STMicroelectronicsS DZSTM32WA DZ-SB-S-A Zigbee Module User Manual DiZiC ZigBee Modules
STMicroelectronics DZ-SB-S-A Zigbee Module DiZiC ZigBee Modules
Contents
- 1. manual
- 2. chip antenna datasheet
manual
802.15.4 Family of RF Modules High Performance and Long Range 802.15.4 STM32W RF Modules Quickly add wireless capability with these high performance ZigBee compliant modules READY TO USE SoC RF MODULES Quickly add wireless networking capabilities to your products with these ready-to-use DiZiC 802.15.4 RF Modules. Simple to operate and available in a wide range of configurations, these ZigBee compliant RF modules are ideal for industrial sensors, consumer remote controls, home appliances, and more. Based on the STM32W108 wireless System-on-Chip (SoC) from STMicroelectronics, this family of modules offer outstanding RF performance with a -99 dBm normal RX sensitivity (configurable to -100 dBm) and +3 dBm normal mode output power (configurable up to +7 dBm). With a small form factor and pin-to-pin compatible, DiZiC 802.15.4 RF Modules are available with several software stack options, including EmberZNet PRO, RF4CE stack, or proprietary low level MAC / PHY stack. VERSATILE CONFIGURATIONS With several possible configurations, select from 3 power level options, 3 output options, 3 software stack options and 2 EMI options: Power Level Options - Choose from a standard power level (+7 dBm), and two versions of RF front end (PA and LNA, +20 dBm). RF Output Options - Choose from a chip antenna, a U.FL connector, or a single port 50 Ohm RF pad. The U.FL connector allows, amongst other uses, for connecting an external antenna, for connecting to an application board that provides additional filters, or for connecting to another 50 Ohm coaxial cable TX line. The single port 50 Ohm RF pad allows for a direct connection to another board, application module, or external antenna. Software Stack Options - Choose from EmberZNet PRO, RF4CE, or a low level PHY / MAC stack. EmberZNet PRO is an easy to use ZigBee platform for complex mesh networks. RF4CE (Radio Frequency for Consumer Electronics) is a new protocol for consumer remote controlled equipment. Custom applications can be developed on top of a simple to use and low footprint PHY/MAC API library. EMI Options – Choose metal shielding protection where enhanced electromagnetic interference immunity is required otherwise standard version without metal shielding is advisable. D/Z/C 802.15.4 STM32WRF Module with RF front end and antenna Key Features • STM32W108 ZigBee / IEEE 802.15.4 SoC • • • • • • 32-bit ARM Cortex-M3 processor 128 kB of Flash and 8 kB of SRAM JTAG / SWD (programming and debugging) 2.4 GHz ISM supporting 16 channels Data rate up to 250 kbit/s 128-bit AES encryption • Peripherals • • • • 24 GPIOs, SPI, USART, and I2C 12-bit ADC with up to 6 inputs 2x 16-bit timers DMA controller • Standard module • RX Sensitivity -99 dBm (-100 dBm Boost) • TX Power 3 dBm (+7 dBm Boost) • RF front end options • Two Front End options • Both with RX Sensitivity -105 dBm • Both with TX Power +20 dBm • RF Options • Chip antenna, U.FL connector, or single port 50 Ohm RF pad • Shielding option for enhanced EMI protection Ordering Information DZ_ZB_[P] [O] [ S ] [ E ] , where: [P] Power level options, one of: S (standard +7 dBm), R (Front End with Power Level Detect +20 dBm), or T (Front End +20 dBm) [O] Output options, one of: A (Embedded SMD antenna assembled on module), P (Single ended 50 Ohm. RF Pad), or U (50 Ohm U.FL coaxial connector) [S] Stack options, one of: F (RF4CE stack), X (Proprietary stack), or Z (EmberZNet PRO stack) [E] EMI protection options, one of: S (standard, no shielding), or M (enhanced, with metal shield) © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com TABLE OF CONTENT FEATURE LIST....................................................................................................................................... 3 MODULE VARIANTS............................................................................................................................... 4 2.1 INTRODUCTION ............................................................................................................................ 4 2.2 DIZIC 802.15.4 RF MODULE: OUTPUT OPTIONS...................................................................... 4 2.3 DIZIC 802.15.4 RF MODULE: POWER LEVEL OPTIONS............................................................ 5 2.4 DIZIC 802.15.4 RF MODULE: STACK OPTIONS ........................................................................ 5 2.5 DIZIC 802.15.4 RF MODULE: EMI PROTECTION OPTIONS ...................................................... 5 COMPONENTS OVERVIEW .................................................................................................................... 6 3.1 STM32W108 – SYSTEM-ON-CHIP ............................................................................................ 6 3.2 RF FRONT END WITH RF OUTPUT POWER LEVEL DETECTOR ................................................. 7 3.3 RF FRONT END........................................................................................................................... 8 3.4 ZIGBEE STACKS.......................................................................................................................... 8 ELECTRICAL CHARACTERISTICS ........................................................................................................... 9 4.1 PARAMETER CONDITIONS ........................................................................................................... 9 4.1.1 Minimum and maximum values ............................................................................................ 9 4.1.2 Typical values .......................................................................................................................... 9 4.2 ABSOLUTE MAXIMUM RATINGS .................................................................................................... 9 4.3 OPERATING CONDITIONS .......................................................................................................... 10 4.3.1 General operating conditions .............................................................................................. 10 4.3.2 Electrostatic discharge (ESD) ............................................................................................. 10 4.4 DC CHARACTERISTICS ............................................................................................................. 11 4.5 RF CHARACTERISTIC ................................................................................................................ 13 4.5.1 Receiver ................................................................................................................................. 13 4.5.2 Transmitter ............................................................................................................................. 13 MECHANICAL CHARACTERISTICS ........................................................................................................ 14 5.1 MODULE PAD DIAGRAM ............................................................................................................ 14 5.2 MODULE PAD DESCRIPTION ..................................................................................................... 15 5.3 PACKAGE MECHANICAL DIMENSIONS ....................................................................................... 20 SOLDERING ........................................................................................................................................ 21 6.1 SOLDER TEMPERATURE PROFILE ........................................................................................... 21 6.2 PROFILE PARAMETERS ............................................................................................................ 21 6.3 RECOMMENDED FOOTPRINT .................................................................................................... 22 ORDERING INFORMATION................................................................................................................... 23 LIST OF ACRONYMS ............................................................................................................................ 24 REFERENCES & REVISION HISTORY ................................................................................................... 25 © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com DIZIC 802.15.4 RF MODULE DZ-ZB-[P]-[O]-[S]-[E] DATA SHEET POWER LEVEL OPTIONS STANDARD FRONT END FRONT END WITH RF POWER LEVEL DETECTOR 1 FEATURE LIST Complete System-on-Chip • 32-bit ARM® Cortex-M3 processor • 2.4 GHz IEEE 802.15.4 transceiver & lower MAC • 128 kB flash, 8kB RAM memory • AES128 encryption accelerator • Flexible ADC, SPI/UART/TWI serial communications, and general purpose timers • 24 highly configurable GPIO with Schmitt trigger inputs Industry-leading ARM Cortex-M3 processor • Leading 32-bit processing performance • Highly efficient Thumb-2 instruction set • Operation at 6, 12 or 24 MHz Exceptional RF Performance • Normal mode Link Budget up to 102 dB; configurable up to107dB • -99 dBm normal RX sensitivity; configurable to -100 dBm (1%PER, 20 byte packet) • +3 dB normal mode output power; configurable up to +7 dBm • Robust WiFi and Bluetooth coexistence Application Flexibility • Single voltage operation: 2.1-3.6 V • Optional 32.768 kHz crystal for higher timer accuracy • Low external component count with single 24 MHz crystal • Flexible Nested Vectored Interrupt Controller • External power amplifier versions Low power consumption, advanced management Target applications for the Modules • RX Current (w/ CPU): 27 mA • TX Current (w/ CPU, +3 dBm TX): 31 mA include: • Low deep sleep current, with retained RAM and GPIO: 400 nA/800 nA with/without sleep timer • Low-frequency internal RC oscillator for low-power sleep timing • High-frequency internal RC oscillator for fast (100 µsec) processor start-up from sleep Innovative network and processor debug • Serial Wire/JTAG interface • Standard ARM debug capabilities: Flash Patch & Breakpoint; Data Watch-point & Trace; Instrumentation Trace Macrocell • • • • • • • • • • • • • Smart Energy Building automation and control (HVAC) Home automation and control Security and monitoring AMR/AMI Logistic & Asset tracking Medical General ZigBee wireless sensor networking Active RFID Wireless handheld terminals Industry telemetry and automatic data collection system Temperature and humidity control system Traffic and control for street lamp © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 2 MODULE VARIANTS 2.1 INTRODUCTION The DZ-ZB is low-power, high sensitivity IEEE 802.15.4 / ZigBee-compliant module. This multi-functional device based on STMicroelectronics STM32W108 fully integrated System-on-Chip [1]. The STM32W108 integrates a 2.4 GHz, IEEE 802.15.4compliant transceiver, 32-bit ARM® Cortex™-M3 microprocessor, Flash and RAM memory, and peripherals of use to designers of ZigBee-based systems [2]. Block diagrams of DZ-ZB Module is show on Figure 2.1 and utilizes STM32W108CBU6x version of the high performance, IEEE 802.15.4 compliant, wireless system-on-chip STM32W108 family. Fig. 2.1 Block diagram of DZ-ZB Modules DZ-ZB modules are available in two different product lines: without/with PA/LNA Front-End (FE). Both product lines offering three ZigBee stack configurations. The first decision you need to make is if you want the Output option. The following options are available: A - Embedded SMD Antenna P - Single ended 50 Ohm RF Pad U - U.FL 50 Ohm coaxial connector The second decision you need to make is Power level option. The following options are available: S - Standard + 7dBm R - Front End (PA and LNA) with RF output power level detector + 20 dBm T - Front End (PA and LNA) + 20 dBm The third decision you need to make ZigBee stack. The following options are available: F - RF4CE stack X - Proprietary stack Z - EmberZnet PRO stack The final decision is level of electromagnetic immunity (EMI) protection. The following options are available: M - Metal cap shielding enabling enhanced level of electromagnetic immunity (EMI) protection S - Standard, without metal shielding cap The next chapters will explain each of all options. 2.2 DIZIC 802.15.4 RF MODULE: OUTPUT OPTIONS The following Output Options are available: A - Embedded SMD Antenna P - Single ended 50 Ohm RF Pad U - U.FL 50 Ohm coaxial connector © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 2.3 DIZIC 802.15.4 RF MODULE: POWER LEVEL OPTIONS The following Power Level Options are available: Option S - Standard + 7dBm STM32W chip: System on Chip - where radio, microcontroller, program/user memory, RAM, ZigBee protocols stack are integrated in one chip. Option R - Front End (PA and LNA) with RF output power level detector + 20 dBm STM32W chip: System on Chip - where radio, microcontroller, program/user memory, RAM, ZigBee protocols stack are integrated in one chip. Option T - Front End (PA and LNA) + 20 dBm STM32W chip: System on Chip - where radio, microcontroller, program/user memory, RAM, ZigBee protocols stack are integrated in one chip. 2.4 DIZIC 802.15.4 RF MODULE: STACK OPTIONS The following ZigBee stack options are available: Option F - RF4CE stack Option X - Proprietary stack Option Z - EmberZnet PRO stack Instructions concerning to programming ST32W108 you will find at [7] and examples of Application at [6]. 2.5 DIZIC 802.15.4 RF MODULE: EMI PROTECTION OPTIONS The following EMI protection options are available: Option M - Metal shield cap enabling enhanced level of electromagnetic immunity (EMI) protection Option S - Standard module without metal shielding © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 3 COMPONENTS OVERVIEW 3.1 STM32W108 – SYSTEM-ON-CHIP The is a fully The is a fully integrated System-on-Chip that integrates a 2.4 GHz, IEEE 802.15.4-compliant transceiver, 32-bit ARM® Cortex™-M3 microprocessor, Flash and RAM memory, and peripherals of use to designers of ZigBee-based systems. Block diagram of STM32W108 is show on Fig. 3.1 below: Fig. 3.1 Block diagram of System-on-Chip STM32W108 The transceiver utilizes an efficient architecture that exceeds the dynamic range requirements imposed by the IEEE 802.15.42003 standard by over 15 dB. The integrated receive channel filtering allows for robust co-existence with other communication standards in the 2.4 GHz spectrum, such as IEEE 802.11 and Bluetooth. The integrated regulator, VCO, loop filter, and power amplifier keep the external component count low. An optional high performance radio mode (boost mode) is softwareselectable to boost dynamic range. The integrated 32-bit ARM® Cortex™-M3 microprocessor is highly optimized for high performance, low power consumption, and efficient memory utilization. Including an integrated MPU, it supports two different modes of operation: System mode and Application mode. The networking stack software runs in System mode with full access to all areas of the chip. Application code runs in Application mode with limited access to the STM32W108 resources; this allows for the scheduling of events by the application developer while preventing modification of restricted areas of memory and registers. This architecture results in increased stability and reliability of deployed solutions. The STM32W108 has 128 Kbytes of embedded Flash memory and 8 Kbytes of integrated RAM for data and program storage. The STM32W108 HAL software employs an effective wear-levelling algorithm that optimizes the lifetime of the embedded Flash. To maintain the strict timing requirements imposed by the ZigBee and IEEE 802.15.4-2003 standards, the STM32W108 integrates a number of MAC functions into the hardware. The MAC hardware handles automatic ACK transmission and reception, automatic back off delay, and clear channel assessment for transmission, as well as automatic filtering of received packets. A packet trace interface is also integrated with the MAC, allowing complete, non-intrusive capture of all packets to and from the STM32W108. The STM32W108 offers a number of advanced power management features that enable long battery life. A high-frequency internal RC oscillator allows the processor core to begin code execution quickly upon waking. Various deep sleep modes are © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com available with less than 1 μsec a power consumption while retaining RAM contents. To support user-defined applications, onchip peripherals include UART, SPI, TWI, ADC and general-purpose timers, as well as up to 24 GPIOs. Additionally, an integrated voltage regulator, power-on-reset circuit, and sleep timer are available. Finally, the STM32W utilizes standard Serial Wire and JTAG interfaces for powerful software debugging and programming of the ARM Cortex-M3 core. The STM32W integrates the standard ARM system debug components: Flash Patch and Breakpoint (FPB), Data Watch-point and Trace (DWT), and Instrumentation Trace Macrocell (ITM). 3.2 RF FRONT END WITH RF OUTPUT POWER LEVEL DETECTOR The Front End (FE) is a fully integrated, single-chip, single-die microwave IC which incorporates all the RF functionality needed for today’s wireless communications. The FE architecture integrates the PA, LNA, Transmit and Receive switching circuitry, the associated matching network, and the harmonic filter -- all in a BiCMOS single-chip device. Combining superior performance, high sensitivity and efficiency, low noise, small form factor, and low cost, is the perfect solution for applications requiring extended range and bandwidth and can result in a potential 10x range increase. The RF power level (at PA output) detect circuit is also integrated. Block diagram of the module with this FE is shown below: Fig. 3.2 Block diagram of the module with front end incorporating RF power level detector (Power level option “R”) Functional description of the signals controlling front end are summarized in table 3.1 below Table 3.1 Functional description of the Front End signals FE Signal name Direction TX_ON Digital input to FE RX_ON Digital input to FE PA_DETECT Analog output from FE Description When RX_ON = 1: TX_ON = 1: Transmit Mode TX_ON = 0: Receive Mode RX_ON = 0: FE in shut down mode RX_ON = 1: FE enabled Transmit / Receive function is determined by TX_ON signal PA_DETECT voltage is proportional to generated RF power at FE output pin. For RF output power between: +5 dBm to +20 dBm PA_DETECT voltage is between 20 mV to 1200 mV respectively © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS STM32W108 port name PC5, TX_ACTIVE PC6, nTX_ACTIVE PB5, ADC0 Email: info@dizic.com | Web: www.dizic.com 3.3 RF FRONT END This is a cost-effective and high performance RF Front End for low-power and low-voltage 2.4-GHz wireless applications. It is a range extender for all existing and future 2.4-GHz low-power RF transceivers, transmitters and System-on-Chip products. It increases the link budget by providing a power amplifier for increased output power, and an LNA with low noise figure for improved receiver sensitivity. This FE consists of PA, LNA, RF switches, RF impedance matching, and balun for high performance wireless applications. Module Block diagram with this Front End is shown below: Fig. 3.3 Block diagram of the module with front end (Power level option “T”) Functional description of the signals controlling front end are summarized in table 3.2 below Table 3.2 Functional description of the Front End signals FE Signal name Direction TxRx Digital input to FE HIGH_GAIN Digital input to FE ENABLE Digital input to FE Description When ENABLE = 1: TxRx = 1: Transmit Mode TxRx = 0: Receive Mode Receive only (ENABLE = 1, TxRx = 0): HIGH_GAIN = 1: LNA is in High Gain Mode. LNA Gain = approx. 11dB HIGH_GAIN = 0: LNA is in Lo Gain Mode. LNA Gain = approx. 1 dB ENABLE = 1: FE Enabled ENABLE = 0: FE in power down mode STM32W108 port name PC5, TX_ACTIVE PB5, ADC0 PC6, nTX_ACTIVE 3.4 ZIGBEE STACKS The three stacks are available (see block diagram below depicted on Fig. 3.4): RF4CE stack Proprietary stack EmberZNet PRO stack Fig. 3.4 Available stacks: Left. Proprietary stack, Centre. RF4CE stack, Right. EmberZNet PRO For more details regarding stacks please consult [3], [4] [5]. Instruction concerning to programming ST32W108 you will find at [7]. © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 4 ELECTRICAL CHARACTERISTICS 4.1 PARAMETER CONDITIONS Unless otherwise specified, all voltages are referenced to VSS. 4.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 4.1.2 Typical values are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range. 4.2 ABSOLUTE MAXIMUM RATINGS Stresses above the absolute maximum ratings listed in Table 4.1: Voltage characteristics, Table 4.2: Current characteristics and Table 4.3: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 4.1 Voltage characteristics Ratings Min. Max. Unit Regulator input voltage (VDD_PADS) -0.3 +3.6 15 dBm VDD_PADS +0.3 RF Input Power (for max level for correct packet reception Receive characteristics) RX signal into a lossless balun Voltage on any GPIO (PA[7:0], PB[7:0], PC[7:0]), SWCLK, nRESET, VREG_OUT -0.3 Table 4.2 Current characteristics Symbol Ratings Max. Unit IVDD Total current into VDD/VDDA power lines (source) 150 mA IVSS Total current out of VSS ground lines (sink) 150 mA Output current sunk by any I/O and control pin 25 mA Value Unit –40 to +140 °C 150 °C IIO Table 4.3 Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 4.3 OPERATING CONDITIONS 4.3.1 General operating conditions Table 4.4 Operating conditions Symbol VDD_PADS TOP Parameter Min. Regulator input voltage (VDD_PADS) Operating temperature range Typ. Max. Unit 2,1 3,6 -40 85 °C 4.3.2 Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 4.5 ESD absolute maximum ratings Symbol VESD (HBM) VESD (CDM) MSL Ratings Electrostatic discharge voltage (Human Body Model) Electrostatic discharge voltage (Charge Device Model) for non-RF pins Electrostatic discharge voltage (Charge Device Model) for RF pins Conditions Class Maximum value TA = +25 °C conforming to JESD22-A114 ±2000 TA = +25 °C conforming to JESD22-C101 II Moisture sensitivity level © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS ±400 Unit ±225 MSL3 – Email: info@dizic.com | Web: www.dizic.com 4.4 DC CHARACTERISTICS Table 4.6 DC electrical characteristics Parameter Conditions Typical value for module (Power Level Option) "S" "R" "T" Standard Front End Front End Unit 2,0 - 3,6 Regulator input voltage (VDD_PADS) Deep Sleep Current Quiescent current, internal RC oscillator disabled Quiescent current, including internal RC oscillator Quiescent current, including 32.768 kHz oscillator Quiescent current, including internal RC oscillator and 32.768 kHz oscillator Simulated deep sleep (debug mode) current μA -40°C, VDD_PADS = 3,6 V 0,4 +25°C, VDD_PADS = 3,6 V 0,4 +85°C, VDD_PADS = 3,6 V 0,6 μA -40°C, VDD_PADS = 3.6 V 0,7 μA +25°C, VDD_PADS = 3.6 V 0,8 +85°C, VDD_PADS = 3.6 V 1,2 μA -40°C, VDD_PADS = 3.6V 1,2 μA +25°C, VDD_PADS = 3.6 V 1,3 +85°C, VDD_PADS = 3.6 V 1,7 μA -40°C, VDD_PADS = 3.6V 1,4 μA 5,4 5,8 6,3 6,5 0,7 1,1 1,6 1,8 μA μA μA μA +25°C, VDD_PADS = 3.6V 1,5 +85°C, VDD_PADS = 3.6 V μA With no debugger activity 200 μA Typical at 25°C/3 V Max at 85°C/3.6 V 1,2 1,2 1,2 mA 8.0 8.0 8.0 mA 9.0 9.0 9.0 mA 4.0 4.0 4.0 mA 2.0 2.0 2.0 mA Reset current Quiescent current, nRESET asserted Processor and peripheral currents ARM® Cortex-M3, RAM, and flash memory ARM® Cortex-M3, RAM, and flash memory ARM® Cortex-M3, RAM, and flash memory sleep current ARM® Cortex-M3, RAM, and flash memory sleep current 25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 running at 12 MHz from crystal oscillator Radio and all peripherals off 25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 running at 24 MHz from crystal oscillator Radio and all peripherals off 25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 clocked at 12 MHz from the crystal oscillator Radio and all peripherals off 25°C, 1.8 V memory and 1.25 V core ARM® Cortex-M3 clocked at 6 MHz from the high frequency RC oscillator Radio and all peripherals off Serial controller current For each controller at maximum data rate 0.2 0.2 0.2 mA General purpose timer current For each timer at maximum clock rate 0.1 0.1 0.1 mA General purpose ADC current At maximum sample rate, DMA enabled 1,1 1,1 1,1 mA © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com Table 4.6 DC electrical characteristics (cont) Rx current Radio receiver, MAC, and baseband ARM® Cortex-M3 sleeping 20 27 24 mA Total RX current (Radio receiver, MAC and baseband, CPU + IRAM, and Flash memory) VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 12 MHz 27 34 31 mA 28 35 32 mA 28 35 32 mA 29 36 33 mA 25°C and 1.8 V core; max. power out (+3 dBm typical) ARM® Cortex-M3 sleeping 26 136 138 mA VDD_PADS = 3.0 V, 25°C; maximum power setting (+7dBm); running at 24 MHz 40 150 152 mA VDD_PADS = 3.0 V, 25°C; +3 dBm power setting; ARM® Cortex-M3 running at 24 MHz 32 142 144 mA VDD_PADS = 3.0 V, 25°C; 0dBm power setting; ARM® Cortex-M3 running at 24 MHz 30 140 142 mA VDD_PADS = 3.0 V, 25°C; minimum power setting; ARM® Cortex-M3 running at 24 MHz 24 134 136 mA VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 24 MHz Boost mode total RX current (Radio receiver, MAC and baseband, CPU+ IRAM, and Flash memory ) VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 12 MHz VDD_PADS = 3,0 V, 25°C, ARM® Cortex-M3 running at 24 MHz Tx current Radio transmitter, MAC, and baseband Total Tx current (Radio transmitter, MAC and baseband, CPU + IRAM, and Flash memory ) © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 4.5 RF CHARACTERISTIC 4.5.1 Receiver Table 4.7 Receiver characteristics Parameter Conditions Frequency range Typical value for module (Power Level Option) "S" "R" "T" Standard Front End Front End 2400 - 2500 Unit MHz Sensitivity (boost mode) 1% PER, 20 byte packet defined by IEEE 802.15.4-2003 -100 TBD -105 dBm Sensitivity 1% PER, 20 byte packet defined by IEEE 802.15.4-2003 -99 TBD -104 dBm Co-channel rejection IEEE 802.15.4 signal at -82 dBm -6 dBc Relative frequency error (2 x 40 ppm required by IEEE 802.15.4) -120 … +120 ppm Relative timing error (2 x 40 ppm required by IEEE 802.15.4) -120 … +120 ppm Linear RSSI range As defined by IEEE 802.15.4 40 dB -90 … -30 RSSI Range dBm 4.5.2 Transmitter Table 4.8 Transmitter characteristics Parameter Conditions Typical value for module (Power Level Option) "S" "R" "T" Standard Front End Front End Unit Maximum output power (boost mode) At highest power setting 20 20 dBm Maximum output power At highest power setting 20 20 dBm Minimum output power At lowest power setting -32 -9 -9 dBm Error vector magnitude As defined by IEEE 802.15.4, which sets a 35% maximum Carrier frequency error 5 … 15 -40 … +40 ppm PSD mask relative 3,5 MHz away -20 dB PSD mask absolute 3,5 MHz away -30 dBm © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 5 MECHANICAL CHARACTERISTICS 5.1 MODULE PAD DIAGRAM Module pad connection diagram is depicted below (top view): Fig. 5.1 Pad connection diagram for modules (top view) © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 5.2 MODULE PAD DESCRIPTION The following table describes the pads of the module. Table 5.1: Pad Description Pad# Signal Direction GND Power Ground supply pad GND Power Ground supply pad VCC Power Power supply pad VCC Power Power supply pad nRESET PC5 I/O Digital I/O TX_ACTIVE Logic-level control for external Rx/Tx switch. The STM32W108 baseband controls TX_ACTIVE and drives it high (VDD_PADS) when in Tx mode. Select alternate output function with GPIO_PCCFGH[7:4] PC6 I/O Digital I/O OSC32B I/O 32.768 kHz crystal oscillator. Select analogue function with GPIO_PCCFGH[11 :8] nTX_ACTIVE Inverted TX_ACTIVE signal (see PC5) Select alternate output function with GPIO_PCCFGH[11:8] PC7 I/O Digital I/O OSC32A I/O 32.768 kHz crystal oscillator. Select analogue function with GPIO_PCCFGH[15:12] OSC32_EXT PA7 I/O High current Active low chip reset (internal pull-up) Digital 32 kHz clock input source Digital I/O Disable REG_EN with GPIO_DBGCFG[4] Timer 1 Channel 4 output Enable timer output with TIM1_CCER Select alternate output function with GPIO_PACFGH[15:12] Disable REG_EN with GPIO_DBGCFG[4] Timer 1 Channel 4 input. Cannot be remapped REG_EN External regulator open drain output. (Enabled after reset). PB3 I/O Digital I/O Timer 2 channel 3 output Enable remap with TIM2_OR[6] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PBCFGL[15:12] Timer 2 channel 3 input Enable remap with TIM2_OR[6] UART CTS handshake of Serial Controller 1 Enable with SC1_UARTCFG[5] Select UART with SC1_MODE SPI master clock of Serial Controller 1 Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[6] Enable master with SC1_SPICFG[4] Select SPI with SC1_MODE Select alternate output function with GPIO_PBCFGL[15:12] SPI slave clock of Serial Controller 1 Enable slave with SC1_SPICFG[4] Select SPI with SC1_MODE TIM1CH4 TIM2_CH3 (see also Pad 13) 10 Description UART_CTS SC1SCLK © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com Table 5.1: Pad Description (cont) Pad# Signal Direction PB4 I/O Digital I/O Timer 2 channel 4 output Enable remap with TIM2_OR[7] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PBCFGH[3:0] Timer 2 channel 4 input Enable remap with TIM2_OR[7] UART_RTS UART RTS handshake of Serial Controller 1 Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[7] Enable with SC1_UARTCFG[5] Select UART with SC1_MODE Select alternate output function with GPIO_PBCFGH[3:0] SC1nSSEL SPI slave select of Serial Controller 1 Enable slave with SC1_SPICFG[4] Select SPI with SC1_MODE PA0 I/O TIM2_CH4 (see also Pad 15) 11 TIM2_CH1 (see also Pad 20) 12 SC2MOSI PA1 I/O TIM2_CH3 (see also Pad 10) 13 SC2SDA I/O SC2MISO 14 GND Power Description Digital I/O Timer 2 channel 1 output Disable remap with TIM2_OR[4] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PACFGL[3:0] Timer 2 channel 1 input Disable remap with TIM2_OR[4] SPI master data out of Serial Controller 2 Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[4] Enable master with SC2_SPICFG[4] Select SPI with SC2_MODE Select alternate output function with GPIO_PACFGL[3:0] SPI slave data in of Serial Controller 2 Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE Digital I/O Timer 2 channel 3 output Disable remap with TIM2_OR[6] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PACFGL[7:4] Timer 2 channel 3 input Disable remap with TIM2_OR[6] TWI data of Serial Controller 2 Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[6] Select TWI with SC2_MODE Select alternate open-drain output function with GPIO_PACFGL[7:4] SPI slave data out of Serial Controller 2 Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[6] Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE Select alternate output function with GPIO_PACFGL[7:4] SPI master data in of Serial Controller 2 Enable slave with SC2_SPICFG[4] Ground supply pad. © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com Table 5.1: Pad Description (cont) Pad# Signal Direction PA2 I/O TIM2_CH4 (see also Pad 11) 15 SC2SCL I/O SC2SCLK 16 PA3 I/O SC2nSSEL TRACECLK (see also Pad 27) TIM2_CH2 (see also Pad 21) PA4 I/O ADC4 Analog PTI_EN TRACEDATA2 17 PA5 I/O ADC5 Analog PTI_DATA nBOOTMODE TRACEDATA3 PA6 I/O High current 18 19 TIM1_CH3 Description Digital I/O. Timer 2 channel 4 output. Disable remap with TIM2_OR[7]. Enable timer output in TIM2_CCER . Select alternate output function with GPIO_PACFGL[11:8]. Timer 2 channel 4 input Disable remap with TIM2_OR[7]. TWI clock of Serial Controller 2. Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[7]. Select TWI with SC2_MODE. Select alternate open-drain output function with GPIO_PACFGL[11:8]. SPI master clock of Serial Controller 2. Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[7]. Enable master with SC2_SPICFG[4]. Select SPI with SC2_MODE. Select alternate output function with GPIO_PACFGL[11:8]. SPI slave clock of Serial Controller 2. Enable slave with SC2_SPICFG[4]. Select SPI with SC2_MODE. Digital I/O SPI slave select of Serial Controller 2 Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE Synchronous CPU trace clock . Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[5]. Enable trace interface in ARM core. Select alternate output function with GPIO_PACFGL[15:12]. Timer 2 channel 2 output. Disable remap with TIM2_OR[5]. Enable timer output in TIM2_CCER. Select alternate output function with GPIO_PACFGL[15:12]. Timer 2 channel 2 input Disable remap with TIM2_OR[5]. Digital I/O. ADC Input 4 Select analogue function with GPIO_PACFGH[3:0]. Frame signal of Packet Trace Interface (PTI). Disable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[3:0]. Synchronous CPU trace data bit 2. Select 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[3:0]. Digital I/O. ADC Inputs Select analog function with GPIO_PACFGH[7:4]. Data signal of Packet Trace Interface (PTI). Disable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[7:4]. Embedded serial boot-loader activation out of reset Signal is active during and immediately after a reset on nRESET. Synchronous CPU trace data bit 3. Select 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PACFGH[7:4]. Digital I/O. Timer 1 channel 3 output. Enable timer output in TIM1_CCER. Select alternate output function with GPIO_PACFGH[11 :8]. Timer 1 channel 3 input Cannot be remapped. © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com Table 5.1: Pad Description (cont) Pad# 20 Signal Direction PB1 I/O SC1MISO SC1MOSI SC1SDA I/O SC1TXD TIM2_CH1 (see also Pad 12) 21 PB2 I/O SC1MISO SC1MOSI SC1SCL I/O SC1RXD TIM2_CH2 (see also Pad 16) SWCLK I/O JTCK PC2 I/O JTDO SWO 22 23 Description Digital I/O. SPI slave data out of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select SPI with SC1_MODE. Select slave with SC1_SPICR. Select alternate output function with GPIO_PBCFGL[7:4]. SPI master data out of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select SPI with SC1_MODE. Select master with SC1_SPICR. Select alternate output function with GPIO_PBCFGL[7:4] TWI data of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select TWI with SC1_MODE. Select alternate open-drain output function with GPIO_PBCFGL[7:4]. UART transmit data of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select UART with SC1_MODE. Select alternate output function with GPIO_PBCFGL[7:4]. Timer 2 channel 1 output. Enable remap with TIM2_OR[4]. Enable timer output in TIM2_CCER. Select alternate output function with GPIO_PACFGL[7:4]. Timer 2 channel 1 input Disable remap with TIM2_OR[4]. Digital I/O SPI master data in of Serial Controller 1. Select SPI with SC1_MODE. Select master with SC1_SPICR. SPI slave data in of Serial Controller 1. Select SPI with SC1_MODE. Select slave with SC1_SPICR TWI clock of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[5]. Select TWI with SC1_MODE. Select alternate open-drain output function with GPIO_PBCFGL[11 :8]. UART receive data of Serial Controller 1. Select UART with SC1_MODE. Timer 2 channel 2 output. Enable remap with TIM2_OR[5]. Enable timer output in TIM2_CCER. Select alternate output function with GPIO_PBCFGL[11 :8]. Timer 2 channel 2 input. Enable remap with TIM2_OR[5]. Serial Wire clock input/output with debugger. Selected when in Serial Wire mode (see JTMS description, Pad 26) JTAG clock input from debugger. Selected when in JTAG mode (default mode, see JTMS description, Pad 26) Internal pull-down is enabled. Digital I/O. Enable with GPIO_DBGCFG[5]. JTAG data out to debugger. Selected when in JTAG mode (default mode, see JTMS description, Pad 26). Serial Wire Output asynchronous trace output to debugger. Select asynchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[11:8]. Enable Serial Wire mode (see JTMS description, Pad 26). Internal pull-up is enabled. © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com Table 5.1: Pad Description (cont) Pad# Signal Direction PC3 I/O JTDI GND Power PC4 I/O JTMS SWDIO I/O PB0 I/O VREF Analog O VREF Analog I IRQA TRACECLK (see also Pad 16) TIM1CLK Digital I/O Enable with GPIO_DBGCFG[5] JTAG mode select from debugger. Selected when in JTAG mode (default mode). JTAG mode is enabled after power-up or by forcing nRESET low. Select Serial Wire mode using the ARM-defined protocol through a debugger. Internal pull-up is enabled. Serial Wire bidirectional data to/from debugger. Enable Serial Wire mode (see JTMS description). Select Serial Wire mode using the ARM-defined protocol through a debugger. Internal pull-up is enabled. Digital I/O ADC reference output. Enable analog function with GPIO_PBCFGL[3:0] ADC reference input. Enable analog function with GPIO_PBCFGL[3:0]. Enable reference output with an STM system function External interrupt source A. Synchronous CPU trace clock. Enable trace interface in ARM core. Select alternate output function with GPIO_PBCFGL[3:0]. Timer 1 external clock input TIM2MSK Timer 2 external clock mask input GND Power PC1 I/O ADC3 Analog 24 25 26 27 28 29 SWO (see also Pad 23) TRACEDATA0 PC0 JRST 30 IRQD1 TRACEDATA1 Description Digital I/O Either Enable with GPIO_DBGCFG[5], or enable Serial Wire mode (see JTMS description, Pad 26) JTAG data in from debugger Selected when in JTAG mode (default mode, see JTMS description, Pad 26). Internal pull-up is enabled. Ground supply pad. Ground supply pad. Digital I/O ADC Inputs Enable analog function with GPIO_PCCFGL[7:4] Serial Wire Output asynchronous trace output to debugger. Select asynchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[7:4]. Synchronous CPU trace data bit 0. Select 1-, 2- or 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[7:4]. Digital I/O. I/O High current Either enable with GPIO_DBGCFG[5], or enable Serial Wire mode (see JTMS description, Pad 26) and disable TRACEDATA1. JTAG reset input from debugger. Selected when in JTAG mode (default mode, see JTMS description) and TRACEDATA1 is disabled. Internal pull-up is enabled. Default external interrupt source D Synchronous CPU trace data bit 1. Select 2- or 4-wire synchronous trace interface in ARM core. Enable trace interface in ARM core. Select alternate output function with GPIO_PCCFGL[3:0]. © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com Table 5.1: Pad Description (cont) Pad# Signal PB7 ADC2 31 IRQC1 TIM1_CH2 PB6 ADC1 IRQB Direction Description I/O High current Digital I/O ADC Input 2 Analog Enable analog function with GPIO_PBCFGH[15:12] Default external interrupt source C Timer 1 channel 2 output. Enable timer output in TIM1_CCER. Select alternate output function with GPIO_PBCFGH[15:12]. Timer 1 channel 2 input .(Cannot be remapped). I/O High current Digital I/O. ADC Input 1. Analog Enable analog function with GPIO_PBCFGH[11:8]. External interrupt source B. 32 Timer 1 channel 1 output. Enable timer output in TIM1_CCER. Select alternate output function with GPIO_PBCFGH[11:8]. Timer 1 channel 1 input. (Cannot be remapped). PB5 I/O ADC0 Analog TIM2CLK Digital I/O ADC Input 0. Enable analog function with GPIO_PBCFGH[7:4]. Timer 2 external clock input. TIM1MSK Timer 2 external clock mask input. 34 GND Power 35 GNDRF RF Ground 36 RF Analog 37 GNDRF RF Ground TIM1_CH1 33 Ground supply pad. Ground pad for RF port. RF port with 50 Ohm impedance. Ground pad for RF port. 5.3 PACKAGE MECHANICAL DIMENSIONS Module dimensions are 25 mm x 19 mm x 2 mm and detailed drawing is shown below on Fig. 5.2. Fig. 5.2 Dimensions of the module. Left: EMI Option “S” -- without shielding; Right: Option “M” – with metal shielding (Enhanced EMI protection) © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 6 SOLDERING 6.1 SOLDER TEMPERATURE PROFILE The following Fig. 6.1 illustrates the solder temperature profile for the module. This temperature profile is similar for other RoHS compliant packages, but manufacturing lines should be programmed with this profile in order to guarantee proper solder connection to the PCB. Please note: module can be soldered only once. Reflow Profile Fig. 6.1 Reflow profile 6.2 PROFILE PARAMETERS The following table 6.1 contains the temperature profile parameters. Important note: module should be processed according to recommended temperature profile only one time. Table 6.1 Solder Reflow Parameters Parameter Average Ramp Up Rate (from Tsoakmax to Tpeak) Average Ramp Up Rate (from 25°C to Tsoakmin) Value 3°C per second max 2°C to 4°C per second max Minimum Soak Temperature (Tsoakmjn) 150°C Maximum Soak Temperature (Tsoakmax) 200°C TL 220°C Time above TL 30 to 60 seconds Minimum Peak Temperature Tpeakmin 230°C Maximum Peak Temperature Tpeakmax 250°C Ramp Down Rate © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS 6°C per second max Email: info@dizic.com | Web: www.dizic.com 6.3 RECOMMENDED FOOTPRINT Top view of recommended footprint for module is shown below on Fig. 6.2: Fig. 6.2 Recommended footprint for modules (top view) For the modules with output option “A” (with Embedded SMD Antenna) it is important to prevent presence of any conductive materials in proximity of the module’s antenna. This requirement is valid for copper traces, ground planes, wires and connectors too. Recommended “Copper-Keep-Out” area, where presence of copper (and any conductive material too) should be avoided is depicted on Fig. 6.3 below: Fig. 6.3 Recommended “Copper-Keep-Out” Area (top view) – only for modules with Output Option “A” © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 7 ORDERING INFORMATION Example: DZ - ZB - P- O- S- E- Manufactured by DiZiC ZigBee Module Power level options S -- Standard + 7dBm R -- Front End with RF Output Power Level Detector + 20 dBm T -- Front End + 20 dBm Output options: A -- Embedded SMD Antenna P -- Single ended 50 Ohm RF Pad U -- U.FL 50 Ohm coaxial connector Stack options: F -- RF4CE stack X -- Proprietary stack Z -- EmberZNet PRO stack Electromagnetic Interference (EMI) protection options: S -- Standard, without protective metal shielding M -- Metal Shield, for enhanced EMI protection © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 8 LIST OF ACRONYMS This chapter defines a collection of terms that are commonly used when talking about networks in general or ZigBee in particular. AC ACK ADC API ARM BiCMOS BER CMOS CPU CTS dB dBm DC DWT EEPROM EMI ESD FE FPB GPIO HAL HBM HF HVAC I²C IEEE IRQ ISM ITM JTAG LNA MAC MCU MPU PA PCB PER PSD PTI RAM RF RF4CE RSSI RX SMD SPI STM TWI TX UART U.FL VCO ZigBee, ZigBee PRO 802.15.4 Alternating Current Acknowledge Analogue-to-Digital Converter Application Programming Interface Advanced RISC Machines Ltd, now ARM Holdings Bipolar junction transistors combined with CMOS technology Bit Error Rate Complementary Metal–Oxide–Semiconductor Central Processing Unit Clear To Send decibel, logarithmic unit of measurement that expresses the magnitude of a physical quantity Power ratio in decibels of the measured power referenced to one milliwatt (1 mW) Direct Current Data Watch-point and Trace Electrically Erasable Programmable Read-Only Memory Electromagnetic Interference Electrostatic Discharge Front End Flash Patch and Breakpoint General Purpose Input/Output Hardware Abstraction Layer Human Body Model High Frequency Heating, Ventilating and Air Conditioning Inter-Integrated Circuit bus Institute of Electrical and Electronics Engineers Interrupt Request Industrial, Scientific and Medical radio band Instrumentation Trace Macrocell Joint Test Action Group, digital interface for debugging of embedded device Low Noise Amplifier Media Access Control layer Microcontroller Unit Multi-core Processing Unit Power Amplifier Printed Circuit Board Package Error Ratio Power Spectral Density Packet Trace Interface Random Access Memory Radio Frequency Radio Frequency for Consumer Electronics consortium Received Signal Strength Indicator Receiver Surface Mounted Device Serial Peripheral Interface STMicroelectronics, an Italian-French electronics and semiconductor manufacturer Two Wire Interface, a variant of I²C Transmitter Universal Asynchronous Receiver/Transmitter Miniature coaxial RF connector (up to 6 GHz) manufactured by Hirose Electric Group in Japan Voltage Controlled Oscillator Wireless networking standards targeted at low-power applications The IEEE 802.15.4-2003 standard applicable to low-rate wireless Personal Area Network © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com 9 REFERENCES & REVISION HISTORY [1]. STM32W108HB, STM32W108CB, High-performance, 802.15.4 wireless system-on-chip, Data brief, 20-Aug-2009, Rev. 1 [2]. STM32W108HB, STM32W108CB, High-performance, 802.15.4 wireless system-on-chip, Preliminary data, 01-Mar-2010, Rev. 4 [3]. RN0034, Release notes, STM32W108xx starter and extension kits EmberZNet 4.0.2 GA, Doc ID 16225, 16-Feb-2010, Rev. 2 [4]. RN0047, Release notes, STM32W108xx starter and extension kits ZigBee RF4CE, Doc ID 17098, 23-Feb-2010, Rev. 1 [5]. RN0046, Release note, STM32W108xx starter and extension kits for Simple MAC library, Doc ID 16996, 04-March-2010, Rev. 1 [6]. UM0894, User Manual, STM32W-SK and STM32W-EXT starter and extension kits for STM32W108xx, Doc ID 16999, 05Feb-2010, Rev. 1 [7]. UM0847, User Manual, IAR customization for STM32W108 system-on-chip, Doc ID 16551, 16-Nov-2009, Rev. 1. © 2010 DiZiC Co. Ltd, 3F, N° 4-2 Jin Xi Street Taipei City 104, TAIWAN All Rights Reserved. All trademarks are property of their respective owners. Subject to change without notice. Document ID: PB-ZB-MOD-003-20DS Email: info@dizic.com | Web: www.dizic.com
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 25 Language : de-DE Tagged PDF : Yes Title : DiZiC ZigBee Modules Author : . Subject : Data Sheet Keywords : DiZiC, ZigBee, Data Sheet, Module, Specification Creator : Microsoft® Office Word 2007 Create Date : 2010:04:26 10:45:52 Modify Date : 2010:04:26 10:45:52 Producer : Microsoft® Office Word 2007EXIF Metadata provided by EXIF.tools