and CS1 is the RAM. Page : 110 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.27.1 Features 3.27.1.1 Generic Description ¾ Up to 128 MByte address range per chip select ¾ Up to 4 chip select available ¾ Support for 8, 16, and 32 bit (multiplexed synchronous mode) devices ¾ Byte enable signals for 16 bit and 32 bits operation ¾ Fully programmable timings based on hclk (a division of the ARM clock) cycles (except for synchronous mode which is based on CLKBURST cycles) ¾ individually selectable timings for read and write 0 to 7 clock cycles for setup 1 to 32 clock cycles for access cycle 1 to 8 clock cycles for page access cycle 0 to 7 clock cycles for hold 1 to 15 clock cycles for turnaround Page mode Flash memory support ¾ page size of 4, 8, 16 or 32 Burst mode Flash memory support up to hclk clock frequency (for devices sensitive to rising edge of the clock only) hclk, hclk/2, hclk/4 or hclk/8 burst clock output burst size of 4, 8, 16, 32 WAIT input automatic CLKBURST power-down between accesses ¾ Intel mode (WE and OE) and Motorola mode (E and R/W) control signals ¾ Synchronous write mode ¾ Synchronous multiplexed data/address mode (x32 mode) ¾ Adaptation to word, halfword, and byte accesses to the external devices Page : 111 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.27.1.2 Case of ST 32/8 (M36W0R5030T0ZAQF) ¾ ¾ 32 Mbits FLASH: Mandatory configuration of CS0 space : Bursted mode (Synchronous frequency: 26 MHz read Burst size: 4 half words 3 clock cycles for read access cycle 5 clock cycles for write access cycle 1 clock cycle for turnaround 16-bit wide data bus “Top boot” type of flash architecture Intel SW command set asynchronous write)Burst 8 Mbits SRAM: Mandatory configuration of CS1 space : Asynchronous mode Intel mode (WE and OE) Same configuration for Read and Write access 1 clock cycle for setup 2 clock cycles for access cycle 0 clock cycles for hold 1 clock cycle for turnaround Page : 112 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.27.1.3 Access bus Waveform Synchronous timing diagram TCLKBURST_cycle CLKBURST TADD_setup TADD_tristate ADD TDATA_setup TDATA_hold TADD_hold DATA ~CS TCS_setup TADV_setup TADV_hold ~ADV TOE_delay ~OE TWAIT_setup TWAIT_setup TWAIT_hold ~WAIT Figure 56: Read synchronous timing Signal Description Minimum Typ Maximum Unit TCLKBURST CLKBURST clock period time 19 78 ns TADD_setup Address bus setup time ns TADD_hold Address bus hold time 19 ns TADD_tristate Address bus tristate time TDATA_setup Data bus setup time ns TDATA_hold Data bus hold time ns TCS_setup Chip select setup time ns TADV_setup ADV setup time ns TADV_hold ADV hold time ns TOE_delay Output Enable delay time TWAIT_setup Wait setup time ns TWAIT_hold Wait hold time ns 10 13 ns ns Page : 113 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 TCLKBURST_cycle CLKBURST TADD_setup TADD_tristate ADD TDATA_delay TADD_hold DATA ~CS TCS_setup TADV_setup TADV_hold ~ADV ~WE TWE_setup TWAIT_setup TWAIT_setup TWAIT_hold ~WAIT TBE_delay ~BE Figure 57: Write synchronous timing Signal Description TDATA_delay CLKBURTS falling edge to DATA valid delay TWE_setup WE to CLKBURST setup time TBE_delay CLKBURST falling edge to BE delay Minimum Typ Maximum Unit ns ns ns Page : 114 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Asynchronous time diagram TADD_delay TADD_delay ADD TDATA_setup TDATA_hold TDATA_delay TDATA_secure IO TDATA_secure ~CS TADV_delay TADV_delay TADV_delay TADV_delay ~ADV TWE_delay ~WE TOE_delay ~OE TBE_delay ~BE Figure 58: Read / Write Asynchronous timing Page : 115 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Description Minimum Typ Maximum Unit TADD_delay Address delay time from Chip Select active TDATA_setup Data to Output Enable setup time 18 ns TDATA_hold Data hold time after Output Enable inactive ns TDATA_delay Data delay time from Chip Select active TDATA_secure Data hold time after Write Enable inactive or Chip Select inactive TADV_delay ADV delay time from Chip Select active and inactive ns TWE_delay Write Enable delay time from Chip Select active ns TOE_delay Output Enable delay time from Chip Select active ns TBE_delay BE delay time from Chip Select active ns -5 ns ns ns 3.27.1.4 Flash space The Flash space (program memory) is dedicated on the CS0 pin chip select. This memory is embedded in the Open AT® Software Suite v1.0, so this device has to run at a special configuration of the memory bus to ensure the full functionality of the WMP100/Open AT® Software Suite v1.0. Refer to the chapter 3.27.1.2 for the details on the configuration. 3.27.1.5 RAM space The Ram space is dedicated on the CS1 pin chip select. This memory has to run at a special configuration of the memory bus to ensure the full functionality of the WMP100/Open AT® Software Suite v1.0. Refer to the chapter 3.27.1.2 for the details on the configuration. Page : 116 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.27.1.6 16-bit wide data bus User Space The users’ memory space is available on chip select CS2 and CS3. User space are freely configurable. 3.27.2 Electrical characteristics of the signals The memory interface voltage is provided by the VCC_1V8 power supply. So it is mandatory to supply the memories devices by VCC_1V8 power supply voltage provided by the WMP100 Wireless Microprocessor®. Parameter Min Typ Max Unit VCC_1V8 (Wireless Microprocessor® supply output) 1.76 1.9 1.94 Memory Specification FLASH 1,7 1,95 (M36W0R5030T0ZAQF) SRAM 1,7 1,95 3.27.3 Pin description Signal Pin number I/O I/O type Reset state Description Multiplexed with ~WAIT R19 1V8 Pull up Flash burst wait for synchronous operation Not mux ~CS0 P19 1V8 Flash chip select Not mux ~CS1 R20 1V8 RAM chip select Not mux ~CS2 (*) R18 1V8 User chip select GPIO1 / A25 ~CS3 T17 1V8 User chip select Not mux CLKBURST M19 1V8 Burst Clock Not mux ~ADV U19 1V8 Burst address valid Not mux ~WE-E P20 1V8 write enable (Intel mode) / Not mux enable signal (Motorola mode) ~OE-R/W N20 1V8 BE1 P18 1V8 output enable (Intel mode) / read not write (Motorola mode) select for 16 or 32 bits devices Not mux Not mux (*) Add a pull-up for the Reset State Page : 117 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Pin number I/O I/O type Reset state Description Multiplexed with D0 W24 I/O 1V8 Pull down Data Not mux D1 W23 I/O 1V8 Pull down Data Not mux D2 AA24 I/O 1V8 Pull down Data Not mux D3 Y23 I/O 1V8 Pull down Data Not mux D4 U21 I/O 1V8 Pull down Data Not mux D5 Y22 I/O 1V8 Pull down Data Not mux D6 Y24 I/O 1V8 Pull down Data Not mux D7 V21 I/O 1V8 Pull down Data Not mux D8 V20 I/O 1V8 Pull down Data Not mux D9 U20 I/O 1V8 Pull down Data Not mux D10 V24 I/O 1V8 Pull down Data Not mux D11 V22 I/O 1V8 Pull down Data Not mux D12 V23 I/O 1V8 Pull down Data Not mux D13 AA23 I/O 1V8 Pull down Data Not mux D14 U23 I/O 1V8 Pull down Data Not mux D15 T23 I/O 1V8 Pull down Data Not mux A0 T19 1V8 Address Not mux A1 U18 1V8 Address Not mux A2 U24 I/O 1V8 Pull down Address Not mux A3 P24 I/O 1V8 Pull down Address Not mux A4 N24 I/O 1V8 Pull down Address Not mux A5 M21 I/O 1V8 Pull down Address Not mux A6 M24 I/O 1V8 Pull down Address Not mux A7 N23 I/O 1V8 Pull down Address Not mux A8 R24 I/O 1V8 Pull down Address Not mux A9 R22 I/O 1V8 Pull down Address Not mux A10 P22 I/O 1V8 Pull down Address Not mux A11 T22 I/O 1V8 Pull down Address Not mux A12 R23 I/O 1V8 Pull down Address Not mux A13 M22 I/O 1V8 Pull down Address Not mux A14 P21 I/O 1V8 Pull down Address Not mux Page : 118 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Pin number I/O I/O type Reset state Description Multiplexed with A15 R21 I/O 1V8 Pull down Address Not mux A16 P23 I/O 1V8 Pull down Address Not mux A17 T21 I/O 1V8 Pull down Address Not mux A18 T24 1V8 Address Not mux A19 M23 1V8 Address Not mux A20 N21 1V8 Address Not mux A21 N22 1V8 Address Not mux A22 M20 1V8 Address Not mux A23 N19 1V8 Address Not mux A24 U22 1V8 Address GPIO2 A25 R18 1V8 Address GPIO1 / ~CS2 A26 V16 1V8 Address GPIO3 / INT0 Page : 119 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.27.4 Application An application is given with a combo memory ST (M36W0R5030T0ZAQF) which embedded SRAM and FLASH memory Figure 59: Memory connection schematic NC: not connected Page : 120 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Recommended components: • U1 : WMP100 • U2 : M36W0R5030T0ZAQF from STMicroelectronics : • 32Mbits of Bursted Flash (synchrone), Top type. 8Mbits of SRAM (asynchrone). Temperature range from –40°C to +85°C. 16Bit bus Data wide type 1.8 Volt core and I/O type Decoupling capacitors: 100nF 3.27.5 Constraints Electrical constraints: • The Flash type must be a “Top” type, see on the part number: M36W0R5030T0ZAQF • The reset of the Flash must be done by the ~EXT-RESET signal, (see RESET chapter). • Decoupling capacitors have to be used and to be placed close to the memory power supply pins. (see the Memory location figure below) • The power supply VCC_1V8 is provided by the WMP100 (VCC_1V8 ball “AD5”). • Because it is a 16Bit bus data wide implementation, the Address signal A0 has to be used to select the Low value of the data bus (8 bits LSB). So ~BE1 and A0 have to be connected to ~R-UB and ~R-LB of the memory (See schematic). • The Flash must be connected on ~CS0 and the SRAM on the ~CS1. PCB constraints: • The memory must be place close to the Wireless Microprocessor® (see the Memory location figure below) Page : 121 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Figure 55: Memory location Page : 122 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 • All the memory bus nets must have a maximum length of 30 mm. • It is recommended to shield around all the signals (see the Memory PCB figure below). • All signals must be routed with adjoining layers (see the Memory PCB figure below). We do not recommend adding other signals between the Wireless Microprocessor® and the memory. • PCB structure example : 4 layers (see the Memory PCB figure below) Inner layer trace 100 μm, clearance 100 μm Layer top and bottom trace 150 μm, clearance 150 μm Figure 60: Memory PCB Page : 123 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 3.28 RF interface The impedance is 50 Ohms nominal and the DC impedance is 0 Ohm. 3.28.1 RF connection The RF antenna connection uses a unique BGA Ball associated with grounded BGA balls all around. This ball must be connected, using a PCB via, to an embedded RF 50 ohms line, in order to avoid any pollution coming from base-band signals. For the same reasons, the RF connection and the RF embedded line must be kept 1 cm away from any noisy base-band signal. Without following this rule the RX sensitivity might be degraded. The other side of the embedded 50 ohms RF line can be connected to a RF connector or a soldering pad in order to connect an antenna. It’s also possible to use a CMS antenna or to design an antenna directly on the same PCB. Notes: • The WMP100 does not support an antenna switch for a car kit but this function can be implemented externally and it can be driven using a GPIO. • The antenna cable and connector should be chosen in order to minimize losses in the frequency bands used for GSM 850/900MHz and 1800/1900MHz. • 0.5dB can be considered as a maximum value for loss between the WMP100 and an external connector. 3.28.2 RF performances RF performances are compliant with the ETSI recommendation GSM 05.05. The main parameters for Receiver are: • • • • • • • • GSM850 Reference Sensitivity = -108 dBm Static & TUHigh E-GSM900 Reference Sensitivity = -108 dBm Static & TUHigh DCS1800 Reference Sensitivity = -107 dBm Static & TUHigh PCS1900 Reference Sensitivity = -107 dBm Static & TUHigh Selectivity @ 200 kHz : > +9 dBc Selectivity @ 400 kHz : > +41 dBc Linear dynamic range: 63 dB Co-channel rejection: >= 9 dBc And for Transmitter: • • Maximum output power (EGSM & GSM850): 33 dBm +/- 2 dB at ambient temperature Maximum output power (GSM1800 & PCS1900): 30 dBm +/- 2 dB at ambient temperature Page : 124 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 • • Minimum output power (EGSM & GSM850): 5 dBm +/- 5 dB at ambient temperature Minimum output power (GSM1800 & PCS1900): 0 dBm +/- 5 dB at ambient temperature 3.28.3 Antenna specifications The antenna must fulfill the following requirements: • The optimum operating frequency depends on application. A dual Band or a quad band antenna shall work in these frequency bands and have the following characteristics: WMP100 86 Characteristic E-GSM 900 DCS 1800 GSM 850 PCS 1900 TX Frequency 880 to 915 MHz 1710 to 1785 MHz 824 to 849 MHz 1850 to 1910 MHz RX Frequency 925 to 960 MHz 1805 to 1880 MHz 869 to 894 MHz 1930 to 1990 MHz Impedance VSWR 50 Ohms Rx max 1.5 :1 Tx max 1.5 :1 Typical radiated gain 0dBi in one direction at least 3.28.4 Antenna The RF antenna connection uses a unique BGA Ball associated with grounded BGA balls all around. This BGA ball must be connected, using a PCB via, to an embedded RF 50 ohms line, in order to protect the antenna line from the noise coming from base-band signals. The figure below shows the RF ball and the ground balls around, and a PCB via placement example. PCB via Page : 125 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Figure 61: Antenna and ground balls placement The figure below shows the RF embedded line and the PCB via. Figure 62: RF 50 ohms embedded line This 50 ohms line is surrounded by two ground planes in order to protect this antenna line from noise. The length of the line shouldn’t be too high (more than a few cm) because of RF insertions losses. The width of the line must be calculated in order to ensure a 50 ohms characteristic impedance. For the same reasons, not only the RF connection but also the RF embedded line should be kept about 1 cm away from any (noisy) Baseband signal in order to ensure a good RX sensitivity level. Figure below shows a keep away area for the antenna connection point. This restricted area must not contain any noisy base-band signals (like any bus or clock signal). Keep away area Figure 63: Antenna connection point keep away area The other end of the embedded 50 ohms RF line can be connected to a RF connector or a soldering pad in order to connect an antenna. Page : 126 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 It’s recommended to add an ESD protection component on the antenna line, in order to increase the final product ESD tolerance. ESD protection Figure 64: RF connector and ESD protection example This ESD protection component can be an 82 nH Multi-Layer HF inductor (0603 case). It must be connected between RF output and ground as short as possible. It’s also possible to use an antenna chip or to choose to design an antenna directly on the same PCB. WARNING: Wavecom strongly recommends working with an antenna manufacturer either to develop an antenna adapted to the application or to adapt an existing solution to the application. Both the mechanical and electrical antenna adaptation is one of the key issues in the design of the GSM terminal. 4 Consumption measurement procedure This chapter describes the consumption measurement procedure used to obtain the Wireless Microprocessor consumption specification WMP100/OASS1.0 consumption specification values are measured for all operating modes available on this product. See the appendix of document [3] AT Command Interface Guide for Open AT® Firmware v6.5. Consumption results are highly dependent on the hardware configuration used during measurement, this chapter describes the hardware configuration settings to be used to obtain optimum consumption measurements. 4.1 Hardware configuration The hardware configuration includes both the measurement equipment and the Wireless Microprocessor with its motherboard. 4.1.1 Equipment Four devices are used to perform consumption measurement. ¾ A communication tester ¾ A current measuring power supply Page : 127 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 ¾ A standalone power supply ¾ A computer, to control measurement data. the Wireless Microprocessor and save Figure 65: Typical hardware configuration Page : 128 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The communication tester is a CMU 200 from Rhode & Schwartz. This tester offers all GSM/GPRS network configurations required and allows a wide range of network configurations to be set. The AX502 standalone power supply is used to supply all motherboard components except the Wireless Microprocessor. The goal is to separate motherboard consumption from Wireless Microprocessor consumption -which is measured by the other power supply, the 66321B “current measuring power supply”. The “current measuring power supply” is also connected and controlled by the computer (GPIB control not shown in the previous figure). A SIM must be inserted in the Development Kit during all consumption measurements. Wireless Microprocessor Equipment reference list: Device Manufacturer Reference Communication Tester Rhode & Schwartz CMU 200 Quad Band Current measuring power supply Agilent 66321B Used for VBATT (for WMP alone) Stand alone power supply Metrix AX502 Used for VBAT (for boards peripherals) GSM/DCS/GPRS 4.1.2 Wireless Microprocessor motherboard The Wireless Microprocessor board used is the Development Kit Wireless Microprocessor V2. This board can be used to perform consumption measurement with several settings. For a description of the settings, see document [2] WMP100 Development Kit User Guide. The Wireless Microprocessor is only powered by VBATT. The Development Kit board is powered by the standalone power supply at VBAT. It is for this reason that the link between VBATT and VBAT (J605) must be opened (by removing the solder at the top of board in the SUPPLY area). ¾ VBATT powered by the current measuring power supply (66321B). ¾ VBAT powered by the standalone power supply (AX502). The R600, resistor, and D603,D604 diodes (around the BAT-TEMP connector) must be removed. The UART2 link is not used, therefore J201, J202, J203, J204 must be opened (by removing the solder). The “FLASH-LED” must be not used, so J602 must be opened (by removing the solder). Page : 129 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The USB link is not used, therefore J301, J302, J303, J304, J305 must be opened (by removing the solder). Around “CONFIG” area, the switch BOOT must be to OFF position. The goal of the settings is to eliminate all bias current from VBATT and to supply the entire board (except the Wireless Microprocessor) via VBAT only. The standalone power supply may be set to 4 Volts. 4.1.3 SIM cards used Consumption measurement may be performed with 3-Volt or 1.8-Volt SIM cards. However, all specified consumption values are for a 3-Volt SIM card. CAUTION: The SIM card is supplied by the Wireless Microprocessor, consumption measurement results may vary depending of the SIM card used. 4.2 Software configurations Software settings. configuration for the equipment and Wireless Microprocessor 4.2.1 Wireless Microprocessor configuration Wireless Microprocessor software configuration is simply performed selecting the operating mode to be used to perform the measurement. by A description of the operating modes and the procedure used to change operating mode are given in the appendix of document [3] AT Command Interface Guide for Open AT® Firmware v6.5. An overview of the WMP100/OASS1.0 operating modes is given below: ¾ Alarm Mode ¾ Fast Idle Mode ¾ Slow Idle Mode ¾ Fast Standby Mode ¾ Slow Standby Mode ¾ Connected Mode ¾ Transfer Mode class 8 (4Rx/1Tx) (in GPRS mode) ¾ Transfer Mode class 10 (3Rx/2Tx) (in GPRS mode) Page : 130 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 4.2.2 Equipment configuration The communication tester is set according to Wireless Microprocessor operating mode. Paging during idle modes, Tx burst power, RF band and GSM/DCS/GPRS may be selected on the communication tester. Network analyzer configuration according to operating mode: Operating mode Communication tester configuration Alarm Mode N/A Paging 9 (Rx burst occurrence ~2s) Fast Idle Mode Paging 2 (Rx burst occurrence ~0,5s) Paging 9 (Rx burst occurrence ~2s) Slow Idle Mode Paging 2 (Rx burst occurrence ~0,5s) Fast Standby Mode N/A Slow Standby Mode N/A 850/900 MHz Connected Mode 1800/1900 MHz 850/900 MHz Transfer Mode class 8 (4Rx/1Tx) 1800/1900 MHz GPRS 850/900 MHz Transfer Mode (3Rx/2Tx) class 10 1800/1900 MHz 1800/1900 MHz PCL5 (TX power 33dBm) PCL19 (TX power 5dBm) PCL0 (TX power 30dBm) PCL15 (TX power 0dBm) Gam.3 (TX power 33dBm) Gam.17 (TX power 5dBm) Gam.3 (TX power 30dBm) Gam.18 (TX power 0dBm) Gam.3 (TX power 33dBm) Gam.17 (TX power 5dBm) Gam.3 (TX power 30dBm) Gam.18 (TX power 0dBm) Gam.5 (TX power 26dBm) Gam.18 (TX power 0dBm) The standalone power supply may be set from 3.2V to 4.5V. The power supply (VBATT) used for measurement may be set from 3.2V to 4.8V according Wireless Microprocessor VBATT specifications. Page : 131 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 4.3 Template This template may be used for consumption measurement, all modes and configurations are available. Three VBATT voltages are measured, 3.2V, 3.6V and 4.8V and the minimum/maximum RF transmission power configurations are set and measured. Power consumption Operating mode IMIN INOM IMAX average average average VBATT=4,8V VBATT=3,6V VBATT=3,2V Parameters Alarm Mode Fast Idle Mode Slow Idle Mode IMAX peak unit µA Paging 9 (Rx burst occurrence ~2s) mA Paging 2 (Rx burst occurrence ~0,5s) mA Paging 9 (Rx burst occurrence ~2s) mA Paging 2 (Rx burst occurrence ~0,5s) mA Fast Standby Mode mA Slow Standby Mode mA 850/900 MHz Connected Mode 1800/1900 MHz 850/900 MHz Transfer Mode class 8 (4Rx/1Tx) 1800/1900 MHz GPRS 850/900 MHz Transfer Mode class 10 (3Rx/2Tx) 1800/1900 MHz PCL5 (TX power 33dBm) mA PCL19 (TX power 5dBm) mA PCL0 (TX power 30dBm) mA PCL15 (TX power 0dBm) mA Gam.3 (TX power 33dBm) mA Gam.17 (TX power 5dBm) mA Gam.3 (TX power 30dBm) mA Gam.18 (TX power 0dBm) mA Gam.3 (TX power 33dBm) mA Gam.17 (TX power 5dBm) mA Gam.3 (TX power 30dBm) mA Gam.18 (TX power 0dBm) mA Gam.18 (TX power 0dBm) mA Page : 132 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 5 Technical specifications 5.1 Ball Grid Array pin out Signal Name Description I/O Voltage Domain MUX MUX MUX Ball number VBATT-RF Power Supply VBATT VBATT-RF A12, A13, A14, B12, B13, B14 VBATT-BB Power Supply VBATT VBATT-BB AC1, AC2, AD1, AD2 RF-OUT Radio antenna connection I/O Analog RF RF-OUT B23 VCC_2V8 Power Supply VCC_2V8 VCC_2V8 R1 VCC_1V8 Power Supply VCC_1V8 VCC_1V8 AD5 BAT-RTC Power Supply I/O BAT-RTC BAT-RTC U6 SIM-CLK SIM clock 1V8 / 2V9 SIM-CLK Y2 ~SIM-RST SIM reset 1V8 / 2V9 ~SIM-RST Y1 SIM-IO SIM data I/O 1V8 / 2V9 SIM-IO W1 SIM-VCC SIM power supply 1V8 / 2V9 SIM-VCC W2 SIMPRES / INT8 / GPIO18 SIM presence detection I/O VCC_1V8 SIMPRES INT8 GPIO18 Y3 MIC1P Microphone input 1 positive Analog MIC1P AC10 MIC1N Microphone input 1 negative Analog MIC1N AB10 MIC2P Microphone input 2 positive Analog MIC2P AC9 MIC2N Microphone input 2 negative Analog MIC2N AB9 SPK1P Speaker output 1 positive Analog SPK1P AC8 SPK1N Speaker output 1 negative Analog SPK1N AB8 SPK2P Speaker output 2 positive Analog SPK2P AC7 SPK2N Speaker output 2 negative Analog SPK2N AB7 CHG-IN Charger input voltage Analog CHG-IN V2, V3 CHG-GATE Charger transistor control output Analog current CHG-GATE V4 AUX-ADC2 / BAT-TEMP Analog to Digital converter 3 Analog AUX-ADC2 / BAT-TEMP N18 AUX-ADC1 Analog to Digital converter 2 Analog AUX-ADC1 M17 AUX-ADC0 Analog to Digital converter 1 Analog AUX-ADC0 N17 AUX-DAC0 Digital to Analog converter Analog AUX-DAC0 V14 Page : 133 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Name Description I/O Voltage Domain MUX MUX MUX Ball number XIN_32K Oscillator crystal input Analog XIN_32K AC24 XOUT_32K Oscillator crystal output Analog XOUT_32K AB24 ~RESET Input Reset signal I/O VCC_1V8 ~RESET V6 ~EXT-RESET Output External reset VCC_1V8 ~EXTRESET AB14 BOOT BOOT control VCC_1V8 BOOT W18 Flash LED WMP100 Status LED Flash LED U3 BUZZ-OUT Buzzer output control BUZZ-OUT U4 ROW0 / GPIO9 Row Scan of keypad I/O VCC_1V8 ROW0 GPIO9 AC23 ROW1 / GPIO10 Row Scan of keypad I/O VCC_1V8 ROW1 GPIO10 AD22 ROW2 / GPIO11 Row Scan of keypad I/O VCC_1V8 ROW2 GPIO11 AD21 ROW3 / GPIO12 Row Scan of keypad I/O VCC_1V8 ROW3 GPIO12 AC22 ROW4 / GPIO13 Row Scan of keypad I/O VCC_1V8 ROW4 GPIO13 AD23 COL0 / GPIO4 Column Scan of keypad I/O VCC_1V8 COL0 GPIO4 AD19 COL1 / GPIO5 Column Scan of keypad I/O VCC_1V8 COL1 GPIO5 AD20 COL2 / GPIO6 Column Scan of keypad I/O VCC_1V8 COL2 GPIO6 AC20 COL3 / GPIO7 Column Scan of keypad I/O VCC_1V8 COL3 GPIO7 AC19 COL4 / GPIO8 Column Scan of keypad I/O VCC_1V8 COL4 GPIO8 AC21 PCM-SYNC PCM frame synchronization VCC_1V8 PCM-SYNC Y21 PCM-CLK PCM clock VCC_1V8 PCM-CLK W21 PCM-OUT PCM data output VCC_1V8 PCM-OUT W22 PCM-IN PCM data input VCC_1V8 PCM-IN AA22 CT103 / TXD1 / GPIO36 Transmit serial data I/O VCC_2V8 CT103 / TXD1 GPIO36 R17 CT104 / RXD1 / GPIO37 Receive serial data I/O VCC_2V8 CT104 / RXD1 GPIO37 T13 ~CT105 / RTS1 / GPIO38 Ready To Send I/O VCC_2V8 ~CT105 / RTS1 GPIO38 Y18 ~CT106 / CTS1 / GPIO39 Clear To Send I/O VCC_2V8 ~CT106 / CTS1 GPIO39 N15 ~CT107 / DSR1 Data Set Ready I/O VCC_2V8 ~CT107 / DSR1 GPIO40 T12 ~CT108-2 / DTR1 / GPIO41 Data Serial Ready I/O VCC_2V8 ~CT108-2 / DTR1 GPIO41 M16 Open Drain VBATT Open Drain VBATT Page : 134 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Name Description I/O Voltage Domain MUX MUX MUX Ball number ~CT109 / DCD1 / GPIO43 Data Carrier Detect I/O VCC_2V8 ~CT109 / DCD1 GPIO43 AB16 ~CT125 / RI1 / GPIO42 Ring Indicator I/O VCC_2V8 ~CT125 / RI1 GPIO42 AA18 CT103 / TXD2 / INT6 / GPIO14 Transmit serial data I/O VCC_1V8 CT103 / TXD2 INT6 GPIO14 T16 CT104 / RXD2 / GPIO15 Receive serial data I/O VCC_1V8 CT104 / RXD2 GPIO15 U17 ~CT105 / RTS2 / INT7 / GPIO17 Ready To Send I/O VCC_1V8 ~CT105 / RTS2 INT7 GPIO17 V13 ~CT106 / CTS2 / GPIO16 Clear To Send I/O VCC_1V8 ~CT106 / CTS2 GPIO16 W17 SCL / GPIO26 I²C serial clock I/O Open drain SCL GPIO26 AA15 SDA / GPIO27 I²C serial data I/O Open Drain SDA GPIO27 AA16 SPI1-CLK / GPIO28 SPI serial clock I/O VCC_2V8 SPI1-CLK GPIO28 U15 SPI1-IO / GPIO29 SPI serial data input and output I/O VCC_2V8 SPI1-IO GPIO29 V12 SPI1-I / GPIO30 SPI serial data input only input I/O VCC_2V8 SPI1-I GPIO30 R13 SPI1-CS / INT5 / GPIO31 SPI chip select I/O VCC_2V8 SPI1-CS INT5 GPIO31 M14 SPI2-CLK / GPIO32 SPI serial clock I/O VCC_2V8 SPI2-CLK GPIO32 R15 SPI2-IO / GPIO33 SPI serial data input and output I/O VCC_2V8 SPI2-IO GPIO33 M13 SPI2-I / GPIO34 SPI serial data input only input I/O VCC_2V8 SPI2-I GPIO34 U16 SPI2-CS / INT4 / GPIO35 SPI chip select I/O VCC_2V8 SPI2-CS INT4 GPIO35 T18 INT3 / GPIO46 SPI chip select I/O VCC_2V8 INT3 GPIO46 V18 USB-DP Universal Serial Bus Data positive I/O VPAD-USB USB-DP W19 USB-DM Universal Serial Bus Data negative I/O VPAD-USB USB-DM AA20 USB-CN Universal Serial Bus Connect VPAD-USB USB-CN Y20 USB-DET Universal Serial Bus interruption VCC_1V8 USB-DET R14 GPIO44 General Purpose Input Output I/O VCC_2V8 GPIO44 AB13 GPIO19 General Purpose Input Output I/O VCC_2V8 GPIO19 AA17 GPIO21 General Purpose Input Output I/O VCC_2V8 GPIO21 AA13 GPIO20 General Purpose Input Output I/O VCC_2V8 GPIO20 Y13 Page : 135 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Name Description I/O Voltage Domain MUX MUX MUX Ball number GPIO47 General Purpose Input Output I/O VCC_1V8 GPIO47 Y15 GPIO48 General Purpose Input Output I/O VCC_1V8 GPIO48 Y16 GPIO0 General Purpose Input Output I/O VCC_1V8 GPIO0 W15 GPIO24 General Purpose Input Output I/O VCC_2V8 GPIO24 N16 GPIO22 General Purpose Input Output I/O VCC_2V8 GPIO22 M15 GPIO23 General Purpose Input Output I/O VCC_2V8 GPIO23 V17 INT0 / A26 / GPIO3 Interruption input I/O VCC_1V8 INT0 A26 GPIO3 V16 INT1 / GPIO25 Interruption input I/O VCC_2V8 INT1 GPIO25 Y19 INT2 / GPIO45 Interruption input I/O VCC_1V8 INT2 GPIO45 Y17 A0 Address bus VCC_1V8 A0 T19 A1 Address bus VCC_1V8 A1 U18 A2 Address bus VCC_1V8 A2 U24 A3 Address bus VCC_1V8 A3 P24 A4 Address bus VCC_1V8 A4 N24 A5 Address bus VCC_1V8 A5 M21 A6 Address bus VCC_1V8 A6 M24 A7 Address bus VCC_1V8 A7 N23 A8 Address bus VCC_1V8 A8 R24 A9 Address bus VCC_1V8 A9 R22 A10 Address bus VCC_1V8 A10 P22 A11 Address bus VCC_1V8 A11 T22 A12 Address bus VCC_1V8 A12 R23 A13 Address bus VCC_1V8 A13 M22 A14 Address bus VCC_1V8 A14 P21 A15 Address bus VCC_1V8 A15 R21 A16 Address bus VCC_1V8 A16 P23 A17 Address bus VCC_1V8 A17 T21 A18 Address bus VCC_1V8 A18 T24 A19 Address bus VCC_1V8 A19 M23 A20 Address bus VCC_1V8 A20 N21 A21 Address bus VCC_1V8 A21 N22 A22 Address bus VCC_1V8 A22 M20 A23 Address bus VCC_1V8 A23 N19 A24 / GPIO2 Address bus I/O VCC_1V8 A24 GPIO2 U22 D0 Data bus I/O VCC_1V8 D0 W24 Page : 136 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Name Description I/O Voltage Domain MUX MUX MUX Ball number D1 Data bus I/O VCC_1V8 D1 W23 D2 Data bus I/O VCC_1V8 D2 AA24 D3 Data bus I/O VCC_1V8 D3 Y23 D4 Data bus I/O VCC_1V8 D4 U21 D5 Data bus I/O VCC_1V8 D5 Y22 D6 Data bus I/O VCC_1V8 D6 Y24 D7 Data bus I/O VCC_1V8 D7 V21 D8 Data bus I/O VCC_1V8 D8 V20 D9 Data bus I/O VCC_1V8 D9 U20 D10 Data bus I/O VCC_1V8 D10 V24 D11 Data bus I/O VCC_1V8 D11 V22 D12 Data bus I/O VCC_1V8 D12 V23 D13 Data bus I/O VCC_1V8 D13 AA23 D14 Data bus I/O VCC_1V8 D14 U23 D15 Data bus I/O VCC_1V8 D15 T23 ~WAIT Burst Wait signal VCC_1V8 ~WAIT R19 ~CS0 Chip select Flash VCC_1V8 ~CS0 P19 ~CS1 Chip select RAM VCC_1V8 ~CS1 R20 ~CS2 / A25 / GPIO1 Chip select I/O VCC_1V8 ~CS2 A25 GPIO1 R18 ~CS3 Chip select VCC_1V8 ~CS3 T17 CLKBURST Burst clock VCC_1V8 CLKBURST M19 ~ADV Burst address valid signal VCC_1V8 ~ADV U19 ~WE-E Write enable VCC_1V8 ~WE-E P20 Read enable VCC_1V8 ~OE-R/W N20 nd byte enable VCC_1V8 BE1 P18 th byte enable VCC_1V8 BE3 T20 ~OE-R/W BE1 BE3 Page : 137 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Signal Name GND Description Ground RESERVED Do not connect. (Left opened) I/O Voltage Domain MUX MUX MUX Ball number A1, A10, A11, A15, A16, A17, A18, A19, A2, A20, A21, A22, A23, A24, A3, A4, A5, A6, A7, A8, A9, B1, B10, B11, B15, B16, B17, B18, B19, B20, B21, B22, B24, B3, B4, B5, B6, B7, B8, B9, C1, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C3, C4, C5, C6, C7, C8, C9, D1, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D2, D20, D21, D22, D23, D24, D3, D4, D5, D6, D7, D8, D9, E1, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E2, E20, E21, E22, E23, E24, E3, E4, E5, E6, E7, E8, E9, F1, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F2, F20, F21, F22, F23, F24, F3, F4, F5, F6, F7, F8, F9, G1, G10, G11, G12, G13, G14, G15, G16, G17, G18, G19, G2, G20, G21, G22, G23, G24, G3, G4, G5, G6, G7, G8, G9, H1, H10, H11, H12, H13, H14, H15, H16, H17, H18, H19, H2, H20, H21, H22, H23, H24, H3, H4, H5, H6, H7, H8, H9, J1, J10, J11, J12, J13, J14, J15, J16, J17, J18, J19, J2, J20, J21, J22, J23, J24, J3, J4, J5, J6, J7, J8, J9, K1, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K2, K20, K21, K22, K23, K24, K3, K4, K5, K6, K7, K8, K9, L1, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L2, L20, L21, L22, L23, L24, L3, L4, L5, L6, L7, L8, L9, M1, M10, M11, M12, M18, M2, M3, M4, M5, M6, M7, M8, M9, N1, N10, N2, N3, N7, N8, N9, P1, P10, P13, P14, P15, P2, P3, P4, P5, P6, P7, P8, P9, R10, R11, R12, R2, R3, R4, R5, R6, R7, R8, R9, T1, T10, T11, T14, T15, T2, T8, T9, U1, U10, U11, U12, U13, U14, U2, U7, U8, U9, V1, V10, V11, V15, V7, V8, V9, W10, W11, W12, W13, W14, W16, W3, W6, W7, W8, W9, Y10, Y12, Y14, Y7, AA1, AA10, AA11, AA12, AA14, AA19, AA2, AA21, AA3, AA4, AA5, AA6, AA7, AA8, AA9, AB1, AB12, AB15, AB17, AB18, AB2, AB21, AB22, AB23, AB3, AB4, AB5, AB6, AC12, AC13, AC14, AC15, AC16, AC17, AC18, AC3, AC4, AC5, AC6, AD10, AD11, AD12, AD13, AD14, AD15, AD16, AD17, AD18, AD24, AD3, AD4, AD6, AD7, AD8, AD9 B2, C2, N11, N12, N13, N14, N4, N5, N6, P11, P12, P16, P17, R16, T3, T4, T5, T6, T7, V19, V5, W20, W4, W5, Y11, Y4, Y5, Y6, Y8, Y9, AB11, AB20, AC11 The I/O direction information is concerning only the nominal signal. When the signal is configured in GPIO, it can always be an Input or an Output. ** For more information about the multiplexing of those signals, see “General purpose input /output” chapter 3.11 Page : 138 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 5.2 Environmental Specifications Wavecom specify following temperature range of WMP100 product The WMP100 is compliant with following operating class Conditions Operating / Class A Operating / Storage / Class B Temperature range -20 °C to +55°C -40 °C to +85°C Function Status Classification: Class A: The WMP100 shall have full function during and after an external influence. The GSM performance shall meet the minimum ETSI requirements. Class B: Any functions can be out of specified tolerances. All the functions will be going back to normal tolerances automatically after that the external influence has been removed. Performance is allowed to go outside of the minimum ETSI requirements, but it must be possible to connect a call and send an SMS. Q2686 ENVIRONNEMENTAL CLASSES TYPE OF TEST STANDARDS STORAGE Class 1.2 TRANSPORTATION Class 2.3 Cold IEC 68-2.1 Ab test -25° C 72 h -40° C 72 h -20° C (GSM900) -10° C (GSM1800/1900) 16 h 16h Dry heat IEC 68-2.2 Bb test +70° C 72 h +70° C 72 h +55° C 16 h Change of temperature IEC 68-2.14 Na/Nb test Damp heat cyclic IEC 68-2.30 Db test +30° C 2 cycles 90% - 100% RH variant 1 Damp heat IEC 68-2.56 Cb test +30° C Sinusoidal vibration IEC 68-2.6 Fc test 5 - 62 Hz : 5 mm / s 62 - 200Hz : 2 m / s2 3 x 5 sweep cycles Random vibration wide band IEC 68-3.36 Fdb test -40° / +30° C 4 days 5 cycles t1 = 3 h +40° C 2 cycles 90% - 100% RH variant 1 +40° C 4 days 5 - 20 Hz : 0.96 m2 / s3 20 - 500Hz : - 3 dB / oct 3 x 10 min OPERATING (PORT USE) Class 7.3 -20° / +30° C (GSM900) 3 cycles -10° / +30° C (GSM1800/1900): 3 cycles t1 = 3 h +40° C 2 cycles 90% - 100% RH variant 1 +40° C 4 days 10 -12 Hz : 0.96 m2 / s3 12 - 150Hz : - 3 dB / oct 3 x 30 min Figure 66 : Environmental classes Page : 139 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 5.3 MSL level The WMP100 is MSL 3 and 2 reflows are allowed in customer side including one for rework of the component. If the product is double side, the WMP100 should be assembled on the side that will see only one reflow. 5.4 Mechanical specifications 5.4.1 Physical characteristics The WMP100 has a complete self-contained shield. • Overall dimensions • Weight: 4.25 g :25 x 25 x 3.65 mm 5.4.2 Mechanical drawings The next page gives the mechanical specifications of WMP100. Page : 140 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Figure 67 : Mechanical drawing Page : 141 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Figure 68 : Mechanical drawing Page : 142 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 5.4.3 Mechanical constraints Wavecom recommend the customer to check on their own application if the WMP100 can withstand their mechanical environment. 5.5 PCB specifications Due to the density of connections, the PCB stack should be the following: 4 layers (track / distance 100 μm / 100 μm, with though-holes vias Diam 0.25, pad 0.5 mm), but 6 layers may be necessary according to the functionality needed (track / distance 150 μm / 150 μm may be possible). 6 Peripheral devices references 6.1 SIM Card Reader • ITT CANNON CCM03 series (see http://www.ittcannon.com ) • AMPHENOL C707 series (see http://www.amphenol.com ) • JAE (see http://www.jae.com ) Drawer type: • MOLEX 99228-0002 (connector) / MOLEX 91236-0002 (holder) (see http://www.molex.com ) 6.2 Microphone Possible suppliers: • HOSIDEN • PANASONIC • PEIKER 6.3 Speaker Possible suppliers: • SANYO • HOSIDEN • PRIMO • PHILIPS Page : 143 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 6.4 Antenna Cable The following cable reference has been qualified for being mounted on WMP100: • RG178 • TBD 6.5 GSM antenna GSM antennas and support for antenna adaptation can be obtained from manufacturers such as: • ALLGON (http://www.allgon.com ) • IRSCHMANN (http://www.hirschmann.com/ ) Page : 144 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 7 Noises and design 7.1 EMC recommendations The EMC tests have to be performed as soon as possible on the application to detect any possible problem. When designing, special attention should be paid to: • Possible spurious emission radiated by the application to the RF receiver in the receiver band • ESD protection is mandatory for all peripherals accessible from outside (SIM, serial link, etc.) • EMC protection emissions) • Biasing of the microphone inputs • Length of the SIM interface lines (preferably <10cm) • Ground plane: WAVECOM recommends having a common ground plane for analog / digital / RF grounds. • Metallic case or plastic casing with conductive paint are recommended on audio input/output (filters against 900MHz Note: The WMP100 does not include any protection against overvoltage. 7.2 Power Supply The power supply is one of the key issues in the design of a GSM terminal. A weak power supply design could affect in particular: • EMC performances. • the emissions spectrum • the phase error and frequency error WARNING: Careful attention should be paid to: • Quality of the power supply: low ripple, PFM or PSM systems should be avoided (PWM converter preferred). • Capacity to deliver high current peaks in a short time (pulsed radio emission). Page : 145 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 8 Appendix 8.1 Standards and Recommendations GSM ETSI, 3GPP, GCF and NAPRD03 recommendations for Phase II. Specification Reference Title 3GPP TS 45.005 v5.5.0 Technical Specification Group GSM/EDGE. Radio (2002-08) Release 5 Access Network; Radio transmission and reception GSM 02.07 V8.0.0 (1999- Digital cellular telecommunications system (Phase 2+); 07) Mobile Stations (MS) features (GSM 02.07 version 8.0.0 Release 1999) GSM 02.60 V8.1.0 (1999- Digital cellular telecommunications system (Phase 2+); 07) General Packet Radio Service (GPRS); Service description, Stage 1 (GSM 02.60 version 8.1.0 Release 1999) GSM 03.60 V7.9.0 (2002- Technical Specification Group Services and System 09) Aspects; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service description; Stage 2 (Release 1998) 3GPP TS (2002-04) 43.064 V5.0.0 Technical Specification Group GERAN; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Overall description of the GPRS radio interface; Stage 2 (Release 5) 3GPP TS (2002-08) 03.22 V8.7.0 Technical Specification Group GSM/EDGE. Radio Access Network; Functions related to Mobile Station (MS) in idle mode and group receive mode; (Release 1999) 3GPP TS (2001-12) 03.40 V7.5.0 Technical Specification Group Terminals; Technical realization of the Short Message Service (SMS) (Release 1998) 3GPP TS (2000-09) 03.41 V7.4.0 Technical Specification Group Terminals; Technical realization of Cell Broadcast Service (CBS) (Release 1998) ETSI EN 300 903 V8.1.1 Digital cellular telecommunications system (Phase 2+); (2000-11) Transmission planning aspects of the speech service in the GSM Public Land Mobile Network (PLMN) system (GSM 03.50 version 8.1.1 Release 1999) Page : 146 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Specification Reference 3GPP TS (2002-05) 3GPP TS (2002-09) 04.06 04.08 Title V8.2.1 Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station - Base Station System (MS BSS) interface; Data Link (DL) layer specification (Release 1999) V7.18.0 Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); Mobile radio interface layer 3 specification (Release 1998) 3GPP TS (2001-12) 04.10 3GPP TS (2000-09) 04.11 V7.1.0 Technical Specification Group Core Networks; Mobile radio interface layer 3 Supplementary services specification; General aspects (Release 1998) V7.1.0 Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); Point-to-Point (PP) Short Message Service (SMS) support on mobile radio interface (Release 1998) 3GPP TS 45.005 (2002-08) v5.5.0 Technical Specification Group GSM/EDGE. Radio Access Network; Radio transmission and reception (Release 5) 3GPP TS (2002-08) 45.008 V5.8.0 Technical Specification Group GSM/EDGE 3GPP TS (2002-08) 45.010 3GPP TS (2002-06) 46.010 Radio Access Network; Radio subsystem link control (Release 5) V5.1.0 Technical Specification Group GSM/EDGE Radio Access Network; Radio synchronization (Release 5) subsystem V5.0.0 Technical Specification Group Services and System Aspects; Full rate speech; Transcoding (Release 5) 3GPP TS (2002-06) 46.011 V5.0.0 Technical Specification Group Services and System Aspects; Full rate speech; Substitution and muting of lost frames for full rate speech channels (Release 5) 3GPP TS (2002-06) 46.012 V5.0.0 Technical Specification Group Services and System Aspects; Full rate speech; Comfort noise aspect for full rate speech traffic channels (Release 5) Page : 147 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 Specification Reference 3GPP TS (2002-06) 46.031 Title V5.0.0 Technical Specification Group Services and System Aspects; Full rate speech; Discontinuous Transmission (DTX) for full rate speech traffic channels (Release 5) 3GPP TS (2002-06) 46.032 V5.0.0 Technical Specification Group Services and System Aspects; Full rate speech; Voice Activity Detector (VAD) for full rate speech traffic channels (Release 5) TS 100 913V8.0.0 (1999- Digital cellular telecommunications system (Phase 2+); 08) General on Terminal Adaptation Functions (TAF) for Mobile Stations (MS) (GSM 07.01 version 8.0.0 Release 1999) GSM 09.07 V8.0.0 (1999- Digital cellular telecommunications system (Phase 2+); 08) General requirements on interworking between the Public Land Mobile Network (PLMN) and the Integrated Services Digital Network (ISDN) or Public Switched Telephone Network (PSTN) (GSM 09.07 version 8.0.0 Release 1999) 3GPP TS 51.010-1 v5.0.0 Technical Specification Group GSM/EDGE ; Radio Access Network ;Digital cellular telecommunications (2002-09) system (Phase 2+);Mobile Station (MS) conformance specification; Part 1: Conformance specification (Release 5) 3GPP TS 51.011 V5.0.0 Technical Specification Group Terminals; Specification of the Subscriber Identity Module - Mobile Equipment (2001-12) (SIM - ME) interface (Release 5) ETS 300 641 (1998-03) Digital cellular telecommunications system (Phase 2); Specification of the 3 Volt Subscriber Identity Module Mobile Equipment (SIM-ME) interface (GSM 11.12 version 4.3.1) GCF-CC V3.7.1 (2002-08) Global Certification Forum – Certification criteria NAPRD03 V2.6.0 (2002-06) North America Permanent Reference Document for PTCRB tests Page : 148 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 The Wireless Microprocessor WMP100 connected to a development kit board application is certified to be in accordance with the following Rules and Regulations of the Federal Communications Commission (FCC). Power listed on the Gant is conducted for Part 22 and conducted for Part 24. This device contains EGSM/GPRS Class 10 functions in the 900 and 1800MHz Band, which are not operational in U.S. Territories. This device can be used only for mobile and fixed applications. The antenna(s) used for this transmitter must be installed at a distance of minimum 20 cm from all persons and must not be co-located or operated with any other antenna or transmitter. Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance. Antennas used for this OEM module must not exceed 0.9 dBi gain for GSM 850 MHz and 7.1 dBi for GSM 1900 MHz for fixed operating configurations. For mobile operations the gain must not exceed 0.9 dBi for GSM 850 MHz and 3.1 dBi for GSM 1900 MHz. This device is approved as a module to be installed in other devices. Installed in portable devices, the RF exposure condition requires a separate mandatory equipment authorization for the final device. The license module will have a FCC ID label on the module itself. The FCC ID label must be visible through a window or it must be visible when an access panel, door or cover is easily removed. If not, a second label must be placed on the outside of the device that contains the following text: FCC ID: O9EWMP100 This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: This device may not cause harmful interference. This device must accept any interference received, including interference that may cause undesired operation. Page : 149 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 8.2 Safety recommendations (for information only) IMPORTANT FOR THE EFFICIENT AND SAFE OPERATION OF YOUR GSM APPLICATION BASED ON WMP100 PLEASE READ THIS INFORMATION CAREFULLY 8.2.1 RF safety 8.2.1.1 General Your GSM terminal is based on the GSM standard for cellular technology. The GSM standard is spread all over the world. It covers Europe, Asia and some parts of America and Africa. This is the most used telecommunication standard. Your GSM terminal is actually a low power radio transmitter and receiver. It sends out and receives radio frequency energy. When you use your GSM application, the cellular system which handles your calls controls both the radio frequency and the power level of your cellular modem. 8.2.1.2 Exposure to RF energy There has been some public concern about possible health effects of using GSM terminals. Although research on health effects from RF energy has focused on the current RF technology for many years, scientists have begun research regarding newer radio technologies, such as GSM. After existing research had been reviewed, and after compliance to all applicable safety standards had been tested, it has been concluded that the product was fitted for use. If you are concerned about exposure to RF energy there are things you can do to minimize exposure. Obviously, limiting the duration of your calls will reduce your exposure to RF energy. In addition, you can reduce RF exposure by operating your cellular terminal efficiently by following the below guidelines. 8.2.1.3 Efficient terminal operation For your GSM terminal to operate at the lowest power level, consistent with satisfactory call quality: If your terminal has an extendible antenna, extend it fully. Some models allow you to place a call with the antenna retracted. However your GSM terminal operates more efficiently with the antenna fully extended. Do not hold the antenna when the terminal is « IN USE ». Holding the antenna affects call quality and may cause the modem to operate at a higher power level than needed. Page : 150 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 8.2.1.4 Antenna care and replacement Do not use the GSM terminal with a damaged antenna. If a damaged antenna comes into contact with the skin, a minor burn may result. Replace a damaged antenna immediately. Consult your manual to see if you may change the antenna yourself. If so, use only a manufacturer-approved antenna. Otherwise, have your antenna repaired by a qualified technician. Use only the supplied or approved antenna. Unauthorized antennas, modifications or attachments could damage the terminal and may contravene local RF emission regulations or invalidate type approval. 8.2.2 General safety 8.2.2.1 Driving Check the laws and the regulations regarding the use of cellular devices in the area where you have to drive as you always have to comply with them. When using your GSM terminal while driving, please: • give full attention to driving, • pull off the road and park before making or answering a call if driving conditions so require. 8.2.2.2 Electronic devices Most electronic equipment, for example in hospitals and motor vehicles is shielded from RF energy. However RF energy may affect some improperly shielded electronic equipment. 8.2.2.3 Vehicle electronic equipment Check your vehicle manufacturer representative to determine if any on-board electronic equipment is adequately shielded from RF energy. 8.2.2.4 Medical electronic equipment Consult the manufacturer of any personal medical devices (such as pacemakers, hearing aids, etc...) to determine if they are adequately shielded from external RF energy. Turn your terminal OFF in health care facilities when any regulations posted in the area instruct you to do so. Hospitals or health care facilities may be using RF monitoring equipment. Page : 151 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. WM_DEV_WUP_PTS_005 March 19, 2007 8.2.2.5 Aircraft Turn your terminal OFF before boarding any aircraft. • Use it on the ground only with crew permission. • Do not use it in the air. To prevent possible interference with aircraft systems, Federal Aviation Administration (FAA) regulations require you to have permission from a crew member to use your terminal while the aircraft is on the ground. To prevent interference with cellular systems, local RF regulations prohibit using your modem while airborne. 8.2.2.6 Children Do not allow children to play with your GSM terminal. It is not a toy. Children could hurt themselves or others (by poking themselves or others in the eye with the antenna, for example). Children could damage the modem, or make calls that increase your modem bills. 8.2.2.7 Blasting areas To avoid interfering with blasting operations, turn your unit OFF when in a « blasting area » or in areas posted: « turn off two-way radio ». Construction crews often use remote control RF devices to set off explosives. 8.2.2.8 Potentially explosive atmospheres Turn your terminal OFF when in any area with a potentially explosive atmosphere. It is rare, but your application or its accessories could generate sparks. Sparks in such areas could cause an explosion or fire resulting in bodily injuries or even death. Areas with a potentially explosive atmosphere are often, but not always, clearly marked. They include fuelling areas such as petrol stations; below decks on boats; fuel or chemical transfer or storage facilities; and areas where the air contains chemicals or particles, such as grain, dust, or metal powders. Do not transport or store flammable gas, liquid, or explosives, in the compartment of your vehicle which contains your terminal or accessories. Before using your terminal in a vehicle powered by liquefied petroleum gas (such as propane or butane) ensure that the vehicle complies with the relevant fire and safety regulations of the country in which the vehicle is to be used. Page : 152 / 152 confidential © This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son autorisation préalable. APPLICATION NOTE GR/GS64 Charging Interface Page: 1/1 WAVECOM S.A. - 3 esplanade du Foncet - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33(0)1 46 29 08 00 - Fax: +33(0)1 46 29 08 08 This document is the and exclusive of WAVECOM. to be distributed or divulged prior agreement. Wavecom, Inc. sole - 430 Davis Drive property - Suite 300 - ResearchNot Triangle Park, NC 27709 - USAwithout - Tel: +1 919written 237 4000 - Fax: +1 919 237 4140 nd Bio-Informatics Centreou - No. 2 Science - Hong Kong Science Park, Ce document est laAsia propriété de201-207, WAVECOM. Il ne -peut être communiqué divulgué à desPark tiersWest sansAvenue son autorisation préalable WAVECOM Pacificexclusive Ltd. - Unit 2 Floor Shatin - New Territories, Hong Kong - Tel: +852 2824 0254 - Fax: +852 2824 0255
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : No Encryption : Standard V2.3 (128-bit) User Access : Print, Extract, Print high-res Tagged PDF : Yes Page Mode : UseOutlines XMP Toolkit : 3.1-702 Producer : Acrobat Distiller 7.0.5 (Windows) Date 0020du 0020modele : D:20011014 Company : WAVECOM SA Source Modified : D:20070403101713 Create Date : 2007:04:03 06:21:36-04:00 Creator Tool : Acrobat PDFMaker 7.0.7 for Word Modify Date : 2007:04:04 05:41:55-04:00 Metadata Date : 2007:04:04 05:41:55-04:00 Document ID : uuid:46c905be-cd61-48cc-947a-c350803bb24c Instance ID : uuid:052e9ce7-8d95-4861-957e-2702829b713a Version ID : 2 Format : application/pdf Title : Wireless Microprocessor WMP100/OASS1.0 Creator : Gérard GUILLON Description : WMP100 Subject : Headline : WMP100 Page Count : 154 Page Layout : OneColumn Date Du Modele : D:20011014 Author : Gérard GUILLONEXIF Metadata provided by EXIF.tools