ELITEGROUP COMPUTER SYSTEMS ED2LN30PA1 DATA CARD User Manual Part 1

ELITEGROUP COMPUTER SYSTEMS CO., LTD DATA CARD Part 1

Contents

User Manual Part 1


  
  SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICENoticeWhile  reasonable  efforts  have  been  made  to  assure  the  accuracy  of  this  document,  Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked  and is  believed  to  be  entirely  reliable.  However,  no  responsibility  is  assumed  for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not  assume  any  liability  arising  out  of  the  application  or  use  of  any  product,  software,  or circuit described herein; neither does it convey license under its patent rights or the rights of others.It  is  possible  that  this  publication  may  contain  references  to,  or  information  about  Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.CopyrightsThis instruction manual and the Telit products described in this instruction manual may be, include  or  describe  copyrighted  Telit  material,  such  as  computer  programs  stored  in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit  and  its  licensors  certain  exclusive  rights  for  copyrighted  material,  including  the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted  material.  Accordingly,  any  copyrighted  material  of  Telit  and  its  licensors contained  herein  or  in  the  Telit  products  described  in  this  instruction  manual  may  not  becopied,  reproduced,  distributed,  merged  or  modified  in  any  manner  without  the  express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to  grant  either  directly  or  by  implication,  estoppel,  or  otherwise,  any  license  under  the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.Computer Software CopyrightsThe Telit and 3rd Party supplied Software (SW) products described in this instruction manual may  include  copyrighted  Telit  and  other  3rd  Party  supplied  computer  programs  stored  in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit  and  other  3rd  Party  supplied  SW  certain  exclusive  rights  for  copyrighted  computer programs,  including  the  exclusive  right  to  copy  or  reproduce  in  any  form  the  copyrighted computer  program.  Accordingly,  any  copyrighted  Telit  or  other  3rd  Party  supplied  SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall  not  be  deemed  to  grant  either  directly  or  by  implication,  estoppel,  or  otherwise,  any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
  Usage and Disclosure RestrictionsLicense AgreementsThe  software  described  in  this  document  is  the  property  of  Telit  and  its  licensors.  It  is furnished by express license agreement only and  may be  used only  in accordance with the terms of such an agreement.Copyrighted MaterialsSoftware  and  documentation  are  copyrighted  materials.  Making  unauthorized  copies  is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of TelitHigh Risk MaterialsComponents,  units,  or  third-party  products  used  in  the  product  described  herein  are  NOT fault-tolerant and  are  NOT  designed,  manufactured,  or  intended  for  use  as  on-line  control equipment in the following hazardous environments requiring fail-safe controls: the operation of  Nuclear  Facilities,  Aircraft  Navigation  or  Aircraft  Communication  Systems,  Air  Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically  disclaim  any  expressed  or  implied  warranty  of  fitness  for  such  High  Risk Activities.TrademarksTELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners. Copyright © Telit Communications S.p.A. 2011.
  Contents                                                           
                                                                
                                                         
         
  Figure 1 M.2 HSPA+ Block Diagram................................................................................................................ 18 Figure 2 M.2 APAC LTE Module Block Diagram............................................................................................ 19 Figure 3 M.2 LTE Module Block Diagram........................................................................................................20 Figure 4 Detailed Interconnection of M.2 LTE Modem RF Engine ..................................................................21 Figure 5 PCI Express M.2 Module Interface ..................................................................................................... 22 Figure 6 GNSS Connections and Interface ........................................................................................................ 31 Figure 7 Typical LED Connection.....................................................................................................................36 Figure 8 Antenna Control – Connections Detail................................................................................................ 39 Figure 9 In-Device Coexistence Architecture.................................................................................................... 40 Figure 10 RF Antenna – Coaxial Connector Location....................................................................................... 46 Figure 11 M.2 Carrier Board.............................................................................................................................. 48 Figure 12 Windows 7 Software Architecture..................................................................................................... 52 Figure 13 Windows 8 Software Architecture..................................................................................................... 53 Figure 14 Linux Software Architecture ............................................................................................................. 55 Figure 15 Android Software Architecture..........................................................................................................59 Figure 16 Chrome Software Architecture ..........................................................................................................60 Figure 17 WWAN Card 3042 Mechanical Dimensions .................................................................................... 74 Figure 18 WWAN Card 3042 Slot Key Details.................................................................................................75 Figure 19 WWAN Card Type 3042 Top-Side Mounting Land Pattern.............................................................76 Figure 20 WWAN Card 3042 Mid-plane Land Pattern with Slot Key Removed..............................................77 Figure 21 Antenna Connector Location............................................................................................................. 78
  Table 1 M.2 Module - General Feature..............................................................................................................14 Table 2. M.2 Module  - RF Band Support ......................................................................................................... 15 Table 3. M.2 Module - Data Services................................................................................................................ 17 Table 4 M.2 Host Interface Signals.................................................................................................................... 22 Table 5 USB HS Interprocessor Communications Interface..............................................................................27 Table 6 USB SSIC – ICP Interface....................................................................................................................28 Table 7 (U)SIM Interface Signals...................................................................................................................... 29 Table 8 X-GOLD™ Baseband to GNSS Interface Signals................................................................................32 Table 9 GNSS Module Interface Signals ........................................................................................................... 32 Table 10 Power-on & Reset Signals .................................................................................................................. 33 Table 11 Radio Disable Signal........................................................................................................................... 34 Table 12 Host Radio Disable Interface (W_DISABLE#)..................................................................................35 Table 13 LED#1 Signal...................................................................................................................................... 36 Table 14 LED State Indicator ............................................................................................................................ 36 Table 15 Wake on WWAN Signal.....................................................................................................................37 Table 16 DPR#/ SAR Support Signal................................................................................................................ 38 Table 17 Tunable Antenna Control Signals .......................................................................................................39 Table 18 Coexistence – Hardware Synchronization Signals.............................................................................. 41 Table 19 Power & Ground Signals .................................................................................................................... 42 Table 20 M.2 Configuration Pins.......................................................................................................................43 Table 21 Audio Signals (Future development) ................................................................................................. 43 Table 22 No Connect Pins ................................................................................................................................. 45 Table 23 Antenna Requirements........................................................................................................................ 45 Table 24 Operating Environment....................................................................................................................... 61 Table 25 M.2 Module Power Delivery Requirements - Ultrabook.................................................................... 62 Table 26 VBAT Power Delivery Requirements – Direct Connections (Tablet)................................................62 Table 27 DC Specification for 3.3V Logic Signaling ........................................................................................63 Table 28 DC Specification for 1.8V Logic Signaling ........................................................................................63 Table 29 LTE Power Consumption.................................................................................................................... 64 Table 30 UMTS Power Consumption................................................................................................................ 64 Table 31 GSM Power Consumption .................................................................................................................. 65 Table 32 Conducted Transmit Power – 2G........................................................................................................67 Table 33 Conducted Transmit Power – 3G........................................................................................................67 Table 34 Conducted Transmit Power – LTE .....................................................................................................68 Table 35 Rx Sensitivity - GSM..........................................................................................................................68 Table 36 Rx Sensitivity - UMTS ....................................................................................................................... 69 Table 37 Rx Sensitivity - LTE...........................................................................................................................69 Table 38 Antenna Recommendation..................................................................................................................71 Table 39 Antenna Recommendation - Bandwidth of Main & Diversity Antenna............................................. 71 Table 40 GNSS Sensitivity................................................................................................................................ 72 Table 40 Antenna Connector Assignment ......................................................................................................... 78
   This document is a technical specification for Telit’s next generation form factor M.2 modulefamily. The next generation form factor M.2 module family is a natural transition from the PCI Express Mini Card and Half Mini Card to a smaller form factor size. The M.2 Card Type 3042 offers single sided component mounting, 75 pins (8 dedicated for key), in a compact size (30 mm x 42 mm). A range of 2G/3G/4G (LTE) M.2 modules supporting multiple operating systems and unique features in the WWAN Card Type 3042 form factor are available.  The document will cover the features of the M.2 modules presently available. It will also identify the M.2 module application interface along with hardware, software, reliability, and mechanical specifications. The intent of this document is to provide design guidelines and information for each M.2module. In addition to the M.2 module family features and performance metrics, this document describes the interface signals, operating conditions, physical and mechanical requirements of the M.2 cards. This document is intended for editors who are about to write or edit documentation for Telit. For general contact, technical support, to report documentation errors and to order manuals, contact Telit Technical Support Center (TTSC) at:TS-EMEA@telit.comTS-NORTHAMERICA@telit.comTS-LATINAMERICA@telit.comTS-APAC@telit.comAlternatively, use:http://www.telit.com/en/products/technical-support-center/contact.phpFor detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:
  http://www.telit.comTo  register  for  product  news  and  announcements  or  for  product  questions  contact  TelitTechnical Support Center (TTSC).Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.Telit appreciates feedback from the users of our information. This document contains the following chapters (sample):“Chapter 1: “Introduction” provides a scope for this document, target audience, contact and support information, and text conventions.“Chapter 2: “Chapter two” gives an overview of the features of the product.“Chapter 3: “Chapter three” describes in details the characteristics of the product.“Chapter  6:  “Conformity  Assessment  Issues”  provides  some  fundamental  hints  about  the conformity assessment that the final application might need.“Chapter 7: “Safety Recommendation” provides some safety recommendations that must be follow by the customer in the design of the application that makes use of the AA99-XXX. Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.Tip  or  Information  – Provides  advice  and  suggestions  that  may  be  useful  when integrating the module.All dates are in ISO 8601 format, i.e. YYYY-MM-DD. TBA
   This section will provide an overview of the standard features of a M.2 Card, information on the various SKUs of 2G/3G/4G (LTE) M.2 modules along with a respective functional block diagram of each SKU.  There are five different M.2 modules available in the M.2 Card Type 3042 form factor:HN930 - HSPA+LN930-AP - APAC LTELN930 - LTEA comparison of the features, RF band Support, and data rates for the various M.2 modules is shown in Table 1 through Table 3
  Table 1 M.2 Module - General FeatureFeature Description Additional Information M.2 moduleHN930LN930-APLN930Mechanical M.2 Card Type 3042Slot B30 mm x 42 mmPin count: 75(67 usable, 8 slot) xxxOperatingVoltage3.3 V +/- 5% - xxxOperatingTemperature- – Normal–ExtendedExtreme - This is the surrounding air temperature of the module inside the platform when the card is fully operating at worst case condition xxxApplicationInterface(75 pin card)InterprocessorCommunicationsUSB 2.0 High-speedxxxUSIM w/ Card Detect SIM_CLK, SIM_RESET, SIM_IO, SIM_PWR, SIM_DETECTxxxM.2 Control Full_Card_Power_On_Off xxxReset# xxxW_DISABLE# xxxLED #1 xxxDPR (Body SAR) xxxWake on WWAN xxxGNSS Disable xxxGlobal Positioning(GPS/ GLONASS)I2C_SCL, I2C_SDA, I2_IRQ, CLKOUT, TX_BLANKING xxxAntenna Tuning (4) GPO (RF Transceiver) - x xRF Coexistence (3) GPIO - x xRF Antenna Main & Diversity/ GNSS Separate coax connectors xxxDebug JTAG - xxxETM11 - - x xMIPI PTI - - x X
  Table 2. M.2 Module  - RF Band SupportRF Band UE Transmit UE Receive M.2 ModuleHN930 LN930-AP LN930GSMUMTSLTEGSMUMTSLTEGSMUMTSLTE001 I 1920 MHz - 1980 MHz 2110 MHz - 2170 MHz     x        x  x     x  x 002 II 1850 MHz - 1910 MHz 1930 MHz - 1990 MHz  x  x              x  x  x 003 III  1710 MHz - 1785 MHz 1805 MHz - 1880 MHz  x              x  x   x 004 IV  1710 MHz - 1755 MHz 2110 MHz - 2155 MHz     x                 x  x 005 V 824 MHz - 849 MHz 869 MHz - 894 MHz  x  x            x  x  x 006 VI 830 MHz - 840 MHz 875 MHz - 885 MHz              x           007 VII  2500 MHz - 2570 MHz 2620 MHz - 2690 MHz                          x 008 VIII 880 MHz - 915 MHz 925 MHz - 960 MHz  x  x        x  x  x  x  x 009 IX  1749.9 MHz - 1784.9 MHz 1844.9 MHz - 1879.9 MHz               x         010 X  1710 MHz - 1770 MHz 2110 MHz - 2170 MHz                            011 XI 1427.9 MHz - 1447.9 MHz 1475.9 MHz - 1495.9 MHz              x  x          012 XII  699 MHz - 716 MHz 729 MHz - 746 MHz
  013 XIII 777 MHz - 787 MHz 746 MHz - 756 MHz                          x 014 XIV 788 MHz - 798 MHz 758 MHz - 768 MHz                            017 XVII  704 MHz - 716 MHz 7734 MHz - 746 MHz                          x 018 XVIII 815 MHz -830 MHz 860 MHz -875 MHz                 x        x 019 XIX 830 MHz - 845 MHz 875 MHz - 890 MHz               x  x      x 020 XX  832 MHz - 862 MHz 791 MHz - 821 MHz                          x 021 XXI 1447.9 MHz - 1462.9 MHz 1495.9 MHz - 1510.9 MHz                 x          022 XXII 3410 MHz - 3490 MHz 3510 MHz - 3590 MHz                            023 XXIII  2000 MHz - 2020 MHz 2180 MHz - 2200 MHz                            024 XXIV 1626.5 MHz - 1660.5 MHz 1525 MHz - 1559 MHz                            025 XXV 1850 MHz - 1915 MHz 1930 MHz - 1995 MHz                            026 XXVI  814 MHz -  849 MHz 859 MHz - 894 MHz                 x         027 XXVII  806 MHz - 824 MHz 851 MHz - 869 MHz                            028 XXVIII 703 MHz - 748 MHz 758 MHz - 803 MHz
  029 XXIX 1850 MHz - 1910 MHz or 1710 MHz - 1755 MHz 716 MHz - 728 MHz                           001 I 1920 MHz - 1980 MHz 2110 MHz - 2170 MHz                            Table 3. M.2 Module - Data ServicesData Service M.2 moduleHN930LN930-APLN930GPRS Class 33: DL 85.6 kbps, UL 85.6 kbps x - xEDGE Class 33: DL 236.8 kbps, UL 236.8 kbps x - xWCDMA: DL 384 kbps, UL 384 kbpsxxxHSPA+: DL 21 Mbps, UL 5.7 Mbps x x xHSPA+: DL 42 Mbps, UL 5.7 Mbps - x xLTE FDD: DL: 100 Mbps, UL 50 Mbps - x xLTE FDD: DL: 150 Mbps, UL 50 Mbps - x xModule supports DL 150 Mbps in LN930. This is only for generic SW and VZW SW, but not for AT&T SW.  The M.2 HSPA+ module is Intel’s Next Generation Form Factor design based on Intel’sXMM™6260 modem platform. The M.2 HSPA+ card is a dual-mode (UMTS/GSM) 3GPPrelease 7 HSPA+ modem.The M.2 HSPA+ module includes support at the 75 pin application interface forM.2 Control, USB 2.0 HS, GNSS, and USIM. Antenna Tuning is not supported.A block diagram of the M.2 HSPA+ module is shown in Figure 1.
  Figure 1 M.2 HSPA+ Block Diagram
   The M.2 APAC LTE module is another Intel design based on the XMM™7160 modemplatform. The module has a targeted area of operation in the Asia Pacific rim and offers 3Gand LTE datacard functionality, 2G Functionality is not supported.The M.2 APC LTE module includes support at the 75 pin application interface for M.2Control, USB 2.0 HS, GNSS, USIM and Antenna Tuning.A block diagram of the M.2 APAC LTE module is shown in Figure 2.Figure 2 M.2 APAC LTE Module Block Diagram
   The M.2 LTE module is based on Intel’s XMM™7160 modem platform. The M.2 LTEmodule is a triple-mode (2G, 3G, and 4G) 3GPP release 9 modem providing datacardfunctionality.The M.2 LTE module includes support at the 75 pin application interface forM.2 Control, USB 2.0 HS, GNSS, USIM and Antenna Tuning.A block diagram of the M.2 LTE module is shown in Figure 3.Figure 3 M.2 LTE Module Block DiagramA more detailed interconnect diagram of the RF Engine utilized on the M.2 LTE Module isshown in Figure 4.
  SMARTiTM 4GPMB5740RD_H1RD_H1XRD_H3RD_H3XRD_M1RD_M1XRD_L1RD_L1XRD_L2RD_L2XRD_L4RD_L4XClock and ControlDigRFVBATSD2_1V8AFC_DACREF OSCXO_SUPXOVCTCXOMeasurement UnitM1M2M3BatteryRFE_NTCRFE_PADCDC_MIXOXDiversityReceiverCombinedReceiverRX_H2RX_H2XRX_H3RX_H3XRX_H4RX_H4XRX_M1RX_M1XRX_M2RX_M2XRX_L1RX_L1XRX_L2RX_L2XRX_L4RX_L4XRFFERFFE_VIORFFE_SDATARFFE_SCLKTransmitterTQ_XTQ_HTQ_LTP_HTP_LPA ControlPADACSPADACFPADACF_PFBRFBR_RF1FBR_RF2XGOLDTM 716B7B1/B4Diversity Switch &Filter ModuleDiversityAntennaRFE_RFFE_VIORFE_RFFE_SDATARFE_RFFE_SCLKRFE_RFFE_VIORFE_RFFE_SCLKRFE_RFFE_SDATAMain Switch & Duplexer ModuleB7 DuplexerB7 Div FilterB20 Div FilterCouplerMainAntennaRFE_RFFE_VIORFE_RFFE_SCLKRFE_RFFE_SDATAPADCDCRFE_TQ_HRFE_TP_HRFE_TP_LRFE_TQ_LB2/B25VBATVBATVBATB7 PARFE_PADCDC_MISCPARD_M2RD_M2XRD_L3RD_L3X B20RX_L3RX_L3XB2/B25B3B5/B26B13/B17B8B20 DuplexerB7B20B1B4B2/B25B3B5/B26B8B13/B17B1B4B3GSM_HBGSM_ LBB8B5/B26B20B17B13VBATVBATFigure 4 Detailed Interconnection of M.2 LTE Modem RF Engine This section describes the signals available to the host processor at the 75 pin applicationinterface. Eight signals are eliminated by the notch on the host connector, leaving 67 usablesignals. A diagram of the M.2 module identifying the 75 pin interface is shown in Figure 5.Note that the M.2 module has all components mounted on the top side. Odd pin numbers are on the topside while even pins on the bottom side.
  Figure 5 PCI Express M.2 Module InterfaceA complete description of all interface signals available at the host interface is listed in Table 4. Some features, such as GNSS and Antenna Tuning, are not available on every M.2 module.On those modules, the signals at the application interface are not connected on the M.2module.Table 4 M.2 Host Interface SignalsPin Signal Name I/O Description Supply 1CONFIG_3 O Presence Indication:WWAN M.2 Connects to GND internally-2 3.3V P M.2 Supply Pin 3.3 V 3.3 V 3 GND P Ground - 4 3.3V P M.2 LTE Supply Pin 3.3 V 3.3 V 5 GND P Ground - 6 FULL_CARD_POWER_OFF# I Control signal to power On/Off M.2. 1.8 V 7 USB D+ IO USB 2.0 HS DPLUS Signal  8 W_DISABLE# I Active low signal to Disable Radio Operation 3.3 V 9 USB D– IO USB 2.0 HS DMINUS Signal
  10 LED#1 O Open Drain, active low signal used for add-in card to provide status 3.3 V 11 GND P Ground - 12 SLOT KEY 13 SLOT KEY 14 SLOT KEY 15 SLOT KEY 16 SLOT KEY 17 SLOT KEY 18 SLOT KEY 19 SLOT KEY 20 AUDIO0 IO PCM Clock (I2S_CLK) 1.8 V21 CONFIG_0 O Configuration Status.Presently not connected on WWAN M.2 module.- 22 AUDIO1 I PCM In (I2S_RX) 1.8 V23 WAKE_WWAN# O Wake On WWANUse by M.2 to wake up host. 1.8 V 24 AUDIO2 O PCM Out (I2S_TX) 1.8 V25 DPR I Dynamic Power Reduction -Body SAR control signal 1.8 V 26 GNSS_DISABLE# I Disable GNSS function 1.8 V 27 GND P Ground - 28 AUDIO3 IO PCM Sync (I2S_WA0) 1.8 V29 SSIC_RxN I SSIC Receive N(Not Supported) - 30 UIM-RESET O SIM Reset (I) 1.8 V/3.0 V 31 SSIC_RxP I SSIC Receive P(Not Supported) - 32 UIM-CLK O SIM Clock (I) 1.8 V/3.0 V 33 GND - Ground - 34 UIM-DATA IO SIM Data (I/O) 1.8 V/3.0 V 35 SSIC_TxN O SSIC Transmit N(Not Supported) - 36 UIM-PWR O SIM power 1.8 V/3.0 V 37 SSIC_TxP O SSIC Transmit P(Not Supported) - 38 N/C - Not connected internally on M.2 - 39 GND P Ground - 40 I2C_SCL IO I2C Clock – GNSS Support 1.8 V
  41 N/C - Not connected internally on M.2 - 42 I2C_SDA IO I2C Data – GNSS Support 1.8 V 43 N/C - Not connected internally on M.2   44 I2C_IRQ I GNSS Interrupt Request –GNSS Support 1.8 V 45 GND P Ground - 46 SYSCLK O 26 MHz reference Clock output for external GNSSmodule 1.8 V 47 N/C - Not connected internally on M.2 - 48 TX_BLANKING O GNSS Blanking Signal used to indicate 2G Tx burst and LTE band 13 Tx burst. 1.8 V 49 N/C - Not connected internally on M.2 - 50 N/C - Not connected internally on M.2 - 51 GND P Ground - 52 N/C - Not connected internally on M.2 - 53 N/C - Not connected internally on M.2 - 54 N/C - Not connected internally on M.2 - 55 N/C - Not connected internally on M.2 - 56 N/C - Not connected internally on M.2 - 57 GND P Ground - 58 N/C - Not connected internally on M.2 - 59 ANTCTL0 O RF Antenna Tuning Control Signal 0 1.8 V 60 COEX3 O Wireless Coexistence between WWAN and WiFi/BTmodules. IDC_LteDtxEnv 1.8 V 61 ANTCTL1 O RF Antenna Tuning Control Signal 1 1.8 V 62 COEX2 I Wireless Coexistence betweenWWAN and WiFi/BTmodules. IDC_CwsPriority 1.8 V 63 ANTCTL2 O RF Antenna Tuning Control Signal 2 1.8 V 64 COEX1  O Wireless Coexistence betweenWWAN and WiFi/BTmodules. IDC_LteFrameSync 1.8 V 65 ANTCTL3 O RF Antenna Tuning Control Signal 3 1.8 V66 SIM DETECT I SIM Card Detection (I) (low active).       Pull-up resistor on WWAN M.2 module 1.8 V67 RESET# I Single control to reset WWAN  1.8 V68 N/C - Not connected internally on M.2 -
  69 CONFIG_1 O Configuration StatusWWAN M.2 Connects to GND internally-70 3.3V P WWAN Supply Pin 3.3 V - 71 GND P Ground - 72 3.3V P WWAN Supply Pin 3.3 V - 73 GND P Ground - 74 3.3V P WWAN Supply Pin 3.3 V - 75 CONFIG_2 O Configuration StatusWWAN M.2 Connects to GND internally-
   This section provides details on the various interfaces available M.2 modules. There are two interfaces on the M.2 host interface that support interprocessor communications (ICP); however, for the WWAN M.2 modules covered by the Product Description only the USB 2.0 High-speed port will be supported.The other ICP interface, USB Super-speed Inter-Chip (USB_SSIC), is not supported and the signals should not be connected at the host.The host processor, connected via an ICP interface, has access to the functions of the WWAN card. The USB 2.0 High-speed interface supports the following device classes: CDC-MBIM, CDC-ACM, and CDC-NCM.The USB Controller is compliant to the USB 2.0 Specification and with the Link Power Management (LPM) Addendum. LPM introduces a new sleep state (L1) which significantly reduces the transitional latencies between the defined power states; hence, improving the responsiveness of the WWAN platform regarding connecting to the internet (Quick Connect).USB2.0 LPM L1 SupportSupport for OS assisted fast dormancySelective Suspend support• Very low power when in Selective Suspend:<4mw when connected to network (wake)<1 mW no wakeIt supports High-speed (HS, 480 MBit/s); Full-speed (FS, 12 MBit/s) transfers. Low- speedmode is not supported. Because there is not a separate USB-controlled voltage bus, USBfunctions implemented on the M.2 module are expected to report as self-powered devicesGeneral FeaturesIn device mode : High-speed (480 MBit/s) and Full-speed (12 MBit/s)In host mode: High-speed (480 MBit/s), Full-speed (12 MBit/s). Low-speed mode (1.5Mbit/s) is not supported.Support for 16 bidirectional end points and channels including the end point 0.
  Table 5 USB HS Interprocessor Communications InterfaceSignal Name Description Pin Direction(WWAN) VoltageLevel USB_D+ USB Data Plus 7 I, O Per USB 2.0 specification USB_D– USB Data Minus 9 I, O
   The USB Super-speed IC (USB SSIC) solution is not supported by the WWAN M.2 modules presented in this Product Description. It is set aside for future development. These signals should be left un-connected on the host.Table 6 USB SSIC – ICP InterfaceSignal Name Description Pin Direction(WWAN) Operating VoltageRange SSIC_RXN USB SSIC Receiver Signal N 29 O Per SSIC specification SSIC_RXP USB SSIC Receiver Signal P 31 OSSIC_TXN USB SSIC Transmitter Signal N 35 ISSIC_TXP USB SSIC Transmitter Signal P 37 I
   The USIM interface is compatible with the ISO 7816-3 IC Card standard on the issuesrequired by the GSM 11.12 and GSM 11.18 standard.Both 1.8 V and 3 V SIM Cards are supported.A few comments on the SIM_DETECT signal1. An external pull-up resistor is connected to SIM_DETECT on the WWAN M.2 module.2. When a SIM is inserted, SIM_DETECT will be high.3. When a SIM is removed or not present, SIM_DETECT will be low.4. The host does not need to drive this signal. It can be tri-stated.Table 7 (U)SIM Interface SignalsSignal Name Description Pin Direction(WWAN) VoltageLevel UIM_CLK Clock SIM Card 32 O 1.8 V/3.0V UIM_DATA Input/ Output SIM Card 34 I, O 1.8 V/3.0V UIM_RESET Reset signal for SIM card 30 O 1.8 V/3.0V USIM_PWR 1.8 V/3 V Supply for SIM Card 36 O 1.8 V/3.0V SIM Detect SIM Card Detection 66 I 1.8 V  The following design guidelines are recommended for the SIM card socket mounted on the host system:Length of the traces UIM_CLK, UIM_DATA, and UIM_RESET should not exceed 10 cm.UIM_DATA is a sensitive open-drain bi-directional signal. It should not be mounted beside the UIM_CLK signal for long distances. It is recommended to place the UIM_RST trace between UIM_DATA and UIM_CLK to provide isolation. If the traces are run a long distance, surround the UIM_DATA with ground to shield from system noise and UIM_CLK.The rise time for UIM_DATA should not exceed 1 µs per the 3GPP specification. High input capacitance may increase rise time and lead to certification failure.oKeep UIM traces with low capacitance between each other and to GNDoAn ESD component with high capacitance may increase rise time.
  oThe pull-up current cannot be increased to speed up rise time, because the pull-up current must not exceed 1 mA including any crosstalk.oPull-up current is defined by the 4.7 k pull-up resistor (to USIM_PWR) on the WWAN M.2 module, plus 200 µA from the baseband chip is approximately 0.8 mA.Place a decoupling capacitor close to the SIM card socket. Some M.2 modules incorporate GPS and GLONASS receivers with aGPS to supportGlobal Positioning.For M.2 modules that feature GNSS support, see Table 1, the M.2 module incorporates theCG1960 Single-Chip GNSS Device, which is a complete receiver for simultaneous receptionand processing of both GPS and GLONASS signals. It includes LNA, mixer, bandpass filter,VCO, ALC, fractional-N frequency synthesizer, digital tunable filters, PGA stage, and multi-bit ADCs. A UART interface is used by theX-GOLD™ Communications Processor on the M.2 module to control the GNSS device. Thesolution offers best-in-class acquisition and tracking sensitivity, TFF and accuracy.The GNSS device supports several different power management modes which gives thelowest possible energy usage per fix. The pre-calculated location data will be sent over theUSB host interface. In addition, the M.2 will produce GPS data when the system is in sleepmode via an I2C interface to allow for applications to be available in low power modes.GNSS General FeaturesAutonomous GPS / GLONASSAssisted GPS Using SUPL 1.0/2.0• MS Assisted positioning ( SET / NET Initiated )• MS Based positioning ( SET / NET Initiated )SUPL 2.0 Feature SetsVersion NegotiationPeriodic TriggersEmergency PositioningArea Event Triggers (SET Init & NET Init)Application IDEnhanced Cell IdMultiple Location IDsSession Info QueryLocation Transfer to 3rd PartyNotification Verification Based on Current LocationLocation Request to another SETA diagram of the GNSS connections on the M.2 module is shown in Figure 6. This diagramidentifies the signals between the X-GOLD™ baseband and GNSS devices along with theUSB and GNSS signals available to the host at the card interface.
  Figure 6 GNSS Connections and InterfaceA description of the signals between the X-GOLD™ baseband and the CG1960interface are defined in Table 8.
  Table 8 X-GOLD™ Baseband to GNSS Interface SignalsSignal DescriptionVBAT Battery Supply1.8V 1.8 V Supply provided from X-GOLD™ BasebandUART The data and control I/F between the X-GOLD™ baseband and the GNSS device is over a 4 wire UART interface which include CTS/RTS handshaking.PDB X-GOLD™ baseband uses this signal to control Power-on/reset of the GNSS deviceLPO_CLK X-GOLD™ baseband provides a permanently active 32 kHz clock to the GNSS deviceEXT_REF_CLK X-GOLD™ baseband provides a 26 MHz clock to the GNSS device for frequency aiding.EXT_DUT_CLK X-GOLD™ baseband provides this signal to notify the GNSS device of  that GSM Tx activity (PA Blanking)EXT_FRM_SYNC X-GOLD™ baseband provides a strobe signal to theGNSS device to allow fine time assistance based on 3GPP cell timing.The GNSS signals available to the host at the WWAN module interface to supportGNSS operation are shown in Table 9.Table 9 GNSS Module Interface SignalsSignal Name Description Pin Direction(WWAN)Voltage LevelI2C_SCL I2C Clock 40 I, O 1.8 VI2C_SDA I2C Data 42 I, O 1.8 VI2C_IRQ I2C IRQ - Interrupt signal 44 I 1.8 VSYSCLK Synchronization Clock 46 I 1.8 VTX_BLANKING TX Blanking – Active High when M.2 is transmitting.48 O 1.8 VGNSS_DISABLE#GNSS DisableHigh: GNSS function is determine by AT command.Low: GNSS function is disabled.GNSS_DISABLE# pin has a pull-up resistor on the WWAN M.2 module26 I 1.8 V The system control interface is used to control the power-up and reset of the WWANmodule. There are additional control signals to disable the radio, drive an LED as a statusindicator, an output to wake the host processor, and an input for body SAR.
   The host processor has two signals that can be used to power on and reset the modem.Powering off the modem is accomplished through an AT command.Table 10 Power-on & Reset SignalsSignal Name Description Pin Direction(WWAN)VoltageLevelFULL_CARD_POWER_ON_OFFModem power on: For Tablet based designsonly; this signal is used for power on-off control ofX-GOLD™ Baseband IC.WWAN M.2moduleLogic Low: M.2 OffLogic High: WWAN M.2 Power OnThis pin has an internal pull-down resistor.Ultrabook designs:Ultrabook host should deliver a 1.8V signal to turn on the module. If 1.8V is not feasible, recommend using a 47k series resistor connected to 3.3V.6 I 1.8 VRESET# Reset the WWAN system. This signal is used to reset the module. This signal is part of the modem rigorous power-off procedure. The host will first assert this signal, followed by assertion of: FULL_CARD_POWER_OFF# signal (for Tablet)Switch off 3.3V regulator (for Ultrabook)Asserting RESET first is to trigger PMU internal state machine to run shutdown sequences e.g. for SIM and external memory controller (EMIC), before switching off power supplies.Asynchronous, active low signal. When active, the WWAN M.2 module will be placed in a power–on reset condition.RESET# pin has a pull-up resistor on the WWAN M.2 module67 I 1.8 V An additional control signal is used to disable the radio on the module.
  Signal W_DISABLE# is provided to allow users to disable, via a system-provided switch,the add-in card’s radio operation in order to meet public safety regulations or whenotherwise desired. Implementation of this signal is required for systems and all add—incards that implement radio frequency capabilities.The W_DISABLE1 signal is an active low signal that when driven low by the system shalldisable radio operation. The assertion and de-assertion of the W_DISABLE# signal isasynchronous to any system clock. All transients resulting from mechanical switches need tobe de-bounced by the host system and no further signal conditioning will be required. Whenthe W_DISABLE# signal is asserted, all radios attached to the add-in card shall be disabled.When the W_DISABLE# is not asserted or in a high impedance state, the radio may transmitif not disabled by other means such as software.The operation of the W_DISABLE# Signal is:Enable, ON (3.3V): The radio transmitter is to be made capable of transmitting.Disable, OFF (low): The radio transmitter(s) is to be made incapable of transmitting.Standard TTL signaling levels shall be used making it compatible with 1.8 V and 3.3 Vsignaling.W_DISABLE# pin has a pull-up resistor on the M.2 module.Table 11 Radio Disable SignalSignal Name Detailed Description Pin Direction(WWAN)VoltageLevelW_DISABLE#Disable Radio.  This active low signal allows the host to disable the M.2 radio operation in order to meet public safety regulations or when otherwise desired.Logic Low: M.2 OffLogic High: function is determined by Software (AT Command).If this pin is left un-connected, functionality is controlled by software.Care should be taken not to activate this pin unless there is a critical failure and all other methods of regaining control and/or communication with the M.2module have failed.8 ICompatible with1.8 V/3.3 VStandard TTL signaling levels shall be used.
  Table 12 Host Radio Disable Interface (W_DISABLE#)Requirement Detailed DescriptionRadio disable durationOn reception of a HW or SW disable signal, the WWAN module will initiate within one second the mandatory cellular procedures (which are dependent on current state) for disconnecting from the cellular network. The time taken to complete the procedures will be dependent on external factors including but not limited to: 3G/4GPP specifications, network implementation, radio conditions, etc. Once those procedures are complete, the WWAN module will switch off the RF.Radio enable duration On reception of a hardware or software enable signal the WWAN module will initiate within one second the mandatory cellular procedures for connecting to the cellular network.Radio enable during selective suspendIf radio is disabled due to W_DISABLE# assertion and WWAN module is in selective suspend, then W_DISABLE# de-assertion shall be detected by WWAN module and the module shall initiate exit from selective suspend. An LED will be used to provide status indications to users via system providedindicators.LED#1 (pin 10) is an active low output signal intended to drive system-mounted LEDindicators. These signals shall be capable of sinking to ground a minimum of 9.0 mA at up toa maximum VOL of 400 mV.
  Table 13 LED#1 SignalSignal Name Detailed Description Pin Direction(WWAN)VoltageLevelLED#1 LED Status Indicator 10 O (OD) 3.3 VFigure 7 is an example of how an LED indicator is typically connected in a platform/systemusing 3.3 V. The series resistor can be adjusted to obtain the desired brightness.Figure 7 Typical LED ConnectionThe indication protocol for the LED is shown in Table 14.Table 14 LED State IndicatorState Definition Characteristics WWANSOFF The LED is emitting no - Not ON The LED is emitting lightin a stable non-flashingstate- Powered registered butnot transmitting orreceiving An output signal is available to wake the host system, WAKE_WWAN#. This is an activelow, open-drain output.This output requires a pull-up resistor on the host system.
  Table 15 Wake on WWAN SignalSignal Name Detailed Description Pin Direction(WWAN)VoltageLevelWAKE_WWAN# Used by M.2 module to wake thehost. Active Low, Open Drain output23 O (OD) 3.0 V With the arrival of Tablets and Ultrabook™ platforms where the antenna is in the base of theunit, there is a significant issue passing Specific Absorption rate (SAR) requirements forcertification.The WWAN M.2 module has the ability to configure RF TX power levels based on proximity sensor input from the host.A WWAN M.2 power control API is available to the host to dynamically reduce RF transmit power levels of the WWAN module based on proximity sensor input from the host.The DPR# (Dynamic Power Reduction) signal is available on the host interface to assist in meeting regulatory SAR (Specific Absorption Rate) requirements for RF exposure. The signal is provided by a host system proximity sensor to the WWAN module to provide an input trigger causing a reduction in the radio transmit output power. In conjunction with the DPR signal, a full power control API is available to the host to adjust the RF transmit power level of the WWAN module.DPR pin has a pull-up resistor on the WWAN M.2 module.
  Table 16 DPR#/ SAR Support SignalSignal Name Detailed Description Pin Direction(WWAN)VoltageLevelDPR# Dynamic Power reduction. 25 I 1.8 V
   In notebook platforms, since the WWAN antennas are usually located on the top of the lid,there is a long RF mini-coax cable that can be up to 60 cm long between the antenna and WWAN module, it is preferred to use switches/tunable components directly on the antenna for antenna band switching/tuning to improve efficiency.On select WWAN M.2 modules, four (4) GPOs are available on the host interface that can be connected to an external antenna switch, to load the antenna with different impedances, configuring the different frequency responses for the main antenna. A sample block diagram depicting the antenna control signal connections to the antenna switch is shown in Figure 8.Intel’s current antenna control solution offers an open loop control solution. The WWAN M.2 modem expects the AP to provide the antenna profile detection and through a pre-defined API, notify the WWAN M.2 modem with the correct antenna profile. The WWAN M.2 modem then applies the proper antenna profile data accordingly.Figure 8 Antenna Control – Connections DetailThe electrical specification for the antenna control GPIOs are shown in Table 17.Table 17 Tunable Antenna Control SignalsSignalNameDescription Smarti™ 4G Signal Pin Direction(WWAN)VoltageLevelANTCTL0 Antenna Control 0 GPO8 59 O 1.8VANTCTL1 Antenna Control 1 RFFE2_SDATA/ GPO9 61 O 1.8VANTCTL2 Antenna Control 2 RFFE2_SCLK/ GPO10 63 O 1.8VANTCTL3 Antenna Control 3 RFFE2_VIO/ GPO11 65 O1.8V
   As more and more radios are added to PC Ultrabook™ and tablet platforms, the sources RFinterference increases significantly as multiple radios will have overlapping transmissionsand receptions. This problem will increase further as overlapping bands continue to be rolledout; WIFI, BT, WWAN will all use overlapping band from 2300 MHz to 2600 MHz.In-Device Coexistence is a feature which improves the user experience and maximizes throughput and Quality of Service of connectivity systems (WLAN, BT and GNSS) when these radios are simultaneously running with the WWAN M.2 LTE modem.A diagram of the In-Device Coexistence architecture is shown in Figure 6.ApplicationProcessorappscoexistence interfaceConnectivity Chip (WLAN/BT/GNSS)NRTCoexistence interfaceRTCoexistence interfaceX-GOLD™ 716appscoexistence interfaceNRTCoexistence interfaceRTCoexistence interfaceCPUNRTcoexistence controllerLTE L1RTcoexistence controllerMessage –based I/F)IDC_CwsPriorityNRT Apps Coex I/FMessage –based I/F)NRT Coex I/FIDC_LteFrameSyncIDC_LteDtxEnvFigure 9 In-Device Coexistence ArchitectureSeamless Co-runningIn-Device-Coexistence primarily aims at avoiding interference between radio systems to allow seamless co-running where LTE and WLAN/BT/GNSS ensuring their maximum throughput and performance. To do so, a Non Real Time (NRT) coexistence controller is implemented on the ARM™ CPU. The NRT coexistence controller centralizes LTE, WLAN, BT and GNSS information and performs interference avoidance mechanisms, selectinginterference-safe frequency configurations whenever possible. The NRT coexistence controller is also in charge of enabling some Real Time (RT) coexistence mechanisms when
  NRT mechanisms are not sufficient to guarantee seamless co-running of LTE and connectivity systems (WLAN, BT, and GNSS).Inter-system SynchronizationFor the cases where co-running of LTE and connectivity systems cannot be achieved, a Real Time (RT) coexistence controller is implemented in the LTE Layer-1 subsystem. The RT coexistence controller is in control of the RT coexistence interface, which is exposed to the connectivity chip. The RT coexistence controller exploits real time information received from the LTE Layer-1 subsystem and from the connectivity chip to coordinate LTE and connectivity “in the air” activities. The coordination function protects LTE traffic while optimizing the throughput and availability of WLAN/BT/GNSS. When operating in this mode, the connectivity systems have reduced capability since they access the medium when LTE is inactive, or when their respective operations do not impact each other significantly.The Non Real-Time mechanism implements a messaging based interface, formatted as AT commands that are passed to the AP host over the IPC interface (USB). A simple piece of SW residing on the AP host will tunnel the Non Real-Time messages between the BT/WLAN device and M.2 module, translate AT commands to/from the BT/WLAN driver commands, and maintain the states of the BT/ WLAN and M.2 LTE modem. The host software will also be responsible for initializing the Real-Time mechanism.The Real-Time mechanism consists of 3 GPIO signals which allow the synchronization of multiple TX and RX events. The signals to support real Time coexistence are listed in Table 18.If the coexistence signals are not used by the host system, they should not beconnected.Table 18 Coexistence – Hardware Synchronization SignalsSignalNameDescription Pin Direction(WWAN)Voltage LevelCOEX3 IDC_LteDtxEnv - Synchronous signal indicating LTE UL gap. Envelop signal with edges occurring 1ms before in-the-air gap (raising and falling edges)RT arbiter indicates to connectivity cores when there is no LTE Tx (Envelope)60 O 1.8 VCOEX2 IDC _CwsPriority - 0 : Low priority / 1 : high priority CWS Indicates if the coming activity is high priority62 I 1.8 V
  COEX1 IDC_LteFrameSync - Synchronous signal indicating LTE frame start.Indicates LTE frame start to BT/WLAN device. Can be used by BT to synch up periodic activity with LTE timing 64 O 1.8 V The M.2 modules require the host to provide the 3.3 V power source. The voltage source isexpected to be available during the system’s stand-by/suspend state to support wake eventprocessing on the communications card.The 3.3 V power and ground pins are listed in Table 19.Section 8, Power Delivery Requirements, provides electrical requirements for thepower supply and I/O signals.Table 19 Power & Ground SignalsPower Pins Description2, 4, 70, 72, 74 3.3 V Supply3, 5, 11, 27, 33, 39, 45, 51, 57, 71, 73 Ground The USB port on the M.2 module will be used to support system tracing of the Protocol stack. The USB HS and USB_SSIC ports can be used for software download, tracing, and manufacturing testingThe JTAG & MIPI PTI1 ports are accessible on the module to support system debug. Atemporary cable assembly over flat flex should be assembled on bottom of the module andlead out of the final product. The cable would not be mounted on the final product.
   There are 4 configuration pins on the M.2 module to assist the host identifying the presence of an Add-In card in the socket.  On the M.2 module, pins CONFIG_0..3 are configured as shown in Table 20.All configuration pins can be read and decoded by the host platform to recognize the indicated module configuration and host interface supported. On the host side, each of the CONFIG_0..3 signals needs to be fitted with a pull-up resistor.Table 20 M.2 Configuration PinsSignal Name Description Pin Direction(WWAN)VoltageLevelCONFIG_0 This signal is not connected to the WWAN M.2 module.21 O -CONFIG_1 Tied to Ground internally on the WWAN M.2 module.69 O 0 VCONFIG_2 Tied to Ground internally on the WWAN M.2 module. 75 O 0 VCONFIG_3 Tied to Ground internally on the WWAN M.2 module. 1O 0 V There are 4 signals on the host interface that are reserved to support a digital audio interface.  This is for future development, all existing WWAN M.2 modules do not support audio; therefore, these signals should be left unconnected at the host to avoid any contention.Table 21 Audio Signals (Future development)Signal Name Description Pin Direction(WWAN)VoltageLevelAUDIO0 PCM Clock   (I2S_CLK) 20 IO 1.8 VAUDIO1 PCM In        (I2S_RX) 22 I 1.8 V
  AUDIO2 PCM Out      (I2S_ TX) 24 O 1.8 VAUDIO3 PCM Sync    (I2S_WA0) 28 IO 1.8 V
   The M.2 has several No Connect pins. The pins are not connected on theM.2 module.Table 22 No Connect PinsPins Description38, 41, 43, 47, 49, 50, 52, 53, 54, 55, 56, 58, 68No Connect Pins12, 13, 14, 15, 16, 17, 18, 19 Slot key The M.2 module has space for six antenna connectors; yet, as a minimum, only two will be populated  to  support  a  main  Rx/Tx  antenna  and  a  secondary  antenna  that  will  be multiplexed between the Diversity receiver and GPS receiver (if applicable). Further details on the antenna connector assignment can be found in Section 11.3.The antenna signals are not available at the host interface but have their ownconnectors. A diagram on the M.2 module with the location of the RF connectorsappears in Figure 10.Table 23 Antenna RequirementsRequirement Detailed DescriptionConnectionto moduleThe connector of WWAN antenna cable is I-PEX MHF4 or equivalentMulti-bandsingle antennaSingle antenna has to support all bands of WWAN module specified in theProduct Features.RxDiversityantennaDiversity antenna has to support all bands WWAN module specified in theProduct Features in addition GPS/GLONAAS frequencies.GPS Antenna The GPS antenna will share the Diversity antenna connector.
  Figure 10 RF Antenna – Coaxial Connector Location
   Intel Mobile Communications provides a carrier development board to facilitate system testand verification of the M.2 module. In addition, a set of comprehensive tools to enable rapidintegration and customization of the M.2 software is provided.The hardware and software tools for M.2 development are summarized below. The M.2 Carrier Board, shown in Figure 11, is Intel Mobile Communications hardwareplatform to facilitate the test and verification on the M.2 module. Once the M.2 module ismounted on the Carrier board, the user has access to all necessary interfaces on the module(host interface signals, debug and trace, and antenna) allowing full system test, debugging,and diagnostics. The carrier board with a mounted WWAN M.2 module is shown in Figure 11. Carrier Board.Note: The Main and Diversity antenna locations have been swapped on the FIH7160 PR3.2 and earlier modules.
  Figure 11 M.2 Carrier Board Intel Mobile Communications provides a utility program called FlashTool fordownloading a binary image into the Flash memory of the M.2 module. The USB-HS portor USIF on the platform is used for connection to a PC via a USB cable for flashing.FlashTool is a Win32/64 application built on top of the dynamic link library,Download.DLL. 
  PhoneTool is a development tool built on top of the so-called “production test dll,DWDIO.dll”. PhoneTool can be used to fine tune the parameters of:Audio configuration and settings (if enabled on M.2 module)NV (Non-Volatile) memoryRF power rampSecurity data IMEISIMReal Time ClockIt also includes interfaces for:AT Terminal for sending and receiving AT commands.DWDIO interface for manual access to the production test dll DWDIO.dll.Generic Test Interface (GTI) for RF calibration. System Trace Tool (STT) allows capturing trace sub-streams from different sources on the platform in one combined stream.Depending on the trace interface bandwidth, the combined data stream can be sent either over one of the standard communication interfaces (e.g. USB) or over a dedicated high-speed MIPI trace interface. Captured trace data includes standard 3GPP IPC messages, print statements inserted by developers in the code, error messages, and core dump (crash) information. The actual decoding of the trace data is done by pluggable decoder libraries, DLL’s and scripts, which are specific to the version of the mobile station software from which the trace is captured.The STT application has a GUI (Graphical User Interface) which provides an easy to use graphical interface to view, search and analyze trace data. It supports advanced message filtering runs on all Microsoft Windows® platforms.STT will become the only tool for trace analysis in the future, the legacy trace tools, Mobile Analyser and Artemis, will be continue to be supported for the 2G/3G WWAN M.2 HSPA+ module. XMMCalTool is a utility program that can be used for RF calibration. XMMCalToolsupports the following features:Optimized calibration3G TX closed loop power controlParallel calibration 2G low/high bandNon-signaling verificationIndustry leading fast sequenced test conceptSupports parallel RX and TX verification
  Proven Single-Ended BER for faster BER< 4 sec/per channel for 3G fast verification (BER, RSSI, TX, ILPC)Tester supported: R&S CMU200, CMW500, and Agilent 8960 M.2 modules are marketed for use on Tablet, Ultrabook, and Laptop devices. OEMvendors routinely offer multiple hardware configurations for the same base model, withdifferent processor speed, drive type, or display type, etc. Each configuration has adifferent Radio Frequency emission profile with the possibility of introducing newinterference sources to a modem module.The Noise Profiling Tool will measure, record down & plot graph of the RF noise levelpresent on each RX channel. This SW tool will switch on receiver port and sweep allapplicable RX channels on each band and each technology (WiFi, Bluetooth, GPS, andGLONASS). This will allow OEM vendors to quickly know the noise jamming profile to themodem module plugged in their devices.

Navigation menu