ELITEGROUP COMPUTER SYSTEMS ED2LN30PA1 DATA CARD User Manual Part 2

ELITEGROUP COMPUTER SYSTEMS CO., LTD DATA CARD Part 2

Contents

User Manual Part 2

   The following section describes the system architecture of Inter-Processor Communication on a WWAN M.2 module when connected to a Microsoft Windows® based Host OS Windows® 7, Windows® 8.x. The software components of a WWAN M.2 module running Windows® 7 and Windows® 8 are depicted in Figure 12 and Figure 13 respectively. In the Windows® 7 architecture:The Windows® 7 driver interfaces with the WWAN M.2 modem using a virtual terminal connection over CDC-ECM.A Third party connection manager utilizedIndependent Hardware Vendor (IHV) provided MBIM driverIn the Windows® 8 architecture:Microsoft requirements:oMBIM interfacesoUser Mode Driver Framework (UMDF) driver for GNSS, and Firmware Update, Carrier Switching application.oRTD3 supportFor all Windows platforms:The WWAN M.2 module is exposed as a composite device GNSS will be supported through a serial interface When mobile broadband is disabled, GNSS will still be available. The mobile network adapter driver will interface to the modem software through the MBIM interface. All Intel specific features will be supported through MBIM. The connection manager provided with Win 8 OS and above will be used. For Win 7, the IHV provided connection manager is used.There will be an application layer to hide the differences in the mobile broadband API between Win 7 and Win 8.
  Figure 12 Windows 7 Software Architecture
  Figure 13 Windows 8 Software Architecture
    In order to support both Windows®8 and Windows®7 (for corporate legacy applications),with a single modem architecture, IMC will provide a kernel level driver implementing theMobile Broadband Interface Model. The driver is WHQL certified for Windows®7. IMC provides a GNSS "User mode" driver to enable GNSS Applications executing onWindows PC/Tablet to communicate to the GNSS device located on the M.2 module. Thedriver communicates to Modem module via AT commands over an ACM-CDC USB channel. This is a “user friendly” Windows GUI application enabling the consumer, whose Ultrabookor tablet is hosting an Intel M.2 module, to update the firmware on WWAN module byexecuting a graphical application based on .NET4 framework. The same application runs onboth Windows®7 and Windows®8 environments and its look & feel can be customized ifrequired.This same application is used to upgrade the standard image flashed at the factory with onethat better fits the local Carrier. When a new SIM is inserted, the application will detect theinserted SIM does not match the WWAN device firmware. It will then allow the user toselect and update the WWAN firmware with a suitable image reflecting the local network ofthe Carrier. This is a Windows®8 application allows a M.2 end user to collect debugging informationunder guidance of a Customer Support operator. The log file can be sent to a Technical support center and fed into an analysis tool, such as Intel’s Mobile Analyzer application, todiagnose potential problems found in the field after module deployment.
   The following section describes the system architecture of Inter-Processor Communicationon a M.2 module when connected to a Linux based Host OS (Android, Chrome, and Ubuntu).The description is only concerned with the HS-USB port which is the only availablefunctional interprocessor communications (IPC) interface at run-time and takes into accountonly the AT control plane and IP packets data connection. Audio packet exchange is outsidethe scope of the current version of M.2. Figure 14 illustrates the architecture of the IPC and its components.Figure 14 Linux Software ArchitectureThe user data is transferred from/to the cellular protocol stack (C-PS) to the IPC via acentralized memory manager. The centralized memory manager is called packet buffermanager (PBM). The user data is routed along the data plane as IP packets using several
  logical channels. Each logical channel corresponds to a dedicated Packet Data Network(PDN) connection.There is no TCP/IP stack on the modem side in the data path from IPC over PBM toC-PS handling IP address based routing.The central packet buffer manager (PBM) provides a common packet buffer used betweenIPC and PS. No copy operation of data is necessary between cellular PS and IPC. The HS-USB interface provides a highly efficient data path via DMA with scatter/gather linked-listprocessing.The control plane is using at least one dedicated channel through Serial IO component (S-IO)to the AT command handler. The interface towards the driver is called Universal TerminalAdapter (UTA)-Terminal, while the interface towards application is called UTA-Serialinterface. The application in our case is the AT command handler called C-AT. The controlchannel is using AT commands. A detailed list of all supported AT commands can be foundin a separate application note. In the context of an AT command based architecture, a SW multiplexer can be added. TheSW multiplexer of the 3GPP 27.010 protocol provides a number of logical channels (DLC)which serve as AT terminals on Host PC side. These logical channels are mapped on-top ofone of the control channels of the specific physical IPC interface.The 3GPP 27.010 multiplexer protocol is a data link protocol (layer-2 of the OSI model)which uses HDLC-like framing, virtual data channels, and channels’ control procedure. Theprotocol is implemented according to 3GPP TS27.010. It allows software applications on theHost processor to access the USB-HS port on M.2 in a concurrent way by emulating multiplevirtual communication channels. The MUX protocol controls the virtual channels andconveys user data over the virtual channels.
   The USB 2.0 HS stack is used for communication with a PC in device role.Additional details on the USB interface can be found in Section 3.1, Interprocessor Interface. The USB feature may be configured by the UTA_USB API. The user may define differentuse cases, such as support of different numbers of CDC-ACM or CDC-NCM channels. Up to 3 CDC-ACM logical channels are available to be used as an interface for thefollowing functionality:AT commands3GPP 27.010 MultiplexerTracingConnection to test frameworkThe ACM channels are connected via UTA-Terminal to S-IO and from there via UTA-Serial to the application on modem side.  Up to 4 CDC-NCM functions are available to be used as interface for network connections servicing for up to four PDN connections.The NCM channels are connected via the PBM driver interface to PBM and from there viaPBM service interfaces to the PTM component of C-PS.  The default configuration is 3 CDC-ACM channels for control and trace and 4 CDC–NCM channels for data connections. A specific configuration is set via the AT+XSIOcommand. The detailed usage of the default configuration is:1st ACM channel:: Modem Control Channel, Channel ID: USBCDC/02nd ACM channel:: Trace data, Channel ID: USBCDC/13rd ACM channel:: free, Channel ID: USBCDC/2
  1st - 4th NCM channel: data channel for PDN connection: Channel ID: USBHS/NCM/0-3 The host computer can set the modem into USB sleep (L1) state (to save battery power)whenever the link is idle. To return from sleep state the host computer performsL1Resume. This can also be triggered by the modem using L1-Remote- Wake-up. Thesleep (L1) state is introduced by “USB 2.0 Link Power Management Addendum” andallows fast state transitions between active and sleep states. The PC can set the modem into USB suspend state (to save battery power) when nocommunication takes place or when the PC is switched into standby mode. The suspend statealso can be triggered by X-GOLD™ Baseband device through a proprietary device initiatedselective suspend mechanism. The wake up is performed by Host Resume. The modem canwake up the host computer from standby state using Remote Wake-up The software components of a WWAN M.2 module running the Android operating system is shown Figure 15. Android version 15/16 will be supported. Intel Intrinsic Radio Interface Layer (RIL) will be used and supported via a USB CDC-ACM driver. All Intel features will be supported via AT commands. Advanced Linux Sound Architecture (ALSA) will not be supported on data only WWAN M.2 modules.
  Figure 15 Android Software Architecture A preliminary view of the software components of a WWAN M.2 module running the Chrome operating system is shown in Figure 16. The architecture is still in development; however, it is expected that: Intel Intrinsic Radio Interface Layer (RIL) will be used and supported via a USB CDC-MBIM driver. All Intel features will be supported via MBIM commands. Advanced Linux Sound Architecture (ALSA) will not be supported on data only WWAN M.2 modules.
  
   Table 24 Operating EnvironmentItem DescriptionForm Factor Card Type 3042Operating Temperature The module full operating temperature in compliance with 3GPPspecification shall be-10 °C to +55 °C – Normal+55 °C to +70 °C – ExtremeExtreme is the surrounding air temperature of the module inside the platform when the card is fully operating at worst case condition.We cannot guarantee the RF performance of the device, since components might operate out of specification. On the RF side we are using a mechanism called Progressive Power Reduction to limit the PA output power at high operating temperature.Storage Temperature -40 °C (minus 40) to +70 °C (plus 70) non-operating.Humidity <85% humidity, non-condensing
    The M.2 modules utilize a single regulated power rail of 3.3 V provided by the hostplatform. There is no other VDDIO like pin and the M.2 module is responsible forgenerating its own I/O voltage source using the 3.3 V power rail. This3.3 V voltage rail source on the platform should always be on and available during thesystem’s stand-by/suspend state to support the wake event processing on thecommunications card.There are 5 power pins on the host interface, pins 2, 4, 70, 72, and 74.The requirements of the regulated 3.3 V power supply provided by the host platform arelisted below.Table 25 M.2 Module Power Delivery Requirements - UltrabookRequirement Detailed DescriptionSupply voltage 3.3 V at the Card connector will be within 5% tolerance on themotherboard.Peak Current The host board shall provide 2.5 A peak current.Average Current Average max current of 1.1 A will be supported.Max in-rush current Max module in-rush current of 5.1 A will be supported.Power pinconnectionsThe power pins specified in WWAN card #’s, 2, 4, 70, 72, 74 will be connected to 3.3 V supply and WWAN configuration pins 1, 69, and 75 will be connected to ground. For Tablet platforms, the 3.3 V regulated power rail can be replaced with a direct VBATconnection. Key parameters for VBAT in a direct connection configuration are shown inTable 26.Table 26 VBAT Power Delivery Requirements – Direct Connections (Tablet)Power Source Vmin Vmax Cell TypeVBAT 3.135 V* 4.4 V Once cell Li-Ion battery(*) RF performance cannot be guaranteed below 3.135 V.
   Table 27 DC Specification for 3.3V Logic SignalingSymbol Parameter Condition Min Max Unit+3.3V Supply Voltage - 3.135 3.465 VVIH Input High Voltage - 2.0 3.6 VVIL Input Low Voltage - -0.5 0.8 VIOL Output Low Current for Open-drain SignalsNot applicable to LED# and DAS/DSS# pins0.4 V 4 - mAIOL Output Low Current for Open-drain SignalsApplies to the LED# pins0.4 V 9 - mAIIN Input Leakage Current 0 V to 3.3 V -10 +10 µAILKG Output Leakage Current 0 V to 3.3 V -50 +50 µACIN Input Pin Capacitance - - 7 pFCOUT Output Pin Capacitance - - 30 pFRPULL-UP Pull-up Resistance - 9 60Table 28 DC Specification for 1.8V Logic SignalingSymbol Parameter Condition Min Max UnitVDD18 Supply Voltage - 1.7 1.9 VVIH Input High Voltage - 0.7 * VDD18VDD18 +0.3 VVIL Input Low Voltage - -0.3 0.3 VDD18 VVOH Output High Voltage IOH = -1 mAVDD18 Min VDD18 -0.45 - VVOL Output Low Voltage IOL = 1 mAVDD18 Min - 0.45 VIIN Input Leakage Current 0 V to VDD18 -10 +10 µAILKG Output Leakage Current 0 V to VDD18 -50 +50 µACIN Input Pin Capacitance - - 10 pF
   This section lists the power consumption targets. Typical target values at Vsys = 3.3 VTable 29 LTE Power ConsumptionM.2 Power Consumption (*) Transmit PowerLTE Use Case Band 10 dBm 23 dBmLTE UTP, Cat. 3, 20 MHz, 100 RB - (APAC SKU only) 1 1195 mW 2195 mWLTE UTP, Cat. 3, 20 MHz, 100 RB - (APAC SKU only) 3 1175 mW 2356 mWLTE UTP, Cat. 3, 10 MHz, 50 RB - (APAC SKU only) 8 1000 mW 2201 mWLTE UTP, Cat. 3, 20 MHz, 100 RB - (APAC SKU only) 9 1175 mW 2244 mWLTE UTP, Cat. 3, 10 MHz, 50 RB - (APAC SKU only) 11 1073 mW 2155 mWLTE UTP, Cat. 3, 15 MHz, 75 RB - (APAC SKU only) 18 1122 mW 1911 mWLTE UTP, Cat. 3, 15 MHz, 75 RB - (APAC SKU only) 19 1112 mw 1874 mWLTE UTP, Cat. 3, 15 MHz, 75 RB - (APAC SKU only) 21 1208 mW 2270 mWLTE UTP, Cat. 3, 100 Mbps/50 Mbps, 20 MHz –(APAC not included) 7 1068 mW 2531 mW LTE UTP, Cat. 3, max throughput, 10 MHz –(APAC not included) 17 916 mW 2394 mW LTE Use Case Standby PowerLTE Stand-by current, DRX 1.28 s serv. Cell only 8 mW(*) Applicable to modules:LN930LN930-APTable 30 UMTS Power ConsumptionM.2 Power Consumption Transmit PowerUMTS Use Case(DC-HSDAP+ or HSDPA+)Band 10 dBmUMTS FTP, Cat. 24, RxDiv(M.2 DC-HSDPA+)Band 1 988 mW
  UMTS FTP, Cat 14, QAM64(M.2 DC-HSDPA+)Band 1 771 mWUMTS FTP, Cat 14, QAM64(M.2 HSDPA+)Band 1 813 mWStandby PowerUMTS Stand-by current, DRX7, 16NB cells - 6 mWUMTS Stand-by current, DRX7, 16NB cells (HN930) - 6.6 mWTable 31 GSM Power ConsumptionGSM Use Case Band Transmit Power2UL, 1DL, PCL10 (*) GPRS 900 475 mW2UL, 1DL, PCL5 (*) GPRS900 1482 mWStandby PowerGSM Stand-by, DRX5, 16NB cells - 6 mWGSM Stand-by, DRX5, 16NB cells (£) - 6.88 mW(*) Applicable to modules: LN930, LN930-AP, HN930(£) Applicable to module: HN930 (XMM™ 6260 based)
    The M.2 Data Card has shielding and noise filtering in place to ensure that theWWAN module does not impact the operation of the host system.The M.2 Data Card must also be able to tolerate platform noise caused by high order clockharmonics from the host processor and associated support circuitry. It is required that thenoise levels (as measured at the antenna connector) in the operating frequencies of the M.2Data Card be no greater than 5 dB as compared to the noise floor of the host system. Wireless subsystems in mobile platforms are affected by platform related noise, even with thebest antenna and chassis design. This noise hampers the wireless radio performance,sometimes severely. For platforms that incorporate wireless subsystems like WWAN, passingthe wireless operator certification is an important component of platform launch.One of the key elements of platform noise, commonly referred to as RF interference, is LCDdisplay panel pixel clock and its harmonics. The pixel clock generates RF that translatesdirectly into noise picked up by platform wireless radios due to the close proximity of displayelectronics and the integrated antennas in the system. Many of the panel vendors allow thepixel clock to be “tweaked” (i.e. adapt the pixel clock) to shift the harmonics from interferingwith the wireless components in operating radio frequencies.A radio’s receive performance could be improved by moving any harmonics of the graphicspixel clock outside of the frequencies used by the wireless modules. This will beaccomplished by shifting the display pixel clock. Shifting the pixel clock is not expected toaffect the graphics quality or its performance. The display panel refresh rate will not bechanged.To support crosstalk mitigation, the WWAN module provides an event indication to the hostwhen the channel frequency changes. On the event indication, the host would use thefrequency change information (i.e. Center Frequency, Bandwidth, and any other optionalinformation) through an API that would facilitate the facilitating the implementation of anoise mitigation service. 
  The M.2 Data Card includes a digital thermal sensor in order to monitor the temperatureof the WWAN Card. The firmware will support the extraction of temperature informationfrom the module and the configuration of auxiliary trip points.The configuration of the thermal trip points and receipt of thermal data is availablethrough a WWAN power control API in order for the host to implement a power andthermal management framework for the system. The WWAN M.2 module provides support for EAP methods; EAP-SIM, EAP-AKA, and EAP-AKA’. These methods, which are used on WiFi authentication, require access to WWAN SIM credentials to connect to WiFi Networks and offload from WWAN.All necessary AT commends needed for the EAP-SIM functionality are supported. In addition, all necessary commands need for the PIN entry, change, and lock/unlock are supported.Through the API, the host can manage Wi-Fi Hotspot connectivity with Operator provisioned Hotspot SSIDs and/or End-User provided SSIDs and seamlessly offload a data session from a 3G/4G connection to Wi-Fi hotspot connection after successful authentication of the device and authorization of the end-user subscription using the SIM on the platform. Transmit power as measure at the WWAN antenna connectorTable 32 Conducted Transmit Power – 2GParameter Condition RequirementConducted Transmit Power 850 MHz/900 MHz 33 dBm +/- 3 db1800 MHz/1900 MHz 30 dBm +/- 3 db2G not supported for APAC SKUTable 33 Conducted Transmit Power – 3GHDPA+ / LTE LN930Parameter Condition RequirementConducted Transmit Power1W-CDMA class 3 24 dBm + 1 db /- 3 dbLN930-AP (APAC SKU only)Parameter Condition RequirementConducted Transmit Power1W-CDMA class 3 24 dBm + 1 db /- 3 db1 Conducted transmit power as measured at the WWAN M.2 RF main antenna connector.
  Table 34 Conducted Transmit Power – LTEHDPA+ / LTE LN930Parameter Condition RequirementConducted Transmit Power1E-UTRA class 3 23 dBm + 0.5/- 1 dbLN930-AP (APAC SKU only)Parameter Condition RequirementConducted Transmit Power1E_UTRA class 3 22.5 dBm + 0.5 /- 1 db2 Conducted transmit power as measured at the WWAN M.2 RF main antenna connector.   The reference sensitivity power level is the minimum mean power applied to both the WWAN M.2 antenna ports at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.Condition: Calibration voltage = 3.3V, 25C shielded roomTable 35 Rx Sensitivity - GSMBand Condition Min Rx Sensitivity Limit (dBm)GSM850 GMSK -110GSM900 GMSK -109GSM1800 GMSK -109GSM1900 GMSK -106
  Table 36 Rx Sensitivity - UMTSHDPA+ / LTE LN930Band Condition Min Rx Sensitivity Limit (dBm)1 BER<0.1% -1072 BER<0.1% -1064 BER<0.1% -1075 BER<0.1% -1078 BER<0.1% -107LN930-AP (APAC SKU only)Band Condition Min Rx Sensitivity Limit (dBm)1 BER<0.1% -1066 BER<0.1% -1068 BER<0.1% -10311 BER<0.1% -10619 BER<0.1% -106GSM not supported for LN930-APMain and Diversity ports are measured separately. Combining both antenna ports increases sensitivity by 3 dB. Table 36 Rx Sensitivity – UMTS reflects both ports combined.Table 37 Rx Sensitivity - LTEHDPA+ / LTE LN930EARFCNLTEBand Duplex Modulation Bandwidth (Hz) Min Rx Sensitivity Limit (dBm)Low Channel Middle Channel High Channel1  FDD  QPSK  10  -96  50  320  550 2  FDD  QPSK  10  -95  650  920  1150 3  FDD  QPSK  10  -97  1250  1678  1900 4  FDD  QPSK  10  -96  2000  2110  2350 5  FDD  QPSK  10  -97  2450  2510  2600 7  FDD  QPSK  10  -96  2800  3100  3400 8  FDD  QPSK  10  -97  3525  3625  3750 13  FDD  QPSK  10  -97  5180  5230  5279 17  FDD  QPSK  10  -97  5780  5800  5890 18  FDD  QPSK  10  -97  5900  5925  5950 19  FDD  QPSK  10  -97  6050  6075  6100 20  FDD  QPSK  10  -94  6200  6300  6400
  LN930-AP (APAC SKU only)EARFCNLTEBand Duplex Modulation Bandwidth (Hz) Min Rx Sensitivity Limit (dBm)Low Channel Middle Channel High Channel1  FDD  QPSK  10  -96 50  320  550 3  FDD  QPSK  10  -96 1250  1678  1900 8  FDD  QPSK  10  -96 3525  3625  3750 9  FDD  QPSK  10  -96 3850  3975  4099 11  FDD  QPSK  10  -96 4800  4850  4899 18  FDD  QPSK  10  -97 5900  5925  5950 19  FDD  QPSK  10  -97 6050  6075  6100 21  FDD  QPSK  10  -96 6500  6525  6549 26  FDD  QPSK  10  -97 8740 8865  8989GSM not supported for APAC SKUMain and Diversity ports are measured separately. Combining both antenna ports   increases sensitivity by 3 dB. Table 36. Rx Sensitivity – UMTS reflects both ports combined.Table 37 is a generic view that includes all LTE bands for Rx sensitivity. The APAC SKU does not include LTE Bands 2, 4, 5, 7, 13, and 17.
   The following tables provide antenna guidance for the platform designer.Table 38 Antenna RecommendationParameter RecommendationImpedance 50 ohmAntenna Shape and Radiation PatternNear Omni-directional in the Horizontal plane is preferredPolarization Predominantly vertical polarization and near Omni-Azimuth pattern are desired; H-polarization must not be eliminated ( indoor, diversity)Input Power 33 dBm typical peak power GSM LB*30 dBm typical peak power GSM HB*24 dBm typical average power WCDMA23 dBm typical average power LTE*Not included for APAC SKU. Table 39 Antenna Recommendation - Bandwidth of Main & Diversity AntennaRF BandCenter FrequencyUplink (UL) UE TxDownlink (DL) UE RxDuplex ModeCommon NameBandwidth of Main Antenna (MHz)Bandwidth of Diversity Antenna (MHz)001 I (1)  2100 MHz  1920 MHz to 1980 MHz 2110 MHz to 2170 MHz  FDD  IMT  250  60 002 II (2)  1900 MHz  1850 MHz to 1910 MHz 1930 MHz to 1990 MHz  FDD  PCS  140  60 003 III (3)  1800 MHz  1710 MHz to 1785 MHz 1805 MHz to 1880 MHz  FDD  DCS  170  75 004 IV (4)  1700 MHz  1710 MHz to 1755 MHz 2110 MHz to 2155 MHz  FDD  AWS  445  45 005 V (5)  850 MHz  824 MHz to 849 MHz 869 MHz to 894 MHz  FDD  CLR  70  25 006 VI (6)  850 MHz  830 MHz to 840 MHz 875 MHz to 885 MHz  FDD  UMTS 800  55  10 007 VII (7)  2600 MHz  2500 MHz to 2570 MHz 2620 MHz to 2690 MHz  FDD  IMT-E  190  70 008 VIII (8)  900 MHz  880 MHz to 915 MHz 925 MHz to 960 MHz  FDD  GSM  80  35 009 IX (9)  1800 MHz  1749.9 MHz to 1784.9 MHz 1844.9 MHz to 1879.9 MHz  FDD  UMTS 1800  130  35 010 X (10)  1700 MHz  1710 MHz to 1770 MHz 2110 MHz to 2170 MHz  FDD  Extended AWS  460  60 011 XI (11)  1500 MHz  1427.9 MHz to 1447.9 MHz 1475.9 MHz  to  1495.9 MHz FDD  PDC  68  20 013 XIII (13)  750 MHz  777 MHz to 787 MHz 746 MHz to 756 MHz  FDD upper SMH block C  41  10 017 XVII (17)  700 MHz 704 MHz  to  716 MHz 734 MHz  to  746 MHz FDD lower SMH blocks B/C (subset of  42  12
  RF BandCenter FrequencyUplink (UL) UE TxDownlink (DL) UE RxDuplex ModeCommon NameBandwidth of Main Antenna (MHz)Bandwidth of Diversity Antenna (MHz)band 12) 018 XVIII (18)  850 MHz  815 MHz to 830 MHz 860 MHz to 875 MHz  FDD Japan lower 800  60  15 019 XIX (19)  850 MHz  830 MHz to 845 MHz 875 MHz to 890 MHz  FDD Japan upper 800  60  15 020 XX (20)  800 MHz  832 MHz to 862 MHz 791 MHz to 821 MHz  FDD EU's Digital Dividend  71  30 021 XXI (21)  1500 MHz  1447.9 MHz to 1462.9 MHz 1495.9 MHz  to  1510.9 MHz FDD  PDC  63  15.4 025 XXV (25)  1900 MHz  1850 MHz to 1915 MHz 1930 MHz to 1995 MHz  FDD Extended  PCS (superset of band 2) 145  65 026 XXVI (26)  850MHz  814 MHz to 849 MHz 859 MHz to 894 MHz  FDD  ESM+CLR  80  35 027 XXVII (27)  850MHz  806 MHz to 824 MHz 851 MHz to 869 MHz  FDD  ESMR  63  18 028 XXVIII (28)  750MHz 703 MHz to 728 MHz 758 MHz  to 803 MHz  FDD  APAC 700  100  45 GPS 1575.42 MHz          GPS  L1     35 GLONASS 1602 MHz           GLONASS  L1    35 APAC SKU does not include RF Bands 7, 10, 13, 17, 20, 25, 26, 27, 28 Table 40 GNSS SensitivityParameter Min Limit (dBm)Cold Start Sensitivity -145Hot Start Sensitivity -155
   M.2 module complies with the following listed test standards:3GPP TS 31.121 USIM 3GPP TS 31.124USAT 3GPP TS51.010-1, 2G PS & RF & RRM 3GPP TS 51.010-4 2G SIMTK 3GPP TS34.121-1 3G RF & RRM 3GPP TS34.123-1 3G PS 3DPP TS36.124 LTE Radiated Emission 3GPP TS36.521-1 LTE RF 3GPP TS 36.521-3 LTE RRM 3GPP TS36.523-1 LTE PS ETSI TS 102 230 UICCOMA ETS SUPL v1.0 LBS SUPL OMA ETS SUPL v2.0 LBS SUPL
    The mechanical dimensions of WWAN Card Type 3042 are shown in Figure 17 and Figure 17.The WWAN card is 30 mm x 42 mm. The height is 1.5 mm from the top of the PCB to thetop of the outside shield. There are a total of 75 pins; however 8 pins are lost to support theslot+. All components are mounted on the Top side.Figure 17 WWAN Card 3042 Mechanical Dimensions
  Figure 18 WWAN Card 3042 Slot Key Details
   Figure 19 illustrates a typical land pattern for a top-mount connector with the key removed.Figure 19 WWAN Card Type 3042 Top-Side Mounting Land Pattern
  Figure 20 illustrates a typical mid-plane (in-line) land pattern with slot key removed.Figure 20 WWAN Card 3042 Mid-plane Land Pattern with Slot Key Removed
   Figure 21 illustrates the locations for the main Rx/Tx antenna and the Diversity/GPS antenna.Figure 21 Antenna Connector LocationTable 41 Antenna Connector AssignmentAntenna Interface0 TBD1 Diversity/ GPS2 TBD3 TBD4 WWAN Main Tx/Rx5 TBDFor M.2 Modules positions 1 and 4 are used. The other antenna connectors are not mounted on the module.
                              READ CAREFULLYBe sure the use of this product is allowed in the country and in the environment required. The use of this product may be dangerous and has to be avoided in the following areas:Where it can interfere with other electronic devices in environments such as hospitals, airports, aircrafts, etc.Where there is risk of explosion such as gasoline stations, oil refineries, etc. It is responsibility of the user to enforce the country regulation and the specific environment regulation.Do not disassemble the product; any mark of tampering will compromise the warranty validity. We recommend following the instructions of the hardware user guides for a correct wiring of the product. The product has to be supplied with a stabilized voltage source and the wiring has to be conforming to the security and fire prevention regulations. The product has to be handled with care, avoiding any contact with the pins because electrostatic discharges may damage the product itself. Same cautions have to be taken for the SIM, checking carefully the instruction for its use. Do not insert or remove the SIM when the product is in power saving mode.The system integrator is responsible of the functioning of the final product; therefore, care has to be taken to the external components of the module, as well as of any project or installation issue, because the risk of disturbing the GSM network or external devices or having impact on the security. Should there be any doubt, please refer to the technical documentation and the regulations in force. Every module has to be equipped with a proper antenna with specific characteristics. The antenna hasto be installed with care in order to avoid any interference with other electronic devices andhas to guarantee a minimum distance from the body (20 cm). In case of this requirement cannot be satisfied, the system integrator has to assess the final product against the SAR regulation.The European Community provides some Directives for the electronic equipmentsintroduced on the market. All the relevant information’s are available on the EuropeanCommunity website:http://ec.europa.eu/enterprise/sectors/rtte/documents/The text of the Directive 99/05 regarding telecommunication equipments is available,while the applicable Directives (Low Voltage and EMC) are available at:http://ec.europa.eu/enterprise/sectors/electrical/
   The following chapters are related to the M.2 module on the EVK carrier board. The LN930  products portfolio has been evaluated against the essential  requirements  of the 1999/5/EC Directive.Bulgarian Telit  Communications  S.p.A.  , 2G/3G  module 1999/5/ .Czech Telit Communications S.p.A. tímto prohlašuje, že tento 2G/3G moduleími Danish Undertegnede Telit Communications S.p.A. erklærer herved, at følgende udstyr 2G/3G module overholder de væsentlige krav og øvrige relevante krav i direktiv 1999/5/EF.Dutch Hierbij  verklaart  Telit  Communications  S.p.A.dat  het  toestel  2G/3G  module  in overeenstemming  is  met  de  essentiële  eisen  en  de  andere  relevante  bepalingen  van  richtlijn 1999/5/EG.English Hereby, Telit Communications S.p.A., declares that this 2G/3G module is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.Estonian Käesolevaga kinnitab Telit Communications S.p.A. seadme 2G/3G module vastavust direktiivi 1999/5/EÜ põhinõuetele ja nimetatud direktiivist tulenevatele teistele asjakohastele sätetele.GermanHiermit  erklärt  Telit  Communications  S.p.A.,  dass  sich  das  Gerät  2G/3G  module  in Übereinstimmung  mit  den  grundlegenden  Anforderungen  und  den  übrigen  einschlägigen Bestimmungen der Richtlinie 1999/5/EG befindet.Greek2G/3G  module HungarianAlulírott,  Telit  Communications  S.p.A.  nyilatkozom,  hogy  a  2G/3G  module megfelel  a vonatkozó alapvetõ követelményeknek és az 1999/5/EC irányelv egyéb elõírásainak.Finnish Telit Communications S.p.A.vakuuttaa täten että 2G/3G module tyyppinen laite on direktiivin 1999/5/EY oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.FrenchPar la présente Telit Communications S.p.A. déclare que l'appareil 2G/3G module est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.Icelandic Hér  með  lýsir  Telit  Communications  S.p.A.  yfir  því  að  2G/3G  moduleer  í  samræmi  við grunnkröfur og aðrar kröfur, sem gerðar eru í tilskipun 1999/5/ECItalianCon la presente Telit Communications S.p.A. dichiara che questo 2G/3G module è conforme ai requisiti essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 1999/5/CE.Latvian Ar  šo Telit  Communications  S.p.A. 2G/3G  module .LithuanianŠiuo  Telit  Communications  S.p.A.  deklaruoja,  kad  šis  2G/3G  moduleatitinka  esminius reikalavimus ir kitas 1999/5/EB Direktyvos nuostatas.MalteseHawnhekk, Telit  Communications  S.p.A.,  jiddikjara  li  dan 2G/3G  modulejikkonforma  mal--Dirrettiva 1999/5/EC.
  NorwegianTelit  Communications  S.p.A.  erklærer  herved at  utstyret  2G/3G  moduleer  i  samsvar  med  de grunnleggende krav og øvrige relevante krav i direktiv 1999/5/EF.Polish 2G/3G  modulejest  zgodny  z iami Dyrektywy 1999/5/ECPortugueseTelit Communications S.p.A. declara que este 2G/3G moduleestá conforme com os requisitos essenciais e outras disposições da Directiva 1999/5/CE.Slovak Telit Communications S.p.A. týmto vyhlasuje, že 2G/3G modulea základné požiadavky a všetky príslušné ustanovenia Smernice 1999/5/ES.Slovenian Telit Communications S.p.A. izjavlja, da je ta 2G/3G modulv skladu z bistvenimi zahtevami in Spanish Por medio de la presente Telit Communications S.p.A. declara que el 2G/3G modulecumple con los requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 1999/5/CE.Swedish Härmed intygar Telit Communications S.p.A. att denna 2G/3G modulestår I överensstämmelse med  de väsentliga egenskapskrav  och  övriga  relevanta  bestämmelser  som framgår av direktiv 1999/5/EG.In  order  to  satisfy  the  essential  requirements  of 1999/5/EC  Directive,  the  LN930  is compliant with the following standards:RF spectrum use (R&TTE art. 3.2) EN 300 440-2 V1.4.1EN 301 511 V9.0.2EN 301 908-1 V6.2.1EN 301 908-2 V5.2.1EN 301 908-13 V5.2.1EN 300 440-1 V1.6.1EMC (R&TTE art. 3.1b) EN 301 489-1 V1.9.2EN 301 489-3 V1.4.1EN 301 489-7 V1.3.1EN 301 489-24 V1.5.1Health & Safety (R&TTE art. 3.1a) EN 60950-1:2006 + A11:2009 + A1:2010 + A12:2011EN 62311: 2008
  The conformity assessment procedure referred to in Article 10 and detailed in Annex IV of Directive  1999/5/EC  has  been  followed  with  the  involvement  of  the  following  Notified Body:Thus, the following marking is included in the product:The full declaration of conformity can be found on the following address:http://www.telit.com/There is no restriction for the commercialization in all the countries of the European Union. Final product integrating this module must be assessed against essential requirements of the 1999/5/EC (R&TTE) Directive. It should be noted that assessment does not necessarily lead to testing. Telit Communications S.p.A. recommends carrying out the following assessments:RF  spectrum  use  (R&TTE  art. 3.2)It  will  depend  on  the  antenna  used  on  the  final product.EMC (R&TTE art. 3.1b) TestingHealth  &  Safety  (R&TTE  art. 3.1a)TestingAlternately, assessment of the final product against EMC (Art. 3.1b) and Electrical safety (Art.  3.1a)  essential  requirements  can  be  done  against  the  essential  requirements  of  the EMC and the LVD Directives:Low Voltage Directive 2006/95/EC and product safetyDirective EMC 2004/108/EC for conformity for EMC This device meets the EU requirements (1999/519/EC) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) on the limitation of exposure of the general public to electromagnetic fields by way of health protection.To comply with the RF exposure requirements, this module must be installed in a host platform that is intended to be operated in a minimum of 20 cm separation distance to the user.
   In all cases assessment of the final product must be met against the Essential requirements of the R&TTE Directive Articles 3.1(a) and (b), safety and EMC respectively, as well as any relevant Article 3.3 requirements.1. The Dipole antenna (gain: GPRS/EGPRS/WCDMA/LTE: 2dBi) was verified in the conformity testing, and for compliance the antenna shall not be modified. A separate approval is required for all other operating configurations, including different antenna configurations.2. If any other simultaneous transmission radio is installed in the host platform together with this module, or above restrictions cannot be kept, a separate RF exposure assessment and CE equipment certification is required.
    Telit has not approved any changes or modifications to this device by the user. Any changes or modifications could void the user’s authority to operate the equipment.Telit n’approuve aucune modification apportée à l’appareil par l’utilisateur, quelle qu’en soit la  nature.  Tout  changement  ou  modification  peuvent  annuler  le  droit  d’utilisation  de l’appareil par l’utilisateur. The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user’s manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.CAN ICES-3(B)/ NMB-3(B) This  device  complies  with  Part 15  of  the  FCC  Rules  and  Industry Canada  licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause  interference, and  (2)  this device  must accept  any interference,  including  interference that may cause undesired operation of the device.Le  présent  appareil  est  conforme  aux  CNR  d'Industrie  Canada  applicables  aux  appareils radio  exempts  de  licence.  L'exploitation  est  autorisée  aux  deux  conditions  suivantes  :  (1) l'appareil ne  doit  pas produire  de brouillage,  et  (2)  l'utilisateur de  l'appareil doit  accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed
  and used in accordance with the instructions, may cause harmful interference to radio communications. However, there  is  no  guarantee  that  interference  will  not  occur  in  a  particular  installation.  If  this  equipment  does  cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:- Reorient or relocate the receiving antenna.- Increase the separation between the equipment and receiver. - Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. This equipment complies with FCC/IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body. When the module is installed in the host device, the FCC/IC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: “Contains FCC ID: RI7LN930”, “Contains IC ID: 5131A-LN930”.The grantee's FCC/IC ID can be used only when all FCC/IC compliance requirements are met.This device is intended only for OEM integrators under the following conditions:(1) The antenna must be installed such that 20 cm is maintained between the antenna and users,  (2) The transmitter module may not be co-located with any other transmitter or antenna.(3) To comply with FCC/IC regulations limiting both maximum RF output power and human exposure to RF radiation, the maximum antenna gain including cable loss in a mobile exposure condition must not exceed: 5.0 dBi in Cellular band 3.0 dBi in PCS band 5.5 dBi in AWS band 5.0 dBi in 700 MHz band 5.0 dBi in 2500MHz bandIn the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC/IC authorization is no longer considered valid and the FCC/IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.
   Revision Date Changes0 2013-05-20 First issue 1 2013-07-09 •Update setting for Pin 21 on the host interface. This signal is not connected.• Updated pin names of pins 1, 21, 69, and 75 in Table 4 and Table 19 to simply reflect HW Configuration use.• Updated Table 24 to indicate configuration pins 1, 69, and 75 are tied to GND.• Rename section 3.6 Coexistence Interface to In-Device Coexistence Interface. Additional information on the Inter-device coexistence support was added.• Updated section 4.1.3 System Trace Tool Section.• Updated Figure 5 – RF Engine for WW SKU.• Add further information USB LPM to USB section• Added information on Seamless Roaming & Wifi Off-load – SIM_EAP, SIM-AKA under Other Requirements• Added information on Antenna Design Guidelines under Other Requirements.2 2013-07-29 RF bands updated3 2013-08-26 Updating on RF bandsUpdated section 3.5 and 3.4.5Updated temp range4 2013-09-09 HN930-DC product was removed from portfolio5 2013-09-15 Main & Diversity antenna positions have been swapped. Updated documentation accordingly, Figure 6 and Figure 10.Updated WWAN M.2 Mechanical drawings, Figure 14 through Figure 17.Updated Card_power_ON_OFF description for UltraBook in Table 9.Updated comments in Table 15 regarding the DPR#/SAR signal.Updated SIM DTECTED signal to indicate an external pull-up.Updated Platform Block Diagrams to show DPR# signal is connected to an EINT pin (not GPIO) on XGOLD.Identified Audio Signals on host interface in Table 4. Previously these were simply defined as Reserved.Updated VBAT requirements in Table 24 and Table 25.6 2013-11-20 Regulation section was updatedAdding support for UMTS Band 6 to M.2 APAC SKU (see Table 2).Updated 3G RF Band support for APAC Module, supported bands are 1, 8, 11, and 19. (see Table 2)Added Measured Values for 2G/3G Rx Sensitivity Table 31 and Table 32.Update Measured Value and changed header name in Rx Sensitivity LTE Table 33Modified supply voltage lower spec for Ultra book in Table 24.Update Table 4, Table 6, Table 26  voltage levels for USB and SIM pins. Added LTE conditions and added  Table 33.7 2014-04-10 Added SSIC to ICP interface. Updated RESET signal definition. Updated Antenna figures.Updated Conducted Transmit Power requirements, Table 32.Section 2.2, Table 4Changed UIM signals pins 30, 32, 34, 36Replaced dash with underscore in signal names.Changed supply voltage for Antenna Tuning Signal(ANTCTL*) from (1.7 V – 2.6 V) to 1.8 V.Section 3.5, Table 20 changed supply voltage for Antenna Tuning Signals (ANTCTL*) from (1.7 V – 2.6 V) to 1.8 V.Section 3.11, Table 25 correction to both no connect pins and key slot pins.Section 8.2, Table 27oChanged the max voltage to 3.0 V for WAKE_WWAN# signaloChanged Typ voltage and max voltage for the Antenna Tuning Signals to 0/1.8 V and 2.3 V respectfully
  Correction in Section 11.3, fixed typo in sentence: For WWAN M.2 Modules, only positions 1 and 4 are used.Updated table to only indicate minimum RX sensitivity limit.Updated Section Conducted Transmit Power section.Added CAT 4: DL 150 Mbps, UL 50 Mbps to APAC LTE in Table 3Deleted LED Blink Status in Table 14Updated Table 4 and Table 27Added Humidity RequirementRemoved Quality & Reliability section since this is a requirement of the ODM.Correction to: DPR signal includes pull-up, SSIC N/P pin locations, COEX pin names.8 2014-06-24 Added IC Canada certification wording.Section 3.2.1, SIM Design Recommendations - added new sectionSection 3.12, Antenna Interface changed connector of the WWAN antenna cable to iPEX MHF4 from Hirose W.FLTSection 7, Table 24. Operating Environment changed description for Operating Temperature to include extreme temperature +55 °C to +70 °C and added additional descriptionSection 8.2, deleted Table 27. Electrical Parameters – Host Interface Signals and replaced it with: oTable 27. DC Specification for 3.3 V Logic SignalingoTable 28. DC Specification for 1.8 V Logic Signaling Section 8.3, Table 29. LTE Power ConsumptionoAdded additional LTE Use Cases for APAC SKU only - Bands 1, 3, 8, 9, 11, 18, 19, and 21 oChanged standby power to 8 mW Section 9.6, -oTable 35. Rx Sensitivity – GSM - added note indicating that GSM is not supported for APAC SKU.oTable 36. Rx Sensitivity – UMTS– added note indicating that the minimum limits reflects that the main and diversity ports are combined.oTable 37. Rx Sensitivity – LTE – added note indicating that the 8 LTE bands 2, 4, 5, 7, 13, 17, 20, and 26  is not supported for APAC SKUSection 9.7, Antenna RecommendationsTable 38. Antenna Recommendation, added note indicating that the first 2 recommendations for Input Power are not supported for APAC SKU.Table 39. Antenna Recommendation - Bandwidth of Main & Diversity Antenna - added not indicating that the following 9 RF Bands 007, 010, 013, 017, 020, 025, 026, 027, and 028 are not supported by the APAC SKU.9 2014-11-18 Replaced Requirement with Target in Table 32 to Table 37. Changes to Table 32. Conducted Transmit Power – 2G Changes to Table 33. Conducted Transmit Power – 3G Changes to Table 34. Conducted Transmit Power – LTE Changes to Table 35. Rx Sensitivity – GSM Changes to Table 36. Rx Sensitivity – UMTS Changes to Table 37. Rx Sensitivity – LTE Changes to Table 38. Antenna Recommendation 10 2014-12-21 Added note to Table 3. WWAN M.2 Module – Data ServicesSKU. This is only for generic SW and VZW SW, but not for AT&T SW.Changes to Section 3.2 USIM InterfaceChanges to Section 3.2 USIM InterfaceList number 2 and 3Changes to Table 4. WWAN M.2 Host Interface Signals pins 29, 31, 35, and 37.Changes to Table 6. USB SSIC - ICP InterfaceChanges to Table 33. Conducted Transmit Power – LTEChanges to Table 4. WWAN M.2 Host Interface Signals pins 29, 31, 35, 37, and 67.Changes to Table 36. Rx Sensitivity – LTE
  Added new table, Table 39. GNSS Sensitivity

Navigation menu